
Dragon: Decentralization at the cost of Representation after
Arbitrary Grouping and Its Applications to Sub-cubic DKG and
Interactive Consistency
HANWEN FENG, The University of Sydney, Australia
ZHENLIANG LU, The University of Sydney, Australia
QIANG TANG, The University of Sydney, Australia

Several distributed protocols, including distributed key generation (DKG) and interactive consistency (IC),
depend on O(𝑛) instances of Byzantine Broadcast or Byzantine Agreement among 𝑛 nodes, resulting in Θ(𝑛3)
communication overhead.

In this paper, we provide a new methodology of realizing such broadcasts we call DRAGON: Decentralization
at the cost of Representation after Arbitrary GrOupiNg. At the core of it, we arbitrarily group nodes into small
“shards” and paired with multiple new primitives we call consortium-sender (dealer) broadcast (and secret
sharing). The new tools enable a shard of nodes to jointly broadcast (or securely contribute a secret) to the whole
population only at the cost of one dealer (as if there is a representative).

With our new Dragon method, we construct the first two DKG protocols, both achieving optimal resilience,
with sub-cubic total communication and computation. The first DKG generates a secret key within an Elliptic
Curve group, incurring Õ(𝑛2.5_) total communication and computation. The second DKG, while slightly
increasing communication and computation by a factor of the statistical security parameter, generates a secret
key as a field element, which makes it directly compatible with various off-the-shelf DLog-based threshold
cryptographic systems. We also construct a first deterministic IC with sub-cubic communication. Along the way,
we also formalize simulation-based security and proved it for publicly verifiable secret sharing (PVSS), making
it possible for a modular analysis, which might be of independent interest.

1 INTRODUCTION
Many distributed protocols rely on O(𝑛) instances of Byzantine Broadcast or Byzantine Agreement
among 𝑛 nodes, thus incurring a Θ(𝑛3) communication complexity. Two notable examples are
distributed key generation (DKG) and interactive consistency (IC).
Distributed key generation. DKG protocols [18, 27, 33, 34, 36, 41, 49, 53] enable a group of
participants to collaboratively create a public key, while each member obtains a secret share of the
secret key. This decentralized approach eliminates the need to rely on a trusted party to do the key
generation process, serving as one indispensable building block in many distributed protocols, such
as secure multiparty computation [24], Byzantine consensus [17, 40], threshold cryptography, and
various emerging applications in blockchain (cryptocurrency wallets[35], securing proof of stake
against long-range attacks via checkpointing [6], and more).

Despite its fundamental importance, existing DKG protocols involving 𝑛 participants suffer from a
total communication 1 cost of Ω(𝑛3_), 2 which is prohibitive even for moderate-scale deployments,
particularly when DKG is required to be continuously run in several settings, e.g., [6]. The cubic
complexity in DKG arises from the common design method of collectively executing verifiable secret
sharing (VSS) [23, 26, 53]. In a nutshell, among 𝑛 participants where up to 𝑡 could be adversarial,
each participant 𝑃𝑖 picks a 𝑡-degree polynomial 𝑓𝑖 to define 𝑠𝑘 (𝑖) = 𝑓𝑖 (0). They then deliver the share
𝑠𝑘
(𝑖)
𝑗

= 𝑓𝑖 (𝑗) to other 𝑃 𝑗 and broadcast a commitment, com𝑖 , for the polynomial 𝑓𝑖 (𝑋). Participants
validate received shares and may collectively engage in a complaint phase, identifying the set J ∈ [𝑛],

1Throughout the paper, communication cost refers to the total communicated bits of honest participants during one execution.
2The only exception is a very recent concurrent work [7]. We use very different techniques and lead to quite different trade-offs
on security, functionality, and efficiency; we will explain the differences in detail at the end of Sect.2.

1

Feng et al.

ensuring all transmitted secret shares are valid. The final secret share for 𝑃𝑖 is 𝑠𝑘𝑖 =
∑

𝑗∈J 𝑠𝑘
(𝑗)
𝑖

, and
the aggregated secret key is 𝑠𝑘 =

∑
𝑗∈J 𝑠𝑘

(𝑗) .
Unfortunately, the delivery phase alone currently involves 𝑛 broadcast instances via Byzantine

broadcast (BB) protocols [29]. Without a common coin [17], deterministic BB protocols generate
Ω(𝑡2) messages [28]. Ensuring participation from at least 𝑡 + 1 participants is vital for 𝑠𝑘’s secrecy,
causing the DKG’s cubic communication for any 𝑡 = Θ(𝑛) 3.
Interactive consistency. Interactive consistency (IC) [10, 52] is a fundamental Byzantine fault-
tolerant primitive, originally introduced in Pease et al.’s seminal work [52]. It allows a group of
nodes, each with private inputs, to have a consistent view of a vector of everyone’s inputs, which is
essential for any multiparty computation expected to perform over everyone’s input.

IC has an immediate reduction to BB: letting all nodes parallelly broadcast their inputs will allow
everyone to have a consistent vector of inputs. Therefore, IC is also referred to as parallel broadcast
in the literature [3, 59]. To the best of our knowledge, despite the recent advancements regarding
randomized IC [59], 𝑛 parallel deterministic BB remains the only solution for deterministic IC, which
necessitates cubic communication cost.
The use of common coin. If assuming a common coin, the cubic barrier of both DKG and IC may be
circumvented, for example, by sampling a committee to reduce the number of VSS instances (and thus
the number of BB instances) or, more generally, by using randomized sub-quadratic BB protocols
[1, 44] that are essentially committee-based. However, besides the fact that certain deterministic
protocols already forbid it or potential adaptive security concerns, this workaround raises another
crucial question: How can a common coin be established within the group (by those participants
collectively)? Indeed, DKG is one of the main approaches to establishing a common coin, which
leads to circularity. Meanwhile, for the non-DKG-based common coin protocols [11, 12, 25, 57]
that do not rely on external setups or initial coins, a single execution of them already incurs O(𝑛3)
communication cost, which cannot help us to circumvent the cubic barrier from the ground.

In this paper, we are addressing the following long-standing problems:
Can we develop a DKG and/or IC protocol with sub-cubic communication complexity?

1.1 Our Results
In the paper, we answer the above question affirmatively by presenting a set of deterministic techniques,
which we call Dragon, to efficiently replace the 𝑛 parallel deterministic broadcast, thus finally getting
rid of the cubic communication in both DKG and IC. We summarize our main results below.

New methodology: Dragon. In this paper, we present Dragon, short for Decentralization at the cost
of Representation after Arbitrary GrOupiNg, which is a set of techniques for emulating a committee
of representatives in a fully decentralized manner, without much overhead. Particularly, Dragon
techniques do not need to assume common coins and do not pose any “single-point of failures”. At a
high level, it starts with an arbitrary deterministic grouping, which partitions the whole population
into disjoint groups. Then, it comes with new techniques, including consortium-sender Byzantine
broadcast (CSBB) and consortium-dealer secret sharing (CDSS) (we will elaborate more soon),
which enable a group to broadcast a message or deal a secret at the cost of a single sender. We
remark that using a small number of nodes to simulate a large number of nodes is a well-established
technique for studying the possibility or impossibility of distributed computation tasks [15, 42]; this

3While we focus on synchronous DKG, asynchronous DKGs similarly let each participant invoke an asynchronous variant of
broadcast protocol whose communication cost is Ω (𝑛2) [16], and consequently, all those asynchronous DKGs [2, 27, 34] also
require 𝑂 (𝑛3_) communication cost.

2

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

work explores the opposite direction of simulating a small number of nodes using a large number of
nodes, for reducing the communication complexity.

Table 1. Comparison with the state-of-the-art synchronous DKG protocols.

Schemes Resi. Field? PV?
Comm. Cost (total) Comp. Cost

Round
w.oracles opt.imp. (per node)

Pedersen [53] 1/2 ! % 𝑂 (𝑛 · BB𝑛 (𝑛_)) 𝑂 (𝑛3_) 𝑂 (𝑛2) 𝑂 (ΔBB(𝑛))
KZG[43](G.) 1/2 ! %

𝑂 (𝑛 · BB𝑛 (_)) 𝑂 (𝑛3_) 𝑂 (𝑛 log𝑛)
𝑂 (ΔBB(𝑛))

KZG[43](B.) 𝑂 (𝑛 · BB𝑛 (𝑛_)) 𝑂 (𝑛3_) 𝑂 (𝑛2)
FS [33] 1/2 ! ! 𝑂 (𝑛 · BB𝑛 (𝑛_)) 𝑂 (𝑛3_) 𝑂 (𝑛2) 𝑂 (ΔBB(𝑛))

GJM+ [41] log𝑛
𝑛

% !
𝑂 (𝑛BB𝑛 (_)+
log𝑛 · BB𝑛 (𝑛_))

𝑂 (𝑛3_) 𝑂 (𝑛 log2 𝑛) 𝑂 (ΔBB(𝑛))

SBKN [56] 1/2 ! ! 𝑂 (𝑛3_) 𝑂 (𝑛2) 𝑂 (𝑛)

Dragon-DKG (G) 1/2 % !
𝑂 (𝑛 · BB√𝑛 (𝑛_)
+
√
𝑛 · BB𝑛 (𝑛_))

𝑂 (𝑛2.5_) 𝑂 (𝑛1.5) 𝑂 (ΔBB(𝑛))

Dragon-DKG (F) 1/2 ! !
𝑂 (𝑛 · BB√𝑛 (𝑛_)
+
√
𝑛 · BB𝑛 (𝑛_^))

𝑂 (𝑛2.5_^) 𝑂 (𝑛1.5^) 𝑂 (ΔBB(𝑛))

_: computational security parameter; ^: statistical security parameter
Resi.: the maximal fraction of byzantine nodes the protocol can tolerate.
Field? asks if the secret key is in a finite field Z𝑝 for some prime 𝑝.
PV? asks if the transcripts of the protocol are publicly verifiable.
Round: ΔBB(𝑛) is the number of rounds of a Byzantine broadcast among 𝑛 parties.
Comp.Cost measures the number of group exponent operations performed by each node. We assume
the optimization from [19] has been applied whenever applicable.
Comm.Cost measures the number of bits sent by all honest nodes. In w.oracles, the cost is
analyzed with oracle calls to BB/BA.
In opt.imp., we calculate the cost with optimal BB and BA protocols. Some caveat exists,
nevertheless, our claim of sub-cubic communication still holds, and we discussed in detail in Sect.3.1.
In KZG (G.), we analyze the cost of the optimized KZG protocol [63] when there is no complaint; In
KZG (B.), we analyze the cost when there are 𝑂 (𝑛2) complaints.

Sub-cubic DKGs. We present two DKG protocols. We compare them with the state-of-the-art
efficient DKGs in Table.1 and review more related works in Sect.2.

Our first DKG produces a secret key in a pairing-friendly Elliptic Curve group (given currently
available instantiations). It has the communication complexity of

𝑂 (𝑛2.5 · |w| + 𝑛 · BB√𝑛 (𝑛_) +
√
𝑛 · BA𝑛 (𝑛_)),

where 𝑛 is the number of participants, |w| is the size of membership witness of a cryptographic
accumulator [50], and BB𝑘 (ℓ) (or BA𝑘 (ℓ)) represents the communication cost of Byzantine broadcast
(or Byzantine agreement (BA)) with 𝑘 nodes on input of ℓ bits. Using optimal BB/BA [47, 48]4 and
an accumulator with |w| = 𝑂 (_)[50] (which assumes a CRS), the communication cost is 𝑂 (𝑛2.5_) 5.
In contrast, previous constructions incurs communication cost of 𝑂 (𝑛 · BB𝑛 (𝑛_)) or 𝑂 (𝑛3_). It
satisfies the key-expressability due to [41] and can thus be used to instantiate the key generation of
the verifiable unpredictable function in [41]. Moreover, this DKG can tolerate up to 𝑛/2 Byzantine

4We discuss the instantiations of BA/BB in detail in Sect.3.1 and here we assume we have optimal BA/BB elsewhere, i.e.,
BA𝑘 (ℓ) = BB𝑘 (ℓ) = 𝑘ℓ + 𝑘2_.
5We note that we just use 𝑛2.5 complexity here to demonstrate the power of our DRAGON method without much optimization,
we can certainly further reduce it by the natural method of recursively applying DRAGON.

3

Feng et al.

Table 2. Comparison with common coin rotocols without a strong setup

Techniques Schemes Resi.
Comm. Cost Comp. Cost
total (per node)

Time-lock Puzzl. TCLM [57] 𝑛−1
𝑛

𝑂 (𝑛 · BB𝑛 (_)) Time-lock Puzzl.
PVSS Scrape[19] 1/2 𝑂 (𝑛 · BB𝑛 (𝑛_)) 𝑂 (𝑛2)

Leader-PVSS OptRand[11] 1/2 𝑂 (𝑛3_) 𝑂 (𝑛2)

DKG Ours 1/2
𝑂 (𝑛 · BB√𝑛 (𝑛_)
+
√
𝑛 · BA𝑛 (𝑛_))

𝑂 (𝑛1.5)

nodes (which is optimal resilience) and has publicly verifiable transcripts (i.e., not need a complaint
phase). Moreover, it only requires each participant to perform 𝑂 (𝑛1.5) group operations, which is
superior to all prior work that needs 𝑂 (𝑛2) group operations (when considering optimal resilience).

Our second DKG produces a secret key in the finite field Z𝑝 for some secure prime 𝑝, at the
cost of increasing the communication/computation complexity by a factor of the statistical security
parameter ^, while achieving the same security guarantee. This protocol can be a drop-in replacement
for ElGamal encryption, BLS signature [8], Schnorr signature [55], and more [39].6

Both DKG constructions rely on publicly verifiable secret sharing (PVSS). Existing works formalize
PVSS’s secrecy with a game-based definition, which cannot be used to argue the security of DKG in
a black-box way. As an independent interest, we present simulation-based definitions for PVSS (in
Sect. 5), which allow us to analyze the security of our DKG in a modular manner. 7

A simple corollary: a sub-cubic common coin protocol. Our DKG protocol gives rise to a sub-cubic
common coin protocol. Concretely, to produce a common coin, a group of 𝑛 participants initiates
our DKG protocol. Upon the DKG’s completion, participants exchange their secret shares amongst
themselves. Subsequently, they can reconstruct the secret key and derive the common coin by
hashing this key. Given that the adversary lacks prior knowledge of the secret key, the coin remains
unpredictable and unbiased in the random oracle model. Table.2 8 contrasts this construction with
other common coin protocols that don’t rely on a strong setup.
Sub-cubic IC. We present the first deterministic IC protocol with a message complexity of O(𝑛2.5)
and communication complexity of 𝑂 (𝑛2.5ℓ + 𝑛2.5 · |w| + 𝑛 · BB√𝑛 (𝑛_) +

√
𝑛 · BA𝑛 (𝑛_)). This can be

further reduced to 𝑂 (𝑛2.5ℓ + 𝑛2.5_) using optimal BB/BA and an O(_)-sized accumulator. Our IC
achieves strong adaptive security as per [1]. In contrast, existing deterministic IC protocols relying on
𝑛 parallel deterministic BB require O(𝑛3) message complexity and O(𝑛2ℓ + 𝑛3_) communication
complexity. From a communication complexity perspective, our new IC has a clear advantage,
especially when the input size is small, e.g., ℓ = O(_). For information on randomized IC protocols,
we refer to the comprehensive overview by Abraham et al. [4, Section 7.1].

1.2 Our Techniques
In the following, we use IC as an example to illustrate the core ideas behind Dragon and then show
how to generalize it to obtain sub-cubic DKGs.

6[40] showed that key-expressible DKG suffices for re-keyable primitives including ElGamal and BLS. While Schnorr signature
is not re-keyable, its key generation algorithm can also be securely instantiated with a key-expressible DKG, as recently
discussed in [39].
7We establish the static security of our DKGs. Our group-element DKG can be adaptive if using adaptively secure aggregatable
PVSS [9], while our field-element DKG has no adaptively secure instantiations due to no suitable PVSS constructions.
8Notably, we omit various randomness beacon schemes, such as those based on PoW/VDF [60], as they pre-suppose an initial
coin, making them unsuitable for single-shot common coin generation.

4

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

𝐷𝐷

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

···

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

···

BA

m

m
m

m

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

···

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

···m

m

𝐷𝐷1

𝐷𝐷η

···

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛
···

m

m

BA

(𝑐𝑐1,𝑤𝑤1)

Fig. 1. The execution overflow of a conventional Byzantine broadcast (left side) and CSBB (right side).

Warm-up: efficient IC based on representatives. Our starting point is IC can be efficiently realized
with the help of a committee of representatives, as long as at least one of them remain honest.
Particularly, each node can first send its input with a signature to all representatives, such that every
representative has the inputs of all honest nodes. Then, each representative broadcasts what it has
received via BB to all nodes. Note that all nodes have the same view on the broadcasted messages;
thus, each node can locally deduplicate the received broadcasted messages and finally agree on the
same vector of input values. Since an honest representative will broadcast all received messages, the
input of any honest node must be included in the broadcasted messages. Meanwhile, as every node
signed its input, the input of an honest node will not be dropped during deduplication. Note that such
a group of representatives can be obtained by using a common coin to randomly sample 𝑂 (^) nodes
from the whole population. ^ is the statistical security parameter, and the probability of no honest
node being selected is negligible in ^.
Dragon technique: CSBB. As sketched above, our methodology is to emulate a committee of
representatives in a fully decentralized manner. We start with an arbitrary deterministic grouping,
which ensures at least one group has an honest majority. We develop techniques to make each group
“behave” like a single representative, in terms of both security and efficiency.

For IC, the most critical part is to let each group efficiently broadcast the input vector to the
whole population. Trivial methods will fail: Letting everyone broadcast ruins our efforts to reduce
communication, while if the task is assigned to only a small number of nodes, they could all be
malicious. To tackle this issue, we formulate a new primitive called consortium-sender byzantine
broadcast (CSBB) for a consortium of senders to broadcast to a larger population at the cost of a
one-sender broadcast. I.e., broadcasting 𝐿-bit to the population of 𝑛 nodes incurs the communication
complexity of O(𝑛𝐿 + 𝑛2_).

Now, we elaborate on the ideas of CSBB. As illustrated in Fig. 1 (left side), a conventional BB
protocol typically comprises a delivery phase, where the sender multicasts the message to receivers,
and an agreement phase, where all receivers agree on the same message via a Byzantine agreement
(BA) protocol. Inspired by (but distinct from) Byzantine agreement (BA) extension protocols [46],
we employ error-correction codes [13] to deduplicate communications and reduce complexity. As
depicted in Fig. 1 (right side), initially, all senders 𝐷1, . . . , 𝐷[locally encode their input messages
using a deterministic encoding algorithm into 𝑛 small fragments (𝑐1, . . . , 𝑐𝑛). Subsequently, the
senders transmit each 𝑐𝑖 to the corresponding 𝑃𝑖 . Although 𝑃𝑖 receives numerous fragments from
different senders, most fragments should be identical under the assumption that honest senders have
the same inputs. Consequently, 𝑃𝑖 can deduplicate them and only multicast the most frequently
appearing fragment to all other receivers. Finally, each receiver can collect enough fragments to
reconstruct the message, simulating the scenario where an honest sender multicasts the message to
all receivers. To assist a receiver in identifying the correct fragments, we employ a cryptographic

5

Feng et al.

accumulator [50], ensuring that fragments 𝑐𝑖 and 𝑐 𝑗 generated from the same message𝑚 share the
same accumulator value 𝑢 and possess valid proofs𝑤𝑖 and𝑤 𝑗 , respectively. For further details, please
refer to Section 4.1.
Efficient IC from CSBB. After deterministic grouping, we let each group emulate a single representa-
tive in the warm-up committee-based IC, which yields an efficient deterministic IC. First, to emulate
a representative, a group needs to form an input vector containing all honest nodes’ input values. For
this task, we let each node broadcast the received inputs within the group it belongs to, and then all
nodes in the subgroup can agree on the same vector. Then, the group broadcasts the vector to the
whole population via CSBB. Please see Sect.4.2 for more details.
Dragon technique for DKG: CDSS. Similar to IC, DKG can be greatly simplified with the help of a
committee containing at least one honest representative. Particularly, as recently explored by Feng et
al. in [31], only having these representatives as VSS dealers is sufficient for both the secrecy and
robustness of the resulting DKG protocol. In this work, we develop Dragon techniques for emulating
the representatives in a deterministic manner, thus removing the reliance on external common coins in
[31] while preserving the efficiency benefits. Our main technical tool is to make each group “behave”
like a single node to contribute one secret to the whole population, in terms of both security and
efficiency. Specifically, for security, the secret contributed by a good group should remain secret to
the adversary. We formulate a new secret-sharing primitive CDSS to capture this functionality (in
Sect.6.1). We then show a DKG can be built by concurrently executing multiple CDSS instances
where each group acts as a dealer consortium. Please see Sect.6.4 for details. We present two CDSS
protocols for group-element secrets and field-element secrets, respectively.
CDSS with group-element secrets. Constructing an efficient CDSS requires conquering the following
challenges: first, similar to conventional DKG, when nodes (now in each group) jointly contribute
one secret 𝑠𝑘 (𝑖) , they need to distribute each of their shares to the whole population for future
reconstruction; but at the same time, they cannot directly reveal those shares — they together can be
used to reconstruct 𝑠𝑘 (𝑖) , which might be the only “good” secret (thus adversary can recover the final
𝑠𝑘 without enough shares).

We leverage the aggregatable PVSS [19, 41] to address this challenge.9 PVSS produces a sequence
of encrypted shares under receivers’ public keys with proof of well-formedness of ciphertexts;
aggregatable PVSS allows the compression of many transcripts (including the ciphertexts and proofs)
into one. We let each node in the group generate a PVSS transcript for the whole population but only
broadcast it within the group. Then, everyone in the group aggregates the received PVSS transcripts
into the same (because of the public verifiability) one transcript (𝑠𝑘 (𝑖) is not leaked at all), which is to
be sent to the whole population. Please see Sect.6.2 for more details.
CDSS with field-element secrets. The challenge towards field-element DKG arises from the current
incompatibility of aggregatable PVSS with field-element secrets. To address this, we adopt a more
general approach, constructing a CDSS from a conventional (non-aggregatable) PVSS scheme. In
our CDSS with group-element secrets, aggregatable PVSS is employed to reduce the message size
broadcasted by the dealer group while ensuring the secrecy of the corresponding secret key against
adversaries. We observe that both goals can be achieved using a common coin within the dealer group.
Note that we only expect nodes within the same group, instead of the whole population, to agree on
this common coin. Such an intra-group coin can be efficiently realized by running a DKG within
the group without incurring O(𝑛3) complexity. After the dealers broadcast their PVSS transcripts
within the group, a common coin is employed to determine a small number (denoted by ^, linear

9We remark aggregatable PVSS has been leveraged recently to reduce the cost of DKG by Gurkan et al. [41] from 𝑛BB𝑛 (𝑛_)
to 𝑛BB𝑛 (_) + log𝑛 · BB𝑛 (𝑛_) (but it is still 𝑂 (𝑛3_) , and with the price of lowering resilience to 𝑂 (log𝑛/𝑛)). We take a
different approach to using aggregatable PVSS together with our dragon approach, finally breaking the cubic barrier.

6

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

to the statistical security parameter) of valid transcripts. This ensures that at least one of them is
from an honest dealer with overwhelming probability. The dealer group then broadcasts all selected
transcripts to all receivers via CSBB. Finally, the receiver decrypts all transcripts and computes
the sum of the decrypted values as the received share. As at least one transcript is from an honest
dealer, the secret key remains unknown to the adversary. However, since the dealer group now needs
to broadcast ^ PVSS transcripts, the communication cost is higher than that of the aggregatable
PVSS-based approach by a factor of ^. Please refer to Sect. 6.3 for detailed information.

2 RELATED WORKS
Distributed Key Generation. DKG has emerged as a significant research domain over the decades.
Pedersen [53] laid the groundwork in this area by presenting the first efficient protocol for Dlog-based
cryptosystems, which is built upon Feldman’s Verifiable Secret Sharing (VSS) [30]. In Pedersen’s
approach, all users collaboratively execute 𝑛 instances of Feldman’s VSS, with each user acting as the
dealer for one instance.

Within Feldman’s VSS framework, the dealer must broadcast a commitment to a polynomial
while privately dispatching the shares to all other users. Given that the commitment size is 𝑂 (𝑛_),
the communication overhead stands at 𝑂 (𝑛BB𝑛 (𝑛_)), where BB𝑛 (ℓ) represents the communication
cost for executing a Byzantine broadcast protocol among 𝑛 nodes with an ℓ-bit input. Furthermore,
Pedersen’s DKG necessitates a complaint phase where users broadcast their complaints against
dishonest dealers. Considering that a user might broadcast multiple complaints simultaneously, the
communication overhead for this phase also matches 𝑂 (𝑛BB𝑛 (𝑛_)). It’s crucial to note, however,
that during this complaint phase, each user might verify up to 𝑂 (𝑛2) shares. For Feldman’s VSS,
the computational cost associated with verifying a single share amounts to 𝑂 (𝑛) group operations.
Therefore, the per-node computational overhead before the complaint phase is 𝑂 (𝑛2), which can
escalate to 𝑂 (𝑛3) in the complaint phase.

Most DKG constructions adhere to the joint-VSS paradigm. Essentially, every novel VSS protocol
can be transformed into a new DKG protocol. Moreover, since VSS can be established on polynomial
commitments, every polynomial commitment scheme can also culminate in a VSS and, ultimately, a
DKG. Kate et al. [43] proposed the first polynomial commitment (denoted as KZG) with an 𝑂 (_)
commitment size. Consequently, prior to the complaint phase, the communication cost can be tapered
down to𝑂 (𝑛BB𝑛 (_)). This, however, is still asymptotically𝑂 (𝑛3_), even when paired with an optimal
broadcast protocol. An added advantage of the KZG polynomial commitment is its efficiency in
share verification; verifying a single share incurs a mere 𝑂 (1) cost. This implies that the per-node
computational cost for verification before the complaint phase is a mere 𝑂 (𝑛) in group operations,
though it can inflate to 𝑂 (𝑛2) during the complaint phase. While the computational overhead for
generating the polynomial commitment was believed to be 𝑂 (𝑛2) [58], a novel study by Zhang et
al. [63] demonstrated that the computational overhead for generating a KZG commitment can be
optimized to 𝑂 (𝑛 log𝑛). Though KZG mandates a CRS setup, other endeavors [61, 63] focusing on
efficient polynomial commitments without a trusted setup have been explored, but they fall short of
KZG’s efficiency.

Fouque and Stern [33] circumvented the need for a complaint phase by integrating publicly
verifiable secret sharing (PVSS). Given that a PVSS transcript encompasses 𝑂 (𝑛) ciphertexts, the
communication cost invariably aligns with 𝑂 (𝑛BB𝑛 (𝑛_)), should all users opt to broadcast the
transcript. Traditionally, verifying a PVSS transcript demanded an 𝑂 (𝑛2) overhead, implying that the
per-node computational cost in DKG could reach 𝑂 (𝑛3). This hurdle was overcome by Cascudo and
David in Scrape [19], which introduced a PVSS scheme that limits verification time to𝑂 (𝑛). Notably,
Scrape’s methodology is versatile and can be applied to enhance several preceding techniques,
including Pedersen’s, ensuring that the computational overhead during the complaint phase remains

7

Feng et al.

at 𝑂 (𝑛2) rather than surging to 𝑂 (𝑛3). A dedicated line of research, evident in works like [37], has
aimed to refine the concrete performance of PVSS.

Gurkan et al. [41] harnessed an aggregatable PVSS in tandem with gossip protocols to devise
a publicly verifiable DKG. Their communication cost is 𝑛BB𝑛 (_) + log𝑛 · BB𝑛 (𝑛_) (still 𝑂 (𝑛3_))
instead of 𝑛BB𝑛 (𝑛_), and their per-node communication cost is 𝑂 (𝑛 log2 𝑛). However, their scheme
can only tolerate 𝑂 (log𝑛) Byzantine nodes. Shrestha et al. [56] charted a different path, presenting a
DKG without resorting to BB protocols. Instead, they employed an MVBA [46] protocol to facilitate
agreement, which culminates in an 𝑂 (𝑛3_) communication overhead. They posited that achieving
optimal resilience with BB without a private setup should require 𝑂 (𝑛3) communication cost. Yet,
in light of recent advancements in transparent threshold signatures [5], this hypothesis might need
reevaluation. We delve deeper into the intricacies of BB/BA in Sect.3.1, while elsewhere, we assume
the existence of an optimal BA/BB.

Beyond these efforts directed at augmenting the efficiency of DKG, there have been other studies
addressing this challenge using distinct criteria. Gennaro et al. [36] discerned that the secret key
distribution in Pedersen’s DKG could be influenced by adversarial entities. They rectified this
shortcoming, achieving full secrecy but at a higher computational cost. Gurkan et al.[41] introduced
a weaker version of secrecy termed “key-expressability", which postulates that adversaries might
influence key distribution but within confined parameters. They argued that a key-expressable DKG
suffices for a plethora of applications, with numerous DKG frameworks, including those of Pedersen
[53], Fouque-Stern [33], and our own, aligning with this definition. Canetti et al. [18] contributed a
DKG protocol with adaptive security, a contrast to our model and several others that ensure security
against only static adversaries. Recent contributions by Bacho and Loss [8] introduced an oracle-aided
adaptive definition and verified that multiple protocols align with this definition in the algebraic
group model.

Lastly, a few recent endeavors [2, 27, 34] have shifted the focus towards DKG in asynchronous
networks. These constructions adopt the joint-VSS framework and rely on an asynchronous broadcast
protocol termed “reliable broadcast" [16] to ensure verifiability, consequently still facing the cubic
computational barrier. Notably, Das et al. [27] presented the pioneering asynchronous DKG with
an 𝑂 (𝑛3_) communication overhead for field-element secrets, while Abraham et al.[2] delivered an
adaptively secure asynchronous DKG with same complexity.

Distributed Common Coin. A common coin protocol allows a group of participants/nodes to
produce unbiased and unpredictable common randomness, which is paramount to many applications,
such as lottery [14], committee sampling in distributed protocols [62], and asynchronous consensus
[32]. In history, the line of common coin study has been closely related to, yet in parallel with, DKG.

A major approach to the common coin is called commit-then-reveal, where each participant 𝑃𝑖
first commits a randomness 𝑟𝑖 to all others and then reveals 𝑟𝑖 such that the coin 𝑟 =

∑
𝑟𝑖 . To prevent

an attacker from withholding a commitment (after seeing other 𝑟𝑖) to bias the coin, we will need a
commitment scheme supporting forced opening, such as publicly verifiable secret sharing (PVSS)
[19, 33] and time-locked commitment [57]. This approach similarly requires each participant to
broadcast its commitment; those𝑂 (𝑛) broadcast instances immediately cause Ω(𝑛3_) communication
cost again when implementing with deterministic BB protocols (now, there is no coin to use).

A recent line of research [11, 12, 25] discards the expensive broadcast procedures and uses a leader
node to coordinate the communication; with an honest leader, the group can produce a common coin
at the communication cost of 𝑂 (𝑛2_). However, as leaders are switched in the Round-Robin manner,
only after the 𝑡 + 1 leader election can we guarantee an honest leader. Therefore, for a single-shot
coin generation, the leader-based approach still incurs 𝑂 (𝑛3_) communication. Moreover, there are
batched coin protocols, including [20, 21], which may generate up to O(𝑛2) common coins in a single

8

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

execution. Achieving low amortized complexity is an interesting orthogonal approach, and we leave
a batched protocol based on our subcubic single-shot one as an interesting future work. However,
a single execution of these batched coin protocols will incur cubic communication already, which
cannot help us circumvent the cubic complexity in DKG and IC.

Another natural solution for the common coin is letting the group execute a DKG protocol and
recover (the hash of) the secret key as the coin. Indeed, as suggested in Cachin et al.’s pioneering
work [17] and adopted by many real-world projects like Drand10, we may use (the hash of) a unique
threshold signature as the common coin, after a DKG or trusted key generation for setting up the
signing keys. Unfortunately, these approaches based on DKG create a circular problem.

Comparison with Concurrent Work. In a very recent concurrent work [7] 11, Bacho et al. also
introduced a DKG with sub-cubic communication complexity. Here, we provide a comparison
between the two works.

Regarding techniques, the one introduced in [7], and ours differ significantly. Their DKG employs
dedicated consensus to agree on aggregated PVSS transcripts, while ours leverages arbitrary grouping
together with consortium dealer secret sharing (and broadcast), which can be built upon any BB/BA
in a black box manner. These underlying techniques may find different applications beyond DKGs. As
we have shown in this paper, our techniques naturally give rise to a deterministic IC with sub-cubic
communication complexity.

Also, these different techniques may lead to different efficiency, security, and functionality trade-offs,
as briefly elaborated below.

In terms of communication complexity, their DKG (with a communication complexity of
O(𝑛2 log𝑛_)) asymptotically outperforms our current constructions. We didn’t do further opti-
mization when getting communication down to sub-cubic; in principle, our techniques may be applied
recursively and further bring down the communication to be arbitrarily close to 𝑛2.

Regarding functionality, we provide sub-cubic DKGs for both group-element secrets and field-
element secrets, while [7] only demonstrates a DKG with group-element secrets. It is worth noting
that it is possible to use the DKG in [7] as a common coin to construct a communication-efficient
DKG with field-element secrets, for instance, by sampling a committee of dealers [31]. However, the
resulting scheme cannot be strongly adaptively secure [1], even assuming an adaptively secure PVSS
with field-element secrets. In contrast, our field-element DKG can be strongly adaptively secure,
assuming an adaptively secure PVSS and memory erasures, though how to construct an efficient and
adaptively secure PVSS with field-element secrets remains open.

In terms of security, the two results are generally incomparable. While their primary application
is a randomness beacon, the DKG in [7] is proven to be unpredictable against adaptive adversaries
in the algebraic group model. In contrast, our focus is on applications to threshold cryptography,
and we prove that our DKG satisfies key-expressibility against static adversaries in the standard
model (while our instantiations may assume a random oracle). However, we believe there is no
significant gap between the security guarantees provided by the two works. Our DKG schemes can be
adaptively secure if the underlying components, particularly the PVSS scheme, are adaptively secure.
By utilizing the adaptive PVSS scheme introduced in [9], our group-element DKG can achieve the
same security guarantee as the DKG in [7]. Conversely, if focusing on static security, their DKG may
achieve the stronger key-expressibility, although further analysis is required.

10https://drand.love/
11A previous version of our paper was submitted to a conference in 2023 before [7] was available online in December.

9

https://drand.love/

Feng et al.

3 MODEL, PRELIMINARIES, AND PROTOCOL COMPOSITION
Notations. Throughout the paper: We use _ to represent the security parameter. The notation [𝑖, 𝑛]
represents the set {𝑖, 𝑖 + 1, · · · , 𝑛}, where 𝑖 and 𝑛 are integers with 𝑖 < 𝑛. We might abbreviate [1, 𝑛]
simply as [𝑛]. For a set {𝑥1, 𝑥2, . . . , 𝑥𝑛} and a sequence (𝑥1, 𝑥2, . . . , 𝑥𝑛), we may abbreviate them as
{𝑥𝑖 }𝑖∈[𝑛] and (𝑥𝑖)𝑖∈[𝑛] , respectively. If ⊙ represents a group operation in G, then 𝑔1 ⊙ 𝑔2 · · · ⊙ 𝑔𝑛 is
denoted as

⊙
𝑖∈[𝑛] 𝑔𝑖 where each 𝑔𝑖 ∈ G. An execution of the protocol Π involving 𝑛 participants 𝑃𝑖 ,

each with inputs 𝑣𝑖 , is represented by Π⟨{𝑃𝑖 (𝑣𝑖)}𝑖∈[𝑛]⟩. We call an integer 𝑝 a secure prime if it is
sufficiently large such that the DLog problem in the corresponding group of order 𝑝 is hard.

A function 𝑓 (𝑛) is deemed negligible in 𝑛, denoted by 𝑓 (𝑛) ≤ negl(𝑛), if for every positive integer
𝑐, there exists an 𝑛0 such that for all 𝑛 > 𝑛0, 𝑓 (𝑛) < 𝑛−𝑐 . Conversely, a non-negligible function is
denoted as 𝑓 (𝑛) > negl(𝑛). For a set X, the notation 𝑥 ←$ X signifies sampling 𝑥 uniformly from
X. Given a distribution 𝑋 , 𝑥 ← 𝑋 denotes sampling 𝑥 from 𝑋 . For a probabilistic algorithm 𝐴,
𝐴(𝑥1, 𝑥2, · · · ; 𝑟) represents the result of running 𝐴 with inputs 𝑥1, 𝑥2, · · · and random coins 𝑟 . We
use 𝑦 ← 𝐴(𝑥1, 𝑥2, · · ·) to represent choosing 𝑟 randomly and obtaining 𝑦 = 𝐴(𝑥1, 𝑥2, · · · ; 𝑟). If ⊙
represents a group operation in G, then 𝑔1 ⊙ 𝑔2 · · · ⊙ 𝑔𝑛 is denoted as

⊙
𝑖∈[𝑛] 𝑔𝑖 where each 𝑔𝑖 ∈ G.

An execution of the protocol Π involving 𝑛 participants 𝑃𝑖 , each with inputs 𝑣𝑖 , is represented by
Π⟨{𝑃𝑖 (𝑣𝑖)}𝑖∈[𝑛]⟩. Adversaries are assumed to be probabilistic polynomial time (PPT).

Communication and threat model. We assume the network is synchronous, and the protocol
proceeds in rounds. The network is fully connected, meaning there is a communication channel
between each pair of nodes. We assume the channel is authenticated, and we measure communication
complexity by the number of bits sent by honest nodes.

We assume an initial phase that optionally generates a common reference string (CRS) and sets
up PKI for every participant. We consider both static and adaptive adversaries. A static adversary
needs to specify the set of corrupted nodes at the beginning of the system after seeing CRS, while an
adaptive adversary can adaptively corrupt nodes at any time during the protocol execution. Once a
node gets corrupted, the adversary gets access to its local states and controls its subsequent behaviors.
Particularly, an adaptive adversary can perform the “after-fact-removal” attacks [47], i.e., corrupt a
node and remove all messages the node just sent before being delivered. For both cases, we assume
the total number of corrupt nodes at the end of the execution is at most 𝑡 .

3.1 Byzantine Consensus
Byzantine Agreement. In an (𝑛, 𝑡, ℓ)-Byzantine Agreement (BA) protocol, there are 𝑛 parties
𝑃1, . . . , 𝑃𝑛, each 𝑃𝑖 having an ℓ-bit initial input 𝑣𝑖 , denoted as BA⟨𝑃𝑖 (𝑣𝑖)⟩. Against any adversary A
that corrupts up to 𝑡 parties, a secure BA ensures the following properties:

• Validity. If all honest parties share the same input 𝑣 , they all output 𝑣 .
• Agreement. All honest parties output the same message.
• Termination. All honest parties produce an output message.

Byzantine Broadcast. In an (𝑛, 𝑡, ℓ)-Byzantine Broadcast (BB) protocol, there is a sender 𝑃𝑠 with
ℓ-bit input message msg and a set of receivers P = {𝑃1, . . . , 𝑃𝑛}, denoted as BB⟨𝑃𝑠 (msg),P⟩. A
secure BB has the same agreement and termination guarantee as a BA does, but it concerns the
following validity:

• Validity. If the sender is honest, all honest receivers output the sender’s input message msg.

Instantiations of BA and BB. We first examine the candidates of BA protocols. For ease of reference,
we use BA𝑛 (ℓ) to denote the communication complexity of a BA protocol among 𝑛 parties with ℓ-bit
input. We summarize the status in Table.3 and elaborate on them in the following.

10

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

Table 3. Summary of BA Protocols

Candidates BA𝑛 (ℓ) Resilience Setup Computation
B1 + E1 𝑂 (𝑛ℓ + 𝑛2_) 𝑡 < (1/2 − 𝜖)𝑛 CRS light
B1 + E2 𝑂 (𝑛ℓ + 𝑛2 log𝑛_) 𝑡 < (1/2 − 𝜖)𝑛 Transparent light
B2 + E2 𝑂 (𝑛ℓ + 𝑛2 log𝑛_) 𝑡 < 𝑛/2 Transparent moderate
B3 + E1 𝑂 (𝑛ℓ + 𝑛2_) 𝑡 < 𝑛/2 CRS heavy

In scenarios where ℓ = 𝑂 (_), Momose and Ren [47] have presented the state-of-the-art protocols.
These include:

• A BA protocol (referred to as B1) with BA𝑛 (_) = 𝑂 (𝑛2_), capable of tolerating 𝑡 < (1/2−𝜖)𝑛
corruptions, for any positive constant 𝜖 ∈ (0, 1/2). This protocol requires only conventional
digital signatures.

• Another BA protocol with BA𝑛 (_) = 𝑂 (𝑛2 · thrSigSize), tolerating 𝑡 < 𝑛/2 corruptions,
where thrSigSize is the size of a threshold signature. Traditional threshold signatures require
either trusted key generation or a DKG phase, which is unfavorable for our purpose. However,
recent progress [5] provides a threshold signature of size 𝑂 (_ log𝑛) with a transparent setup
(referred to as B2). Additionally, a constant-size zk-SNARK [38] can also yield a threshold
signature of 𝑂 (_) size (referred to as B3).

For cases where ℓ > 𝑘, Nayak et al. [48] have provided extension protocols. These result in
BA𝑛 (ℓ) = 𝑂 (𝑛 ·ℓ+BA𝑛 (_)+𝑛2_) if a CRS for a pairing-based accumulator is allowed (referred to as E1).
Alternatively, if the CRS is not allowed, the complexity becomes BA𝑛 (ℓ) = 𝑂 (𝑛 ·ℓ+BA𝑛 (_)+𝑛2 log𝑛_)
(referred to as E2).

It has been suggested that BA𝑛 (ℓ) = 𝑂 (𝑛ℓ + 𝑛2_) could be optimal for ℓ > _ in the PKI setting
[48], despite the proved lower bound being 𝑂 (𝑛ℓ + 𝑛2) [28]. Combining B3 and E1 could yield a
BA protocol with optimal communication complexity and optimal resilience 𝑡 < 𝑛

2 , although it
necessitates a CRS setup and potentially intensive computation. Other combinations may alleviate
concerns about setup or computation, offering sub-optimal communication complexity or resilience.

For 𝑡 < 𝑛/2, a BB protocol can be considered where the sender first multicasts its input to all
receivers, and then the receivers execute a BA protocol to finalize their output. Thus, BB𝑛 (ℓ) =
𝑂 (BA𝑛 (ℓ)). Suitable instantiations follow our discussion about BA protocols.

Nevertheless, the study of optimal BA/BB protocols is a rapidly evolving field and largely unrelated
to our primary focus. Hence, for simplicity, in the remainder of this paper, we assume a BA protocol
with optimal communication complexity and resilience and do not account for potential setup
requirements and computational overhead.

Interactive Consistency (IC) [10]. In an (𝑛, 𝑡, ℓ)-Interactive Consistency (IC) protocol, there are 𝑛
parties 𝑃1, . . . , 𝑃𝑛 , each 𝑃𝑖 having an ℓ-bit initial input 𝑣𝑖 , denoted as IC⟨𝑃𝑖 (𝑣𝑖)⟩. The protocol involves
𝑛 nodes, where up to 𝑡 nodes are corrupted. It aims to let each node output the same vector if all
honest nodes have an input. Formally, against any adversaryA that corrupts up to 𝑡 parties, it satisfies
the following properties:

• Agreement. If any two honest nodes output, then their output vectors must be the same.
• Validity. If an honest party outputs a vector 𝑆 , then |𝑆 | ≥ 𝑛 − 𝑡 and 𝑆 contains the input values

from all honest nodes.
• Termination. All honest parties produce an output message.

11

Feng et al.

3.2 Distributed Key Generation

Homomorphic Key Structure. We consider a generic homomorphic key structure. Let SK represent
the group of secrets with the operation ⊕, and PK denote the group of public keys with the operation
⊗. The structure includes a PPT algorithm KeyGen and a relation Rela ⊂ (PK,SK) such that

Pr[(𝑝𝑘, 𝑠𝑘) ← KeyGen(1_) : (𝑝𝑘, 𝑠𝑘) ∈ Rela] = 1.

We say that (PK,SK) forms a homomorphic key structure if Rela is homomorphic. That is, for any
𝑝𝑘1, 𝑝𝑘2 ∈ PK and 𝑠𝑘1, 𝑠𝑘2 ∈ SK such that (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ∈ Rela (𝑖 = 1, 2) and any integers 𝛼, 𝛽 ∈ N, it
holds that

(𝛼𝑝𝑘1 ⊗ 𝛽𝑝𝑘2, 𝛼𝑠𝑘1 ⊕ 𝛽𝑠𝑘2) ∈ Rela.
The key generation algorithm KeyGen should satisfy specific properties to be useful in cryptography.
However, these specificities are not central to our discussion on securely decentralizing the algorithm.
Instantiation. Throughout this paper, we focus on two key structures. The first is the standard key
structure in DLog-based cryptography. Here, the key generation algorithm yields 𝑠𝑘 ←$ SK := Z𝑝
and 𝑝𝑘 = 𝑔𝑠𝑘 ∈ PK := G, where 𝑝 is a secure prime and 𝑔 is a generator of a cyclic group G of order
𝑝. The relationship (𝑝𝑘, 𝑠𝑘) ∈ Rela holds iff 𝑝𝑘 = 𝑔𝑠𝑘 .

The second structure is a pairing-based one [41]. In this structure, the key generation algorithm
creates 𝑝𝑘 = (𝑔𝑠 , 𝑢𝑠) ∈ G1 × G2 and 𝑠𝑘 = ℎ𝑠 ∈ G2, where 𝑠 ←$ Z𝑝 for a particular secure prime 𝑝.
G1 (with generator 𝑔) and G2 (with generators 𝑢 and ℎ) are cyclic groups of order 𝑝. A bilinear map
𝑒 : G1 ×G2 → G𝑇 exists. The relation (𝑝𝑘 = (𝑝𝑘 ′, 𝑝𝑘 ′′), 𝑠𝑘) ∈ Rela holds iff 𝑒 (𝑝𝑘 ′, ℎ) = 𝑒 (𝑔, 𝑠𝑘) and
𝑒 (𝑝𝑘 ′, 𝑢) = 𝑒 (𝑔, 𝑝𝑘 ′′). Here, 𝑝𝑘1 ⊕ 𝑝𝑘2 = (𝑝𝑘 ′1 · 𝑝𝑘 ′2, 𝑝𝑘 ′′1 · 𝑝𝑘 ′′2).

DKG. An (𝑛, 𝑡)-DKG protocol for {PK,SK}, denoted as ΠDKG, involves 𝑛 parties, P = (𝑃1, . . . , 𝑃𝑛).
After execution, each 𝑃𝑖 outputs a public key 𝑝𝑘 ∈ PK , a list of public key shares (𝑝𝑘𝑖)𝑖∈[𝑛] ∈ PK𝑛 ,
and a secret key share 𝑠𝑘𝑖 ∈ SK . The protocol includes an initial phase and a reconstruction algorithm:

• Init(1_, 𝑛). It generates a CRS crs and establishes the PKI for P.
• Rec((𝑖, 𝑠𝑘𝑖)𝑖∈I). Given a set of 𝑡 + 1 key shares as input, it outputs the secret key 𝑠𝑘 for 𝑝𝑘 .

In this paper, we address ΠDKG meeting both robustness and key-expressibility, the latter being a
weaker form of secrecy.
Robustness: ΠDKG is robust if, even when up to 𝑡 parties are compromised, every honest 𝑃𝑖 outputs
the same (𝑝𝑘, (𝑝𝑘𝑖)𝑖 ∈ [𝑛]), and its 𝑠𝑘𝑖 satisfies (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ∈ Rela. Additionally, for any two sets, I1
and I2, with 𝑡 + 1 honest participants each, a unique secret key 𝑠𝑘 can be reconstructed from their
secret shares, as described by the equation below:

Pr
[Rec(𝑝𝑘, (𝑝𝑘𝑖)𝑖∈[𝑛] , {𝑠𝑘𝑖 }𝑖∈I1) = Rec(𝑝𝑘, (𝑝𝑘𝑖)𝑖∈[𝑛] , {𝑠𝑘𝑖 }𝑖∈I2)

∧(𝑝𝑘,Rec({(𝑖, 𝑠𝑘𝑖)}𝑖∈I1)) ∈ Rela

]
= 1.

Key expressibility: ΠDKG is key expressable if, for any PPT adversary A that compromises up to 𝑡

nodes, a PPT simulator SimA exists s.t. the following equation holds for any PPT distinguisher A′:�������������
Pr

ΠADKG⟨{𝑃𝑖 (1

_)}𝑖∈[𝑛]⟩
→ (𝑝𝑘, viewA) :

A′ (𝑝𝑘, viewA) = 1

 − Pr

KeyGen(1_) → (𝑝𝑘, 𝑠𝑘),

SimA (𝑝𝑘) → (𝑠𝑘′, 𝑝𝑘′,
𝛼 ∈ Z+, sviewA) :
A′ (𝛼𝑝𝑘 ⊗ 𝑝𝑘1, sviewA) = 1
∧ (𝑠𝑘′, 𝑝𝑘′) ∈ Rela

�������������
≤ negl(_),

where the notation ΠADKG⟨{𝑃𝑖 (1
_)}𝑖∈[𝑛]⟩ → (𝑝𝑘, viewA) represents an execution of ΠDKG involving

the adversary A, including the initial phase. Here, 𝑝𝑘 is the public key generated by the execution,

12

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

and viewA represents the adversary’s view during the execution, including all public messages and
its internal states; KeyGen is the default key generation algorithm for (PK,SK).

Remark 1. The key-expressibility presented above is a more formal version of the definition in
[41]. Key-expressibility is weaker than full secrecy [36] but still sufficient for instantiating the key
generation algorithm for a variety of cryptosystems that are "re-keyable", including BLS signatures,
ElGamal encryption, etc., as discussed in [41]. The definition can also be reformulated as an ideal
functionality, known as BiasedKeyGen in [39]. Moreover, as demonstrated by Groth and Shoup [39],
a DKG realizing BiasedKeyGen (or satisfying key-expressibility) can securely instantiate the key
generation for (threshold) Schnorr signatures.

Remark 2. Some applications such as random coins may only require the DKG to be unpredictable,
i.e., for any PPT adversaryA, it holds that. Pr[ΠADKG⟨{𝑃𝑖 (1

_)}𝑖∈[𝑛]⟩ → (𝑝𝑘, viewA),A(viewA) →
𝑠𝑘 : (𝑝𝑘, 𝑠𝑘) ∈ Rela] ≤ negl(_). Unpredictability is clearly implied by key expressibility.

3.3 Other Cryptography Primitives

Cryptographic accumulators. A cryptographic accumulator provides a succinct representation
of a set while ensuring efficient membership verification. Formally, such an accumulator scheme,
denoted as Acc, comprises the following four algorithms: (1) Gen(1_, 𝑛) outputs an accumulator key
𝑎𝑘. (2) Eval(𝑎𝑘,S) on inputs 𝑎𝑘 and a set S to be accumulated, it returns an accumulated value 𝑢
for the set S. (3) Wit(𝑎𝑘,𝑢,S, 𝑠𝑖) on inputs 𝑎𝑘, 𝑢 for the set S, and an element 𝑠𝑖 ∈ S, it returns a
membership witness 𝑤𝑖 for 𝑠𝑖 . (4)Vrfy(𝑎𝑘,𝑢, 𝑠𝑖 ,𝑤𝑖) decides if 𝑠𝑖 is an element accumulated into 𝑢,
using the witness 𝑤𝑖 .

An accumulator scheme is correct, if for 𝑎𝑘 ← Gen(1_, 𝑛), any setS = {𝑠𝑖 }𝑖∈[𝑛] ,𝑢 ← Eval(𝑎𝑘,S),
and any 𝑤𝑖 ←Wit(𝑎𝑘,𝑢, 𝑠𝑖), it holds that Pr[Vrfy(𝑎𝑘,𝑢, 𝑠𝑖 ,𝑤𝑖) = 1] = 1. An accumulator scheme is
unforgeable, if for an honestly generated 𝑎𝑘 , and any PPT adversary,

Pr
[
(S, 𝑠∗,𝑤∗) ← A(𝑎𝑘) : 𝑠∗ ∉ S ∧ Vrfy(𝑎𝑘, Eval(𝑎𝑘,S), 𝑠∗,𝑤∗) = 1

]
≤ negl(_).

For simplicity, throughout this paper, we consider an accumulator scheme whose Eval and Wit are
deterministic.
Instantiation. We primarily consider the pairing-based accumulator [50] which requires a CRS and
has 𝑂 (_)-sized witness. Merkle tree is also a candidate featured by its transparent setup, although the
witness size is 𝑂 (_ log𝑛).
Erasure code scheme. A (𝑘, 𝑛)-erasure code scheme [13] consists of two deterministic algorithms
Encode and Decode. The Encode algorithm maps any vector m = (𝑚1, · · · ,𝑚𝑘) of 𝑘 data fragments
into an vector c = (c1, . . . , c𝑛) of 𝑛 coded fragments, such that any 𝑘 elements in the code vector c
is enough to reconstruct m due to the Decode algorithm. I.e., for any m ∈ B𝑘 and any I ⊂ [𝑛] that
|I| = 𝑘 , we have

Pr[Decode({(𝑖, c𝑖)}𝑖∈I) = m | c := (c1, · · · , c𝑛) ← Encode(m)] = 1.

Instantiation. Throughout the paper, we consider a (𝑡+1, 𝑛)-erasure code where 2𝑡+1 = 𝑛. Additionally,
it’s important to note that this erasure code scheme will implicitly select an appropriate B based on
the actual length of each element in v. This ensures that the encoding results in only a constant size
increase.
NIZK. A non-interactive zero-knowledge (NIZK) proof system Π, for an NP language 𝐿, enables
the prover, who holds a witness of an instance 𝑥 ∈ 𝐿, to convince the verifier that 𝑥 ∈ 𝐿 via a single
proof. Typically, it can be described by the following a triple of probabilistic polynomial-time (PPT)
algorithms:

13

Feng et al.

• 𝜎 ← Setup(1_). The setup algorithm outputs a CRS 𝜎 .
• 𝜋 ← Prove(𝜎, 𝑥,𝑤). The prover algorithm takes as inputs the CRS 𝜎 , an instance 𝑥 ∈ 𝐿 with

its witness 𝑤 ∈ 𝑅𝐿 (𝑥), and outputs a string 𝜋 called a proof.
• 𝑏 ← Verify(𝜎, 𝑥, 𝜋). The verifier algorithm takes as inputs 𝜎 , an instance 𝑥 and a proof 𝜋 ,

and outputs either 1 accepting it or 0 rejecting it.
We consider a NIZK satisfying completeness, zero-knowledge, and simulation soudness.

(1) Completeness: For all security parameters _ ∈ N and for all 𝑥 ∈ 𝐿_ and 𝑤 ∈ 𝑅𝐿 (𝑥),
Pr[𝜎 ← Setup(1_);𝜋 ← Prove(𝜎, 𝑥,𝑤) : Verify(𝜎, 𝑥, 𝜋) = 1] = 1.

(2) Zero knowledge: There is a PPT simulator (SimSetup, SimProve), s.t. for every PPT
adversary A, we have

Pr[𝜎 ← Setup(1_) : 1← AO1 (𝜎,·,·) (𝜎)]−
Pr[(𝜎, 𝜏 ← SimSetup(1_) : 1← AO2 (𝜎,𝜏,·,·) (𝜎)] ≤ negl(_).

Both the oracles O1 and O2 take as input a pair (𝑥,𝑤) ∈ 𝑅𝐿 (𝑥). While O1 returns 𝜋 ←
Prove(𝜎, 𝑥,𝑤), O2 returns 𝜋 ← SimProve(𝜎, 𝜏, 𝑥).

(3) Simulation soundness: For any PPT adversary A, it holds that

Pr

[
(𝜎, 𝜏) ← SimSetup(1_);(𝑥∗, 𝜋∗) ← AO2 (𝜎,𝜏,·) (𝜎) :

Verify(𝜎, 𝑥∗, 𝜋∗) = 1 ∧ 𝑥∗ ∉ 𝐿

]
≤ negl(_).

3.4 Unique Identifier Model
Our DKG constructions are built upon multiple sub-protocols, which could run concurrently. To ensure
the security of our DKGs, each sub-protocol must remain secure during simultaneous operations.
Lindell et al. [45] highlighted that many BA protocols retain their security in concurrent settings if
each is given a unique identifier. We define this concept as follows.

Definition 3.1 (Unique identifier model.). ProtocolΠ uses a signature scheme Σ = (Gen, Sign,Vrfy)
to sign/verify its messages. In the unique identifier model, every instance of Π gets a distinct identifier
𝑖𝑑 , leading to a modified protocol Π𝑖𝑑 . Π𝑖𝑑 is like Π, but it utilizes Σ𝑖𝑑 = (Gen, Sign𝑖𝑑 ,Vrfy𝑖𝑑), where
Sign𝑖𝑑 (𝑠𝑘,𝑚) = Sign(𝑠𝑘, 𝑖𝑑 | |𝑚) and Vrfy𝑖𝑑 (𝑣𝑘,𝑚, 𝜎) = Verify(𝑣𝑘, 𝑖𝑑 | |𝑚,𝜎). Different instances must
have prefix-free 𝑖𝑑 strings, ensuring one 𝑖𝑑 isn’t a prefix of another.

Simply put, protocols can maintain concurrent security in this model by disregarding messages
with different identifiers, ensuring security akin to isolated settings. Most consensus protocols should
be concurrently secure in this model.

4 DRAGAON-IC
Deterministic grouping. Conventional sharding relies on common randomness to ensure all shards
have adequate, honest participants. This creates a circular issue for DKG/Coin, which is meant
to establish such randomness. Instead, we propose a deterministic grouping, which divides the
population into subgroups using an arbitrary predefined rule. While this method may not offer a
strong guarantee, it still ensures that at least one group maintains the honesty ratio.

Lemma 4.1 (Any-good Partition). For a population P = {𝑃1, 𝑃2, ..., 𝑃𝑛} and a partition S =

{S1,S2, ...,S𝑚} over [𝑛]. If there are 𝑡 corrupted nodes, denoted as {𝑃𝑖 }𝑖∈C where C ⊂ [𝑛] and
|C| = 𝑡 , then there exists a subset S𝑗 such that the proportion of corrupted nodes in {𝑃𝑖 }𝑖∈S𝑗 , given
by | C∩S𝑗 ||S𝑗 | is at most 𝑡

𝑛
.

14

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

Proof. Suppose that no subset S𝑗 satisfies the condition, i.e., ∀𝑗 ∈ [𝑚], |C ∩ S𝑗 | >
𝑡 |S𝑗 |
𝑛

. It
follows

∑
𝑗∈[𝑚] |C ∩ S𝑗 | > 𝑡 . However, we also have

∑
𝑗∈[𝑚] |C ∩ S𝑗 | ≤ |C| ≤ 𝑡 , which contradicts

our assumption. □

The ratio-preservation of deterministic grouping introduces an avenue for more efficient IC and
DKG. As we sketched in the introduction, both IC and DKG can be efficiently realized via a group of
representatives, among whom at least one is honest. With deterministic grouping ensuring an honest
majority in at least one group, we have the opportunity to treat each group as a “representative" to
emulate the efficient representative-based protocols, thereby reducing communication.

In Section.4.1, we first introduce and construct a new broadcast primitive termed by consortium-
sender byzantine broadcast (CSBB), which allows a group to broadcast an ℓ-bit message to the whole
population at the cost of O(𝑛ℓ + 𝑛2_), exactly matching the optimal cost of a single-sender broadcast.
Then, in Section 4.2, we present efficient IC by leveraging CSBB together with deterministic grouping.

CSBB⟨D(msg),P⟩
Init(1_, 𝑛):

• (Sig.𝑣𝑘𝑖 , Sig.𝑠𝑘𝑖) ← Σ.KeyGen(1_), generate signing keys for every 𝑃𝑖 ∈ P
• Acc.Gen(1_, 𝑛) → 𝑎𝑘 // publish the accumulator key as a CRS.

Round 1: each 𝐷𝑖 ∈ D do
• (c1, . . . c𝑛) ← Encode(msg)
• (𝑢, {𝑤 𝑗 } 𝑗∈[𝑛]) ← Accumulate(𝑎𝑘, (c1, . . . , c𝑛))
• send (𝑢, c𝑗 ,𝑤 𝑗) to 𝑃 𝑗 ∈ P,∀𝑗 ∈ [𝑛]

Round 2: each 𝑃 𝑗 ∈ P do

• receive: {(𝑢 (𝑖) , c(𝑖)
𝑗
,𝑤
(𝑖)
𝑗
)} from all 𝐷𝑖 in round 1

• if ∃ 𝐼 ⊂ [[] ∧ |𝐼 | ≥ [− 𝜏, s.t. (𝑢 (𝑖) , c(𝑖)
𝑗
,𝑤
(𝑖)
𝑗
) = (𝑢∗, c∗

𝑗
,𝑤∗

𝑗
) for ∀ 𝑖 ∈ 𝐼 then

– send (c∗
𝑗
,𝑤∗

𝑗
) to all 𝑃 𝑗 ′ ∈ P, and store 𝑢∗

• else send ⊥ to all 𝑃 𝑗 ′ ∈ P, and store 𝑢∗ =⊥
End of Round 2: each 𝑃 𝑗 ∈ P do

• receive: {(c∗
𝑗 ′ ,𝑤

∗
𝑗 ′)} from all 𝑃 𝑗 ′ in round 2

• if 𝑢∗ =⊥, then msg𝑗 =⊥
• else set 𝐶 = ∅

– for 𝑗 ′ ∈ [𝑛] do
* if Acc.Vrfy(𝑎𝑘,𝑢∗, (c∗

𝑗 ′),𝑤
∗
𝑗 ′) = 1, then 𝐶 = 𝐶 ∪ {(𝑗 ′, c∗

𝑗 ′)}
* if |𝐶 | = 𝑡 + 1, then msg𝑗 ← EC.Decode(𝐶), break

Round 3 to 2+Δ𝐵𝐴: // All participants 𝑃 𝑗 ∈ P run a BA to decide the output message
• BA⟨𝑃 𝑗 (msg𝑗)⟩ → msg
• each 𝑃 𝑗 outputs msg.

Fig. 2. The CSBB protocol. ΔBA(𝑛) denotes the number of rounds needed for the BA protocol for𝑛 participants.
Σ is the signature scheme for authenticating messages.

4.1 Consortium-Sender Byzantine Broadcast
Definition. An (𝑛, [, 𝑡, 𝜏, ℓ) Consortium-Sender Byzantine Broadcast (CSBB) involves 𝑛 participants
P = {𝑃1, . . . , 𝑃𝑛} that has a subset D = {𝐷1, . . . , 𝐷[} ⊂ P acting as the sender consortium. The
honest senders have the same ℓ-bit input msg. We denote an instance of CSBB by CSBB⟨D(msg),P⟩.
A CSBB is secure if it satisfies the following properties against any PPT adversary A corrupting

15

Feng et al.

up to 𝑡 parties in P. (1) Validity. If all honest nodes in D have the same valid input msg, and the
adversary corrupts up to 𝜏 parties in D, all honest parties in P output msg.(2) Agreement. All honest
parties output the same message.(3) Termination. All honest parties output a message.

A CSBB may have an initialization phase Init(1_, 𝑛) for PKI setup and generating CRS. We require
the CSBB to retain all security properties even when there are polynomial many instances running
concurrently in the unique identifier model (cf. Def.3.1) after the same initialization.

Building Blocks. We use a cryptographic accumulator Acc, an error correcting code EC, and a
Byzantine agreement BA as building blocks. Particularly, Acc provides a succinct representation
of a set while ensuring efficient membership verification. It incorporates the algorithms Gen for
accumulator key generation, Eval to accumulate a set S into a value 𝑢, Wit to generate a witness 𝑤𝑖

for an element 𝑠𝑖 ∈ S, and Vrfy to verify if 𝑠𝑖 is in the set represented by 𝑢 using 𝑤𝑖 . EC includes
deterministic algorithms Encode, which encodes a message into 𝑛 code blocks (c𝑖)𝑖∈[𝑛] , and Decode
to reconstruct a message from any 𝑡 + 1 code blocks. Formal definitions are recalled in Sect. 3.3.

Constructing CSBB. We give a construction for CSBB in Fig.2. A typical construction for BB is
through the multicast-then-BA paradigm: BA guarantees all receivers output the same value. We
follow a similar approach for CSBB while making necessary changes to the multicast phase to
keep it efficient. Particularly, multicasting a value of ℓ bits to a population of 𝑛 nodes incurs 𝑂 (𝑛ℓ)
communication cost; if all [senders in the consortium perform the multicast, the cost will be𝑂 ([𝑛ℓ),
not better than independently invoking BB for [times when ℓ = 𝑂 (𝑛_). To reduce the communication
cost, we utilize the erasure code [13], which is a common trick in distributed protocols. More
specifically, we let each sender in the consortium deterministically encode the 𝑂 (𝑛_)-sized transcript
into 𝑛 blocks (c1, · · · , c𝑛) each having 𝑂 (_) bits, and send each c𝑖 to 𝑃𝑖 . 𝑃𝑖 should receive multiple
copies of c𝑖 from the senders. However, it only multicasts the block, which appears most frequently
to all other receivers. By doing so, the communication cost in the phase becomes 𝑂 (𝑛ℓ) again. When
the sender consortium has an honest majority, 𝑃𝑖 will only relay the correct block of the message. We
also follow recent works to use a cryptographic accumulator [50] to help decode the erasure code
in the presence of up to 𝑛/2 malicious blocks, such that the receiver should reconstruct the correct
message sent by the sender consortium.
Analysis. We analyze the performance and security of our CSBB. At round 1, each sender inD sends
out (𝑢, c𝑗 ,𝑤 𝑗) whose size is 𝑂 (|w| + ℓ/𝑛) to every 𝑃 𝑗 ∈ P. The communication cost of this round is
𝑂 ([(ℓ +𝑛 |w|)). At round 2, the cost is𝑂 (𝑛(ℓ +𝑛 |w|)). Adding them together with the cost of BA, we
have the total cost of 𝑂 ((𝑛 + [) (ℓ + 𝑛 |w|)) + BA𝑛 (ℓ). Regarding computation, each sender needs to
generate 𝑛 witness, and each receiver needs to verify 𝑂 (𝑛) witnesses w.r.t. Acc. We assume, without
loss of generality, that the per-node computation cost is 𝑂 (𝑛) group operations.

Regarding security, at a high level, agreement and termination are derived directly from the BA
protocol. For validity, each 𝑃 𝑗 in the second round will yield the code c𝑗 corresponding to that input.
As a consequence, all 𝑃 𝑗 participants in the third round can reconstruct the initial input message.
By the validity of BA, these participants should output the original input. The concurrent security
essentially follows our intuition that honest nodes can ignore messages with different identifiers.
Formally, we have the following theorem.

Theorem 4.2. The protocol in Fig.2 is a concurrently secure (𝑛, [, 𝑡, 𝜏, ℓ)-CSBB for any 𝑡 < 𝑛
2 and

𝜏 <
[

2 in the unique identifier model, assuming the underlying accumulator is secure, and the BA is
concurrently secure in the unique identifier model against adaptive corruption of up to 𝑡 nodes.

First, we will give a general definition of concurrent security in the unique identifier model.
Intuitively, a protocol could achieve concurrent security in the unique identifier model if an instance
can aptly “ignore” messages with different identifiers, preserving its security as in the standalone

16

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

IC⟨{𝑃𝑖 (𝑚𝑠𝑔𝑖 }𝑖∈[𝑛]⟩
Let {S1, · · · ,S𝑚} be a equal-sized partition over [𝑛]
For any 𝑃𝑖 : 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖 = {⊥, · · · ,⊥}, where |𝑣𝑒𝑐𝑡𝑜𝑟 𝑖 | = 𝑛 and 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑗] = ⊥ for 𝑗 ∈ [𝑛]
Round 1: each 𝑃𝑖 ∈ P do

• Signature(𝑚𝑠𝑔𝑖 , 𝑠𝑘𝑖) → 𝜎𝑖 ; send (𝑚𝑠𝑔𝑖 , 𝜎𝑖) to 𝑃 𝑗 ∈ P,∀𝑗 ∈ [𝑛]
Round 2 to ΔBB(

√
𝑛) + 1: each 𝑃𝑖 ∈ P and 𝑖 ∈ S𝑘 do

• if receive (𝑚𝑠𝑔𝑖 , 𝜎𝑖) from any 𝑃 𝑗 ∈ P in round 1 and Verify(𝑚𝑠𝑔 𝑗 , 𝜎 𝑗 , 𝑝𝑘 𝑗) = 1
– 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑗] = (𝑚𝑠𝑔 𝑗 , 𝜎 𝑗)

• broadcast: BB⟨𝑃𝑖 (𝑣𝑒𝑐𝑡𝑜𝑟𝑖), {𝑃 𝑗 } 𝑗∈𝑆𝑘 ⟩ // 𝑃𝑖 broadcasts the set 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 to {𝑃 𝑗 } 𝑗∈𝑆𝑘 via BB
End of Round ΔBB(

√
𝑛) + 1: each 𝑃𝑖 ∈ P and 𝑖 ∈ S𝑘 do

• for any 𝑗 ∈ S𝑘 do
– if receive 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 from 𝑃 𝑗 in round 2

* Update(𝑣𝑒𝑐𝑡𝑜𝑟𝑖 , 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗) // update 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
Round ΔBB(

√
𝑛) + 2 to ΔBB(

√
𝑛) + 1 + ΔCSBB(

√
𝑛,𝑛) : for any 𝑘 ∈ [𝑚] do

• CSBB⟨{𝑃𝑖 (𝑣𝑒𝑐𝑡𝑜𝑟𝑖)}𝑖∈𝑆𝑘 ,P⟩ // {𝑃𝑖 }𝑖∈𝑆𝑘 broadcasts the set 𝑣𝑒𝑐𝑡𝑜𝑟𝑘 to P via CSBB
End of Round ΔBB(

√
𝑛) + 1 + ΔCSBB(

√
𝑛,𝑛) : each 𝑃𝑖 ∈ P do

• set 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑗] = ⊥ for 𝑗 ∈ [𝑛]
• for 𝑘 ∈ [𝑚] do // receive message S from all D

– if receive 𝑣𝑒𝑐𝑡𝑜𝑟 ′
𝑘

from CSBB⟨{𝑃𝑖 }𝑖∈𝑆𝑘 ,P⟩ in round 2+Δ𝐵𝐵+Δ𝐶𝑆𝐵𝐵
– Update(𝑣𝑒𝑐𝑡𝑜𝑟𝑖 , 𝑣𝑒𝑐𝑡𝑜𝑟 ′𝑘) // update 𝑣𝑒𝑐𝑡𝑜𝑟𝑖

• each 𝑃𝑖 outputs 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 .

Function : Update(𝑣𝑒𝑐𝑡𝑜𝑟𝑖 , 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗)
• for 𝑠 ∈ [𝑛]: if 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑠] ≠ ⊥ and 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 [𝑠] ≠ ⊥

– if 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑠] ≠ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 [𝑠] then 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑠] = 𝑓 𝑎𝑢𝑙𝑡

• for 𝑠 ∈ [𝑛]: if 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑠] = ⊥ and 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 [𝑠] ≠ 𝑏𝑜𝑡 and parse 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 [𝑠] = (𝑚𝑠𝑔𝑠 , 𝜎𝑠)
– if Verify(𝑚𝑠𝑔𝑠 , 𝜎𝑠 , 𝑝𝑘𝑠) = 1 do : 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 [𝑠] = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑗 [𝑠]

Fig. 3. The IC protocol. ΔBB(𝑛) and ΔCSBB(𝑛) represent the number of rounds required for the BB and CSBB
protocols for 𝑛 participants, respectively. 𝜎 denotes the signature utilized for authenticating messages.

setting. Though a message sent by 𝑃𝑖 in an instance with identifier 𝑖𝑑 can typically be crafted with
access to the signing oracle Sign𝑖𝑑 (𝑠𝑘𝑖 , ·), we formalize the intuition as security against cross-instance
signing queries (or CIS-Security).

Definition 4.3 (CIS security). Protocol Π uses signature scheme Σ. In its variant Π𝑖𝑑 , it employs
Σ𝑖𝑑 . If Π𝑖𝑑 retains its security properties for any 𝑖𝑑 , even when facing adversaries with signing oracles
Sign𝑖𝑑 ′ (𝑠𝑘𝑖 , ·) for any other 𝑖𝑑 ′ not prefixed by 𝑖𝑑 and any party’s key 𝑠𝑘𝑖 , it’s termed CIS-secure.

Now, we show our CSBB is concurrently secure in the unique identifier model. We start with the
simple fact that our CSBB transcripts are perfectly simulatable with the help of a signing oracle since
honest parties do not use any private input beyond the signing keys during the protocol execution.

Lemma 4.4. Let A be a PPT adversary that corrupts an arbitrary number of nodes in D and P
in an instance of CSBB with identifier 𝑖𝑑 after Init(1_, 𝑛). There is a simulator SA ((Sig.𝑣𝑘𝑖)𝑖∈[𝑛])
with access to signing oracles Sign𝑖𝑑 (Sig.𝑠𝑘𝑖 , ·) for any 𝑖 ∈ [𝑛], outputting the view sviewA whose
distribution is identical to the distribution of the view of A in a real execution of this instance.

Proof. We let the simulator SA run CSBB with the adversary A by acting on behalf of all honest
nodes. Specifically, SA follows the protocol specification to generate all protocol messages, which is

17

Feng et al.

feasible because no message in our CSBB protocol requires secret input. Before sending a message
msg on behalf of an honest node 𝑃𝑖 , SA queries the oracle Sign𝑖𝑑 (Sig.𝑠𝑘𝑖 , ·) with msg, and then sends
out msg along with the signature. At the point ofA’s view, the execution simulated by SA is identical
to the real execution, and thus the distribution of the simulated view and that of the real view should
be identical. □

Then, we present a generic result that shows CIS-security (cf. Def. 4.3) will imply concurrent
security when the protocol transcripts can be perfectly simulatable by using access to signing oracles.
It can be seen as a generalization to Lindell et al.’s result on BA protocols [45].

Lemma 4.5. Let Π be a protocol that uses a signature scheme Σ in a black box manner. Let
Π𝑖𝑑 be a protocol which is obtained by replacing Σ with Σ𝑖𝑑 . If for any PPT adversary A, its
view in an execution of Π𝑖𝑑 can be perfectly simulated by a simulator SA with access to signing
oracles Sign𝑖𝑑 (Sig.𝑠𝑘𝑖 , ·), and Π satisfies the CIS security, then Π maintains its security even when
polynomially many instances are executed concurrently in the unique identifier model.

Proof. Assuming there are 𝑚 instances of Π running concurrently with prefix-free identifiers
{𝑖𝑑1, . . . , 𝑖𝑑𝑚}, we argue the 𝑗-th instance maintains all the security properties, for an arbitrary 𝑗 ∈ [𝑚].
Since Π is CIS secure, Π𝑖𝑑 𝑗

shall be secure against any PPT adversary having access to signing oracles
Sign𝑖𝑑 𝑗 ′

() for 𝑗 ′ ≠ 𝑗 . However, if there exists a PPT adversary A that involves in all the𝑚 instances
of Π and breaks the security of the 𝑗-th instance, we have a PPT adversary B with access to signing
oracles Sign𝑖𝑑 𝑗 ′

() for 𝑗 ′ ≠ 𝑗 breaking the security of Π𝑖𝑑 𝑗
. The strategy of B is simple: it invokes A

as a subroutine, forwards all messages between A and honest parties in Π𝑖𝑑 𝑗
, and simulates all other

instances by using the signing oracles. From A’s point of view, the environment simulated by B is
identical to that of a real execution. Therefore, B can break the security of Π𝑖𝑑 𝑗

if A can break the
security of 𝑗-th instance in the concurrent execution, which contradicts the CIS security. □

By Lemma.4.5 and 4.4, it would be sufficient for showing its concurrent security by showing its
CIS-security.

Theorem 4.6. The protocol in Fig.2 is a CIS-secure (𝑛, [, 𝑡, 𝜏, ℓ)-CSBB for any 𝑡 < 𝑛
2 and 𝜏 <

[

2 ,
assuming the underlying accumulator scheme is secure, and the BA protocol is CIS-secure against
adversary corrupting up to 𝑡 nodes. Moreover, the communication complexity of the CSBB is

𝑂 ((𝑛 + [) · (ℓ + 𝑛 · |w|)) + BA𝑛 (ℓ),

where |w| is the size of a membership witness in the accumulator scheme, and BA𝑛 (ℓ) is the
communication of BA among 𝑛 participants with ℓ-bit inputs.

Proof. Termination and agreement follow directly from the underlying BA protocol. To see
validity, we analyze the status after each round, where an adversary A corrupts up tp 𝜏 parties in D
and up to 𝑡 parties in P, and there are [− 𝜏 honest parties having the same input msg. At the end
of round 1, every honest 𝑃 𝑗 will receive the same (𝑢∗, c∗𝑗 ,𝑤∗𝑗) from the at least [− 𝜏 honest parties
in D, as Encode and Accumulate are deterministic, and thus will relay (c∗𝑗 ,𝑤∗𝑗) to all other 𝑃𝑖 ∈ P.
At the end of round 2, honest 𝑃 𝑗 receives {(c∗𝑖 ,𝑤∗𝑖)} from other 𝑃𝑖’s which contains at least 𝑛 − 𝑡
honest pairs that pass the verification. On the other hand, by the unforgeability of the accumulator, if
Acc.Vrfy(𝑎𝑘,𝑢∗, (𝑖, c∗𝑖),𝑤∗𝑖) = 1, c∗𝑖 must the the correct code of msg at 𝑖-th position. Therefore, every
honest party 𝑃 𝑗 should reconstruct the same message msg. Then, by the validity of the underlying BA
protocol, all honest parties output msg.

Regarding CIS security, we let honest parties ignore any message that is invalid under the current
identifier. The CIS security of CSBB then follows the CIS security of BA and the fact that an

18

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

adversary cannot forge a signature under the current identifier by leveraging signing oracles under
other identifiers.

We then analyze its communication cost. At round 1, each sender in D sends out (𝑢, c𝑗 ,𝑤 𝑗) whose
size is 𝑂 (|w| + ℓ/𝑛) to every 𝑃 𝑗 ∈ P. The communication cost of this round is 𝑂 ([(ℓ + 𝑛 |w|)). At
round 2, the cost is 𝑂 (𝑛(ℓ + 𝑛 |w|)). Adding them together with the cost of BA, we have the total cost
of 𝑂 ((𝑛 + [) (ℓ + 𝑛 |w|)) + BA𝑛 (ℓ). □

4.2 Interactive Consistency
A direct application of CSBB yields an IC protocol with sub-cubic communication, as depicted in
Figure 3. In this protocol, all honest nodes first send messages along with their signatures to all nodes.
Subsequently, each node broadcasts the received inputs to other nodes within the same group, such
that all nodes within the same group agree on the same input vector. This vector is then used as input
for the CSBB protocol, guaranteeing that at least one vector is output to all nodes by the end of round
3 + Δ𝐵𝐵 + Δ𝐶𝑆𝐵𝐵 . Consequently, all honest nodes output the same vector. We establish the following
theorem.

Theorem 4.7. Assuming that the underlying digital signature is secure, and BB and CSBB are
concurrently secure in the unique identifier model, the protocol in Fig.3 is an adaptively secure
(𝑛, 𝑡, ℓ)-IC for any 𝑡 < 𝑛

2 ,

Proof. Firstly, the termination can be directly derived from the underlying BB and CSBB protocols.
Secondly, the agreement is guaranteed by the following factors: 1) The CSBB protocol ensures that all
honest nodes produce identical outputs, as they participate in the same multiple instances of CSBB,
resulting in consistent outcomes. 2) At the end of round 3 + Δ𝐵𝐵 + Δ𝐶𝑆𝐵𝐵 , all honest nodes initial
an empty set vector. 3) Furthermore, the Update procedure is deterministic. Taken together, these
factors result in identical outputs for all honest nodes. Thirdly, based on the following fact, the validity
condition is trivially satisfied: the security of the digital signature guarantees the unforgeability of the
signature. Moreover, given that at least one partition constitutes the honest majority, there exists at
least one CSBB output set that includes the inputs from all honest nodes. Therefore, the final output
must contain the inputs from all honest nodes. □

5 SIMULATION-BASED DEFINITIONS FOR PVSS
In this section, we provide simulation-based definitions for publicly verifiable secret sharing (PVSS),
making it a valuable tool in the realm of DKG. With the new definitions, we will be able to analyze
our DKGs in a modular way.
Brief Overview. An (𝑛, 𝑡)-secret sharing (SS) scheme allows a dealer to distribute a secret 𝑠 among
𝑛 participants. Any group of 𝑡 + 1 honest parties can reconstruct 𝑠, yet any smaller group (up to 𝑡

parties) remains oblivious to 𝑠. Whereas SS assumes a trustworthy dealer, verifiable secret sharing
(VSS) addresses the possibility of a malicious dealer by letting a receiver validate the consistency of
its share with a public commitment. PVSS takes VSS a step further: all encrypted shares, complete
with verification proof, are placed on a public channel for universal validation. An aggregatable
PVSS can compress multiple PVSS transcripts into one single publicly verifiable transcript.
The Need for Simulation-based Definitions. One of DKG’s core goals is to act as a stand-in for the
trusted key generation phase of threshold cryptosystems. Given this, DKG should be able to emulate
standard key generation to serve a wide range of distributed cryptography applications. Thus, DKG
usually uses simulation-based security modeling.

However, PVSS was mostly formulated using a game-based indistinguishability definition, termed
IND-secrecy [19]. This definition doesn’t fully capture the essence of key distribution from an

19

Feng et al.

adversary’s perspective. It overlooks potential malleability challenges, which, in a DKG setting, could
allow adversaries to arbitrarily sway key distribution. This makes a security reduction for DKG using
PVSS as a black box inherently challenging.

To bridge this gap, we put forth simulation-based definitions for PVSS. Notably, we enrich PVSS’s
syntax to include the set of creator identities (CID) in each transcript. This prevents adversaries from
merely replicating a simulated transcript. It’s worth mentioning that recent research by Bacho and
Loss [9] also formalized aggregatable PVSS and incorporated the ID into its syntax. However, their
primary application was to randomness beacons, and their definitions did not adopt a simulation-based
approach.
The Syntax. We describe aggregatable PVSS with the following eight algorithms/phases. For
simplicity, we assume that the “native" transcripts (produced by Deal) and the aggregated transcripts
are in the same form (though they differ by the size of their CID set), and thus all algorithms and
properties apply to both types of transcripts. The syntax and definitions for a (non-aggregatable)
PVSS can be obtained by removing the algorithm Agg.

• Init(1_, 𝑛): In the initial phase, a CRS crs is generated, and the encryption/decryption keys
{(𝑒𝑘𝑖 , 𝑑𝑘𝑖)}𝑖∈[𝑛] for all participants are set up. crs is an implicit input for all other algorithms.

• Deal((𝑒𝑘𝑖)𝑖∈[𝑛], cid) → (Trans, 𝑠𝑘): It produces a secret 𝑠𝑘 ∈ SK and a transcript Trans,
consisting of a commitment com to the secret 𝑠𝑘 , ciphertexts (𝑐𝑖)𝑖∈[𝑛] , a proof 𝜋 of validity,
and the CID set {cid}.

• Agg({(Trans𝑖)}𝑖∈[𝑚], (𝑒𝑘𝑖)𝑖∈[𝑛]) → Trans: It outputs an aggregated transcript Trans whose
CID set is {cid𝑖 }𝑖∈[𝑚] , where cid𝑖 is from Trans𝑖 .

• PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛], Trans) → 𝑏: It checks if Trans is valid.
• getCID(Trans) → {cid𝑖 }𝑖∈[𝑚] : It returns the CID set.
• PubDriv(Trans) → (𝑝𝑘, (𝑝𝑘𝑖)𝑖∈[𝑛]): It derives the public key (shares).
• Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans) → 𝑠𝑘𝑖 : One can decrypt the ciphertext 𝑐𝑖 in Trans and obtain the secret

share 𝑠𝑘𝑖 .
• Rec({(𝑖, 𝑠𝑘𝑖)}𝑖∈I) → 𝑠𝑘: It first determines coefficients {𝛼𝑖 }𝑖∈I, where 𝛼𝑖 ∈ N based on I and

reconstructs the committed secret 𝑠𝑘 as
⊕

𝑖∈I 𝛼𝑖𝑠𝑘𝑖 from any subset I ⊂ [𝑛] and |I| = 𝑡 + 1.

Security. A PVSS scheme should satisfy correctness, soundness, secrecy, and simulation soundness.
In the following definitions, we use InitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∉C, (𝑒𝑘𝑖)𝑖∈C, 𝑠𝑡A) to denote
an execution of the initial phase involving the adversary A, where C is the set of corrupted nodes,
and 𝑠𝑡A is the state of the adversary.

• Correctness: Assume InitA (1_, 𝑛) has been done. For (Trans, 𝑠𝑘) ← Deal(𝑒𝑘1, 𝑒𝑘2, . . . , 𝑒𝑘𝑛),
the transcript can always be verified, i.e.,

Pr[PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans) = 1] = 1, (1)

Assume {Trans𝑗 } 𝑗∈[𝑚] are valid “native" transcripts, andPubDriv(Transj) → (𝑝𝑘 (𝑗) , (𝑝𝑘 (𝑗)𝑖
)).

For Agg({Trans𝑗 } 𝑗∈[𝑚], (𝑒𝑘𝑖)𝑖∈[𝑛]) → Trans, it holds that PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛], Trans) = 1,
and

PubDriv(Trans) = (
⊗
𝑗∈[𝑚]

𝑝𝑘 (𝑗) , (
⊗
𝑗∈[𝑚]

𝑝𝑘
(𝑗)
𝑖
)𝑖∈[𝑛]).

• Soundness: Any adversary cannot produce a valid transcript while it will be decrypted to
a set of inconsistent shares. Formally, assume InitA (1_, 𝑛) has been done. If a transcript
is verified, i.e., PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛], Trans) = 1, then for any two subsets I1 and I2 of 𝑡 + 1
uncorrupted participants, the secret recovered from the transcript is unique, i.e.,

Pr
[
Rec({Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans)}𝑖∈I1) = Rec({Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans)}𝑖∈I2)

]
= 1. (2)

20

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

• Secrecy: There is a triple of PPT simulators {SInit, SDeal, SRec}. Such that, for any static
PPT adversary A which corrupts up to 𝑡 nodes, a PVSS transcript by an honest dealer does
not leak 𝑠𝑘 beyond its public information, i.e., for any cid,���������������������

Pr

InitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∉C, (𝑒𝑘𝑖)𝑖∈C, 𝑠𝑡A)
Deal((𝑒𝑘𝑖)𝑖∈[𝑛] , cid) → (Trans, 𝑠𝑘) :
A(crs, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , Trans) = 1

− Pr

KeyGen(1_) → (𝑝𝑘, 𝑠𝑘),

SInitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , tk),
SDeal((𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑝𝑘, tk, cid) → Trans :
A(crs, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , Trans) = 1
∧ PubDriv(Trans) = (𝑝𝑘, ·) .

���������������������
≤ negl(_), (3)

where KeyGen is the default key generation algorithm of (PK,SK).

• Simulation soundness. Some form of soundness must be preserved, even after the adversary
sees a simulated transcript. Formally, for any static PPT adversary, it holds that

Pr

KeyGen(1_) → (𝑝𝑘, 𝑠𝑘),

SInitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , tk),
SDeal((𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑝𝑘, tk, cid) → Trans,

A(crs, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , Trans) → Trans∗

SRec(tk, Trans∗) → 𝑠𝑘∗, PubDriv(Trans∗) → (𝑝𝑘∗, ·) :
(𝑝𝑘∗, 𝑠𝑘∗) ∈ Rela ∧ cid ∉ getCID(Trans∗)
∧ PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans∗) = 1

≤ negl(_) . (4)

We need both soundness and simulation soundness. The former does not directly imply the
latter due to different ways of extraction.

PVSS instantiation. Conventional PVSS schemes [33, 37] with minor enhancements can meet our
definitions. In Appendix.A, we present a secure PVSS scheme for the standard key structure in
DLog-based cryptography, i.e., 𝑠𝑘 ∈ Z𝑝 and 𝑝𝑘 = 𝑔𝑠𝑘 ∈ G. This scheme is obtained by following the
general “encrypt-and-proof” paradigm and additionally applying a signature of knowledge (SoK) to
embed a creator ID into its transcript. We further explicitly employ Scrape’s technique [19] to improve
its verification time. While the PVSS scheme in Appendix.A could have various instantiations, we
summarize the result about an LWE-based instantiation (which can be seen as a variant of [37]) as its
concrete performance stands out.

Lemma 5.1. Under the LWE assumption and DL assumption [37], there is a PVSS scheme for the
standard key structure in DLog-based cryptography, satisfying correctness, soundness, secrecy, and
simulation soundness. Particularly, the transcript size of Trans is 𝑂 ((𝑛)_). Both Deal and PubVrfy
require𝑂 (𝑛) group operations. The computational costs for other functions are minor, approximately
𝑂 (1) group operations.

Aggregatable PVSS instantiation. All known aggregatable PVSS are variants of Scrape PVSS
[19, 41] for the pairing-based key structure. For completeness, we present a variant of Scrape PVSS
in Appendix.B, which meets our definitions. We summarize the result of the instantiation in the
following lemma.

21

Feng et al.

Lemma 5.2. Under the SXDH and BDG assumption [41], there is an aggregatable PVSS scheme
for the pairing-based key structure, satisfying correctness, soundness, secrecy, and simulation
soundness. Particularly, the transcript size of Trans is 𝑂 ((𝑛 +𝑚)_), where𝑚 represents the number
of transcripts aggregated into Trans. Both Deal and PubVrfy require𝑂 (𝑛) group operations, whereas
Agg demands 𝑂 (𝑛 log𝑚) group operations. The computational costs for other functions are minor,
approximately 𝑂 (1) group operations.

6 DRAGON-DKG
In this section, we introduce a new secret sharing paradigm called Consortium-Dealer Secret Sharing
(CDSS) to realize the idea of DRAGON-DKG. We then outline a DKG framework built from CDSS
and present a CDSS construction for better DKG.

6.1 Consortium-Dealer Secret Sharing: Definition
We formalize CDSS, which enables a consortium of dealers to distribute shares of a random value to
a large population. Particularly, for DKG, we let CDSS also return a public key of the shared secret
along with a list of public key shares that correspond to secret shares obtained by each receiver.

Syntax. An (𝑛, [, 𝑡, 𝜏)-CDSS scheme for (PK,SK) involves 𝑛 participants P = {𝑃1, 𝑃2, . . . , 𝑃𝑛}
with a special subset D = {𝐷1, 𝐷2, . . . , 𝐷[} ⊂ P acting as a dealer consortium. It consists of an
initialization phase Init, a deal protocol Deal⟨D,P⟩, and a reconstruction algorithm Rec.

(1) Init(1_, 𝑛). This sets up the PKI and generates a CRS crs. (2) Deal⟨D,P⟩. At the end of
the protocol, each receiver 𝑃𝑖 outputs a public key 𝑝𝑘 ∈ PK, a sequence of public key shares
(𝑝𝑘𝑖)𝑖∈[𝑛] ∈ PK𝑛 , and a secret key share 𝑠𝑘𝑖 ∈ SK. (3) Rec({(𝑖, 𝑠𝑘𝑖)}𝑖∈I). It reconstructs the secret
key 𝑠𝑘 for 𝑝𝑘. We require Rec to be linear, i.e., it first determines coefficients {𝛼𝑖 }𝑖∈I where 𝛼𝑖 ∈ N
and reconstructs the secret 𝑠𝑘 =

⊕
𝑖∈I 𝛼𝑖𝑠𝑘𝑖 for any subset I ∈ [𝑛] with |I| = 𝑡 + 1.

We consider the robustness and key-expressibility of CDSS in the multi-instance setting. Assume
that after an honest initialization phase Init(1_, 𝑛), there are 𝑚 instances {Deal⟨D (𝑗) ,P⟩} 𝑗∈[𝑚]
running concurrently in the unique identifier model (cf. Def. 3.1). Assume there is a PPT adversary
A that corrupts {𝑃𝑖 }𝑖∈C for |C| ≤ 𝑡 . We detail each property below.
Multi-instance robustness. For any A and any integer𝑚 polynomial in _, we have the following
guarantees for each instance: (1) For the 𝑗-th instance where |{𝑃𝑖 }𝑖∈C ∩ D (𝑗) | ≤ 𝜏 , all honest 𝑃𝑖’s
output properly. That is, every 𝑃𝑖 outputs the same public tuple (𝑝𝑘, (𝑝𝑘𝑖)𝑖∈[𝑛]) and its secret share
𝑠𝑘𝑖 such that Rela(𝑝𝑘𝑖 , 𝑠𝑘𝑖) = 1. Meanwhile, for any two subsets I1, I2 ⊂ [𝑛] and |I1 | = |I2 | = 𝑡 + 1, it
follows that the same 𝑠𝑘 is reconstructed from {𝑠𝑘𝑖 }𝑖∈I1 and {𝑠𝑘𝑖 }𝑖∈I2 , and (𝑝𝑘, 𝑠𝑘) ∈ Rela. (2) For
the 𝑗-th instance where |{𝑃𝑖 }𝑖∈C ∩ D (𝑗) | > 𝜏 , all honest receivers outputs (or ⊥).
Multi-instance key-expressibility. For any A and any integer 𝑚 polynomial in _ such that ∃ 𝑗 ∈
[𝑚], |{𝑃𝑖 }𝑖∈C ∩ D (𝑗) | ≤ 𝜏 , there is a PPT simulator algorithm SimA . For any PPT distinguisher A′,
it holds that ���������������������

Pr

⟨{DealA

𝑖𝑑 𝑗
⟨D (𝑗) ,P⟩} 𝑗∈[𝑚]⟩ → ((out𝑗) 𝑗∈[𝑚] , viewA),

s.t. out𝑗 = 𝑝𝑘 (𝑗) or ⊥: A′ ((out𝑗) 𝑗∈[𝑚] , viewA) = 1

− Pr

KeyGen(1_) → (𝑝𝑘, 𝑠𝑘), SimA (𝑝𝑘) → ({tup} 𝑗∈[𝑚] ,

sviewA), s.t. tup𝑗 = (𝑠𝑘′(𝑗) , 𝑝𝑘′(𝑗) , 𝛼 (𝑗)) or ⊥,

out𝑗 ← 𝛼 (𝑗) · 𝑝𝑘 ⊗ 𝑝𝑘′(𝑗) , or out𝑗 ←⊥ if tup𝑗 =⊥:

(if tup𝑗 ≠⊥, then (𝑠𝑘′(𝑗) , 𝑝𝑘′(𝑗)) ∈ Rela)

∧ (∃ 𝑗∗, 𝛼 (𝑗
∗) ≠ 0) ∧ A′ ((out𝑗) 𝑗∈[𝑚] , sviewA) = 1

���������������������
≤ negl(_).

22

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

⟨{DealA
𝑖𝑑 𝑗
⟨D (𝑗) ,P⟩} 𝑗∈[𝑚]⟩ → ((out𝑗) 𝑗∈[𝑚], viewA) denotes a concurrent execution of 𝑚 CDSS

instances {Deal𝑖𝑑 𝑗
} 𝑗∈[𝑚] involving A following an execution of the same initialization. out𝑗 is the

public key 𝑝𝑘 (𝑗) that an honest 𝑃𝑖 outputs in the instance or ⊥ if it aborts; viewA is the view of
the adversary A, including all public messages and its internal states. KeyGen is the default key
generation algorithm for (PK,SK).

6.2 CDSS for Group-Element Secret
Intuition. A straightforward yet non-succinct construction could let every dealer in the consortium
D run a complete secret sharing to all receivers. To reduce the communication cost, our idea is to let
the receiver receive one “aggregated" and valid secret share instead of sending multiple shares to
be aggregated. In particular, we leverage the aggregatable PVSS (see definitions in Sect.5 and the
construction in Appendix.B), which enables us to delegate the share aggregation without harming the
secrecy. Then, the dealer consortium may broadcast the aggregated PVSS transcript via CSBB.
The construction. Notably, the dealer consortium needs to agree on one aggregated PVSS before
broadcasting it via our CSBB. For secrecy, it is crucial to ensure that the secret w.r.t. the aggregated
PVSS remains unknown to an adversary, which may corrupt 𝜏 out of [dealers and 𝑡 out of 𝑛 receivers.
We guarantee the secrecy by letting each dealer generate an (𝑛, 𝑡)-PVSS transcript under the public
keys of receivers, broadcast to the dealer consortium, and then aggregate all valid PVSS transcripts.
In particular, note that the final secret key is the sum of secret keys shared by all dealers, which
means the adversary cannot know the final secret key unless it corrupts all dealers. Meanwhile, by the
definition of PVSS, an adversary corrupting 𝑡 receivers cannot learn the secret key from the decrypted
shares. Moreover, as each dealer sends its PVSS transcript via a BB protocol, it ensures all dealers
have the same view of valid transcripts and thus obtain the same aggregated transcript.

Formally, assume an aggregatable PVSS for (PK,SK), a Byzantine Broadcast protocol BB, and
a CSBB protocol CSBB. We delineate the deal protocol of CDSS in Fig.4, while its reconstruction
algorithm is the same as PVSS.Rec. The initialization algorithm Init(1_, 𝑛) is as follows: It invokes
CSBB.Init(1_, 𝑛), which includes a PKI setup for a digital signature scheme Σ, and PVSS.Init(1_, 𝑛)
which generates (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∈[𝑛] for the PVSS scheme.
Communication complexity. We first analyze the communication complexity of our CDSS con-
struction in Fig.4. All [dealers broadcast a PVSS transcript of size 𝑂 (𝑛_) bits, which incurs bit
complexity of [BB[(𝑛_) in total, and dealers and receivers invoke a CSBB protocol to disseminate
the aggregated PVSS transcript, which incurs bit complexity of𝑂 (𝑛2 ·w) +BA𝑛 (𝑛_), assuming [< 𝑛

and the witness size w. The communication complexity of CDSS is
𝑂 (𝑛2 · w) + [BB[(𝑛_) + BA𝑛 (𝑛_), (5)

where BB𝑧 (ℓ) (or BA𝑧 (ℓ)) is the communication cost of Byzantine Broadcast BB (or Byzantien
Agreement BA) among 𝑧 participants with ℓ-bit input.

Computation complexity. In our design, each dealer creates one PVSS transcript, verifies[transcripts,
and aggregates [transcripts; each receiver verifies one transcript. They invoke CSBB once, costing
𝑂 (𝑛) group operations per node. With the PVSS scheme in Appendix.B, the per-node computation
cost is 𝑂 (𝑛).
On the complexity of the DKG. The bit communication complexity of the DKG (Fig.6) is equal to
𝑚 (the number of shards) times the complexity of the CDSS construction. Therefore, with CDSS in
Fig.4, the bit communication complexity of our DKG is 𝑂 (𝑚𝑛2 · |w|) + 𝑛BB[(𝑛_) +𝑚BA𝑛 (_), while
𝑛 = [𝑚.

Now, we discuss the best sharding parameters for the smallest communication. Assuming we are
using the optimal BA and BB, i.e., BA𝑧 (ℓ) = BB𝑧 (ℓ) = 𝑂 (𝑧ℓ +𝑧2_), and the accumulator with witness

23

Feng et al.

Deal⟨D,P⟩
Round 1 to ΔBB([) : each 𝐷 𝑗 ∈ D do

• PVSS.Deal((𝑒𝑘𝑖)𝑖∈[𝑛] , cid𝐷 𝑗
) → (Trans𝑗 , 𝑠𝑘 𝑗)

• broadcast: BB⟨𝐷 𝑗 (Trans𝑗),D⟩ with an unique identifier 𝑖𝑑BB
𝑗

End of Round ΔBB([) : each 𝐷 𝑗 ∈ D do
• receive broadcast messages {Trans𝑗 ′ } 𝑗 ′∈[[] from all 𝐷 𝑗 ′ ∈ D
• set TRANS = ∅
• for 𝑗 ′ ∈ [[]

– if PVSS.PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans𝑗 ′) = 1 and PVSS.getCID(Trans𝑗 ′) = {cid𝐷 𝑗 ′ } then
* TRANS = TRANS ∪ {Trans𝑗 ′ }

• PVSS.Agg(TRANS, (𝑒𝑘𝑖)𝑖∈[𝑛]) → Trans
Round ΔBB([) + 1 to ΔBB([) + ΔCSBB([,𝑛) :

• CSBB⟨D(Trans),P⟩ // The dealer consortium D broadcasts the Trans to P via CSBB
End of Round ΔBB([) + ΔCSBB([,𝑛) : each 𝑃𝑖 do

• receive broadcast message Trans from all D, and let CID← PVSS.getCID(Trans)
• if PVSS.PubVerify((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans) = 0 ∨ ¬(CID ⊂ {cid𝐷 𝑗

} 𝑗∈[[] ∧ |CID| ≥ 𝜏 + 1) then
– output ⊥

• else (𝑝𝑘, 𝑝𝑘1, . . . , 𝑝𝑘𝑛) ← PVSS.PubDerive(Trans), 𝑠𝑘𝑖 ← PVSS.Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans)
– output (𝑝𝑘, 𝑝𝑘1, . . . , 𝑝𝑘𝑛, 𝑠𝑘𝑖)

Fig. 4. Deal⟨D,P⟩ Protocol of complete CDSS. ΔBB([) (or ΔCSBB([,𝑛)) is the number of rounds needed for
running BB with 𝑛 parties (or CSBB with [senders and 𝑛 receivers). We assume every 𝑃𝑖 has its publicly
known CID, denoted by cid𝑃𝑖 .

size |w| = 𝑂 (_), we notice that [=𝑚 =
√
𝑛 yields a communication cost of DKG which is 𝑂 (𝑛2.5_).

Regarding computation cost, with the PVSS in Appendix.B, the per-node computation cost of the
DKG is 𝑂 (𝑛1.5) group operations.
Security analysis. We establish the security of our CDSS in the following.

Theorem 6.1. Assuming that the underlying PVSS is secure, and BB and CSBB are concurrently
secure in the unique identifier model, theCDSS protocol in Fig.4 satisfies the multi-instance robustness
and the multi-instance key-expressibility.

We prove the multi-instance robustness in Lemma.6.2 and the multi-instance key-expressibility in
Lemma.6.3

Lemma 6.2. The CDSS protocol satisfies multi-instance robustness, assuming concurrent security
of BB and CSBB, and correctness and soundness of PVSS.

Proof. First, we argue that for any instance 𝑗 , all honest nodes either return ⊥ or output properly,
i.e., they have the same view of public information (𝑝𝑘 (𝑗) , (𝑝𝑘𝑖) (𝑗)𝑖∈[𝑛]) and obtain a correct secret
share, despite there is a PPT adversaryA corrupting {𝑃𝑖 }𝑖∈C for |C| ≤ 𝑡 . By agreement of CSBB, all
honest receivers 𝑃𝑖’s will receive the same message and will return ⊥ if the message is not a valid
PVSS transcript or its CID is not consistent with its dealer consortium. Then, by the soundness of
PVSS, when the PVSS transcript is valid, every honest receiver can obtain the correct secret share by
decrypting the transcript.

Then, we show that for the instance 𝑗 where |{𝑃𝑖 }𝑖∈C ∩ D (𝑗) | ≤ 𝜏 , the honest parties must output
properly. Since at most 𝜏 nodes inD (𝑗) are corrupted, the BB instances withinD have all the security
guarantees. By the agreement of BB, all honest nodes in D will receive the message from each

24

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

instance of BB. Moreover, by the correctness of PVSS and the validity of BB, an honest node in D
broadcasts a valid PVSS transcript that will be received by all honest nodes in D. Therefore, all
honest nodes in D can receive at least [− 𝜏 valid PVSS transcripts and can aggregate them into one.
By the validity of CSBB, all nodes in P receive the same valid transcript. Then, by the soundness of
PVSS, all 𝑃𝑖 ’s can obtain a valid secret share and derive the same public key (shares). □

Lemma 6.3. The CDSS protocol satisfies the multi-instance key-expressibility, assuming the
concurrent security of BB and CSBB, and the correctness, soundness, secrecy, and simulation
soundness of PVSS.

Proof. We proceed with this proof by constructing the simulator algorithm SimACDSS which
leverages the simulator algorithms {PVSS.SInit, PVSS.SDeal, PVSS.SRec} of the PVSS. For clarity,
we write down the pseudo-code of SimACDSS below, which takes as input 𝑝𝑘 which is generated by the
default key generation algorithm KeyGen(1_) → (𝑝𝑘, 𝑠𝑘).

SimACDSS (𝑝𝑘)

Initialize: CSBB.InitA (1_, 𝑛) and PVSS.SInitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , tk)
Run the𝑚 instances{DealA

𝑖𝑑 𝑗
} 𝑗∈[𝑚] with A, as below:

Select 𝑗∗ ∈ [𝑚] and 𝑖∗ ∈ [[] s.t. |D (𝑗∗) ∩ {𝑃𝑖 }𝑖∈C | ≤ 𝜏, and 𝐷
(𝑗∗)
𝑖∗ ∈ D (𝑗∗) \ {𝑃𝑖 }𝑖∈C

Round 1 to ΔBB([) :

• Run SDeal((𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑝𝑘, tk, 𝐷
(𝑗∗)
𝑖∗) → Trans∗,BB⟨𝐷 (𝑗

∗)
𝑖∗ (simTrans),D (𝑗∗) ⟩

• Honestly execute the code for every 𝐷
(𝑗)
𝑖

∉ {𝑃𝑖 }𝑖∈C and (𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)
Honestly execute the remaining rounds, besides performing the tasks below:
At the end of round ΔBB([) :

• Let TRANS∗ be the set of valid PVSS transcripts in D (𝑗∗)
• for Trans𝑖 ∈ TRANS∗ and Trans𝑖 ≠ Trans∗

– PVSS.SRec(tk, Trans𝑖) → 𝑠𝑘′
𝑖
, and PVSS.PubDriv(Trans𝑖) → 𝑝𝑘′

𝑖

• Let 𝑝𝑘′(𝑗
∗) =

⊗
𝑝𝑘′

𝑖
, 𝑠𝑘′(𝑗

∗) =
⊕

𝑠𝑘′
𝑖
, 𝛼 (𝑗

∗) = 1
At the end of round ΔBB([) + ΔCSBB([,𝑛) + 1:

• for 𝑗 ∈ [𝑚] and 𝑗 ≠ 𝑗∗

– Receive Trans(𝑗) from CSBB by D (𝑗) ,∀𝑗 ∈ [𝑚];CID(𝑗) ← PVSS.getCID(Trans(𝑗))
– if PVSS.PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans(𝑗)) = 1 ∧ |CID(𝑗) ⊂ {cid

𝐷
(𝑗)
𝑖

}𝑖∈[[] | ≥ 𝜏 + 1 then

* PVSS.SRec(tk, Trans(𝑗)) → 𝑠𝑘′(𝑗) ;PVSS.PubDriv→ (𝑝𝑘′(𝑗) , ·)
* 𝛼 (𝑗) = 0; tup𝑗 = (𝑠𝑘′(𝑗) , 𝑝𝑘′(𝑗) , 𝛼 (𝑗))

else tup𝑗 =⊥
return ({tup𝑗 } 𝑗∈[𝑚] , viewA)

Recall the multi-instance key-expressibility definition, the PPT distinguisher A′ is required to
distinguish ({𝛼 (𝑗) ·𝑝𝑘⊗𝑝𝑘 ′(𝑗) } 𝑗∈J′ , viewA) (provided by the above simulator) and ({𝑝𝑘 (𝑗) } 𝑗∈J, viewA)
(from a real execution), where J′ = { 𝑗 ∈ [𝑚] : Trans𝑗 is valid} in the simulated execution and
J = { 𝑗 ∈ [𝑚], Trans𝑗 is valid} in the real execution. Note that {𝛼 (𝑗) · 𝑝𝑘 ⊗ 𝑝𝑘 ′(𝑗) = 𝑝𝑘 (𝑗) } 𝑗∈J′ can be
derived fromA’s view. At the point ofA’s view, the only difference between the execution simulated
by SimACDSS and the real execution is about how PVSS.Init is executed, and how Trans∗ is generated.
By the secrecy of PVSS, the distinguisherA′ cannot distinguish the two tuples with a non-negligible
advantage. Note that the CID of Trans(𝑗) does not contain cid

𝐷
(𝑗∗)
𝑖∗

for 𝑗 ≠ 𝑗∗. By the simulation

25

Feng et al.

soundness of PVSS, PVSS.SRec can obtain 𝑠𝑘 (𝑗) which is the valid secret key of 𝑝𝑘 (𝑗) . Moreover, we
have 𝛼 = 𝛼 (𝑗

∗) = 1. □

Deal⟨D,P⟩
Round 1 to ΔDKG([) : //D run a DKG protocol, and each 𝐷𝑖 obtains a secret key share 𝑠𝑘D,𝑖

• DKGunp⟨D⟩ → (𝑝𝑘D , 𝑠𝑘D,1, . . . , 𝑠𝑘D,[)
Round 1 +ΔDKG([) to ΔBB([) + ΔDKG([) : each 𝐷 𝑗 ∈ D do

• PVSS.Deal((𝑒𝑘𝑖)𝑖∈[𝑛] , cid𝐷 𝑗
) → (Trans𝑗 , 𝑠𝑘 𝑗)

• broadcast: BB⟨𝐷 𝑗 (Trans𝑗),D⟩ with an unique identifier 𝑖𝑑BB
𝑗

Round ΔBB([) + ΔDKG([) + 1 to ΔBB([) + ΔDKG([) + 2: each 𝐷𝑖 ∈ D do
• receive broadcast messages {Trans𝑗 ′ } 𝑗 ′∈[[] from all 𝐷 𝑗 ′ ∈ D
• set TRANS = ∅
• for 𝑗 ′ ∈ [[]

– if PVSS.PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans𝑗 ′) = 1 and PVSS.getCID(Trans𝑗 ′) = {cid𝐷 𝑗 ′ } then
* TRANS = TRANS ∪ {Trans𝑗 ′ }

• send 𝑠𝑘D,𝑖 to all 𝐷 𝑗 ∈ D
End of Round ΔBB([) + ΔDKG([) + 2:

• receive secret shares {𝑠𝑘D, 𝑗 }, reconstruct 𝑠𝑘D , and compute Hash(𝑠𝑘D) → (𝑗1, . . . , 𝑗^)
• set OutTRANS = {Trans𝑗 ∈ TRANS : 𝑗 ∈ { 𝑗1, . . . , 𝑗^ }}

Round ΔBB([) + ΔDKG([) + 3 to ΔBB([) + ΔDKG([) + ΔCSBB([,𝑛) + 2:
• CSBB⟨D(OutTRANS),P⟩ // D broadcasts the selected transcript set OutTRANS to P via CSBB

End of Round ΔBB([) + ΔDKG([) + ΔCSBB([,𝑛) + 2: each 𝑃𝑖 do
• receive message OutTRANS from all D, and parse OutTRANS = (Trans𝑗1 , . . . , Trans𝑗^)
• for Trans𝑗𝑧 ∈ OutTRANS

– if PVSS.PubVerify((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans𝑗𝑧) = 0 ∨ PVSS.getCID(Trans𝑗𝑧) ⊄ {cid𝐷 𝑗
} 𝑗∈[[] then

* output ⊥
• for Trans𝑗𝑧 ∈ OutTRANS do

– (𝑝𝑘 (𝑗𝑧) , 𝑝𝑘 (𝑗𝑧)1 , . . . , 𝑝𝑘
(𝑗𝑧)
𝑛) ← PVSS.PubDerive(Trans𝑗𝑧)

– 𝑠𝑘
(𝑗𝑧)
𝑖
← PVSS.Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans𝑗𝑧)

• output (𝑝𝑘 =
⊗

𝑖∈[^] 𝑝𝑘
(𝑗𝑧) , 𝑝𝑘1 =

⊗
𝑖∈[^] 𝑝𝑘

(𝑗𝑧)
1 , . . . , 𝑝𝑘𝑛 =

⊗
𝑖∈[^] 𝑝𝑘

(𝑗𝑧)
𝑛 , 𝑠𝑘𝑖 =

⊕
𝑖∈[^] 𝑠𝑘

(𝑗𝑧)
𝑖
)

Fig. 5. Deal⟨D,P⟩ Protocol of CDSS for field-element secrets. ΔBB([) (or ΔCSBB([,𝑛) , or ΔDKG([)) is the
number of rounds need for running BB with 𝑛 parties (or CSBB with [senders and 𝑛 receivers, or DKG with
[parties). We assume every 𝑃𝑖 has its publicly known CID, denoted by cid𝑃𝑖 .

6.3 CDSS for Field-Element Secret
In DLog-based cryptography, most conventional cryptographic schemes possess a secret key within
the finite field Z𝑝 . However, the aggregatable PVSS used in CDSS above is primarily aligned
with group-element secrets (unless using generic zkSNARK[38]). Now we turn to present a CDSS
construction that can be built upon a conventional PVSS without aggregation (see the candidate
construction in Appendix A), which is compatible with field-element secrets.

Note that the aggregatable PVSS in the above CDSS is employed to reduce communication while
maintaining security. Here, we introduce a different path for achieving these goals by utilizing a
common coin “within" the dealer consortium. For example, in the group-element CDSS, all dealers
first broadcast their PVSS transcripts within the consortium. However, after this step, the dealers

26

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

do not aggregate these valid transcripts; Instead, they invoke a common coin 12 to randomly pick
^ PVSS transcripts, which will be sent out together via the CSBB protocol. Here, ^ is the statistic
security parameter that is independent of 𝑛 or [. A receiver can obtain its share by decrypting all the
^ transcripts and adding the decrypted values together. With a high probability (1 − (𝜏

[
)^), at least

one of the selected transcripts is from an honest dealer, which guarantees the secrecy of this scheme.
Formally, assume a PVSS for (PK,SK), a BB, a CSBB, a DKG protocol DKGunp which we only

assume its secret key is unpredictable, and a hash function Hash which maps {0, 1}∗ to ^ indexes
in the range of [[]. We elucidate the deal phase of CDSS scheme in Fig.5, while its reconstruction
algorithm is the same as PVSS.Rec. The initialization algorithm Init(1_, 𝑛) is as follows: It invokes
CSBB.Init(1_, 𝑛), which includes a PKI setup for a signature scheme Σ, PVSS.Init(1_, 𝑛) which
generates (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∈[𝑛] for the PVSS scheme, and the setup for DKGunp.

Performance analysis. With the PVSS scheme outlined in Lemma 5.1, the PVSS transcript size
is O(𝑛_). Therefore, the communication cost incurred by all [dealers broadcasting their PVSS
transcripts within the consortium is [BB[(𝑛_). The communication cost for broadcasting ^ PVSS
transcripts via CSBB is O(𝑛2_^ · |𝑤 |) + BA𝑛 (𝑛_^), where |𝑤 | is size of an accumulator witness.
With optimal BA/BB and an accumulator with a constant-sized witness, the above communication
cost will be O(𝑛2_^). While the dealer consortium needs to perform a DKG within the consortium,
the communication cost for the DKG is at most O([3_) without using the sub-cubic DKG in Sect.6,
which is not the dominating term for either communication or computation cost. For computation
cost, since each receiver needs to process ^ transcripts, the per-node computation cost is O(𝑛^) group
operations.

Security analysis. We establish the security of the CDSS scheme in Fig.5 in the following.

Theorem 6.4. Assuming the underlying PVSS is secure, the DKGunp is unpredictable and robust,
and BB and CSBB are concurrently secure in the unique identifier model, the CDSS in Fig.5 satisfies
the multi-instance robustness and the multi-instance key-expressibility in the random oracle model.

The proof largely resembles to the proof for Theorem 6.1, except that we need to leverage the
fact that the selected ^ transcripts include one from an honest dealer. We discuss the multi-instance
robustness in Lemma 6.5 and the multi-instance key-expressibility in Lemma 6.6, respectively.

Lemma 6.5. The CDSS protocol satisfies multi-instance robustness in the random oracle model,
assuming concurrent security of BB and CSBB, the correctness and soundness of PVSS, and that the
DKGunp is unpredictable and robust.

Proof. The agreement of CSBB ensures that all honest receivers 𝑃𝑖’s will receive the same
message, which could be a PVSS transcript or ⊥. The soundness of PVSS ensures that when the PVSS
transcript is valid, every honest receiver can obtain the correct share by decrypting the transcript.
Therefore, we have that for any instance 𝑗 , all honest nodes either return ⊥ or output properly.

We then argue that for the instance 𝑗 where |{𝑃 𝑗 } 𝑗∈C ∩D (𝑗) | ≤ 𝜏 , the honest parties output properly.
By the robustness of DKGunp, the set of dealers D (𝑗) will obtain a set of consistent secret shares at
the end of Round ΔDKG([) . By the unpredictability of DKGunp, the output of Hash is distinguishable
with ^ uniformly sampled indexes from [[]. Therefore, the probability of no honest dealer being
selected is bounded by (𝜏

[
)^ + negl(_), which is negligibly small. By the validity of BB, the selected

honest node should have correctly broadcasted a valid PVSS to the dealer consortium. It follows that
the dealer consortium will at least broadcast one valid PVSS transcript, such that all receivers must
output properly for the dealer consortium. □

12Particularly, we can implement the coin protocol by letting the consortium first run a DKG protocol, then reconstruct the
secret key, and finally apply a hash function (which is modeled as a random oracle) to the secret key.

27

Feng et al.

Lemma 6.6. The CDSS protocol satisfies multi-instance key-expressibility in the random oracle
model, assuming the concurrent security of BB and CSBB, the correctness, soundness, secrecy, and
simulation soundness of PVSS, and the robustness and unpredictability of DKGunp.

Proof. We proceed with this proof by constructing the simulator algorithm SimACDSS which
leverages the simulator algorithms {PVSS.SInit, PVSS.SDeal, PVSS.SRec} of the PVSS. For clarity,
we write down the pseudo-code of SimACDSS below, which takes as input 𝑝𝑘 which is generated by the
default key generation algorithm KeyGen(1_) → (𝑝𝑘, 𝑠𝑘).

SimACDSS (𝑝𝑘)

Initialize: CSBB.InitA (1_, 𝑛), PVSS.SInitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑠𝑡A , tk), and setup for DKGunp

Run the𝑚 instances{DealA
𝑖𝑑 𝑗
} 𝑗∈[𝑚] with A, as below:

Round 1 to ΔDKG([) :
• Honestly execute the DKG protocols on behalf of honest nodes

Round 1 + ΔDKG([) to ΔBB([) + ΔDKG([) :
• Select 𝑗∗ ∈ [𝑚] s.t. |D (𝑗∗) ∩ {𝑃𝑖 }𝑖∈C | ≤ 𝜏

• Reconstruct 𝑠𝑘D (𝑗∗) using the honest parties’s shares, and compute Hash(𝑠𝑘D (𝑗∗)) → { 𝑗1, . . . , 𝑗^ }
• Select 𝑖∗ ∈ { 𝑗1, . . . , 𝑗^ } s.t. 𝐷 (𝑗

∗)
𝑖∗ ∈ D (𝑗∗) \ {𝑃𝑖 }𝑖∈C // It can find such 𝑖∗ w.h.p.

Round 1 to ΔBB([) :

• Run SDeal((𝑒𝑘𝑖)𝑖∈[𝑛] , 𝑝𝑘, tk, 𝐷
(𝑗∗)
𝑖∗) → Trans∗,BB⟨𝐷 (𝑗

∗)
𝑖∗ (simTrans),D (𝑗∗) ⟩

• Honestly execute the code for every 𝐷
(𝑗)
𝑖

∉ {𝑃𝑖 }𝑖∈C and (𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)
Honestly execute the remaining rounds, besides performing the tasks below:
At the end of round ΔBB([) :

• Let TRANS∗ be the set of valid PVSS transcripts produced by 𝐷 𝑗1 , . . . , 𝐷 𝑗^ ∈ D (𝑗
∗)

• for Trans𝑖 ∈ TRANS∗ and Trans𝑖 ≠ Trans∗

– PVSS.SRec(tk, Trans𝑖) → 𝑠𝑘′
𝑖
, and PVSS.PubDriv(Trans𝑖) → 𝑝𝑘′

𝑖

• Let 𝑝𝑘′(𝑗
∗) =

⊗
𝑝𝑘′

𝑖
, 𝑠𝑘′(𝑗

∗) =
⊕

𝑠𝑘′
𝑖
, 𝛼 (𝑗

∗) = 1
At the end of round ΔBB([) + ΔCSBB([,𝑛) + 1:

• for 𝑗 ∈ [𝑚] and 𝑗 ≠ 𝑗∗

– Receive OutTrans(𝑗) from CSBB by D (𝑗) ; parse OutTrans(𝑗) = {Trans(𝑗)
𝑖1

, . . . , Trans
(𝑗)
𝑖𝑧
}

– for 𝑖′ ∈ {𝑖1, . . . , 𝑖𝑧 }
* if PVSS.PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛] , Trans

(𝑗)
𝑖′) = 0 ∨ PVSS.getCID(Trans(𝑗)

𝑖′) ∉ {cid𝐷 (𝑗)
𝑖

}𝑖∈[[]
· then tup𝑗 =⊥; continue

* else for ∀ 𝑎 ∈ [𝑧] :
· PVSS.SRec(tk, Trans(𝑗)

𝑖𝑎
) → 𝑠𝑘

′(𝑗)
𝑎 ; PVSS.PubDriv→ (𝑝𝑘′(𝑗)𝑎 , ·); 𝛼 (𝑗)𝑎 = 0

· tup𝑗 = (
⊕

𝑎∈[𝑧] 𝑠𝑘
′(𝑗)
𝑎 ,

⊗
𝑎∈[𝑧] 𝑝𝑘

′(𝑗)
𝑎 , 𝛼 (𝑗) =

∑
𝑎∈[𝑧] 𝛼

(𝑗)
𝑎)

return ({tup𝑗 } 𝑗∈[𝑚] , viewA)

Recall the multi-instance key-expressibility definition, the PPT distinguisher A′ is required to
distinguish ({𝛼 (𝑗) ·𝑝𝑘⊗𝑝𝑘 ′(𝑗) } 𝑗∈J′ , viewA) (provided by the above simulator) and ({𝑝𝑘 (𝑗) } 𝑗∈J, viewA)
(from a real execution), where J′ = { 𝑗 ∈ [𝑚] : Trans𝑗 is valid} in the simulated execution and
J = { 𝑗 ∈ [𝑚], Trans𝑗 is valid} in the real execution. By the robustness and unpredictability of
DKGunp, the simulator SimACDSS can finish the above simulation with an overwhelming probability.
The following arguments are similar to those for Lemma 6.3. Particularly, under the condition that
the simulator could finish the above simulation, at the point of A’s view, the only difference between

28

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

the execution simulated by SimACDSS and the real execution is about how PVSS.Init is executed, and
how Trans∗ is generated. By the secrecy of PVSS, the distinguisher A′ cannot distinguish the two
tuples with a non-negligible advantage. Note that the CID of Trans(𝑗) does not contain cid

𝐷
(𝑗∗)
𝑖∗

for

𝑗 ≠ 𝑗∗. By the simulation soundness of PVSS, PVSS.SRec can obtain 𝑠𝑘 (𝑗) which is the valid secret
key of 𝑝𝑘 (𝑗) . Moreover, we have 𝛼 = 𝛼 (𝑗

∗) = 1. □

6.4 DKG from CDSS
Let P = {𝑃1, 𝑃2, . . . , 𝑃𝑛} be the whole population. Let S = {S1,S2, . . . ,S𝑚} be an arbitrary partition
of [𝑛]. W.l.o.g, we assume for every S𝑖 and S𝑗 it holds that |𝑆𝑖 | = |𝑆 𝑗 | = [= 𝑛/𝑚. Then, we can have
a DKG for the key structure {PK,SK} over P, by parallelly invoking 𝑚 CDSS instances, where
each shard {𝑃𝑖 }𝑖∈S𝑗 acts like a dealer consortium. We present the protocol description in Fig.6, while
its initialization phase is CDSS.Init and its reconstruction algorithm is CDSS.Rec.

DKG protocol DKG⟨P⟩ for {PK,SK}
let {S1, · · · ,S𝑚} be a equal-sized partition over [n]
Round 1 to ΔCDSS(𝑛

𝑚
,𝑛) : // Each shard {𝑃𝑖 }𝑖∈𝑆 𝑗

acts as a dealer consortium to distribute a secret
• parallely run CDSS.Deal⟨{𝑃𝑖 }𝑖∈𝑆 𝑗

,P⟩ with unique identifiers ∀𝑗 ∈ [𝑚]
At the end of round ΔCDSS(𝑛

𝑚
,𝑛) : each 𝑃𝑖 ∈ P do

• group𝑚 CDSS intances into J1, J2 s.t., J1 ∪ J2 = [𝑚], where J1: default ouputs ⊥; J2: valid ouputs
{𝑝𝑘 (𝑗) , (𝑝𝑘 (𝑗)𝑧)𝑧∈[𝑛] , 𝑠𝑘

(𝑗)
𝑖
} 𝑗∈I2

• output: 𝑝𝑘 =
⊗

𝑗∈J2 𝑝𝑘
(𝑗) , (𝑝𝑘𝑧 =

⊗
𝑗∈J2 𝑝𝑘

(𝑗)
𝑧)𝑧∈[𝑛] , 𝑠𝑘𝑖 =

⊕
𝑗∈J2 𝑠𝑘

𝑗
𝑖

Fig. 6. DKG from CDSS. ΔCDSS([,𝑛) is the number of rounds needed for running the CDSS’s deal protocol
CDSS.Deal with a dealer consortium of [members and a receiver set of 𝑛 nodes.

The security of our DKG inherently stems from the multi-instance security of the CDSS, given the
fact that at least one shard maintains an honest majority.

Theorem 6.7. The DKG protocol in Fig.6 is a secure (𝑛, 𝑡)-DKG, which satisfies robustness and
key-expressibility against static adversaries, if the underlying CDSS is a secure ([, 𝜏)-CDSS for some
integer 𝜏 ≥ [𝑡

𝑛
, satisfying multi-instance robustness and multi-instance key-expressibility.

Proof. The robustness of the DKG is implied by the multi-instance robustness of the underlying
CDSS. Assume that the adversary A corrupts {𝑃𝑖 }𝑖∈C for |C| = 𝑡 . By Lemma.4.1, there exists at
least one 𝑗∗ ∈ [𝑚], such that |{𝑃𝑖 }𝑖∈C ∩ D (𝑗

∗) | ≤ 𝜏 . Then, by multi-instance robustness, all honest
participants should output⊥ for all 𝑗 ∈ J1 and output properly for all 𝑗 ∈ J2; Moreover, J2 is non-empty,
as 𝑗∗ ∈ J2. For each 𝑗 ∈ J2, we have (𝑝𝑘 (𝑗)

𝑖
, 𝑠𝑘
(𝑗)
𝑖
) ∈ Rela for 𝑖 ∈ [𝑛]. By the homomorphism of

Rela, it follows (𝑠𝑘𝑖 =
⊕

𝑗∈J2 𝑠𝑘
𝑗

𝑖
, 𝑝𝑘𝑖 =

⊗
𝑗∈J2 𝑝𝑘

(𝑗)
𝑖
) ∈ Rela. Then, we argue the secret key 𝑠𝑘

reconstructed from any subset of 𝑡 + 1 secret shares will be identical and satisfy (𝑝𝑘, 𝑠𝑘) ∈ Rela. For
I ⊂ [𝑛] s.t. |I| = 𝑡 + 1, the reconstruction algorithm of CDSS will determine {𝛼𝑖 }𝑖∈I. Then, the unique
secret key 𝑠𝑘 (𝑗) of 𝑗-th CDSS is

⊕
𝑖∈I 𝛼𝑖𝑠𝑘

(𝑗)
𝑖

for every 𝑗 ∈ J2. By description, the reconstruction
algorithm of DKG is also CDSS.Rec, which means the final secret key reconstructed from {(𝑖, 𝑠𝑘𝑖)}𝑖∈I
is 𝑠𝑘 =

⊕
𝑖∈I1 𝛼𝑖 (

⊕
𝑗∈J2 𝑠𝑘

(𝑗)
𝑖
) =

⊕
𝑗∈J2 𝑠𝑘

(𝑗) , which is determined by {𝑠𝑘 (𝑗) } and independent of I.
The key-expressibility is implied by the multi-instance key-expressibility of the CDSS. We proceed

the proof by constructing the simulator SimADKG for any PPT adversary A which corrupts {𝑃𝑖 }𝑖∈C for
some |C| = 𝑡 . SimADKG directly invokes the simulator SimACDSS and "aggregates" its outputs.

For clarity, we have written the code for the simulator below.

29

Feng et al.

SimADKG (𝑝𝑘)

Invoke SimACDSS (𝑝𝑘) → ({tup} 𝑗∈[𝑚] , sviewA), s.t. tup𝑗 = (𝑠𝑘′(𝑗) , 𝑝𝑘′(𝑗) , 𝛼 (𝑗)) or ⊥,
Compute 𝑠𝑘′ =

⊕
𝑗∈J 𝑠𝑘

′(𝑗) , 𝑝𝑘′ =
⊗

𝑗∈J 𝑝𝑘
′(𝑗) , 𝛼 =

∑
𝑗∈J 𝛼

(𝑗) , for J = { 𝑗 : tup𝑗 ≠⊥}
return (𝑠𝑘′, 𝑝𝑘′, 𝛼, sviewA)

By the definition of multi-instance key-expresability, no PPT distinguisher A′′ can distinguish
{(𝛼 (𝑗) · 𝑝𝑘 ⊗ 𝑝𝑘 ′(𝑗)) 𝑗∈J, sviewA} and ((𝑝𝑘 (𝑗)) 𝑗∈J2 , viewA) from the real execution. Notice that

𝛼 · 𝑝𝑘 ⊗ 𝑝𝑘 ′ =
⊕
𝑗∈J
(𝛼 (𝑗) · 𝑝𝑘 ⊗ 𝑝𝑘 ′(𝑗)) and

⊕
𝑗∈J2
(𝑝𝑘 (𝑗))

are obtained by applying the same operations on the two tuples. Therefore, there is no PPT distinguisher
A′ that can distinguish

(𝛼 · 𝑝𝑘 ⊗ 𝑝𝑘 ′, sviewA) and (
⊕
𝑗∈J2
(𝑝𝑘 (𝑗)), viewA)

with a non-negligible advantage. Thus, the DKG satisfies key-expressibility. □

Instantiating group-element DKG. The bit communication of the DKG (Fig.6) is equal to𝑚 (the
number of shards) times the complexity of the CDSS construction. Therefore, with CDSS in Fig.4, the
bit communication complexity of our DKG is 𝑂 (𝑚𝑛2 · |w|) + 𝑛BB[(𝑛_) +𝑚BA𝑛 (_), while 𝑛 = [𝑚.

Now, we discuss the best sharding parameters for the smallest communication. Assuming we are
using the optimal BA and BB, i.e., BA𝑧 (ℓ) = BB𝑧 (ℓ) = 𝑂 (𝑧ℓ +𝑧2_), and the accumulator with witness
size |w| = 𝑂 (_), we notice that [=𝑚 =

√
𝑛 yields a communication cost of DKG which is 𝑂 (𝑛2.5_).

Regarding computation cost, with the PVSS in Appendix.B, the per-node computation cost of the
DKG is 𝑂 (𝑛1.5) group operations.

Instantiating field-element DKG. As the CDSS in Fig.5 satisfies both multi-instance robustness and
multi-instance key-expressibility, it can be plugged into the DKG construction in Fig.6. The security
of the resulting DKG follows Theorem 6.7. Regarding performance, the DKG parallelly invokes
𝑚 =
√
𝑛 instances of CDSS, and thus the total communication complexity will be O(𝑛2.5_^), and the

per-node computation cost will be O(𝑛1.5^) group operations.

7 CONCLUSION
Both distributed key generation (DKG) and interactive consistency (IC) can be efficiently achieved
with a small committee containing at least one honest representative. However, relying on common
randomness to sample such a committee is costly, often necessitating DKG. In this work, we introduce
a set of Dragon techniques, including consortium-sender Byzantine broadcast and consortium-dealer
secret sharing, which enable the entire population, when arbitrarily grouped, to emulate such a
committee in a decentralized manner. Our methods eliminate the reliance on common coins while
retaining the efficiency benefits of committee-based approaches. Consequently, our developed DKG
protocols (for both group-element and field-element secrets) and IC enjoy sub-cubic communication
complexity.

An interesting theoretical question is whether we can have a DKG protocol with O(𝑛2_) commu-
nication complexity, matching the lower bound established in [56], or whether this lower bound is
tight. Moreover, we believe our techniques and ideas have broader applications beyond DKG and IC,
leaving further exploration as an interesting avenue for future work.

30

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

ACKNOWLEDGEMENT
This work was supported in part by research awards from Ethereum Foundation, Protocol Labs,
Stellar Development Foundation, and SOAR Prize from the University of Sydney.

REFERENCES
[1] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. 2023.

Communication complexity of byzantine agreement, revisited. Distributed Comput. 36, 1 (2023), 3–28.
[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. 2023. Bingo: Adaptivity and

Asynchrony in Verifiable Secret Sharing and Distributed Key Generation. In CRYPTO (1) (Lecture Notes in Computer
Science, Vol. 14081). Springer, 39–70.

[3] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. 2023. Communication and Round Efficient Parallel Broadcast Protocols.
Cryptology ePrint Archive, Paper 2023/1172. https://eprint.iacr.org/2023/1172 https://eprint.iacr.org/2023/1172.

[4] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. 2023. Communication and Round Efficient Parallel Broadcast Protocols.
Cryptology ePrint Archive, Paper 2023/1172. https://eprint.iacr.org/2023/1172 https://eprint.iacr.org/2023/1172.

[5] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. 2021. Compressed $\varSigma $-Protocols for Bilinear Group
Arithmetic Circuits and Application to Logarithmic Transparent Threshold Signatures. In ASIACRYPT (4) (Lecture
Notes in Computer Science, Vol. 13093). Springer, 526–556.

[6] Sarah Azouvi and Marko Vukolic. 2022. Pikachu: Securing PoS Blockchains from Long-Range Attacks by Checkpointing
into Bitcoin PoW using Taproot. In Proceedings of the 2022 ACM Workshop on Developments in Consensus. 53–65.

[7] Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, and Dimitrios Papachristoudis. 2023. GRandLine:
Adaptively Secure DKG and Randomness Beacon with (Almost) Quadratic Communication Complexity. Technical
Report. Cryptology ePrint Archive. https://eprint.iacr.org/2023/1887.

[8] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold BLS Signature Scheme. In CCS. ACM,
193–207.

[9] Renas Bacho and Julian Loss. 2023. Adaptively Secure (Aggregatable) PVSS and Application to Distributed Randomness
Beacons. In CCS. ACM.

[10] Michael Ben-Or and Ran El-Yaniv. 2003. Resilient-optimal interactive consistency in constant time. Distributed Comput.
16, 4 (2003), 249–262.

[11] Adithya Bhat, Aniket Kate, Kartik Nayak, and Nibesh Shrestha. 2023. OptRand: Optimistically responsive distributed
random beacons. In NDSS.

[12] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak. 2021. RandPiper - Reconfiguration-
Friendly Random Beacons with Quadratic Communication. In CCS. ACM, 3502–3524.

[13] Richard E Blahut. 1983. Theory and practice of error control codes. Addison-Wesley.
[14] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a public randomness source. Technical

Report. Cryptology ePrint Archive. https://eprint.iacr.org/2015/1015.
[15] Elizabeth Borowsky and Eli Gafni. 1993. Generalized FLP impossibility result for t-resilient asynchronous computations.

In STOC. ACM, 91–100.
[16] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information and Computation 75, 2 (1987),

130–143.
[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in constantipole: practical asynchronous

Byzantine agreement using cryptography (extended abstract). In PODC. ACM, 123–132.
[18] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Adaptive Security for Threshold

Cryptosystems. In CRYPTO (Lecture Notes in Computer Science, Vol. 1666). Springer, 98–115.
[19] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness Attested by Public Entities. In ACNS

(Lecture Notes in Computer Science, Vol. 10355). Springer, 537–556.
[20] Ignacio Cascudo and Bernardo David. 2020. ALBATROSS: Publicly AttestabLe BATched Randomness Based On

Secret Sharing. In ASIACRYPT (3) (Lecture Notes in Computer Science, Vol. 12493). Springer, 311–341.
[21] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. 2022. YOLO YOSO: Fast and Simple Encryption

and Secret Sharing in the YOSO Model. In ASIACRYPT (1) (Lecture Notes in Computer Science, Vol. 13791). Springer,
651–680.

[22] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In CRYPTO (Lecture Notes in Computer
Science, Vol. 4117). Springer, 78–96.

[23] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults (Extended Abstract). In FOCS. IEEE Computer Society, 383–395.

[24] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2001. Multiparty Computation from Threshold Homomorphic
Encryption. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 2045). Springer, 280–299.

31

https://eprint.iacr.org/2023/1172
https://eprint.iacr.org/2023/1172
https://eprint.iacr.org/2023/1172
https://eprint.iacr.org/2023/1172
https://eprint.iacr.org/2023/1887
https://eprint.iacr.org/2015/1015

Feng et al.

[25] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt: Scalable Distributed Randomness Beacon
with Transparent Setup. In SP. IEEE, 2502–2517.

[26] Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander Spiegelman, Benny Pinkas, and Ling Ren. 2023. A New Paradigm
for Verifiable Secret Sharing. Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/2023/1196.

[27] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling Ren. 2022. Practical
Asynchronous Distributed Key Generation. In SP. IEEE, 2518–2534.

[28] Danny Dolev and Rüdiger Reischuk. 1982. Bounds on Information Exchange for Byzantine Agreement. In PODC. ACM,
132–140.

[29] Danny Dolev and H. Raymond Strong. 1983. Authenticated Algorithms for Byzantine Agreement. SIAM J. Comput. 12,
4 (1983), 656–666.

[30] Paul Feldman. 1987. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In FOCS. IEEE Computer
Society, 427–437.

[31] Hanwen Feng, Tiancheng Mai, and Qiang Tang. 2023. Scalable and Adaptively Secure Any-Trust Distributed Key
Generation and All-hands Checkpointing. Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/2023/1773.

[32] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of Distributed Consensus with One Faulty
Process. J. ACM 32, 2 (1985), 374–382.

[33] Pierre-Alain Fouque and Jacques Stern. 2001. One Round Threshold Discrete-Log Key Generation without Private
Channels. In Public Key Cryptography (Lecture Notes in Computer Science, Vol. 1992). Springer, 300–316.

[34] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2022. Efficient Asynchronous Byzantine
Agreement without Private Setups. In ICDCS. IEEE, 246–257.

[35] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-Optimal DSA/ECDSA Signatures and an
Application to Bitcoin Wallet Security. In ACNS (Lecture Notes in Computer Science, Vol. 9696). Springer, 156–174.

[36] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems. J. Cryptol. 20, 1 (2007), 51–83.

[37] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. 2022. Practical Non-interactive Publicly Verifiable Secret Sharing
with Thousands of Parties. In EUROCRYPT (1) (Lecture Notes in Computer Science, Vol. 13275). Springer, 458–487.

[38] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In EUROCRYPT (2) (Lecture Notes in
Computer Science, Vol. 9666). Springer, 305–326.

[39] Jens Groth and Victor Shoup. 2023. Fast batched asynchronous distributed key generation. Technical Report. Cryptology
ePrint Archive. https://eprint.iacr.org/2023/1175.

[40] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020. Dumbo: Faster Asynchronous BFT
Protocols. In CCS. ACM, 803–818.

[41] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu. 2021. Aggregatable
Distributed Key Generation. In EUROCRYPT (1) (Lecture Notes in Computer Science, Vol. 12696). Springer, 147–176.

[42] Damien Imbs, Michel Raynal, and Julien Stainer. 2016. Are Byzantine Failures Really Different from Crash Failures?.
In DISC (Lecture Notes in Computer Science, Vol. 9888). Springer, 215–229.

[43] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size Commitments to Polynomials and Their
Applications. In ASIACRYPT (Lecture Notes in Computer Science, Vol. 6477). Springer, 177–194.

[44] Valerie King and Jared Saia. 2010. Breaking the O(n2) bit barrier: scalable byzantine agreement with an adaptive
adversary. In PODC. ACM, 420–429.

[45] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. 2002. On the composition of authenticated byzantine agreement. In
STOC. ACM, 514–523.

[46] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-MVBA: Optimal Multi-Valued Validated
Asynchronous Byzantine Agreement, Revisited. In PODC. ACM, 129–138.

[47] Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of Authenticated Byzantine Agreement. In
DISC (LIPIcs, Vol. 209). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:16.

[48] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. 2020. Improved Extension Protocols for
Byzantine Broadcast and Agreement. In DISC (LIPIcs, Vol. 179). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
28:1–28:17.

[49] Wafa Neji, Kaouther Blibech Sinaoui, and Narjes Ben Rajeb. 2016. Distributed key generation protocol with a new
complaint management strategy. Secur. Commun. Networks 9, 17 (2016), 4585–4595.

[50] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In CT-RSA (Lecture Notes in Computer
Science, Vol. 3376). Springer, 275–292.

[51] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In EUROCRYPT
(Lecture Notes in Computer Science, Vol. 1592). Springer, 223–238.

[52] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching Agreement in the Presence of Faults. J.
ACM 27, 2 (1980), 228–234.

32

https://eprint.iacr.org/2023/1196
https://eprint.iacr.org/2023/1773
https://eprint.iacr.org/2023/1175

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

[53] Torben P. Pedersen. 1991. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In CRYPTO
(Lecture Notes in Computer Science, Vol. 576). Springer, 129–140.

[54] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. 2008. A Framework for Efficient and Composable Oblivious
Transfer. In CRYPTO (Lecture Notes in Computer Science, Vol. 5157). Springer, 554–571.

[55] Victor Shoup. 2023. The many faces of Schnorr. Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/
2023/1019.

[56] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. 2021. Synchronous Distributed Key Generation without
Broadcasts. Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/2021/1635.

[57] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguillaumie, and Giulio Malavolta. 2021. Efficient
CCA Timed Commitments in Class Groups. In CCS. ACM, 2663–2684.

[58] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan-Gueta, and Srinivas Devadas.
2020. Towards Scalable Threshold Cryptosystems. In IEEE Symposium on Security and Privacy. IEEE, 877–893.

[59] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. 2022. Gossiping for Communication-Efficient Broadcast.
In CRYPTO (3) (Lecture Notes in Computer Science, Vol. 13509). Springer, 439–469.

[60] Gang Wang and Mark Nixon. 2020. RandChain: Practical Scalable Decentralized Randomness Attested by Blockchain.
In Blockchain. IEEE, 442–449.

[61] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller. 2022. hbACSS: How to Robustly Share
Many Secrets. In NDSS. The Internet Society.

[62] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling Blockchain via Full Sharding. In
CCS. ACM, 931–948.

[63] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang. 2022. Polynomial Commitment with a
One-to-Many Prover and Applications. In USENIX Security Symposium. USENIX Association, 2965–2982.

A A PVSS SCHEME WITH FIELD-ELEMENT SECRETS
We present a PVSS scheme in this section for the conventional key structure in Dlog-based
cryptography, i.e., (𝑠𝑘 ∈ Z𝑝 , 𝑝𝑘 = 𝑔𝑠𝑘 ∈ G). This scheme can be seen as a variant of Fouque-Stern’s
PVSS [33], while we apply Scrape’s technique [19] to improve its verification time and use SoK to
embed a creator ID into its transcript.

Building blocks. We briefly recall the building blocks of our PVSS scheme.
Public key encryption. A PKE scheme Σenc consists of KeyGen, Enc, Dec, satisfying the standard
IND-CPA security.
Signature of Knowledge. A signature of knowledge (SoK) scheme SoK for an NP language 𝐿 consists of
three algorithms. Setup generates a CRS, which is an implicit input of other algorithms. Sign(𝑥,𝑤,𝑚)
on inputs a statement 𝑥 , a witness 𝑤 , and a message𝑚, produces a signature 𝜎 on𝑚. Vrfy(𝑥,𝑚, 𝜎)
verifies the signature. A SoK scheme should satisfy the Sim-Ext security [22].
NIZK. We need a NIZK Πzk for showing the well-formedness of the ciphertexts. It consists of Setup,
Prove, and Vrfy, for a language 𝐿pvss which becomes apparent in the description of construction.
We require Πzk to satisfy completeness, simulation soundness, and zero knowledge against PPT
adversaries.
The construction.

• Init(1_, 𝑛). (1) A generator 𝑔 for the group G of order 𝑝; (2) For every 𝑖 ∈ [𝑛], (𝑒𝑘𝑖 , 𝑑𝑘𝑖) ←
Σenc.KeyGen(1_); (3) A setup for SoK; (4) A setup for NIZK Πnizk.

• Deal((𝑒𝑘𝑖)𝑖∈[𝑛], cid). Sample (𝑎0, 𝑎1, . . . , 𝑎𝑡) ←$ Z𝑡+1𝑝 , define 𝑓 (𝑋) = ∑𝑡
𝑖=0 𝑎𝑖𝑋

𝑖 , and com-
pute (𝐴𝑖 = 𝑔𝑓 (𝑖))𝑖∈[0,𝑛] , and (𝑐𝑖 = Σenc.Enc(𝑒𝑘𝑖 , 𝑓 (𝑖)); 𝑟𝑖)𝑖∈[𝑛] where 𝑟𝑖 is a fresh randomness.
Sign cid with the knowledge of 𝑓 (0) w.r.t. 𝐴0: SoK.Sign(𝐴0, 𝑓 (0), cid) → 𝜎 . Prove the
well-formedness of ciphertexts and obtain a proof 𝜋zk : Πzk is for the following language

{statement:(𝐴𝑖 , 𝑒𝑘𝑖 , 𝑐𝑖)𝑖∈[𝑛] ; witness:(𝑓 (𝑖), 𝑟𝑖)𝑖∈[𝑛] :
𝐴𝑖 = 𝑔 (𝑓 (𝑖)) ∧ 𝑐𝑖 = Σenc.Enc(𝑒𝑘𝑖 , 𝑓 (𝑖); 𝑟𝑖) ∧ 𝑓 (𝑖) < 𝑝}

(6)

Trans = ((𝐴𝑖)𝑖∈[0,𝑛], (𝑐𝑖)𝑖∈[𝑛], 𝜋zk, {𝜎}, {cid}).

33

https://eprint.iacr.org/2023/1019
https://eprint.iacr.org/2023/1019
https://eprint.iacr.org/2021/1635

Feng et al.

• PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛], Trans). It first checks whether

SoK.Vrfy(𝐴 (𝑗)0 , cid(𝑗) , 𝜎 (𝑗)) = 1, for all 𝑗 ∈ [𝑚] . (7)

Next, it randomly samples a (𝑛 − 𝑡)-degree polynomial 𝑞(𝑥) ∈ Z𝑝 [𝑥], and computes the dual
code

(code⊥0 , . . . , code⊥𝑛), where code⊥𝑖 =
𝑞(𝑖)∏𝑛

𝑗=0, 𝑗≠𝑖 (𝑖 − 𝑗) . (8)

The dual code is used to check the validity of Scrape’s polynomial commitment. See [19]. In
our case, it computes 𝐴0 =

∏
𝑗 𝐴
(𝑗)
0 and checks whether

𝑛∏
𝜏=0

𝐴
code⊥𝜏
𝜏 = 1. (9)

If the above check passes, it confirms that the exponents of (𝐴𝑖)𝑖∈[0,𝑛] are from a 𝑡-degree
polynomial 𝑓 (𝑋), and𝐴𝑖 = 𝑔

𝑓 (𝑖)
1 . Then, it checks if 𝜋zk is valid proof. It returns 1 if all checks

pass; otherwise, it returns 0.
• getCID(Trans). It returns {cid(𝑗) } 𝑗∈[𝑚] .
• PubDriv(Trans). It returns 𝑝𝑘 =

∏
𝑗 𝐴
(𝑗)
0 and (𝑝𝑘𝑖 = 𝐴𝑖)𝑖∈[𝑛] .

• Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans). It returns 𝑠𝑘𝑖 = Paillier.Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , 𝑐𝑖) mod 𝑝.
• Rec({(𝑖, 𝑠𝑘𝑖)}𝑖∈I). It first computes the Lagrange coefficients {_𝑖 }𝑖∈I based on I, and then
𝑠𝑘 =

∑
_𝑖𝑠𝑘𝑖 mod 𝑝.

A.1 Analysis
Security analysis. The correctness is easy to follow. We establish the other security properties via
the following lemmas.

Lemma A.1. Assuming the soundness of Πzk for Eq.6, our PVSS satisfies the soundness.

Proof. In the soundness definition of PVSS, we require that every transcript passing the public
verification can be decrypted to a consistent set of secret shares. According to the public verification
algorithm’s description, a valid transcript will pass the checking step in Eq.9. This step guarantees,
with overwhelming probability, that 𝐴0, . . . , 𝐴𝑛 commit to 𝑓 (0), . . . , 𝑓 (𝑛) for a polynomial 𝑓 with
a degree of up to 𝑡 , as analyzed in [19]. Subsequently, by the soundness of Πzk, the ciphertexts
𝑐1, . . . , 𝑐𝑛 encrypt to 𝑓 (1), . . . , 𝑓 (𝑛), ensuring that the decrypted values constitute a consistent set of
secret shares. Similarly, for a weakly aggregated transcript wTrans □

Lemma A.2. Assuming the IND-CPA security of the underlying PKE Σenc, the zero-knowledge
of Πzk, and the security of SoK, the PVSS satisfies the strengthened secrecy and the simulation
soundness.

Proof. For clarity, we outline most simulator algorithms in the following.
• SInitA (1_, 𝑛). It invokes the simulated setup algorithm ofΠzk andSoK to generate (crszk, tkzk)

and (crssok, tksok), respectively. Then, the CRS crs = (crszk, crssok) is provided to the
adversaryA. After receiving the set of corrupted parties C and the encryption keys {𝑒𝑘𝑖 }𝑖∈C
from A, the simulator generates the encryption/decryption key pairs (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∈[𝑛]\C for
all uncorrupted users. It publishes all encryption keys (𝑒𝑘𝑖)𝑖∈[𝑛] , and sets the trapdoor as
tk = (tkzk, tksok).

• SDeal((𝑒𝑘𝑖)𝑖∈[𝑛], 𝑝𝑘, tk, cid). First, it sets𝐴0 = 𝑝𝑘 . For 𝑖 ∈ C, it samples𝑦𝑖 ←$ Z𝑝 , computes
𝐴𝑖 = 𝑔𝑦𝑖 , and encrypts 𝑦𝑖 under 𝑒𝑘𝑖 : 𝑐𝑖 ← Σenc.Enc(𝑒𝑘𝑖 , 𝑦𝑖). For 𝑖 ∈ [𝑛] \ C, it computes 𝐴𝑖

via Lagrange interpolation using 𝐴0 and (𝐴𝑖)𝑖∈C , and 𝑐𝑖 ← Σenc.Enc(𝑒𝑘𝑖 , 0). Next, it invokes

34

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

the simulated signing algorithm of SoK to sign cid and obtains the simulated signature 𝜎 .
Finally, it invokes the simulated prover algorithm of Πzk to generate the proof 𝜋zk, and returns
the transcript Trans = ((𝐴𝑖)𝑖∈[0,𝑛], (𝑐𝑖)𝑖∈[𝑛], 𝜋zk, {𝜎}, {cid}).

• SRec(tk, Trans). It parses 𝐴0, 𝜎 from Trans. Then, it runs the extractor algorithm of SoK
with the trapdoor key tksok to extract 𝑦∗ from 𝜎 , such that 𝐴0 = 𝑔𝑦

∗ .
We argue for strengthened secrecy through the following hybrid arguments.
Hybrid 0. It runs InitA (1_, 𝑛) → (crs, C, (𝑒𝑘𝑖 , 𝑑𝑘𝑖)𝑖∉C, (𝑒𝑘𝑖)𝑖∈C, 𝑠𝑡A) and Deal((𝑒𝑘𝑖)𝑖∈[𝑛], cid) →
(Trans, 𝑠𝑘). The adversary A is provided with (crs, (𝑒𝑘𝑖)𝑖∈[𝑛], 𝑠𝑡A, Trans) as inputs.
Hybrid 1. It is almost identical to Hybrid 0, except that during the initial phase, the setup for Πzk is
replaced with the simulated setup algorithm of Πzk, and that the prover algorithm of Πzk in the Deal
algorithm is replaced with the simulated prover algorithm.
Hybrid 2. It is almost identical to Hybrid 1, except that during the initial phase, the setup for SoK is
replaced with the simulated setup algorithm of SoK, and that the signature of knowledge 𝜎 in Trans
is generated with the simulated signing algorithm.
Hybrid 3. It is almost identical to Hybrid 2, except that it generates Trans in the following way. (1)
Sample 𝑦𝑖 ←$ Z𝑝 for all 𝑖 ∈ C, and sample a 𝑡-degree polynomial 𝑓 , such that 𝑓 (𝑖) = 𝑦𝑖 for 𝑖 ∈ C. (2)
Compute (𝐴𝑖 = 𝑔𝑓 (𝑖))𝑖∈[0,𝑛] , and (𝑐𝑖 = Σenc.Enc(𝑒𝑘𝑖 , 𝑓 (𝑖)); 𝑟𝑖)𝑖∈[𝑛] where 𝑟𝑖 is a fresh randomness.
(3) Generate the signature of knowledge 𝜎 using the simulated signing algorithm. (4) Prove the
well-formedness of ciphertexts via the simulated prover algorithm and obtain a proof 𝜋zk.
Hybrid 4. It is almost identical to Hybrid 4, except that during generating Trans, the ciphertexts 𝑐𝑖
for all 𝑖 ∈ [𝑛] \ C is generated as 𝑐𝑖 ← Σenc.Enc(𝑒𝑘𝑖 , 0).
Hybrid 5. It is almost identical to Hybrid 4, except that in generating Trans, it firstly samples
𝐴0 ←$ G and 𝑦𝑖 ←$ Z𝑝 for 𝑖 ∈ C, interpolates a 𝑡-degree polynomial in the exponent based on 𝐴0 and
(𝐴𝑖 = 𝑔𝑦𝑖)𝑖∈C , and obtains 𝐴𝑖 for 𝑖 ∈ [𝑛] \ C. After that, the remaining procedures for generating
transcript Trans are identical to those in Hybrid 4.

For each hybrid 𝑘 ∈ [0, 5], we denote the probability that the adversaryA outputs 1 by P(𝑘)A . Notice
that the PVSS scheme satisfies the strengthened secrecy if

|P(0)A − P
(5)
A | ≤ negl(_). (10)

It is easy to see that |P(0)A − P
(1)
A | ≤ negl(_), due to zero-knowledgeness of Πzk. Similarly, we have

|P(1)A − P
(2)
A | ≤ negl(_), from the security of SoK. Also, we have P(2)A = P(3)A (and P(4)A = P(5)A), as the

adversary’s views in Hybrid 2 and 3 (resp. Hybrid 4 and 5)are essentially identical. Moreover, it holds
that |P(3)A − P

(4)
A | ≤ negl(_), from the IND-CPA security of the encryption scheme. □

Lemma A.3. Assuming the security of SoK, our PVSS satisfies the simulation soundness.

Proof. Recall the simulation soundness definition, where we require that the adversary can only
issue a challenge transcript that does not contain the CID included in the simulated transcript.
Therefore, the signature of knowledge 𝜎 in the challenge transcript must be different from the
simulated signature of knowledge, and thus, we can extract the witness 𝑦∗ from the signature. □

Instantiation and performance analysis. The underlying PKE can be instantiated by the Paillier
encryption [51], the LWE-based PVW encryption [54], or any other encryption scheme which is
accompanied by efficient NIZK Πzk for the language specified in Eq. 6. See [37] for a comprehensive
overview on the candidate constructions. Regarding the SoK, we can essentially apply the Schnorr
signature while viewing 𝐴0 as the verification key and 𝑎0 as the signing key, respectively. As
demonstrated by Gentry et al.[37], the PVW encryption and the associated NIZK enjoy better concrete
performance.

35

Feng et al.

Then, assuming the proof size, prover time, and verification time of Πzk are linear to 𝑛 (which
is true of the instantiations discussed above), the transcript size of Trans is 𝑂 (𝑛_). Both Deal and
PubVrfy necessitate𝑂 (𝑛) group operations. The computational overhead for the remaining operations
is relatively insubstantial, approximating 𝑂 (1) group operations.

B AN AGGREGATABLE PVSS
We present an aggregatable PVSS scheme in this section, which is a simplified variant of the scheme
in [41].
Building blocks. We first introduce a few needed cryptographic building blocks.
Pairing. There is an efficient deterministic algorithm GroupGen which outputs the description of the
pairing groups, including (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, ℎ̂1), where G1, G2, G𝑇 are groups of order 𝑝, 𝑔1 is the
generator of G1, ℎ̂1 is the generator of G2, and 𝑒 : G1 × G2 is a bilinear map.
Signature of Knowledge. A signature of knowledge (SoK) scheme SoK for an NP language 𝐿 consists of
three algorithms. Setup generates a CRS, which is an implicit input of other algorithms. Sign(𝑥,𝑤,𝑚)
on inputs a statement 𝑥 , a witness 𝑥 , and a message𝑚, produces a signature 𝜎 on𝑚. Vrfy(𝑥,𝑚, 𝜎)
verifies the signature. A SoK scheme should satisfy the Sim-Ext security [22].

• Init(1_, 𝑛). (1) GroupGen → (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, ℎ̂1); (2) a group element 𝑢1 ←$ G2; (3)
the setup for SoK.Setup→ crssok. Define crs = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, ℎ̂1, 𝑢1, crssok). (4) For
uncorroputed 𝑖 ∈ [𝑛], 𝑑𝑘𝑖 ←$ Z𝑝 , and 𝑒𝑘𝑖 = ℎ̂

𝑑𝑘𝑖
1 ;

• Deal((𝑒𝑘𝑖)𝑖∈[𝑛], cid). Sample (𝑎0, 𝑎1, . . . , 𝑎𝑡) ←$ Z𝑡+1𝑝 , define 𝑓 (𝑋) = ∑𝑡
𝑖=0 𝑎𝑖𝑋

𝑖 , and com-
pute 𝑢2 = 𝑢

𝑎0
1 , (𝐴𝑖 = 𝑔𝑓 (𝑖))𝑖∈[0,𝑛] , and (𝑌𝑖 = 𝑒𝑘

𝑓 (𝑖)
𝑖
)𝑖∈[1,𝑛] . Sign cid with the knowledge of

𝑓 (0) w.r.t.𝐴0: SoK.Sign(𝐴0, 𝑓 (0), cid) → 𝜎 . Trans = ((𝐴𝑖)𝑖∈[0,𝑛], (𝑌𝑖)𝑖∈[𝑛], 𝑢2, {𝜎}, {cid}).
• Agg({Trans𝑗 } 𝑗∈[𝑚], (𝑒𝑘𝑖)𝑖∈[𝑛]). Parse Trans𝑗 = ((𝐴 (𝑗)𝑖

)𝑖∈[0,𝑛], (𝑌 (𝑗)𝑖
)𝑖∈[𝑛], 𝑢 (𝑗)2 ,

𝜎 (𝑗) , {cid(𝑗) }) . Compute (𝐴𝑖 =
∏

𝑗 𝐴
(𝑗)
𝑖
)𝑖∈[0,𝑛] , (𝑌𝑖 =

∏
𝑗 𝑌
(𝑗)
𝑖
)𝑖∈[𝑛] , and 𝑢2 =

∏
𝑗 𝑢
(𝑗)
2 .

Return Trans = ((𝐴𝑖)𝑖∈[𝑛], (𝑌𝑖)𝑖∈[𝑛], 𝑢2, {𝐴 (𝑗)0 } 𝑗∈[𝑚]{𝜎 (𝑗) } 𝑗∈[𝑚], {cid(𝑗) } 𝑗∈[𝑚]).
• PubVrfy((𝑒𝑘𝑖)𝑖∈[𝑛], Trans). It first checks SoK.Vrfy(𝐴 (𝑗)0 , cid(𝑗) , 𝜎 (𝑗)) for 𝑗 ∈ [𝑚]. Next, it

randomly samples a (𝑛 − 𝑡)-degree polynomial 𝑞(𝑥) ∈ Z𝑝 [𝑥], and computes the dual code

(code⊥0 , . . . , code⊥𝑛), where code⊥𝑖 =
𝑞(𝑖)∏𝑛

𝑗=0, 𝑗≠𝑖 (𝑖 − 𝑗) .

The dual code is used to check the validity of Scrape’s polynomial commitment. See [19]. In
our case, it computes 𝐴0 =

∏
𝑗 𝐴
(𝑗)
0 and checks whether

𝑛∏
𝜏=0

𝐴
code⊥𝜏
𝜏 = 1. (11)

If the above check passes, it confirms that the exponents of (𝐴𝑖)𝑖∈[0,𝑛] are from a 𝑡-
degree polynomial 𝑓 (𝑋), and 𝐴𝑖 = 𝑔

𝑓 (𝑖)
1 . Then, it checks if 𝑒 (𝐴0, 𝑢1) = 𝑒 (𝑔1, 𝑢2), and if

𝑒 (𝑔1, 𝑌𝑖) = 𝑒 (𝐴𝑖 , 𝑒𝑘𝑖) for 𝑖 ∈ [𝑛]. It returns 1 if all checks pass; otherwise, it returns 0.
• getCID(Trans). It returns {cid(𝑗) } 𝑗∈[𝑚] .
• PubDriv(Trans). It returns 𝑝𝑘 = (∏𝑗 𝐴

(𝑗)
0 , 𝑢2) and (𝑝𝑘𝑖 = 𝐴𝑖)𝑖∈[𝑛] .

• Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , Trans). It returns 𝑠𝑘𝑖 = 𝑌
1

𝑑𝑘𝑖

𝑖
.

• Rec({(𝑖, 𝑠𝑘𝑖)}𝑖∈I). It first computes the Lagrange coefficients {_𝑖 }𝑖∈I based on I, and then
𝑠𝑘 =

∏
𝑠𝑘

_𝑖
𝑖

.

36

Dragon and Its Applications to Sub-cubic DKG and Interactive Consistency

Performance analysis. The transcript size of Trans is 𝑂 ((𝑛 +𝑚)_), where𝑚 represents the number
of transcripts aggregated into Trans. Both Deal and PubVrfy require𝑂 (𝑛) group operations, whereas
Agg demands 𝑂 (𝑛 log𝑚) group operations. The computational costs for other functions are minor,
approximately 𝑂 (1) group operations.

B.1 Security Analysis
The security follows the proofs in [41], which can be reduced to SXDH and BDH assumptions. For
clarity, we describe the simulators SInit, SDeal, and SRec in the following, which are implicitly given
the proof in [41, Theorem 2].

• SInitA (1_, 𝑛). Invoke (1) GroupGen→ (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, ℎ̂1), sample (2) a group element
𝑢1 ←$ G2, and run (3) the simulated setup for SoK which produces crssok and tksok. Define
crs = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, ℎ̂1, 𝑢1, crssok), provide it to the adversary A, and wait A to
specify the set of corrupted nodes C. (4) for every 𝑖 ∈ [𝑛] \ C, sample `𝑖 ←$ Z𝑝 , and define
𝑒𝑘𝑖 = 𝑢

`𝑖
1 . Define tk = (tksok, {`𝑖 }𝑖∈[𝑛]\C).

• SDeal((𝑒𝑘𝑖)𝑖∈[𝑛], 𝑝𝑘, tk, cid). Parse 𝑝𝑘 = (𝑔0, ℎ0). Then, (1) for 𝑖 ∈ C, sample 𝑎𝑖 ←$ Z𝑝 , set
𝐴𝑖 = 𝑔𝑎𝑖 , and 𝑌𝑖 = 𝑒𝑘

𝑎𝑖
𝑖

. We assume without loss of generality that |C| = 𝑡 . (2) For 𝑖 ∉ C,
let 𝐴𝑖 = 𝑔

_0 (𝑖)
0

∏
𝑗∈C 𝐴

_ 𝑗 (𝑖)
𝑗

, and 𝑌𝑖 = (ℎ_0 (𝑖)0
∏

𝑗∈C 𝑢
𝑎 𝑗_ 𝑗 (𝑖)
1)`𝑖 , where _ 𝑗 (𝑖) =

∏
𝑘∈C,𝑘≠𝑗

𝑖−𝑘
𝑗−𝑘 .

(3) Run the simulation signer algorithm of SoK to generate a simulated signature 𝜎 for cid.
Output Trans = ((𝐴𝑖)𝑖∈[0,𝑛], (𝑌𝑖)𝑖∈[𝑛], 𝑢2 = ℎ0, 𝜎, {cid}).

• SRec(tk, Trans) → 𝑠𝑘 . Parse Trans, and obtain 𝜎 . Run the extraction algorithm of SoK with
𝜎 and tksok, and obtain 𝑠 ∈ Z𝑝 such that 𝐴0 = 𝑔𝑠1. Output 𝑠𝑘 = ℎ̂𝑠1.

37

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Related Works
	3 Model, Preliminaries, and Protocol Composition
	3.1 Byzantine Consensus
	3.2 Distributed Key Generation
	3.3 Other Cryptography Primitives
	3.4 Unique Identifier Model

	4 Dragaon-IC
	4.1 Consortium-Sender Byzantine Broadcast
	4.2 Interactive Consistency

	5 Simulation-based Definitions for PVSS
	6 Dragon-DKG
	6.1 Consortium-Dealer Secret Sharing: Definition
	6.2 CDSS for Group-Element Secret
	6.3 CDSS for Field-Element Secret
	6.4 DKG from CDSS

	7 Conclusion
	References
	A A PVSS Scheme with Field-element Secrets
	A.1 Analysis

	B An Aggregatable PVSS
	B.1 Security Analysis

