
Sleepy Consensus in the Known Participation Model
Chenxu Wang

cxwang16117@gmail.com
Shandong University

China

Sisi Duan
duansisi@tsinghua.edu.cn

Tsinghua University
China

Minghui Xu
mhxu@sdu.edu.cn

Shandong University
China

Feng Li
fli@sdu.edu.cn

Shandong University
China

Xiuzhen Cheng
xzcheng@sdu.edu.cn
Shandong University

China

ABSTRACT
We study sleepy consensus in the knownparticipationmodel, where
replicas are aware of the minimum number of awake honest repli-
cas. Compared to prior works that almost all assume the unknown
participation model, we provide a fine-grained treatment of sleepy
consensus in the known participation model and show some inter-
esting results. First, we present a synchronous atomic broadcast
protocol with 5Δ + 2𝛿 expected latency and 2Δ + 2𝛿 best-case la-
tency, where Δ is the bound on network delay and 𝛿 is the actual
network delay. In contrast, the best-known result in the unknown
participation model (MMR, CCS 2023) achieves 14Δ latency, more
than twice the latency of our protocol. Second, in the partially
synchronous network (the value of Δ is unknown), we show that
without changing the conventional 𝑛 ≥ 3𝑓 + 1 assumption, one
can only obtain a secure sleepy consensus by making the stable
storage assumption (where replicas need to store intermediate con-
sensus parameters in stable storage). Finally, still in the partially
synchronous network but not assuming stable storage, we prove
the bounds on 𝑛 ≥ 3𝑓 + 2𝑠 + 1 without the global awake time
(GAT) assumption (all honest replicas become awake after GAT)
and 𝑛 ≥ 3𝑓 + 𝑠 + 1 with the GAT assumption, where 𝑠 is the max-
imum number of honest replicas that may become asleep simulta-
neously. Using these bounds, we transform HotStuff (PODC 2019)
into a sleepy consensus protocol via a timeoutQC mechanism and
a low-cost recovery protocol.

1 INTRODUCTION
Byzantine fault-tolerant state machine replication (BFT) is a fun-
damental tool in fault-tolerant distributed computing, allowing a
group of replicas to reach an agreement in the presence of arbitrary
failures [12, 18, 19, 33, 43–45]. Classic BFT protocols assume that
replicas are aware of the identities of each other and non-faulty
replicas are expected to always stay online. Recently, inspired by
the emergence of Bitcoin [35], the sleepy model of consensus [38]
is introduced. In sleepy consensus, certain number of replicas may
unpredictably go offline (and become asleep) and later come back
online (and become awake). The model is also known as the crash-
recovery model in the distributed computing literature [11], char-
acterizing the model where replicas keep infinitely often crashing
and recovering. In this model, each replica is sometimes assumed
to have a stable storage (or a log), which can be accessed even if the
replica crashes and recovers later.

We provide a categorization of sleepy consensus in Table 1. Based
on the timing assumptions, consensus protocols can be classified

into three types: synchronous, partially synchronous, and asyn-
chronous. In a synchronous network, there exists a known upper
bound Δ for message transmission and processing. In a partially
synchronous network [21], there exists such an upper bound but
the value of Δ is unknown. In an asynchronous network, there
does not exist an upper bound. Most sleepy consensus protocols
known so far [16, 30, 31, 34, 38] consider a synchronous network
and an unknown participationmodel, where replicas are not aware
of the minimum number of awake honest replicas ℎ𝑎 . Pass and
Shi [38] showed that sleepy consensus in the unknown participa-
tion model cannot be achieved in the partially synchronous model
or asynchronous model. Momose and Ren (MR) [34] proposed the
first constant-time sleepy consensus protocol. A follow-up work
by Malkhi, Momose, and Ren (MMR) [31] further reduced the ex-
pected latency. While these works do not explicitly specify the
requirement for stable storage, we believe most of them assume
stable storage implicitly1. However, the recovery protocols intro-
duce additional costs. In particular, the message delivery assump-
tion [31] made by prior works specifies that “if an honest node 𝑝
is awake at time 𝑡 , then 𝑝 has received all messages that were sent
to it by honest nodes by time 𝑡 − Δ.” In this case, any messages re-
ceived right before a replica goes to sleep need to be stored locally
for the replica to process after it becomes awake. Meanwhile, in
the partially synchronous model, the Ebb-and-Flow protocol [36]
and its follow-up work [37] mentioned that one can use conven-
tional BFT protocols such as HotStuff [43] and PBFT [12] to obtain
sleepy consensus. In this model, replicas always know the mini-
mum number of awake honest replicas ℎ𝑎 . However, the concrete
construction is not provided.

Storage
assumption Sync. systems Partially sync.

systems

Unknown
ℎ𝑎

Not explicitly
specified

[16, 30, 31, 34,
38] Impossible. [38]

Known ℎ𝑎

With stable
storage Not known yet

[36, 37]

Without stable
storage Not known yet

Table 1: Overview of sleepy consensus.

1By using recovery protocols (e.g., the recovery mechanisms in MR and MMR), the
assumption about stable storage can be removed.

1

Model Protocol Maximum number of
asleep honest replicas Known ℎ𝑎 Expected latency Stable

storage?

Synchronous
sleepy consensus

(𝑛 ≥ 2𝑓 + 1)

MR [34]
(without the recovery protocol)

safety 𝑛 − 2𝑓 − 1
7 32Δ 3

liveness 𝑛 − 2𝑓 − 1

MMR [31]
safety 𝑛 − 2𝑓 − 1‡

7 14Δ 7
liveness 𝑛 − 2𝑓 − 1‡

Koala-1 (Sec. 3)
safety 𝑛 − 𝑓

3 5Δ + 2𝛿 7
liveness 𝑛 − 2𝑓 − 1

Partially synchronous
sleepy consensus

(𝑛 ≥ 3𝑓 + 1)

Ebb-and-flow★ [36]
with stable storage (Sec. 4)

safety 𝑛 − 𝑓
3

7Δ
(based on HotStuf) 3

liveness 𝑛 − 𝑓 †

Koala-2 (Sec. 5)
safety 𝑛 − 𝑓

3
7Δ

(based on HotStuf) 7

liveness
𝑛 − 3𝑓 − 1† or
⌊ 𝑛−3𝑓 −12 ⌋

Table 2: Comparison of sleepy consensus protocols. ‡Thebound considers the worst case where all 𝑓 Byzantine replicas remain
awake. †Liveness of the protocol is guaranteed under the global awake time (GAT) assumption. ★While Ebb-and-flow does not
specify whether stable storage is required, we show that the result can only be achieved by assuming stable storage.

While sleepy consensus in the unknown participation model is
a better fit for systems such as Bitcoin, sleepy consensus in the
known participation model (where ℎ𝑎 is known) is of independent
interest. For instance, systems using Proof-of-Stake (PoS) proto-
cols [10, 22, 27] (i.e., Ethereum 2.0 [42], Polkadot [41]) or conven-
tional BFT protocols (i.e., permissioned blockchains [7]) all assume
that replicas have an agreement on the total number of replicas.
Some protocols allow dynamic participation where the number of
replicas may change over time [10, 20], but replicas always know
the number of replicas of the system. However, sleepy consensus
in the known participation model has not been well studied.

Therefore, an interesting open problem of sleepy consensus is:
Can we provide a more fine-grained treatment of sleepy consensus

especially in the known participation model?
In this paper, we study sleepy consensus with known ℎ𝑎 in both

synchronous and partially synchronous networks, with and with-
out stable storage. As summarized in Table 2, we provide the fol-
lowing results.
Koala-1: faster synchronous sleepy consensus. We show that
in the known participationmodel, the latency of synchronous sleepy
consensus can bemade closer to conventional consensus protocols.
In particular, consider a system with 𝑛 replicas among which at
most 𝑓 are faulty, our protocol requires that at least ℎ𝑎 = 𝑓 +1 hon-
est replicas are awake at any point of the protocol execution (but
the set of honest replicas may differ from time to time). With this
assumption, we construct a synchronous sleepy consensus proto-
col, Koala-1, with an expected latency of 5Δ + 2𝛿 and a best-case
latency of 2Δ+2𝛿 . In contrast, the best result so far in the unknown
participation model has a latency of 14Δ (i.e., MMR [31]), more
than twice the latency of Koala-1. The result is closer to the 2Δ + 𝛿
latency achieved by conventional synchronous BFT protocols [4]
(not in the sleepy model).

We achieve our result via a double confirmation mechanism and
a new validated triple-graded proposal election (VT-GPE) primitive,
which might be of independent interest. The major challenge of

synchronous sleepy consensus, even in the known participation
model, is that one cannot use the conventional Byzantine quorum
size of ⌈𝑛+𝑓 +12 ⌉ anymore. Consider a system in which more than a
majority of honest replicas become asleep, using the conventional
Byzantine quorum size easily breaks the liveness of the system.
Our double confirmation mechanism makes it possible to use a
Byzantine quorum with only ℎ𝑎 size. Meanwhile, a certificate with
ℎ𝑎 matching votes becomes transferrable. We further utilize this
nice property to build VT-GPE and the three grades implement a
commit-lock-prepare process for atomic broadcast, a commonly im-
plemented technique in conventional BFT [12, 43]. Additionally,
Koala-1 also enjoys the benefit of pipelining. This allows our ap-
proach to further improve the throughput, while it is unclear how
to do so for existing sleepy consensus protocols.
Partially synchronous sleepy consensus with stable storage.
To date, the only known sleepy consensus in the partially synchro-
nous model is proposed in the Ebb-and-Flow protocol [36] and its
follow-upwork [37]. It was brieflymentioned that one can use con-
ventional BFT such as HotStuff [43], PBFT [12], and Streamlet [13]
to directly obtain a sleepy consensus assuming global awake time
(GAT) (after GAT, every honest replica becomes awake). Same as
conventional BFT protocols in the partially synchronous model, a
systemwith𝑛 replicas tolerates 𝑓 = ⌊𝑛−13 ⌋ failures (i.e.,𝑛 ≥ 3𝑓 +1).
Unfortunately, the concrete construction is not provided.

In this work, we show that by assuming the conventional 𝑛 ≥
3𝑓 + 1 bound, a partially synchronous sleepy consensus protocol
can only be achieved bymaking the stable storage assumption. Fur-
thermore, one can not directly use a known BFT to obtain a sleepy
consensus protocol without explicitly specifying which intermedi-
ate consensus parameters are stored in stable storage. In partic-
ular, we show some corner cases where by storing no intermedi-
ate parameters of the protocol in the stable storage, the protocol
can be easily broken in the sleepy model. While storing all the in-
termediate parameters in stable storage is an option, it is usually

2

very expensive to do so as frequent disk I/O is involved [9, 11, 17].
For instance, when implementing BFT-SMaRt [1] as a consistent
key-value store where consensus data are all stored in stable stor-
age, the throughput is only 1% of its storage-free counterpart. Even
with fast stable storage such as SSDs, the throughput of the system
is only 23% of its storage-free counterpart [9].

We show that instead of storing all intermediate parameters, we
only need to store the view number and the lockedQC to make
HotStuff a sleepy consensus in this model.
Koala-2: partially synchronous sleepy consensuswithout sta-
ble storage. In the partially synchronousmodel without assuming
stable storage, we assume ℎ𝑎 = ⌈𝑛+𝑓 +12 ⌉, where 𝑛 is the number
of replicas and 𝑓 is the number of faulty replicas. We show that
𝑠 = ⌊𝑛−3𝑓 −12 ⌋ is a tight bound for sleepy consensus without as-
suming stable storage, where 𝑠 is the maximum number of honest
replicas that may become asleep at the same time. Rephrasing the
bound, we have 𝑛 ≥ 3𝑓 + 2𝑠 + 1. Additionally, by assuming the ex-
istence of global awake time (GAT), the bound on 𝑠 can be further
improved to 𝑛 − 3𝑓 − 1 (i.e. ℎ𝑎 = 2𝑓 + 1 and 𝑛 ≥ 3𝑓 + 𝑠 + 1).

We transform HotStuff into a sleepy consensus protocol called
Koala-2 that retains the 7𝛿 latency. To build Koala-2, we provide a
timeoutQC mechanism and an efficient recovery protocol for sleep-
ing replicas to restore their states after recovering.
Our contributions. In summary, our work makes the following
contributions:
• (Sec. 3) In the synchronous model, we provide Koala-1, a sleepy

consensus protocol with an expected latency of 5Δ + 2𝛿 . In con-
trast, the latency of the best result known so far in the unknown
participantmodel ismore than twice our result. Our protocol can
be further used in the pipelining mode to improve the through-
put, while it is unclear how to do so in prior works.
• (Sec. 4) In the partially synchronous model, we conclude that

sleepy consensus with the𝑛 ≥ 3𝑓 +1 bound can only be achieved
by assuming stable storage. We further show that we only need
to store view number and lockedQC in stable storage to trans-
form HotStuff into sleepy consensus under the GAT assumption.
• (Sec. 5) In the partially synchronous model, we propose Koala-

2, a sleepy consensus protocol without the assumption of stable
storage. We show the bound 𝑠 = ⌊𝑛−3𝑓 −12 ⌋ without the GAT as-
sumption and 𝑠 = 𝑛−3𝑓 −1with the GAT assumption. We trans-
form HotStuff into sleepy consensus in this model that achieves
the same expected latency as that for HotStuff.

2 SYSTEM MODEL AND BUILDING BLOCKS
Byzantine fault tolerance (BFT). In a BFT protocol, clients sub-
mit transactions (requests) and replicas deliver them. The client
obtains a final response to the submitted transaction from the re-
sponses. Within a BFT system of 𝑛 replicas, a maximum of 𝑓 repli-
cas may fail arbitrarily under the control of an adversary. These
faulty replicas are also known as Byzantine failures and non-Byzantine
replicas are called honest replicas. The correctness of a BFT proto-
col (under the sleepy model) is specified as follows:
• Safety: If an honest replica delivers a transaction 𝑡𝑥 before de-

livering 𝑡𝑥 ′, then no honest replica delivers the transaction 𝑡𝑥 ′

without first delivering 𝑡𝑥 .

• Liveness: If a transaction 𝑡𝑥 is submitted to all honest replicas,
then all awake honest replicas eventually deliver 𝑡𝑥 .
An equivalent primitive atomic broadcast (ABC) is often used

interchangeably with BFT. Atomic broadcast is only syntactically
different from BFT. In atomic broadcast, a replica a-broadcasts mes-
sages and all replicas a-deliver messages.
• Safety: If an honest replica a-delivers a message 𝑚 before it a-

delivers 𝑚′, then no honest replica a-delivers the message 𝑚′

without first a-delivering𝑚.
• Livenss: If an honest replica a-broadcasts a message𝑚, then all

awake honest replicas eventually a-deliver 𝑚.
While the BFT and atomic broadcast abstractions do not ex-

pose the order to the API, an implicit order is given in most pro-
tocols, e.g., sequence number [12, 20], height [39, 43]. Utilizing
this implicit order, many partially synchronous protocols achieve
a weaker safety property as follows [12, 39, 43].
• Consistency: If an honest replica delivers a transaction 𝑡𝑥 and

another honest replica delivers a transaction 𝑡𝑥 ′, both with the
same order, 𝑡𝑥 = 𝑡𝑥 ′.
Our Koala-1 protocol follows the conventional atomic broadcast

model. Our Koala-2 protocol achieves the consistency property, fol-
lowing that of HotStuff.
Network models and communication channels. We consider
both synchronous and partially synchronous networks. In the syn-
chronous model, there exists an upper bound Δ for message pro-
cessing and transmission latency. We additionally assume a com-
pletely synchronous clock, i.e., replicas have access to a common
global clock. In the partially synchronous model [21], there still
exists an upper bound but the value of Δ is unknown. An alterna-
tive notion of the partially synchronous model is that there exists
an unknown global stabilization time (GST) such that after GST,
messages sent between two honest replicas arrive within a fixed
delay.

We assume authenticated channels for message transmission.
We use the symbol ∗ to denote any value. We use 𝛿 to denote the
actual network latency.
The sleepy model. The notion of the sleepy model was first intro-
duced by Pass and Shi [38]. A sleepy replica can be either awake
or asleep. An awake replica actively participates in the execution,
while an asleep replica does not execute any code of the protocol
or send/receive any message. In our system, each honest replica
can become asleep, whose status can change at any time under
the control of an adversary, without any advance notice. In prac-
tice, this implies that replicas are allowed to leave and rejoin the
protocol’s execution at will without notifying other replicas. In the
distributed computing literature [11], the sleepy model aligns with
the crash-recoverymodel, where replicas can keep crashing and re-
covering repeatedly. It is notably highlighted that an honest replica
might encounter “amnesia” after crashing, leading to the loss of its
internal state stored in its volatile storage.

Our work considers the known participation model, where all
replicas have foreknowledge of the minimum number of awake
honest replicas ℎ𝑎 . Meanwhile, we use 𝑠 to denote the maximum
number of asleep replicas at any point of the protocol execution.
In our synchronous sleepy consensus protocol, ℎ𝑎 is 𝑓 + 1. In our

3

partially synchronous consensus protocol,ℎ𝑎 is ⌈𝑛+𝑓 +12 ⌉. If we con-
sider the global awake time (GAT) assumption, where after GAT
every sleeping replica will be awake, our partially synchronous
protocol can be achieved with ℎ𝑎 = 2𝑓 + 1.
Cryptographic assumptions. We make use of digital signatures
with a public-key infrastructure (PKI). We use ⟨𝜇⟩𝑖 to denote a mes-
sage 𝜇 signed by replica 𝑝𝑖 . We assume a cryptographic collision-
resistant hash function denoted as H(·).

We also assume a verifiable random function (VRF) in one of
our protocols. A replica 𝑝𝑖 evaluates (𝜌𝑖 , 𝜋𝑖) ← VRF𝑖 (𝜇) on any
input 𝜇 and obtain a pseudorandom value 𝜌𝑖 and a proof 𝜋𝑖 . Using
𝜋𝑖 and the public key of replica 𝑝𝑖 , anyone can verify whether 𝜌𝑖
is a correct evaluation of VRF𝑖 on input 𝜇.
Blocks. We use block 𝐵 to denote a batch of transactions. Blocks
are ordered in a chain where the previous block of 𝐵 is called its
parent block. The first block in the chain is called the genesis block
𝐵0. A block 𝐵 extends block 𝐵′ if 𝐵′ is an ancestor of 𝐵 in the chain.
Two blocks 𝐵 and 𝐵′ conflict with each other if neither of them
extends the other.
Byzantine quorums and quorum certificates.A byzantine quo-
rum (or quorum in short) denotes a specific number of replicas.
Matching votes from a quorum is necessary for honest replicas to
reach an agreement. A set of signatures signed by a quorum of
replicas is called a quorum certificate (QC or certificate in short). In
conventional BFT systems with 𝑛 ≥ 3𝑓 + 1 replicas, a Byzantine
quorum consists of ⌈𝑛+𝑓 +12 ⌉ replicas.

By slightly abusing notation, we use 𝑣𝑖𝑒𝑤 () function to denote
the view number of a QC or a block. For example, if qc is a QC for
block 𝐵, 𝑣𝑖𝑒𝑤 (qc)=𝑣𝑖𝑒𝑤 (𝐵).
Graded proposal election (GPE). The notion of GPE is intro-
duced by MMR [31]. In GPE, each replica gpe-proposes a block and
gpe-decides either (𝐵,𝑔) or ⊥, where 𝐵 is a block and 𝑔 ∈ {0, 1} is
the grade. GPE achieves the following properties:
• Consistency. If an honest replica gpe-decides (𝐵, ∗) and another

honest replica gpe-decides (𝐵′, ∗), 𝐵 = 𝐵′.
• Graded delivery. If an honest replica gpe-decides (𝐵, 1), all hon-

est replicas gpe-decide (𝐵, ∗).
• 1/2-validity. With a probability of at least 1/2, all honest repli-

cas gpe-decide (𝐵, 1), where 𝐵 has been gpe-proposed by an hon-
est replica.

3 KOALA-1: FAST SYNCHRONOUS SLEEPY
CONSENSUS

In this section, we introduce a synchronous sleepy consensus atomic
broadcast protocol called Koala-1. We consider a system with 𝑛 ≥
2𝑓 + 𝑠 + 1 replicas and ℎ𝑎 = 𝑓 + 1. We assume all 𝑓 faulty repli-
cas are always awake, following the assumption made by prior
works [23, 34, 38]. Without loss of generality, we assume stable
storage and message delivery, i.e., once a replica becomes awake
at time 𝑡 , it will immediately receive all messages sent to it by any
honest replica before time 𝑡 − Δ. Later in Appendix C, we provide
a practical recovery protocol to remove both assumptions.

We build a practical sleepy consensus in the known participa-
tion model with latency close to conventional synchronous BFT
protocols (e.g., Sync HotStuff [3] has 2Δ + 𝛿 latency). In particular,

Koala-1 has a fast path that achieves 2Δ+ 2𝛿 latency, which occurs
when all awake replicas are honest. Meanwhile, the expected la-
tency of Koala-1 is 5Δ + 2𝛿 . In contrast, the state-of-the-art sleepy
consensus protocol MMR [31] has a latency of 14Δ, more than
twice the latency of Koala-1. Besides, Koala-1 enjoys the pipelin-
ingmode, where replicas can start to process a new block before an
agreement is reached for the current block. A comparison of Koala-
1 with current sleepy consensus protocols is provided in Table 3.

Protocol Model Known ℎ𝑎
Expected
latency

Best-case
latency

Sync
HotStuff [3]

Static participation
model 3 2Δ + 𝛿 2Δ + 𝛿

MR [34] Sleepy model 7 32Δ 16Δ

MMR [31] Sleepy model 7 14Δ 4Δ

Koala-1 Sleepy model 3 5Δ + 2𝛿 2Δ + 2𝛿

Table 3: Comparison of synchronous atomic broadcast pro-
tocols. Δ is the upper bound on message processing and
transmission latency and 𝛿 is the actual network latency.

3.1 Overview of Koala-1
In the classic static participation model, one can obtain a synchro-
nous atomic broadcast protocol assuming 𝑛 = 2𝑓 +1 and a quorum
size of 𝑓 + 1. Indeed, just as mentioned by MMR, 𝑓 + 1 matching
votes form a quorum certificate and the certificate is transferrable,
i.e., it can be verified by any replicas. Together with an equivoca-
tion detection mechanism that detects whether a replica sends in-
consistent messages to different replicas, one can obtain a secure
synchronous GPE protocol and use the GPE protocol to build an
atomic broadcast (ABC) protocol.

Specifically, theGPE protocolworks as follows, considering each
replica gpe-proposes the block it a-broadcasts. The protocol begins
with a roundwhere each replica broadcasts the block it gpe-proposes
and a leader election mechanism is often embedded in this round.
Assuming that all honest replicas agree on the identity of a com-
mon leader, each replica then echoes the block it receives from the
leader to all replicas. Once receiving 𝑓 + 1 echoed block 𝐵, each
replica forwards the certificate to all replicas in the third round.
If a replica detects an equivocation of the leader, it forwards the
equivocatingmessages to all replicas. If a valid certificate for𝐵 is re-
ceived in the second round and no equivocation has been detected
by the end of the third round, a replica gpe-decides 𝐵 with grade
1. If no equivocation is detected in the second round and a valid
certificate for 𝐵 has been received by the end of the third round,
any replica that has not gpe-decided yet gpe-decides 𝐵 with grade 0.
When a replica gpe-decides a block 𝐵 with grade 1, it a-delivers 𝐵 in
the ABC protocol. Prior synchronous Byzantine agreement proto-
cols and atomic broadcast protocols roughly follow this paradigm
as well [2–4]. Here, the grades are very close to the commit-lock
relation in conventional BFT. Namely, grade 0 for block 𝐵 can be
viewed as a lock for 𝐵 and honest replicas will never vote for an-
other block conflicting with 𝐵. Meanwhile, if a replica gpe-decides
𝐵 with grade 1, the block is committed. In some cases, each replica

4

𝑒𝑐ℎ𝑜 vote
certificate

inputPropose
𝐵!

𝐵"

𝐵#

𝐵"

Echo Forward

0 ∆ 2∆ 3∆

𝑝!
𝑝"

𝑝#

𝑝$

𝐵"

Timeline

𝐵"$

𝑎−𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

(𝑝% awakens
after 3∆)

𝐵"

𝐵"

𝐵"$
𝐵"

𝐵"

𝐵"

(a) Scenario 1: 𝑝2 sends 𝐵2 to 𝑝1 and 𝑝3, and sends 𝐵′2 to 𝑝4. 𝑝1 and 𝑝3
echo 𝐵2, collect a certificate, and a-deliver 𝐵2.

Propose
𝐵!

𝐵"#

𝐵$

𝐵"

Echo Forward

0 ∆ 2∆ 3∆

𝑝!
𝑝"

𝑝#

𝑝$

𝐵"#

Timeline

(𝑝% awakens
after 3∆)𝐵"#

𝐵"

𝐵" 𝑒𝑐ℎ𝑜 vote
certificate

input

𝐵"#
𝐵"

(b) Scenario 2: 𝑝2 sends 𝐵2 to 𝑝1 and 𝐵′2 to 𝑝3 and 𝑝4. 𝑝1 echoes 𝐵2 and
𝑝3 echoes 𝐵′2. None of 𝑝1 or 𝑝3 a-deliver any block.

Figure 1: Two situations of synchronous atomic broadcast
protocols in the sleepymodel. In both scenarios, 𝑝2 is Byzan-
tine, 𝑝4 receives 𝐵′2 from 𝑝2 and a valid certificate for 𝐵2. In
scenario 1, 𝑝1 and 𝑝3 a-deliver 𝐵2. In contrast, in scenario 2,
none of 𝑝1 or 𝑝3 a-deliver any block.

may also need to broadcast its locked block (possibly in another
round) to ensure the correctness of the protocol.

In the sleepy model, an tempting solution is to simply change
the size of the Byzantine quorum and transform the protocol men-
tioned above into a sleepy consensus protocol. Unfortunately, even
under the known participationmodel, building a secure sleepy con-
sensus protocol is far from trivial.This ismainly becausewe cannot
use the conventional quorum size anymore as (possibly more than
the majority of) honest replicas may become asleep.W.l.o.g., we as-
sume 𝑛 = 2𝑓 +𝑠+1. If we use the conventional way to decide Byzan-
tine quorum, the quorum size becomes ⌈𝑛+𝑓 +12 ⌉ = ⌈ 𝑠+𝑓2 ⌉ + 𝑓 + 1.
However, only at least ℎ𝑎 = 𝑓 + 1 honest replicas are awake at any
point of the protocol execution. Using a quorum size ofℎ𝑎 may eas-
ily make the protocol suffer from safety issues and the certificate
with ℎ𝑎 matching votes thus fails to be transferrable.

Note that even assuming that a certificate with ℎ𝑎 matching
votes is transferrable (for example, under the help of a powerful
equivocation detection mechanism), there might still be safety and
liveness issues. We show two scenarios in Figure 1 that are indis-
tinguishable for an honest replica 𝑝4, but the status of other hon-
est replicas are different. In both scenarios, 𝑝2 is Byzantine and is
the leader. In the first scenario shown in Figure 1a, the leader 𝑝2
broadcasts its block 𝐵2 to all replicas, and 𝑝1 and 𝑝3 echo 𝐵2. By
𝑡 = 2Δ, 𝑝1 and 𝑝3 both collect a certificate for 𝐵2 and forward the
certificate to all replicas. By 𝑡 = 3Δ, both 𝑝1 and 𝑝3 a-deliver 𝐵2,
as no equivocation is detected. After 𝑡 = 3Δ, the sleeping replica

GPE GA GA
𝑔 = 0

𝑔 = 1
a-deliver

𝑔 = 0

lock
𝑔 = 1 𝑔 = 1

candidate

𝑔 =	⊥
𝑙𝑜𝑐𝑘𝑒𝑑	𝑏𝑙𝑜𝑐𝑘

MMR

VT-GPE
𝑔 = 1

𝑔 = 2 a-deliver
𝑔 = 0

candidate lock
Koala-1

Figure 2: MMR [31] vs. Koala-1. GA denotes graded agree-
ment.

𝑝4 wakes up and receives the certificate for 𝐵2. Meanwhile, it also
receives block 𝐵′2 from 𝑝2, a conflicting block with 𝐵2.

Figure 1b illustrates another scenario. Different from the first
scenario, 𝑝2 sends 𝐵2 to 𝑝1 and 𝐵′2 to 𝑝3 and 𝑝4. As 𝑝2 receives
echo messages for both 𝐵2 and 𝐵′2, it holds two certificates, each
with 𝑓 +1matching echo messages. It sends the certificate for 𝐵2 to
𝑝4. The two scenarios are indistinguishable for 𝑝4. However, none
of the honest replicas a-deliver any block in scenario 2. In contrast,
in scenario 1, 𝑝1 and 𝑝3 a-deliver 𝐵2, in which case 𝑝4 is supposed
to be locked on 𝐵2.
ℎ𝑎-enabled quorum.Our contribution is to use ℎ𝑎 as the quorum
size and make the certificate with ℎ𝑎 matching votes transferrable
and meanwhile build a secure protocol (to address the indistin-
guishability issue). This is achieved by a carefully designed dou-
ble confirmation mechanism and an equivocation detection mecha-
nism. The double confirmation mechanism requires every honest
replica to vote for blocks that extend a block 𝐵 only if there are two
certificates for 𝐵, each withℎ𝑎 matching votes.The two certificates
are used as a proof for block 𝐵, making the status of honest repli-
cas verifiable. Meanwhile, the equivocation detection mechanism
ensures that no honest replicas will decide inconsistent values.

We slightly extend the GPE notion by MMR to validated triple-
graded proposal election (VT-GPE). As the name suggests, VT-GPE
has three grades instead of two in GPE.The three grades mimic the
commit-lock-prepare relation of conventional BFT [12, 43]. Thanks
to the transferability of theℎ𝑎-enabled quorum, our VT-GPE is val-
idated: the input of each replica consists of both a block and the cer-
tificates that can be verified by all honest replicas. Such a design
enjoys three immediate benefits. First, the protocol is much sim-
plified compared to existing sleepy consensus protocols. As illus-
trated in Figure 2, we only need the VT-GPE primitive to build an
atomic broadcast protocol and the latency of our protocol is close
to conventional synchronous BFT. Second, our protocol enjoys the
benefit of the pipelining mode to achieve higher throughput com-
pared to the existing sleepy atomic broadcast protocol, while it is
unclear how to do so in existing protocols. Finally, the recovery
protocol (which can be used to remove the assumption about mes-
sage delivery and stable storage) can be much simplified as well,
as replicas only need to collect and verify the certificates instead
of processing all missing messages.

5

3.2 Validated Triple-graded Proposal Election
Validated Triple-graded Proposal Election (VT-GPE). We de-
fine validated triple-graded proposal election (VT-GPE) as follows.
Each honest replica tgpe-proposes a block (together with a valid
proof) and tgpe-decides either (𝐵,𝑔, 𝜎) (where 𝐵 ≠ ⊥) or ⊥. Here,
𝑔 is a grade where 𝑔 ∈ {0, 1, 2}. We also need an external valid-
ity property for VT-GPE to be validated. In particular, we define
a global predicate that is determined by the particular application
and known to all parties. In this work, we define 𝜎 as the proof for
the validity of block 𝐵. Let the predicate be 𝑄 and we say 𝐵 is val-
idated by 𝜎 if 𝑄 (𝐵, 𝜎) holds. Each honest replica only tgpe-decides
one block in a VT-GPE instance, but it may tgpe-decides the same
block multiple times with different grades. A validated VT-GPE
protocol achieves the following properties:
• External validity. If an honest replica tgpe-decides (𝐵, ∗, ∗) such

that 𝐵 ≠ ⊥, 𝑄 (𝐵, 𝜎) holds for at least one honest replica.
• Consistency. If an honest replica tgpe-decides (𝐵, ∗, ∗) and an-

other honest replica tgpe-decides (𝐵′, ∗, ∗), 𝐵 = 𝐵′.
• Graded delivery. If an honest replica tgpe-decides (𝐵,𝑔, ∗) such

that 𝑔 ∈ {1, 2}, any honest replica tgpe-decides (𝐵,𝑔 − 1, ∗).
• Validity. With a probability of 𝛼 > 1/2, all honest replicas tgpe-

decide (𝐵, 2, ∗)where block𝐵 is tgpe-proposed by an honest replica.
The VT-GPE protocol. We use VT-GPE𝑣 to denote a VT-GPE in-
stance. VT-GPE𝑣 consists of two phases: a VRF-based leader elec-
tion phase and a graded consensus phase.The leader election phase
selects a leader and honest replicas may select different leaders.
The graded consensus phase allows replicas to converge on the re-
sult of the leader election. Our protocol is described in Algorithm 1.

The protocol beginswith a VRF-based leader election. Each replica
𝑝𝑖 broadcasts a ⟨input, 𝐵𝑖 , 𝜎𝑖 , 𝜌𝑖 , 𝜋𝑖 ⟩𝑖 message, where 𝐵𝑖 is the block
𝑝𝑖 tgpe-proposes, 𝜎𝑖 is the proof for 𝐵𝑖 , 𝜌𝑖 is a VRF evaluation on
the current view number, and 𝜋𝑖 is a proof of the VRF evaluation.
As defined above, every replica only considers 𝐵𝑖 valid if𝑄 (𝐵𝑖 , 𝜎𝑖)
holds. For now we do not care about the instantiation of 𝜎𝑖 and
later we will define it in our atomic broadcast protocol. The VRF
evaluations are used for leader election. In particular, according to
the VRF evaluations each replica receives, the producer of the high-
est VRF is considered the leader, and the corresponding ⟨input⟩
message is defined as the winning input. If equivocating ⟨input⟩
messages are received from the leader, the winning input is set as
⊥. Additionally, the block 𝐵 associated with the winning input is
called the winning block.

As each replica may receive different sets of ⟨input⟩ messages
and the winning inputs might be different, we define it for each
replica 𝑝𝑖 . In particular, ⟨input, 𝐵, 𝜎, 𝜌, 𝜋⟩ 𝑗 from 𝑝 𝑗 is a winning
input for 𝑝𝑖 if the following conditions are met:
(1) 𝑄 (𝐵, 𝜎) holds;
(2) 𝜋 is a valid proof of 𝜌 on the current view number;
(3) 𝜌 is the highest among all the VRF evaluations in the ⟨input⟩

messages;
(4) 𝑝𝑖 has not received another valid ⟨input, 𝐵′, 𝜎 ′, 𝜌, 𝜋⟩ 𝑗 such that
𝐵′ ≠ 𝐵.
After the leader election, from time 𝑡 = Δ to 𝑡 = 4Δ, the graded

consensus phase is executed. The workflow is as follows.

• At 𝑡 = Δ, if replica 𝑝𝑖 is awake, it forwards its winning input and
broadcasts an ⟨echo⟩ message for the winning block.
• At 𝑡 = 2Δ, 𝑝𝑖 broadcasts a ⟨winneR1⟩message containing its win-

ning input. If 𝑝𝑖 receives at least 𝑓 +1matching ⟨echo⟩ messages
for its winning block, the replica forwards these ⟨echo⟩messages
and broadcasts a ⟨Ready⟩ message.
• At 𝑡 = 3Δ, 𝑝𝑖 broadcasts a ⟨winneR2⟩message containing its win-

ning input. Similar to the previous round, if 𝑝𝑖 receives at least
𝑓 +1 ⟨Ready⟩messages for its winning block, the replica forwards
these ⟨Ready⟩ messages and broadcasts a ⟨locK⟩ message.
• When 𝑡 ≥ 4Δ, there are four conditions. First, if 𝑝𝑖 receives
𝑓 + 1matching ⟨locK⟩ messages for its winning block 𝐵 𝑗 , it tgpe-
decides 𝐵 𝑗 with grade 1 and uses 𝑓 + 1 ⟨locK⟩ messages as the
proof for𝐵 𝑗 . Second, if 𝑝𝑖 receives 𝑓 +1 ⟨Ready⟩ and 𝑓 +1 ⟨winneR2⟩
messages for any block 𝐵, it tgpe-decides 𝐵 with grade 1. Here,
both 𝑓 + 1 ⟨Ready⟩ messages and 𝑓 + 1 ⟨winneR2⟩ messages are
used as proofs for 𝐵. Finally, if 𝑝𝑖 receives 𝑓 + 1 ⟨echo⟩ and 𝑓 + 1
⟨winneR1⟩ messages for any block 𝐵, it tgpe-decides 𝐵 with grade
0. Here, the ⟨echo⟩ messages and ⟨winneR1⟩ messages are used
as proofs for 𝐵. Otherwise, 𝑝𝑖 tgpe-decides a special symbol ⊥.

3.3 Atomic Broadcast (ABC)
Our ABC protocol follows the view-by-view construction of many
classic BFT protocols [12, 39, 43] and also prior sleepy consensus
protocols. In each view, each honest replica a-broadcasts a block
and a-delivers at most one block.

The protocol starts from view 1 and the pseudocode for view
𝑣 is shown in Algorithm 2. In each view 𝑣 , there is one VT-GPE
instance denoted as VT-GPE𝑣 . In each VT-GPE𝑣 , each replica 𝑝𝑖
tgpe-proposes block 𝐵 that extends its candidate, where 𝐵 is the
block 𝑝𝑖 a-broadcasts. Recall that the idea is to use the grade 𝑔 ∈
{2, 1, 0} of VT-GPE to mimic the commit-lock-prepare relation in
conventional BFT. To maintain the status, every replica maintains
several local parameters, including the candidate and lock, which
are initially set as the genesis block 𝐵0. If a block 𝐵 is tgpe-decided
with grade 0 (resp. 1), the candidate (resp. lock) is set as 𝐵.

We define the global predicate 𝑄 for VT-GPE as follows. Given
the value (𝐵,𝑞𝑐) tgpe-proposed by any replica 𝑝 𝑗 ,𝑄 (𝐵, qc) holds at
𝑝𝑖 if and only if:
• 𝑣𝑖𝑒𝑤 (𝐵) equals the current viewnumber of 𝑝𝑖 , qc is a valid prepareQC

for 𝐵, and the parent block of 𝐵 is the block of qc;
• the view number of qc is at least the same as 𝑝𝑖 ’s lock.

In our protocol, prepareQC is the proof each replica 𝑝𝑖 holds af-
ter it tgpe-decides a block 𝐵 with grade 0. According to our VT-GPE
instantiation, the proof consists of two certificates, i.e., 𝑓 +1 ⟨echo⟩
messages and 𝑓 + 1 ⟨winneR1⟩ messages for 𝐵. The certificates are
crucial for 𝐵 to be validated and we call them the double confirma-
tion mechanism for 𝐵. Meanwhile, ensuring the view number of
qc is at least the same as 𝑝𝑖 ’s locked block further prevents forks
from happening and is crucial for both safety and liveness.

Every replica 𝑝𝑖 waits for the output of VT-GPE𝑣 and there are
three possible outputs.
(1) If 𝑝𝑖 tgpe-decides (𝐵, 0, (𝐸 (𝐵),𝑊1 (𝐵))), 𝑝𝑖 sets its candidate as
𝐵 and prepareQC as (𝐸 (𝐵),𝑊1 (𝐵)).

6

Algorithm 1 Validated Triple-graded Proposal Election of view 𝑣
- VT-GPE𝑣 .

1: Replica 𝑝𝑖 executes the following algorithm at every time 𝑡 ≥ 0 af-
ter starting VT-GPE𝑣 in view 𝑣, and tgpe-proposes (𝐵𝑖 , 𝜎𝑖) such that a
global predicate𝑄 (𝐵𝑖 , 𝜎𝑖) holds.

2: 𝑝𝑖 maintains the following parameters for each received block 𝐵:
3: 𝐸 (𝐵) ← all received ⟨echo, 𝐵⟩∗ messages
4: 𝑅 (𝐵) ← all received ⟨Ready, 𝐵⟩∗ messages
5: 𝐿 (𝐵) ← all received ⟨locK, 𝐵⟩∗ messages
6: 𝑊1 (𝐵) ← all received ⟨winneR1, ⟨input, 𝐵⟩∗ ⟩∗ messages
7: 𝑊2 (𝐵) ← all received ⟨winneR2, ⟨input, 𝐵⟩∗ ⟩∗ messages
8: if 𝑡 = 0 then
9: (𝜌𝑖 , 𝜋𝑖) ← VRF𝑖 (𝑣)

10: broadcast ⟨input, 𝐵𝑖 , 𝜎𝑖 , 𝜌𝑖 , 𝜋𝑖 ⟩𝑖
11: if 𝑡 = Δ then
12: if there exists a winning input

⟨
input, 𝐵 𝑗 , 𝜎 𝑗 , 𝜌 𝑗 , 𝜋 𝑗

⟩
𝑗 then

13: forward the winning input (if not yet)
14: if 𝑄 (𝐵 𝑗 , 𝜎 𝑗) holds then
15: broadcast

⟨
echo, 𝐵 𝑗

⟩
𝑖

16: else
17: forward the equivocating input messages by any replica
18: if 𝑡 = 2Δ then
19: update local winning input based on received ⟨input⟩ messages
20: if ⟨input⟩ 𝑗 ≠ ⊥ then // Let ⟨input⟩ 𝑗 be the winning input
21: broadcast

⟨
winneR1, ⟨input⟩ 𝑗

⟩
𝑖

22: if |𝐸 (𝐵 𝑗) | ≥ 𝑓 + 1 then
23: broadcast 𝐸 (𝐵 𝑗) and

⟨
Ready, 𝐵 𝑗

⟩
𝑖

24: else
25: forward the equivocating input messages by any replica
26: if 𝑡 = 3Δ then
27: update local winning input based on received ⟨input⟩ messages
28: if ⟨input⟩ 𝑗 ≠ ⊥ then // Let ⟨input⟩ 𝑗 be the winning input
29: broadcast

⟨
winneR2, ⟨input⟩ 𝑗

⟩
𝑖

30: if |𝑅 (𝐵 𝑗) | ≥ 𝑓 + 1 then
31: broadcast 𝑅 (𝐵 𝑗) and

⟨
locK, 𝐵 𝑗

⟩
𝑖

32: else
33: forward the equivocating input messages by any replica
34: if 𝑡 ≥ 4Δ then
35: update local winning input based on received ⟨input⟩ messages
36: if ⟨input⟩ 𝑗 ≠ ⊥ and |𝐿 (𝐵 𝑗) | ≥ 𝑓 + 1 then // Let ⟨input⟩ 𝑗 be

the winning input
37: tgpe-decide (𝐵 𝑗 , 2, 𝐿 (𝐵 𝑗))
38: if |𝑅 (𝐵) | ≥ 𝑓 + 1 and |𝑊2 (𝐵) | ≥ 𝑓 + 1 for any block 𝐵 then
39: tgpe-decide (𝐵, 1, (𝑅 (𝐵),𝑊2 (𝐵)))
40: if |𝐸 (𝐵) | ≥ 𝑓 + 1 and |𝑊1 (𝐵) | ≥ 𝑓 + 1 for any block 𝐵 then
41: tgpe-decide (𝐵, 0, (𝐸 (𝐵),𝑊1 (𝐵)))
42: if no block is tgpe-decided then
43: tgpe-decide ⊥

(2) If 𝑝𝑖 tgpe-decides (𝐵, 1, (𝑅(𝐵),𝑊2 (𝐵))), it sets its lock as 𝐵 and
lockedQC as (𝑅(𝐵),𝑊2 (𝐵)). A valid lockedQC for block 𝐵 con-
sists of 𝑓 + 1 ⟨Ready⟩ and 𝑓 + 1 ⟨winneR2⟩ messages for 𝐵. The
lock parameter is useful for defining the predicate 𝑄 and the
lockedQC parameter is only useful in the recovery protocol (to
be described in Appendix C).

(3) If 𝑝𝑖 tgpe-decides (𝐵, 2, 𝐿(𝐵)), it a-delivers 𝐵 and all the ances-
tors of 𝐵.

Pipelining mode. Our protocol enjoys the benefit of pipelining
where replicas can enter the next view 𝑣 + 1 at 𝑡 = 3Δ of the cur-
rent view 𝑣 . While a new instance VT-GPE𝑣+1 is started, the cur-
rent instance VT-GPE𝑣 still runs until each replica tgpe-decides. To
see why replicas can enter the next view at 𝑡 = 3Δ, consider that
an honest replica is locked on a block 𝐵 in VT-GPE𝑣 . All replicas
awake at 𝑡 = 3Δmust receive the prepareQC (including 𝑓 +1 ⟨echo⟩
and 𝑓 + 1 ⟨winneR1⟩ messages) for 𝐵. Any honest replica that pro-
poses new blocks must be able to extend 𝐵 in newer views. Besides,
as lock can be updated at 𝑡 = 4Δ of view 𝑣 , replicas can use their
updated lock to verify the new blocks at 𝑡 = Δ of view 𝑣 + 1.
Fast path. Our protocol has a fast path that a-delivers a block in
2Δ + 2𝛿 time. We achieve this by slightly modifying our VT-GPE
primitive into a weaker version called wT-GPE. wT-GPE does not
achieve the consistency property anymore and has a weak consis-
tency property instead, defined as follows.
• Weak consistency. If an honest replica tgpe-decides (𝐵,𝑔, ∗) with

grade 𝑔 ≥ 1 and another honest replica tgpe-decides (𝐵′, ∗, ∗),
𝐵 = 𝐵′.
Compared to the consistency property achieved by VT-GPE, the

weak consistency property achieves consistency only if an hon-
est replica tgpe-decides a block with a grade of at least 1. Via this
change of definition, we do not need the ⟨winneR1⟩ and ⟨winneR2⟩
messages in our wT-GPE construction anymore. As a result, each
replica tgpe-decides a block 𝐵 with grade 0 after it receives valid
𝐸 (𝐵) at 𝑡 ≥ 3Δ and the sender of the ⟨input⟩ for 𝐵 has the high-
est VRF evaluation. Meanwhile, each replica tgpe-decides a block 𝐵
with grade 1 or 2 after it receives valid 𝑅(𝐵) or 𝐿(𝐵) at time 𝑡 > 2Δ.

Although we do not need the ⟨winneR1⟩ and ⟨winneR2⟩ mes-
sages, our wT-GPE protocol still employs the double confirmation
mechanism to make prepareQC consistent with lockedQC in each
view. This is achieved by additionally modifying the predicate 𝑄 .
In particular, upon receiving a valid prepareQC qc with 𝑣𝑖𝑒𝑤 (qc) =
𝑣𝑖𝑒𝑤 (lock), each replica additionally checks whether the block of
the prepareQC is the same as its lock. In thisway, only the prepareQC
that matches the lockedQC will be verified by each honest replica.

As the workflow of the protocols is similar to those presented
in this section, we show the pseudocodes of our wT-GPE protocol
and our pipelined ABC protocol (with the fast path) in Appendix B.

3.4 Analysis
Why ℎ𝑎-enabled quorum? The double confirmation mechanism
we use ensures that a certificate with ℎ𝑎 matching messages is
transferrable. In our VT-GPE construction, we use the double con-
firmation scheme for both grade 0 and grade 1. To tgpe-decide block
𝐵 with grade 0, a replica needs to collect 𝑓 +1matching ⟨echo⟩mes-
sages and 𝑓 +1matching ⟨winneR1⟩ messages for 𝐵. Meanwhile, to
tgpe-decide 𝐵 with grade 1, a replica needs to collect 𝑓 +1matching
⟨Ready⟩ messages and 𝑓 + 1 matching ⟨winneR2⟩ messages for 𝐵.

Using the two scenarios mentioned in Figure 1, we show that we
can distinguish the two scenarios for 𝑝4. Namely, based on the toy
construction mentioned at the beginning of this section, we intro-
duce one change: each replica additionally broadcasts a ⟨winneR1⟩
message at 𝑡 = 2Δ for the block from the leader. In scenario 1 (Fig-
ure 1a), 𝑝1 and 𝑝3 do not detect any equivocation, so they send
⟨winneR1⟩ messages for block 𝐵2 at 𝑡 = 2Δ. When 𝑝4 wakes up

7

Algorithm 2 The Koala-1 atomic broadcast protocol. Code for 𝑝𝑖 .
1: Initialize the following parameters
2: 𝑣 ← 1; candidate, lock← 𝐵0; prepareQC, lockedQC ← ⊥.
3: // lockedQC is used in the recovery protocol
4: Let𝑄 be the following predicate for VT-GPE:
5: Given (𝐵,𝑞𝑐) tgpe-proposed by 𝑝 𝑗 ,𝑄 (𝐵, qc) ≡ (𝑣𝑖𝑒𝑤 (𝐵) = 𝑣) and
6: (qc is a valid prepareQC) and (𝐵.parent = qc.block) and
7: 𝑣𝑖𝑒𝑤 (qc) ≥ 𝑣𝑖𝑒𝑤 (lock)
8: In each view 𝑣, replica 𝑝𝑖 executes the following algorithm at every

time 0 ≤ 𝑡 ≤ 4Δ w.r.t. view 𝑣, and then enter the next view 𝑣 + 1.
9: if 𝑡 = 0 then

10: 𝐵 ← ⟨val𝑠,H(candidate), 𝑣⟩𝑖
11: tgpe-propose (𝐵, prepareQC) in VT-GPE𝑣 with predicate𝑄
12: // The following events may be triggered after view 𝑣
13: upon 𝑝𝑖 tgpe-decides (𝐵, 0, (𝐸 (𝐵),𝑊1 (𝐵))) in VT-GPE𝑣 do
14: if 𝑣𝑖𝑒𝑤 (𝐵) > 𝑣𝑖𝑒𝑤 (candidate) then
15: candidate← 𝐵, prepareQC ← (𝐸 (𝐵),𝑊1 (𝐵))
16: upon 𝑝𝑖 tgpe-decides (𝐵, 1, (𝑅 (𝐵),𝑊2 (𝐵))) in VT-GPE𝑣 do
17: if 𝑣𝑖𝑒𝑤 (𝐵) > 𝑣𝑖𝑒𝑤 (lock) then
18: lock← 𝐵, lockedQC ← (𝑅 (𝐵),𝑊2 (𝐵))
19: upon 𝑝𝑖 tgpe-decides (𝐵, 2, 𝐿 (𝐵)) in VT-GPE𝑣 do
20: if 𝐵 has not been a-delivered then
21: a-deliver 𝐵 and all the ancestors of 𝐵

after 3Δ, it receives the ⟨winneR1⟩ messages due to the message de-
livery assumption.Therefore, 𝑝4 can now gpe-decide 𝐵2 with grade
0 according to the double confirmation mechanism. Now consider
scenario 2 (Figure 1b), 𝑝1 and 𝑝3 detect the equivocation after re-
ceiving both 𝐵2 and 𝐵′2, so none of them sends a ⟨winneR1⟩ mes-
sage. As 𝑝4 has not received the ⟨winneR1⟩ certificate, it does not
gpe-decide 𝐵2.
Latency. In the fast path, the best-case latency of ourABCprotocol
is 2Δ + 2𝛿 . Specifically, in the first two communication rounds of
a wT-GPE instance, every replica needs to wait until the end of
each Δ. This is mainly because each replica needs to wait for Δ
time for the VRF evaluations from all honest replicas and another
Δ to detect any equivocation between their winning inputs. In the
last two rounds, each replica can enter the next phase as long as it
receives a sufficiently large number of matching messages, so the
latency is 2𝛿 in total.

An a-broadcast block is expected to be a-delivered every two
views, so the expected latency of our ABC protocol (pipelining
mode) is 5Δ + 2𝛿 . This is because each replica enters the next view
at as early as 𝑡 = 3Δ of the current view and the block a-broadcast
in the current view is a-delivered in the next view (after another
2Δ + 2𝛿 time).
Communication complexity.Koala-1 achieves𝑂 (𝜅𝑛3+𝐿𝑛2) com-
munication, where 𝜅 is the security parameter and 𝐿 is the size of a
block. The 𝐿𝑛2 term is due to the VRF leader election phase where
each replica broadcasts a block. The 𝜅𝑛3 term is because replicas
forward the ⟨echo⟩ and ⟨Ready⟩messages.The communication can
be reduced to 𝑂 (𝐿𝑛2 + 𝜅𝑛2) using threshold signatures as replicas
are aware of ℎ𝑎 in the known participation model.

We show the correctness of Koala-1 in Appendix A.

4 PARTIALLY SYNCHRONOUS SLEEPY
CONSENSUS WITH STABLE STORAGE

In this section, we study partially synchronous sleepy consensus
assuming the existence of stable storage. As mentioned in the in-
troduction, Ebb-and-Flow briefly mentions that by assuming GAT,
one can directly obtain a sleepy consensus using a conventional
BFT [12, 13, 43]. Combinedwith the partially synchronous assump-
tion, conventional BFT protocols can be always safe in the sleepy
model and live after both GAT and GST.

We show that the above statement can be achieved only if sta-
ble storage is assumed and intermediate consensus parameters are
stored in stable storage. To date, most BFT protocols known so far
do not explicitly discuss what should be stored in stable storage as
it is usually out of the scope of the consensus problem. We show
that without explicitly storing the intermediate parameters, con-
ventional BFT may not be safe and live in the sleepy model while
retaining the 𝑛 ≥ 3𝑓 + 1 assumption, even assuming both GST
and GAT. Intuitively, this is because if an honest replica does not
persist its intermediate status during the protocol, its status might
not be resumed after it sleeps and later becomes awake. Even if
the replica synchronizes with all honest replicas after it becomes
awake, the protocol may still not be correct.

In this section, we use HotStuff as an example and show an
attack on safety without assuming stable storage. We then show
that while one can simply transform conventional BFT to sleepy
consensus by asking each replica to store every intermediate pa-
rameter in stable storage, we can provide a cheaper approach by
storing only two parameters in stable storage. Indeed, as studied
in many prior works [9, 11, 17], if all intermediate parameters are
stored in stable storage, even assuming fast storage such as SSDs,
the performance of the protocol is significantly degraded.

4.1 Overview of HotStuff
HotStuff operates in a view-by-view manner. We use the syntax
of BFT to describe HotStuff and the protocol achieves consistency
and liveness properties as defined in Sec. 2. In HotStuff, all replicas
agree on a unique leader in each view. To reach an agreement on
a block, each view consists of the following phases:
• Prepare. The leader 𝑝𝑘 proposes a block 𝐵 by extending the

block of the highest received prepareQC, where a prepareQC is
a set of 𝑛 − 𝑓 ⟨pRepaRe⟩ messages received in the “prepare” step
of a previous view. Once receiving a valid proposal 𝐵 from 𝑝𝑘 , a
replica casts a ⟨pRepaRe⟩ vote for𝐵 and sends the vote to 𝑝𝑘 . A col-
lection of 𝑛− 𝑓 ⟨pRepaRe⟩ votes forms a qc denoted as prepareQC.
• Pre-commit. After collecting a prepareQC for 𝐵, 𝑝𝑘 broadcasts

the prepareQC to all replicas. Upon receiving a valid prepareQC
for 𝐵, a replica casts a ⟨pRe-commit⟩ vote for 𝐵 and sends it to
𝑝𝑘 . Similarly, a collection of 𝑛 − 𝑓 ⟨pRe-commit⟩ votes forms a
precommitQC.
• Commit.The leader 𝑝𝑘 broadcasts the precommitQC to all repli-

cas once it is available. After receiving a precommitQC for 𝐵, a
replica becomes locked on 𝐵 (the replica sets lockedQC as the
precommitQC). Each replica then casts a ⟨commit⟩ vote for 𝐵 and
sends the vote to 𝑝𝑘 . A collection of 𝑛 − 𝑓 ⟨commit⟩ votes forms
a certificate commitQC.

8

• Decide.Once collecting a commitQC for𝐵, 𝑝𝑘 sends the commitQC
to all replicas, after which each replica delivers block 𝐵.
• Advance to the next view. Before entering the next view, a

replica sends its prepareQC via a ⟨new-view⟩message to the next
leader (which does not necessarily change in every view).
If a replica is locked on a block 𝐵 in a view 𝑣 , the replica only

votes for blocks that extend 𝐵 in subsequent views. A replica may
become unlocked on 𝐵 after it learns that 𝑛 − 𝑓 replicas are not
locked on 𝐵. In particular, a prepareQC for a conflicting block with
a higher view number than 𝐵 serves as proof for the replica to
become unlocked on 𝐵.

HotStuff can utilize the pipelining feature to enhance its per-
formance, which is also known as chained HotStuff. In particular,
the view is changed in every pRepaRe phase, so there is only one
generic phase. The ⟨pRepaRe⟩ vote on every proposed block 𝐵 is si-
multaneously a ⟨pRe-commit⟩ vote for the parent block of 𝐵 and a
⟨commit⟩ vote for the grandparent of 𝐵.

4.2 An Attack to HotStuff in the Sleepy Model
without the Stable Storage Assumption

We show our attack in Figure 3 with four replicas among which 𝑝2
is faulty. In the period of asynchrony, we consider that an adver-
sary (i.e., a network scheduler) manipulates the network, the same
as the assumption made by asynchronous protocols [18, 19, 33].
Note that in a partially synchronous network, we can assume the
existence of a network scheduler during the asynchronous period.
However, the network becomes synchronous after GST. Addition-
ally, the adversary controls the replicas that may become asleep. In
this case, the asleep replicas are still honest but just cannot pro-
cess any messages when they sleep. Under these assumptions, the
attack proceeds as follows.

In view 𝑣 − 1, as shown in Figure 3a, 𝑝1 is the leader and it pro-
poses block 𝐵ℎ . After 𝑝1 collects a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , it delivers block 𝐵ℎ
and replicas 𝑝1, 𝑝2, and 𝑝3 become locked on 𝐵ℎ . Here, the network
scheduler delays the messages received by 𝑝4. Therefore, although
𝑝4 is honest, it has not received any messages for 𝐵ℎ . After that, 𝑝3
becomes asleep.

As shown in Figure 3b, replicas then enter view 𝑣 and 𝑝2 be-
comes the leader. Then replica 𝑝3 becomes awake in view 𝑣 . As
𝑝3 does not have stable storage, it loses its lockedQC. As a result,
lockedQC is set as the genesis block 𝐵0. In view 𝑣 , the leader 𝑝2 is
faulty and proposes a new block 𝐵′

ℎ
that extends 𝐵ℎ−1 (the parent

block of 𝐵ℎ−1 is 𝐵ℎ). As 𝐵′
ℎ
is conflicting with 𝐵ℎ , replica 𝑝1 con-

siders the proposal 𝐵′
ℎ
invalid and will not vote for 𝐵′

ℎ
. However,

𝑝2, 𝑝3, and 𝑝4 can vote for 𝐵′
ℎ
, as 𝑝2 is faulty and the lockedQC of

𝑝3 and 𝑝4 is not conflicting with 𝐵′
ℎ
.

Finally, as illustrated in Figure 3c, replica 𝑝1 delivers block 𝐵ℎ
and replicas 𝑝3 and 𝑝4 deliver block 𝐵′

ℎ
where 𝐵′

ℎ
and 𝐵ℎ are con-

flicting, violating the safety property of the protocol.
Remark 1. We assume that the adversary manipulates the net-
work and the replicas that go to sleep. In fact, even if the adversary
does not manipulate the network and the replicas that go to sleep,
the scenarios may still happen, e.g., during network asynchrony or
server crash.

𝑝!
𝑝"
𝑝#

𝑝$

𝐵!"#

𝐵!
𝐵!

𝐵!
𝐵!
𝐵!

𝐵!

𝐵! 𝐵! 𝐵!

(leader)

𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶

𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶

𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶
𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶

view 𝑣 − 1
𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝐵!

(a) The status of replicas in view 𝑣 − 1.

𝑝!
𝑝"
𝑝#

𝑝$
𝐵!

𝐵!
𝐵!

𝐵!

𝐵! 𝐵! 𝐵!

𝐵"
𝐵!#$

𝐵!
𝐵!

𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶
𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶

𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶
𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶Lost

view 𝑣view 𝑣 − 1

𝐵!

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

(b) 𝑝3 goes to sleep near the end of view 𝑣−1 and becomes awake at
the beginning of view 𝑣. It loses its 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 and sets its 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶
as the genesis block 𝐵0.

𝐵!"#

𝐵!$

𝐵!$

𝐵!$

𝐵!$

𝐵!$

𝐵!$

𝐵!$ 𝐵!$ 𝐵!$

(leader)

𝐵!
𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶
𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶
𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶

𝐵!$

𝐵!$

𝐵!$

𝐵!$
𝑝𝑟𝑒𝑝𝑎𝑟𝑒 vote

𝑝%
𝑝&
𝑝'

𝑝#

view 𝑣

𝐵!
𝐵!$

𝐵!$

𝐵!$
𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

Safety violation

(c) The faulty leader 𝑝2 creates a fork that extends 𝐵ℎ−1 in view 𝑣
and is able to collect a QC with votes from 𝑝2, 𝑝3, and 𝑝4. Safety is
violated as 𝑝1 delivers block 𝐵ℎ and 𝑝3 and 𝑝4 deliver block 𝐵′ℎ .

Figure 3: An attack to HotStuff in the sleepy model assum-
ing the intermediate consensus parameters are not stored in
stable storage.

Remark 2. Although we present a concrete example using Hot-
Stuff, almost all partially synchronous BFT protocols utilize a vari-
ant of commit-lock-prepare paradigm [12, 13, 39]. Our attack is thus
generic to almost all (if not all) partially synchronous BFT.We omit
the generalization of the attack in our paper.

4.3 A Fully-fledged Sleepy Consensus Protocol
under the Stable Storage Assumption

According to the attack mentioned above, conventional BFT pro-
tocols under the standard 𝑛 ≥ 3𝑓 + 1 assumption can be made
correct only under the assumption of stable storage. However, stor-
ing all intermediate consensus parameters in stable storage signifi-
cantly degrades the system performance. Therefore, an interesting
research question to answer is:

Under the 𝑛 ≥ 3𝑓 +1 and stable storage assumption, can we trans-
form a conventional BFT protocol to a sleepy consensus protocol and
meanwhile store minimum intermediate consensus parameters in sta-
ble storage?

We use HotStuff as an example and show that the minimum re-
quirement for stable storage is the view number and the lockedQC.

9

Namely, if the current view number is lost when an honest replica
falls asleep, the replica can only catch up with other replicas to
learn the latest view number after waking up. It is possible that
the replica re-enters the same view before it fell asleep. In this case,
the replica might vote for a conflicting block with the one it has
voted for (before falling asleep). Thus, two conflicting qc could be
generated in the same view, violating the safety property. To en-
sure safety within a view, the highest view 𝑣 when a replica has
cast a vote should be stored in stable storage.

Meanwhile, the attack described in Figure 3 shows that the safety
across views might be violated if a replica loses its lockedQC. We
show that storing lockedQC in stable storage is sufficient to ensure
safety across views. In particular, if a block𝐵 is delivered, a quorum
of replicas becomes locked on 𝐵. To deliver a block 𝐵′ that is con-
flicting with 𝐵, at least one honest replica of the quorummust have
voted for the 𝐵′. Since an honest replica already sets its lockedQC
as 𝐵, it will never vote for a block conflicting with 𝐵. Consider the
example mentioned in Figure 3. 𝑝3 stores its lockedQC for block 𝐵ℎ
in stable storage before it goes asleep. When 𝑝3 becomes awake at
the beginning of view 𝑣 , it restores the lockedQC for 𝐵ℎ from its sta-
ble storage. In view 𝑣 , the leader 𝑝2 proposes a new block 𝐵′

ℎ
that

extends 𝐵ℎ−1 (the parent block of 𝐵ℎ). As 𝐵′
ℎ
is conflicting with 𝐵ℎ ,

replica 𝑝1 and 𝑝3 do not consider the proposal 𝐵′
ℎ
valid and will

not vote for 𝐵′
ℎ
. Thus only 𝑝2 and 𝑝4 can vote for 𝐵′

ℎ
. prepareQC,

precommitQC or commitQC cannot be formed for 𝐵′
ℎ
, so no honest

replicas will deliver block 𝐵′
ℎ
.

BFT in production systems. We surveyed Diem BFT2 (which
implements HotStuf) and Tendermint3 (a variant of PBFT). We
found that both implementations store some consensus parame-
ters in stable storage but in different ways. Diem stores almost all
consensus parameters in stable storage, including proposed blocks,
the last vote, quorum certificates, and the highest timeout certifi-
cate (persistent_liveness_storage.rs:24-624). Interestingly enough,
it was clearly mentioned that this is used to ensure liveness even if
all replicas crash and later recover. As a result, DiemBFT achieves a
throughput of around 1 ktx/s [40] while HotStuff claims to achieve
a throughput of over 300 ktx/s. Meanwhile, Tendermint uses a
write-ahead log mechanism to implement stable storage for con-
sensus parameters. In particular, all consensus messages (timeouts,
proposals, block part, and vote) are first pushed to a log and the log
pushes the data to stable storage every two seconds (wal.go:28,1385).
In this way, if some honest replicas sleep within the 2-second du-
ration, the protocol might not be safe.

The survey results validate our analysis. Our conclusion is that
one does not have to store all consensus parameters in stable stor-
age to build a both safe and live protocol in the sleepy model.

5 KOALA-2: PARTIALLY SYNCHRONOUS
SLEEPY CONSENSUS WITHOUT STABLE
STORAGE

In this section, we study partially synchronous sleep consensus
without the stable storage assumption.We show that𝑛 ≥ 3𝑓 +2𝑠+1
2https://github.com/diem/diem
3https://github.com/tendermint/tendermint
4https://github.com/diem/diem/blob/main/consensus/src/persistent_liveness_storage.rs
5https://github.com/tendermint/tendermint/blob/main/consensus/wal.go

is required to guarantee safety and liveness, where 𝑠 is the maxi-
mum number of honest replicas that may become asleep simulta-
neously. We show that the quorum size of 𝑛− 𝑓 −𝑠 is a lower bound
for sleepy consensus without assuming stable storage.

Still using HotStuff as an example, we transform the protocol
into a sleepy consensus protocol. The main workflow remains al-
most the same as in HotStuff. We only need to adjust the quorum
size of the main protocol and modify the view change protocol (i.e.,
leader election) to incorporate a timeoutQC mechanism. Besides,
we introduce a new recovery protocol for asleep replicas to catch
up after they recover. Our transformation is generic and can be
extended to other partially synchronous BFT. We show the trans-
formation of PBFT to sleepy consensus in Appendix F.

5.1 Technical Overview
The lower bound of 𝑛 ≥ 3𝑓 + 2𝑠 + 1. Consider 𝑓 failures and 𝑠
sleeping replicas, a Byzantine quorum tolerating 𝑓 failures is set
as ⌈𝑛+𝑓 +12 ⌉, so two Byzantine quorums always overlap in at least
one honest replica. To see why this is the case, every Byzantine
quorum contains ⌈𝑛+𝑓 +12 ⌉ − 𝑓 = ⌈𝑛−𝑓 +12 ⌉ honest replicas. Two
disjoint Byzantine quorums thuswould have at least𝑛−𝑓 +1 honest
replicas. As there are 𝑛 − 𝑓 honest replicas in total, there is at least
one overlapped honest replica in both Byzantine quorums.

Nowwe consider liveness and responsiveness (the protocolmakes
progress after collecting messages from a quorum of replicas). As
𝑓 + 𝑠 replicas may not respond, the number of awake honest repli-
cas in the system must be equal to or greater than the quorum size.
This condition is satisfied only when 𝑛 − 𝑓 − 𝑠 ≥ ⌈𝑛+𝑓 +12 ⌉. Accord-
ingly, 𝑛 ≥ 3𝑓 + 2𝑠 + 1.

If we consider the GAT assumption, the bound can be lowered
to 𝑛 ≥ 3𝑓 +𝑠+1. In particular, let 𝛽1 be the quorum size in the main
protocol. We can modify the liveness requirement to 𝛽1 ≤ 𝑛− 𝑓 , as
eventually every honest replica can receive messages from all hon-
est replicas (after GAT). However, without stable storage, a recover-
ing replica needs to collect information from other awake replicas
to restore local parameters. There is no guarantee that all honest
replicas will respond even after GAT, as some of them may also be
in the recovery status. As at most 𝑠 honest replicas may fall asleep
simultaneously, up to 𝑓 +𝑠 replicas might be unavailable in the sys-
tem. To ensure that the system is live, we need 𝛽2 ≤ 𝑛− 𝑓 −𝑠 , where
𝛽2 denotes the number of messages a recovering replica needs to
collect. Besides, to ensure safety, a recovering replica should re-
ceive messages from at least one honest replica of each quorum.
Therefore, 𝛽1 and 𝛽2 should overlap in at least 𝑓 + 1 replicas, i.e.,
𝛽1 + 𝛽2 − 𝑛 ≥ 𝑓 + 1. Summarizing the results, the lower bound is
then 𝑛 ≥ 3𝑓 + 𝑠 + 1.
Overview of Koala-2. We now describe the Koala-2 protocol
without the GAT assumption. According to the discussion above,
we can simply change the quorum size of HotStuff from 𝑛 − 𝑓
to 𝑛 − 𝑓 − 𝑠 to ensure the correctness of the protocol. However,
we still need to ensure that any honest replica that just recovered
will not vote for the wrong block so the security properties will
not be violated. Therefore, a correct recovery protocol is all we
need to show in Koala-2. However, achieving safety within a view
and safety across views are still not trivial and we also modify the

10

view change protocol to complete our transformation. Below, we
describe the challenges and how we addressed them.

To ensure safety within a view, we only need to ensure that QCs
for two conflicting blocks will not be formed. At a glance, this can
already be achieved via the quorum intersection rules of Byzan-
tine quorums. However, we still need to ensure that a recovering
replica will not vote twice for conflicting blocks in the same view
(one before it fell asleep and one after it recovers). Indeed, with-
out the stable storage assumption, such a requirement can only
be achieved by the recovery protocol. Accordingly, in our recov-
ery protocol, each recovering replica needs to synchronize the lat-
est view number with other replicas. We use a special type of QC
called timeoutQC to realize this. Each timeoutQC is generated dur-
ing the view changes. Using timeoutQC, a replica can confirm that
the view number it obtains during the recovery process is at least
the view number before it fell asleep.

To ensure safety across views, similar to conventional BFT pro-
tocol, we need to ensure that the delivered block remains deliv-
ered across views. In HotStuff, this is achieved by the commit-lock-
prepare paradigm. Namely, if a block is delivered, at least a quorum
of replicas become locked on this block and will not vote for any
conflicting blocks. However, we also need to ensure that any hon-
est replica of the quorum will not lose its status after becoming
locked on the delivered block, for similar reasons as discussed in
Sec. 4.2. To achieve this goal without the stable storage assumption,
a recovering replica needs to synchronize the latest lockedQC with
other awake replicas. By quorum intersection, at least one honest
replica will send the correct lockedQC of the delivered block to the
recovering replica. However, there is no guarantee in a partially
synchronous environment that a recovering replica always obtains
the latest lockedQC. This is mainly because the recovering replica
might complete the recovery before other replicas of the quorum
become locked on the delivered block.

We employ an atomic QC acquiring mechanism to address this
issue. In our recovery protocol, a recovering replica can utilize the
information obtained from the timeoutQC mechanism to confirm
the time (view number to be concrete) the lost lockedQC has been
stored by a sufficiently large number of honest replicas. Utilizing
this information from the recovering replica, each awake replica
thus refrains from sending its lockedQC to the recovering replica
until it confirms its lockedQC is indeed the one needed by the re-
covering replica. In this way, the recovering replica always obtains
a correct lockedQC so safety across views is achieved.

5.2 The Modified View Change Protocol and
the Recovery Protocol

In this section, we present the modified view change protocol (Al-
gorithm 3) and our new recovery protocol (Algorithm 4).
The modified view change protocol. The modified view change
protocol is triggeredwhen a timeout occurs during the normal case
operation. When a replica 𝑝𝑖 experiences a timeout within a view
𝑣 , it stops the normal case operation and broadcasts a ⟨timeout, 𝑣⟩𝑖
message. A collection of 𝑛 − 𝑓 − 𝑠 matching ⟨timeout⟩ messages
from different replicas forms a timeoutQC. After receiving a valid
timeoutQC of view 𝑣 , 𝑝𝑖 proceeds to view 𝑣+1. To expedite the view
change process, 𝑝𝑖 can broadcast the ⟨timeout, 𝑣⟩𝑖 message once

Algorithm 3 Modified view change protocol (for replica 𝑝𝑖).
1: Let curView be the current view number.
2: upon the timer of curView expires do
3: broadcast ⟨timeout, curView⟩𝑖
4: upon receiving 𝑓 + 1 ⟨timeout, curView⟩∗ do
5: stop the timer of curView and broadcast ⟨timeout, curView⟩𝑖
6: upon receiving 𝑛 − 𝑓 − 𝑠 ⟨timeout, 𝑣′ ⟩∗ such that 𝑣′ ≥ curView do
7: timeoutQC ← the set of 𝑛 − 𝑓 − 𝑠 ⟨timeout, 𝑣′ ⟩∗
8: broadcast ⟨advance-view, 𝑣′, timeoutQC⟩𝑖
9: send ⟨new-view, 𝑣′ + 1, prepareQC⟩𝑖 to the leader of view 𝑣′ + 1

10: curView ← 𝑣′ + 1
11: upon receiving a timeoutQC 𝑡𝑐 of a view 𝑣′ ≥ curView do
12: timeoutQC ← 𝑡𝑐
13: broadcast ⟨advance-view, 𝑣′, timeoutQC⟩𝑖
14: send ⟨new-view, 𝑣′ + 1, prepareQC⟩𝑖 to the leader of view 𝑣′ + 1
15: curView ← 𝑣′ + 1

receiving 𝑓 + 1 ⟨timeout⟩ messages of view 𝑣 . When 𝑝𝑖 receives
the timeoutQC of view 𝑣 , it forwards the timeoutQC to all replicas.
The recovery protocol. The protocol proceeds as follows:
• Obtaining timeoutQC.A recovering replica 𝑝𝑖 first broadcasts a
⟨RecoveRy-1⟩ message. Upon receiving the ⟨RecoveRy-1⟩ message,
any awake replica will respond to 𝑝𝑖 the latest timeoutQC (via a
⟨echo-1⟩ message). Once receiving 𝑛 − 𝑓 − 𝑠 valid timeoutQC, 𝑝𝑖
selects the one with the highest view number 𝑣ℎ . Then 𝑝𝑖 waits
for a timeoutQC with a view number 𝑣 ≥ 𝑣ℎ + 2 before entering
the next step.
• AtomicQCacquiringmechanism.After receiving a timeoutQC
𝑡𝑐 for a view 𝑣 ≥ 𝑣ℎ + 2, 𝑝𝑖 sets its local timeoutQC as 𝑡𝑐 , and
broadcasts a ⟨RecoveRy-2, 𝑡𝑐⟩𝑖 message. Any awake replica that
receives this message will first start the view change protocol
and proceed to view 𝑣𝑖𝑒𝑤 (𝑡𝑐) + 1 (if not yet). Then the replica
sends to 𝑝𝑖 a ⟨echo-2, curView, (prepareQC, lockedQC)⟩ message,
where curView is the current view number. When 𝑝𝑖 receives
𝑛− 𝑓 −𝑠 ⟨echo-2⟩messages with view numbers higher than 𝑣ℎ+2,
it sets its own lockedQC as the highest lockedQC among the mes-
sages, and sets its prepareQC as the highest prepareQC. After
that, 𝑝𝑖 sets the current view number as 𝑣𝑖𝑒𝑤 (timeoutQC) + 1
and becomes awake.

5.3 Analysis
Sketch of correctness.While we prove the correctness in Appen-
dix D, we sketch the correctness here. Our timeoutQC mechanism
and the recovery protocol together achieve safety within a view
and across views. The timeoutQC mechanism ensures that a recov-
ering replica will not vote twice in the same view. In particular,
a recovering replica 𝑝𝑖 first obtains the highest timeoutQC from a
quorum of awake replicas. Suppose the view number of the highest
timeoutQC is 𝑣ℎ and 𝑝𝑖 fell asleep in view 𝑣 , our timeoutQC mech-
anism guarantees that 𝑣ℎ + 2 ≥ 𝑣 . This is because 𝑝𝑖 must have
received a timeoutQC for view 𝑣 − 1 before entering view 𝑣 . At
that time, a quorum of replicas must have entered view 𝑣 − 1. Due
to the quorum intersection rules, at least one honest replica must
have a timeoutQC of at least view 𝑣 − 2 and send this timeoutQC
to 𝑝𝑖 . Thus, 𝑣ℎ ≥ 𝑣 − 2. In our recovery protocol, replicas start a
view change so 𝑝𝑖 always enters view 𝑣 ′ = 𝑣ℎ + 3 after it recovers.

11

Algorithm 4 Recovery protocol for HotStuff (for replica 𝑝𝑖).
1: Let curView be the current view number.
2: as a recovering replica
3: broadcast a ⟨recovery-1⟩𝑖 message
4: wait for 𝑛 − 𝑓 − 𝑠 ⟨echo-1, timeoutQC⟩∗
5: 𝑣ℎ ← the view number of the highest timeoutQC

among all received ⟨echo-1⟩ messages
6: wait for a timeoutQC 𝑡𝑐 such that 𝑣𝑖𝑒𝑤 (𝑡𝑐) ≥ 𝑣ℎ + 2
7: timeoutQC← 𝑡𝑐
8: broadcast ⟨RecoveRy-2, timeoutQC⟩𝑖
9: wait for 𝑛 − 𝑓 − 𝑠 ⟨echo-2, 𝑣′, (prepareQC, lockedQC) ⟩∗

such that 𝑣′ > 𝑣ℎ + 2
10: lockedQC ← the lockedQC with the highest view number

among received ⟨echo-2⟩ messages
11: prepareQC ← the prepareQC with the highest view number

among received ⟨echo-2⟩ messages
12: curView ← 𝑣𝑖𝑒𝑤 (timeoutQC) + 1
13: send ⟨new-view, curView, prepareQC⟩𝑖 to the leader of curView
14: set the state as awake and rejoin the main protocol’s execution
15: as an awake replica
16: upon receiving ⟨RecoveRy-1⟩ 𝑗 do
17: send ⟨echo-1, timeoutQC⟩𝑖 to replica 𝑝 𝑗

18: upon receiving ⟨RecoveRy-2, timeoutQC⟩ 𝑗 do
19: if 𝑣𝑖𝑒𝑤 (timeoutQC) ≥ curView then
20: start view change and proceed to view 𝑣𝑖𝑒𝑤 (timeoutQC)+1
21: send ⟨echo-2, curView, (prepareQC, lockedQC) ⟩𝑖 to replica 𝑝 𝑗

As 𝑣ℎ ≥ 𝑣 − 2, 𝑣 ′ > 𝑣 . Therefore, replicas will not vote twice in the
same view and safety within a view can be achieved. Additionally,
in our recovery protocol, every honest awake replica refrains from
sending its latest lockedQC to 𝑝𝑖 until it enters view 𝑣ℎ + 3 ≥ 𝑣 + 1.
Thus, 𝑝𝑖 can always obtain a lockedQC for a block that extends any
already delivered block in view 𝑣 ′ ≤ 𝑣 .This ensures that 𝑝𝑖 restores
a correct lockedQC, achieving safety across views.

Using the example in Figure 3, we show that the locked block 𝑝𝑖
obtains during its recovery must extend any delivered block before
𝑝𝑖 fell asleep. Tomeet the lower bound of𝑛 ≥ 3𝑓 +2𝑠+1, we assume
there are two additional honest replicas 𝑝5 and 𝑝6 in the system. 𝑝5
and 𝑝6 remain awake in view 𝑣 − 1 and 𝑣 . 𝑝5 becomes locked on
𝐵ℎ when 𝐵ℎ is delivered in view 𝑣 − 1, while 𝑝6 is still locked on
𝐵ℎ−1. When 𝑝3 wakes up at the beginning of view 𝑣 , according
to the protocol, it collects the lockedQC from at least four replicas
and selects the highest one as its lockedQC. Since at most three
replicas (i.e., 𝑝2, 𝑝4 and 𝑝6) might send a lockedQC for a block not
extending 𝐵ℎ , 𝑝3 must receive a lockedQC for 𝐵ℎ and then become
locked on 𝐵ℎ after recovery.

Liveness of the protocol roughly follows that of HotStuff, as we
only modify the quorum size for the normal case protocol. Since
we set the quorum size as 𝑛 − 𝑓 − 𝑠 , every replica is able to receive
a quorum of votes in every step of the protocol. Meanwhile, our
newly designed recovery protocol is non-blocking. In particular, a
recovering replica first obtains the timeoutQC from a quorum of
replicas, where the highest timeoutQC is for view 𝑣ℎ . After observ-
ing a timeoutQC for view 𝑣ℎ + 2, the recovering replica sends the
timeoutQC to awake replicas. Awake replicas can immediately en-
ter view 𝑣ℎ + 3 and respond with their lockedQCs and prepareQCs.
Any honest awake replica will eventually complete the process and

the recovering replica can always complete the recovery protocol.
Additionally, as analyzed in our sketch for safety, the recovering
replica can obtain a prepareQC no lower than its lockedQC before
it fell asleep. Therefore, liveness can be achieved.
Communication complexity. The normal case protocol and the
view change protocol of Koala-2 achieves𝑂 (𝜅𝑛2) communication,
where 𝜅 is the security parameter. The bottleneck is the modified
view change protocol. Specifically, each replica broadcasts a ⟨timeout⟩
message that contains the current view number and a digital signa-
ture (each has 𝜅 length). The recovery protocol of Koala-2 achieves
𝑂 (𝜅𝑛) communication for the recovering process of one replica. In
particular, the recovering replica broadcasts its ⟨RecoveRy-1⟩ and
⟨RecoveRy-2⟩ messages (both of size𝑂 (𝜅)). Each awake replica will
respond with its timeoutQC, prepareQC, and lockedQC. As our pro-
tocol is built in the known participation model, we can use thresh-
old signatures to instantiate the QCs so each QC has 𝜅 length.

Koala-2 can be adapted to the GAT assumptionwith someminor
modifications, which is presented in Appendix E.

6 ADDITIONAL RELATED WORK
Synchronous BFT. Many classic synchronous Byzantine agree-
ment and Byzantine broadcast protocols aim to lower the expected
latency or best-case latency [3–5]. In the sleepy model, a concur-
rent work by D’Amato and Zanolini [16] aims to achieve lower
latency than MMR. This is achieved by introducing a new stable
participation assumption where for every time period of [𝑡, 𝑡 +2Δ],
the number of honest replicas remaining awake during the period
exceeds the number of Byzantine replicas.

Other aspects of synchronous sleepy consensus have been stud-
ied. For example, Gafni and Losa [30] studied Byzantine agreement
in the sleepy model that achieves constant latency. Meanwhile,
a recent work by D’Amato, Losa, and Zanolini [15] studies asyn-
chrony resilience for synchronous sleepy consensus. The idea is
to make a synchronous protocol safe and live under intermittent
asynchronous periods.
Diskless crash recovery. The sleepy model is also known as the
crash-recovery model in the distributed computing literature [11].
In fact, consensus in the crash-recoverymodel for crash fault-tolerant
protocols has been studied extensively [8, 25, 26]. Most protocols
rely on the stable storage assumption. Protocols without the sta-
ble storage assumption are also known as protocols in the diskless
crash recovery (DCR) model [32]. Aguilera, Chen, and Toueg [6]
discuss under what conditions stable storage is necessary. Using
failure detectors, they present two consensus protocols, one with
stable storage and one without. Michael, Ports, Sharma, and Szek-
eres [32] provide a generic approach that transforms protocols in
the crash-recovery model (with stable storage) to the DCR model.
Kończak, et al. [28] propose two recovery algorithms for Paxos [29]
to make Paxos correct in the DCR model. All these works consider
benign crash failures. In contrast, our Koala-2 protocol can be con-
sidered the first BFT protocol in the DCR model.
Consensus with multiple failure types. Some protocols toler-
ate both Byzantine failures and crash failures [8, 14, 24]. Backes
and Cachin [8] propose an asynchronous reliable broadcast pro-
tocol in a system with 𝑛 ≥ 3𝑓 + 2𝑠 + 1 replicas, where 𝑠 is the

12

maximum number of crashed replicas. UpRight [14] implements
a partially synchronous BFT-SMR protocol with the same bound.
SBFT [24] provides a dual-mode partially synchronous BFT-SMR
protocol for 𝑛 = 3𝑓 + 2𝑐 + 1 replicas where 𝑐 is the number of
crashed or slow replicas.

7 CONCLUSION
We propose three results for sleepy consensus in the known partic-
ipation model, where all awake replicas are aware of the minimum
number of awake honest replicas. In the synchronous network, we
provide an atomic broadcast protocol with a latency close to the
state-of-the-art conventional synchronous protocols. Compared to
existing sleepy consensus protocols in the unknown participation
model, the latency of our approach is over 50% lower. In the par-
tially synchronous network, we show that sleepy consensus retain-
ing the conventional 𝑛 ≥ 3𝑓 + 1 bound can only be achieved by as-
suming stable storage. Without assuming stable storage, we prove
the tight bounds of 𝑛 ≥ 3𝑓 + 2𝑠 + 1 without the global awake time
(GAT) assumption and 𝑛 ≥ 3𝑓 + 𝑠 + 1 with the GAT assumption,
where 𝑠 is the maximum number of honest replicas that may go to
sleep simultaneously. We then provide a low-cost transformation
of HotStuff in the sleepy model.

REFERENCES
[1] 2012. BFT-SMaRt Project Page. http://code.google.com/p/bftsmart
[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected
Communication, and Optimal Resilience. In International Conference on Finan-
cial Cryptography and Data Security. Springer, 320–334.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync HotStuff: Simple and Practical Synchronous State Machine Replication. In
IEEE Symposium on Security and Privacy (S&P). IEEE, 106–118.

[4] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2020. Byzantine
Agreement, Broadcast and State Machine Replication with Near-optimal Good-
Case Latency. arXiv preprint arXiv:2003.13155 (2020).

[5] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case La-
tency of Byzantine Broadcast: A Complete Categorization. In ACM Symposium
on Principles of Distributed Computing (PODC). 331–341. https://doi.org/10.1145/
3465084.3467899

[6] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 2000. Failure detection
and consensus in the crash-recovery model. Distributed computing 13 (2000),
99–125.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gen-
nady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,
Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yel-
lick. 2018. Hyperledger fabric: A distributed operating system for permissioned
blockchains. EuroSys.

[8] Michael Backes and Christian Cachin. 2003. Reliable Broadcast in a Computa-
tional Hybrid Model with Byzantine Faults, Crashes, and Recoveries. In DSN,
Vol. 3. 37–46.

[9] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia.
2013. On the Efficiency of Durable State Machine Replication. In 2013 USENIX
Annual Technical Conference. 169–180.

[10] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,
Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. 2020. Combining
GHOST and casper. arXiv preprint arXiv:2003.03052 (2020).

[11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to
Reliable and Secure Distributed Programming. Springer Science & Business Me-
dia.

[12] Miguel Castro, Barbara Liskov, and et al. 1999. Practical Byzantine Fault Toler-
ance. In 3rd Symposium on Operating Systems Design and Implementation (OSDI).
USENIX, 173–186.

[13] Benjamin Y. Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined
Blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies (New York, NY, USA) (AFT ’20). Association for ComputingMachin-
ery, New York, NY, USA, 1–11. https://doi.org/10.1145/3419614.3423256

[14] Allen Clement,Manos Kapritsos, Sangmin Lee, YangWang, LorenzoAlvisi, Mike
Dahlin, and Taylor Riche. 2009. Upright cluster services. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles. 277–290.

[15] Francesco D’Amato, Giuliano Losa, and Luca Zanolini. 2023. Improving Asyn-
chrony Resilience in Dynamically Available Total-Order Broadcast Protocols.
arXiv:2309.05347 [cs.DC]

[16] Francesco D’Amato and Luca Zanolini. 2023. Streamlining Sleepy Consen-
sus: Total-Order Broadcast with Single-Vote Decisions in the Sleepy Model.
arXiv:2310.11331 [cs.DC]

[17] Michael Davis and Hans Vandierendonck. 2021. Achieving Scalable Consensus
by Being LessWritey. In Proceedings of the 30th International Symposium onHigh-
Performance Parallel and Distributed Computing. 257–258.

[18] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT
made practical. In CCS. ACM, 2028–2041.

[19] Sisi Duan, Xin Wang, and Haibin Zhang. 2023. Practical Signature-Free Asyn-
chronous Common Subset in Constant Time. ACM CCS (2023).

[20] Sisi Duan and Haibin Zhang. 2022. Foundations of Dynamic BFT. In SP. 1317–
1334.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. JACM 35, 2 (1988), 288–323.

[22] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
SOSP. 51–68.

[23] Vipul Goyal, Hanjun Li, and Justin Raizes. 2021. Instant Block Confirmation in
the Sleepy Model. In Financial Cryptography and Data Security (FC).

[24] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny
Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. 2019. SBFT: A scalable and decentralized trust infrastructure. In 2019
49th Annual IEEE/IFIP international conference on dependable systems and net-
works. IEEE, 568–580.

[25] Michel Hurfin, AchourMostefaoui, andMichel Raynal. 1998. Consensus in asyn-
chronous systems where processes can crash and recover. In Proceedings Sev-
enteenth IEEE Symposium on Reliable Distributed Systems (Cat. No. 98CB36281).
IEEE, 280–286.

[26] Ernesto Jiménez, José Luis López-Presa, and Marta Patiño-Martínez. 2021. Con-
sensus in anonymous asynchronous systems with crash-recovery and omission
failures. Computing 103, 12 (2021), 2811–2837.

[27] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In
CRYPTO. Springer, 357–388.

[28] Jan Kończak, Paweł T Wojciechowski, Nuno Santos, Tomasz Żurkowski, and
André Schiper. 2019. Recovery algorithms for paxos-based state machine repli-
cation. IEEE Transactions on Dependable and Secure Computing 18, 2 (2019), 623–
640.

[29] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16,
2 (1998), 133–169.

[30] Giuliano Losa and Eli Gafni. 2023. Consensus in the Unknown-Participation
Message-Adversary Model. arXiv:2301.04817 [cs.DC]

[31] Dahlia Malkhi, Atsuki Momose, and Ling Ren. 2023. Towards Practical Sleepy
BFT. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security. 490–503.

[32] Ellis Michael, Dan RK Ports, Naveen Kr Sharma, and Adriana Szekeres. 2017.
Recovering shared objects without stable storage. In DISC. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[33] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In ACM CCS. 31–42.

[34] Atsuki Momose and Ling Ren. 2022. Constant Latency in Sleepy Consensus.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
2295–2308.

[35] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).
[36] Joachim Neu, Ertem Nusret Tas, and David Tse. 2021. Ebb-and-flow protocols:

A resolution of the availability-finality dilemma. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 446–465.

[37] Joachim Neu, Ertem Nusret Tas, and David Tse. 2022. The availability-
accountability dilemma and its resolution via accountability gadgets. In Inter-
national Conference on Financial Cryptography and Data Security. Springer, 541–
559.

[38] Rafael Pass and Elaine Shi. 2017. The SleepyModel of Consensus. InAnnual Inter-
national Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT). Springer, 380–409.

[39] Xiao Sui, Sisi Duan, and Haibin Zhang. 2022. Marlin: Two-Phase BFT with Lin-
earity. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). 54–66. https://doi.org/10.1109/DSN53405.2022.00018

[40] The DiemBFT Team. 2020. The Diem Blockchain. (2020). https://developers.
diem.com/docs/technical-papers/the-diem-blockchain-paper/

[41] Parity Technologies. 2023. Polkadot Whitepaper. https://polkadot.network/
PolkaDotPaper.pdf. Accessed on 10-2023.

13

http://code.google.com/p/bftsmart
https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3419614.3423256
https://arxiv.org/abs/2309.05347
https://arxiv.org/abs/2310.11331
https://arxiv.org/abs/2301.04817
https://doi.org/10.1109/DSN53405.2022.00018
https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper/
https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper/
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf

[42] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper (2014).

[43] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. InACM
Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

[44] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2023. WaterBear: Prac-
tical Asynchronous BFTMatching Security Guarantees of Partially Synchronous
BFT. In USENIX Security. 5341–5357.

[45] Haibin Zhang, Chao Liu, and Sisi Duan. 2022. How to achieve adaptive security
for asynchronous BFT? J. Parallel and Distrib. Comput. 169 (2022), 252–268.

A PROOF OF KOALA-1
Proof of our VT-GPE. We begin with the correctness of our VT-
GPE protocol shown in Algorithm 1. We split the graded deliv-
ery property into graded delivery-1 and graded delivery-2 for our
proof.

LemmaA.1 (ExteRnalValidity). If an honest replica tgpe-decides
(𝐵, ∗, ∗) such that 𝐵 ≠ ⊥, at least one honest replica has verified 𝐵
and 𝑄 (𝐵, 𝜎) holds at it, where 𝜎 is the proof of 𝐵.

PRoof. If an honest replica𝑝𝑖 tgpe-decides (𝐵, ∗, ∗), 𝑝𝑖 holds valid
𝐸 (𝐵), i.e., 𝑝𝑖 receives 𝑓 +1matching ⟨echo⟩messages for 𝐵. At least
one of the ⟨echo⟩ messages is from an honest replica. This replica
must have verified 𝐵 before echoing 𝐵, thus 𝑄 (𝐵, 𝜎) holds. □

LemmaA.2 (Consistency). If an honest replica tgpe-decides (𝐵, ∗, ∗)
and another honest replica tgpe-decides (𝐵′, ∗, ∗), 𝐵 = 𝐵′.

PRoof. Assuming that 𝑝𝑖 tgpe-decides (𝐵, ∗, ∗) and𝑝 𝑗 tgpe-decides
(𝐵′, ∗, ∗) and 𝐵 ≠ 𝐵′. According to Lemma A.1,𝑄 (𝐵, ∗) holds for at
least one honest replica 𝑝1 and 𝑄 (𝐵′, ∗) holds for at least one hon-
est replica 𝑝2. In this case, 𝑝1 must have sent an ⟨echo⟩ message
for 𝐵 at 𝑡 = Δ and 𝑝2 must have sent an ⟨echo⟩ message for 𝐵′ at
𝑡 = Δ. As each honest replica sends an ⟨echo⟩ message for block
𝐵 only if 𝐵 is a winning input, 𝑝1 must have forwarded 𝐵 at 𝑡 = Δ.
Similarly, 𝑝2 has forwarded 𝐵′ at 𝑡 = Δ. Therefore, every honest
replica must have received ⟨input⟩ messages for both 𝐵 and 𝐵′ by
𝑡 = 2Δ. At most one of these two inputs could be chosen as the
winning input by any honest replica at 𝑡 = 2Δ.

Suppose the 𝐵 is chosen by all honest replicas after 𝑡 = 2Δ. No
honest replicas will send ⟨winneR1⟩ or ⟨Ready⟩ messages for 𝐵′ at
𝑡 = 2Δ. No honest replicas will send ⟨locK⟩ messages for 𝐵′ at
𝑡 = 3Δ. Since replicas need to receive ⟨winneR1⟩, ⟨Ready⟩, or ⟨locK⟩
messages from at least one honest replica to tgpe-decide block 𝐵′

with grade 0, 1, and 2, none of them would tgpe-decide 𝐵′, a con-
tradiction. □

CoRollaRy A.3. If an honest replica receives a valid 𝐸 (𝐵) and
𝑊1 (𝐵) for a block 𝐵 and another honest replica receives a valid 𝐸 (𝐵′)
and𝑊1 (𝐵′) for a block 𝐵′ with 𝑣𝑖𝑒𝑤 (𝐵) = 𝑣𝑖𝑒𝑤 (𝐵′), 𝐵 = 𝐵′.

PRoof. Suppose 𝑣𝑖𝑒𝑤 (𝐵) = 𝑣𝑖𝑒𝑤 (𝐵′) = 𝑣 . According to the pro-
tocol, an honest replica 𝑝𝑖 will tgpe-decide 𝐵 in VT-GPE𝑣 when it
receives a valid 𝐸 (𝐵) and𝑊1 (𝐵) for 𝐵. Similarly, another honest
replica 𝑝 𝑗 will tgpe-decide 𝐵′ in VT-GPE𝑣 when it receives a valid
𝐸 (𝐵′) and𝑊1 (𝐵′) for 𝐵′. Due to Lemma A.2, 𝐵 = 𝐵′. □

LemmaA.4 (GRadedDeliveRy-1). If an honest replica tgpe-decides
(𝐵, 1, ∗), any honest replica tgpe-decides (𝐵, 0, ∗).

PRoof. If an honest replica 𝑝1 tgpe-decides (𝐵, 1, ∗), it must have
received at least 𝑓 +1 valid ⟨Ready⟩ messages for 𝐵 and at least one
honest replica 𝑝2 has broadcast the ⟨Ready⟩message for 𝐵 at 𝑡 = 2Δ.
Before 𝑝2 sent the ⟨Ready⟩ message, it must have collected a valid
𝐸 (𝐵) (i.e., 𝑓 + 1 ⟨echo⟩ messages) and forwarded 𝐸 (𝐵). Therefore,
at 𝑡 ≥ 3Δ, every honest replica can collect a valid 𝐸 (𝐵).

Let the proposer of 𝐵 be 𝑝3. Below we prove that all honest
replicas must have observed a winning input for 𝐵 at time 𝑡 = 2Δ.
Firstly, according to the protocol, replica 𝑝1 must have received at
least 𝑓 + 1 valid ⟨winneR2⟩ messages for 𝐵 when it tgpe-decides 𝐵.
In this case, an honest replica must have observed a winning input
for 𝐵 at 𝑡 = 3Δ. Therefore, at 𝑡 = 2Δ, no honest replica could ob-
serve a VRF evaluation higher than the VRF evaluation generated
by 𝑝3. Furthermore, no equivocation by 𝑝3 is detected. Meanwhile,
all honest replicas must have received the ⟨input⟩ for 𝐵 by 𝑡 = 2Δ.
This is because 𝑝2 already has |𝐸 (𝐵) | ≥ 𝑓 + 1 by 𝑡 = 2Δ so at least
one honest replica has previously set the ⟨input⟩ message for 𝐵
as its winning input by 𝑡 = Δ. As the honest replica forwards the
⟨input⟩ message, any honest replicas awake at 𝑡 = 2Δ must have
considered the ⟨input⟩ message for 𝐵 as their winning input and
sent ⟨winneR1⟩ messages for 𝐵.

Since at least ℎ𝑎 = 𝑓 + 1 honest replicas are awake at 𝑡 = 2Δ,
any honest replicas awake at time 𝑡 ≥ 4Δmust have |𝐸 (𝐵) | ≥ 𝑓 +1
and |𝑊1 (𝐵) | ≥ 𝑓 + 1 and then tgpe-decide (𝐵, 0, ∗). □

LemmaA.5 (GRadedDeliveRy-2). If an honest replica tgpe-decides
(𝐵, 2, ∗), any honest replica tgpe-decides (𝐵, 1, ∗).

PRoof. If an honest replica 𝑝1 tgpe-decides (𝐵, 2, ∗), it must have
received at least 𝑓 + 1 valid ⟨locK⟩ messages for 𝐵 and at least one
honest replica 𝑝2 has sent a ⟨locK⟩ message for 𝐵 at 𝑡 = 3Δ. Before
𝑝2 sent the ⟨locK⟩ message, it must have collected a valid 𝑅(𝐵)
(at least 𝑓 + 1 matching ⟨Ready⟩ messages) and forwarded 𝑅(𝐵).
Therefore, at 𝑡 ≥ 4Δ, every honest replica can collect a valid 𝑅(𝐵).

Let the proposer of 𝐵 be 𝑝3. Below we prove that all honest
replicas must have observed a winning input for 𝐵 at time 𝑡 = 3Δ.
Firstly, when 𝑝1 tgpe-decides 𝐵, it must have observed a winning
input for 𝐵 at 𝑡 = 4Δ. Therefore, at 𝑡 = 3Δ, no honest replica could
observe a VRF evaluation higher than that of 𝑝3 or any equivo-
cating messages by 𝑝3. Meanwhile, all honest replicas must have
received the ⟨input⟩ message for 𝐵 by 𝑡 = 3Δ. This is because 𝑝2
has |𝑅(𝐵) | ≥ 𝑓 + 1 at time 𝑡 = 3Δ and at least one honest replica
has previously sent a ⟨Ready⟩ message at time 𝑡 = 2Δ. The honest
replica must have forwarded the ⟨input⟩ message for 𝐵 at 𝑡 = 2Δ.
As a result, all honest replicas awake at 𝑡 = 3Δ must have con-
sidered the ⟨input⟩ message for 𝐵 as their winning input and sent
⟨winneR2⟩ messages for 𝐵.

Since at least ℎ𝑎 = 𝑓 + 1 honest replicas are awake at 𝑡 = 3Δ,
any honest replicas awake at any 𝑡 ≥ 4Δ have |𝑅(𝐵) | ≥ 𝑓 + 1 and
|𝑊2 (𝐵) | ≥ 𝑓 + 1 and then tgpe-decide (𝐵, 1, ∗). □

Lemma A.6 (Validity). With a probability of 𝛼 > 1/2, all honest
replicas tgpe-decide (𝐵, 2, ∗) where block 𝐵 is tgpe-proposed by an
honest replica.

PRoof. As at least ℎ𝑎 = 𝑓 + 1 honest replicas are awake at time
𝑡 = 0 and there are at most 𝑓 faulty replicas, with probability
𝛼 > 1/2, an honest replica’s VRF evaluation will be the highest

14

among all awake replicas. Let the replica be 𝑝1 and the block 𝑝1
tgpe-proposes be (𝐵, 𝜎), where 𝜎 is the proof of block 𝐵. After 𝑝1
broadcasts its ⟨input⟩ message, all honest replicas awake at time
𝑡 ≥ Δ will set their winning input as the ⟨input⟩ message for 𝐵.

As 𝑝1 is an honest replica, 𝑄 (𝐵, 𝜎) holds at all honest replicas.
It is then not difficult to see that any honest replica broadcasts a
⟨echo⟩ message for 𝐵 at 𝑡 = Δ. Each honest replica awake at 𝑡 = 2Δ
observes a valid 𝐸 (𝐵) such that |𝐸 (𝐵) | ≥ 𝑓 + 1 and broadcasts a
⟨winneR1⟩ and a ⟨Ready⟩ message for 𝐵. Similarly, all honest repli-
cas awake at 𝑡 = 3Δ observe a valid 𝑅(𝐵) such that |𝑅(𝐵) | ≥ 𝑓 + 1.
Therefore, they broadcast ⟨winneR2⟩ and ⟨locK⟩ messages for 𝐵. Fi-
nally, at 𝑡 ≥ 4Δ, all awake honest replicas will observe a valid 𝐿(𝐵)
such that |𝐿(𝐵) | ≥ 𝑓 + 1 and then tgpe-decide (𝐵, 2, ∗). □

Proof of Koala-1. We now prove the correctness of our ABC pro-
tocol. In this section, we prove the correctness of the protocol shown
in Algorithm 2 (the none-pipelining mode).

TheoRem A.7 (Safety). If an honest replica a-delivers a block 𝐵1
before it a-delivers a block 𝐵2, then no honest replica a-delivers the
block 𝐵2 without first a-delivering 𝐵1.

PRoof. Suppose an honest replica 𝑝1 a-delivers block 𝐵1 before
it a-delivers 𝐵2 and another honest replica 𝑝2 a-delivers 𝐵2 before
it a-delivers 𝐵1. W.l.o.g., we assume that 𝑝1 a-delivers 𝐵1 after it
tgpe-decides (𝐵1, 2, ∗) in VT-GPE𝑣1 . Additionally, 𝑝2 a-delivers 𝐵2
after it tgpe-decides (𝐵2, 2, ∗) in VT-GPE𝑣2 . Obviously, 𝑣1 ≠ 𝑣2, as
otherwise the consistency property of VT-GPE is violated. W.l.o.g,
let 𝑣1 < 𝑣2.

According to Lemma A.5, if 𝑝1 tgpe-decides (𝐵1, 2, ∗) for block
𝐵1 in VT-GPE𝑣1 , any honest replica 𝑝𝑖 (including 𝑝2) tgpe-decides
(𝐵1, 𝑔, ∗) in VT-GPE𝑣1 such that 𝑔 = 1. Furthermore, if 𝑝𝑖 tgpe-
decides (𝐵1, 𝑔, ∗) in VT-GPE𝑣1 such that 𝑔 = 1, by Lemma A.4, any
honest replica will tgpe-decide (𝐵1, 0, qc1) in VT-GPE𝑣1 . According
to our protocol, qc1 is a valid prepareQC with 𝑓 +1 ⟨echo⟩messages
and 𝑓 +1 ⟨winneR1⟩ messages for 𝐵1. Therefore, any honest replica
that enters the next view 𝑣1 + 1 uses qc1 as input. Furthermore,
since any honest replica (including 𝑝2) tgpe-decides (𝐵1, 1, ∗), the
replica sets its lock as 𝐵1. The lock parameter can be set as a block
that extends 𝐵1 unless the replica becomes unlocked on 𝐵1.

Since 𝑝2 tgpe-decides (𝐵2, 2, ∗) in view 𝑣2 and is locked on 𝐵1 in
view 𝑣1 (where 𝑣1 < 𝑣2), there must exist a view 𝑣3 such that the
following holds: 1) 𝑣1 < 𝑣3 ≤ 𝑣2; 2) an honest replica tgpe-decides
a block 𝐵3 in VT-GPE𝑣3 and 𝐵3 is conflicting with 𝐵1; 3) a valid qc3
is provided by the proposer of block 𝐵3 and 𝑄 (𝐵3, qc3) is verified
by at least one honest replica (as otherwise the external validity
property of VT-GPE is violated). Here, 𝑣𝑖𝑒𝑤 (qc3) < 𝑣3 as qc3 is a
proof included in the proposal of block 𝐵3. W.l.o.g., suppose 𝑣3 is
the first view such that the above holds.

Towards a contradiction, we now show that 𝐵3 cannot be a con-
flicting block of 𝐵1. According to our protocol, qc3 is a prepareQC
and consists of 𝑓 +1matching ⟨echo⟩ and 𝑓 +1matching ⟨winneR1⟩
messages. Any honest replica 𝑝𝑘 that verifies 𝑄 (𝐵3, qc3) in view
𝑣3 must have a lock (denoted as lock𝑘) such that 𝑣𝑖𝑒𝑤 (lock𝑘) ≤
𝑣𝑖𝑒𝑤 (qc3). As 𝑣𝑖𝑒𝑤 (lock𝑘) ≥ 𝑣1, now there are two cases: 𝑣𝑖𝑒𝑤 (qc3) =
𝑣1 and 𝑣𝑖𝑒𝑤 (qc3) > 𝑣1. If 𝑣𝑖𝑒𝑤 (qc3) = 𝑣1, qc3 and qc1 must have
been formed in VT-GPE𝑣1 , where qc1 is a valid prepareQC for 𝐵1.
Both qc3 and qc1 have been received by any honest replica awake

after view 𝑣1. According to Corollary A.3, the block for qc3 is 𝐵1, a
contradiction. If 𝑣𝑖𝑒𝑤 (qc3) > 𝑣1, we have 𝑣1 < 𝑣𝑖𝑒𝑤 (qc3) < 𝑣3 ≤
𝑣2. The block corresponding to qc3 is a conflicting block with 𝐵1
and has been verified by at least one honest replica. However, we
already assume that 𝑣3 is the first view such that a conflicting block
is proposed, a contradiction.

As 𝐵3 cannot be a conflicting block of 𝐵1, block 𝐵2 extends block
𝐵1. However, 𝑝2 a-delivers 𝐵1 after it a-delivers 𝐵2, a contradiction.

□

TheoRemA.8 (Liveness). If an honest replica a-broadcasts ames-
sage𝑚, then all awake honest replicas eventually a-deliver𝑚.

PRoof. We first prove that any block (𝐵1, qc) tgpe-proposed by
any honest replica 𝑝1 in a view 𝑣1 can be verified by all honest
replicas such that 𝑄 (𝐵1, qc) holds. At the beginning of view 𝑣1, 𝐵1
extends the candidate of 𝑝1 and qc is a prepareQC of candidate.
As 𝑝1 broadcasts an ⟨input⟩ message for (𝐵1, qc) in VT-GPE𝑣1 , all
awake honest replicas eventually receive the ⟨input⟩ message for
𝐵1. According to the graded delivery-1 property of VT-GPE, in any
VT-GPE𝑣 such that 𝑣 < 𝑣1, if any honest replica tgpe-decides a
block 𝐵 with grade 1, 𝑝1 must have tgpe-decided (𝐵, 0, ∗) and set its
candidate as 𝐵. Therefore, the view number of 𝑝1’s candidatemust
be equal to or higher than that of the lock of any honest replica in
view 𝑣1. 𝑄 (𝐵𝑖 , qc) thus holds at any honest replica.

According to the validity property of VT-GPE, with a probabil-
ity of 𝛼 > 1/2, all honest replicas will tgpe-decide (𝐵, 2, ∗) for a
block 𝐵 in a VT-GPE instance. With trivial input dissemination,
honest replicas can broadcast their a-broadcast messages and any
honest replica can a-broadcast the messages that have not been
a-delivered. It is then not difficult to see that any message 𝑚 a-
broadcast by an honest replica will eventually be a-delivered within
a constant number of views. □

B THE PIPELINED KOALA-1
B.1 The Pseudocodes of Koala-1
We present the pseudocode of the wT-GPE in Algorithm 5 and the
pseudocode of our pipelined Koala-1 protocol (with the fast path)
in Algorithm 6.

B.2 Correctness Proof
Proof of our wT-GPE. We begin with the correctness of our wT-
GPE protocol shown in Algorithm 5.

The proof of external validity and validity is similar to that of
VT-GPE.

LemmaB.1 (WeaKConsistency). If an honest replica tgpe-decides
(𝐵,𝑔, ∗) with grade 𝑔 ≥ 1 and another honest replica tgpe-decides
(𝐵′, ∗, ∗), 𝐵 = 𝐵′.

PRoof. Assuming that 𝑝𝑖 tgpe-decides (𝐵,𝑔, ∗) with grade 𝑔 ≥
1 and 𝑝 𝑗 tgpe-decides (𝐵′, ∗, ∗) and 𝐵 ≠ 𝐵′. Similar to the proof
of Lemma A.2, by the external validity property of wT-GPE, we
can deduce that every honest replica must have received ⟨input⟩
messages for both 𝐵 and 𝐵′ by 𝑡 = 2Δ. At most one of these two
inputs could be chosen as the winning input by any honest replica
at 𝑡 = 2Δ.

15

Algorithm5Validated Triple-graded Proposal ElectionwithWeak
Consistency for view 𝑣 - wT-GPE𝑣 .
1: Replica 𝑝𝑖 executes the following algorithm at every time 𝑡 ≥ 0 af-

ter starting wT-GPE𝑣 in view 𝑣, and tgpe-proposes (𝐵𝑖 , 𝜎𝑖) such that a
global predicate𝑄 (𝐵𝑖 , 𝜎𝑖) holds.

2: 𝑝𝑖 maintains the following parameters for each received block 𝐵:
3: 𝐸 (𝐵) ← all received ⟨echo, 𝐵⟩∗ messages
4: 𝑅 (𝐵) ← all received ⟨Ready, 𝐵⟩∗ messages
5: 𝐿 (𝐵) ← all received ⟨locK, 𝐵⟩∗ messages
6: if 𝑡 = 0 then
7: (𝜌𝑖 , 𝜋𝑖) ← VRF𝑖 (𝑣)
8: broadcast ⟨input, 𝐵𝑖 , 𝜎𝑖 , 𝜌𝑖 , 𝜋𝑖 ⟩𝑖
9: if 𝑡 = Δ then

10: if there exists a winning input
⟨
input, 𝐵 𝑗 , 𝜎 𝑗 , 𝜌 𝑗 , 𝜋 𝑗

⟩
𝑗 then

11: forward the winning input (if not yet)
12: if 𝑄 (𝐵 𝑗 , 𝜎 𝑗) holds then
13: broadcast

⟨
echo, 𝐵 𝑗

⟩
𝑖

14: else
15: forward the equivocating input messages by any replica
16: if 𝑡 = 2Δ then
17: update local winning input based on received ⟨input⟩ messages
18: if ⟨input⟩ 𝑗 ≠ ⊥ then // Let ⟨input⟩ 𝑗 be the winning input
19: forward ⟨input⟩ 𝑗 (if not yet)
20: if |𝐸 (𝐵 𝑗) | ≥ 𝑓 + 1 then
21: broadcast 𝐸 (𝐵 𝑗) and

⟨
Ready, 𝐵 𝑗

⟩
𝑖

22: if 2Δ < 𝑡 ≤ 3Δ then
23: if |𝑅 (𝐵) | ≥ 𝑓 + 1 for any block 𝐵 then
24: broadcast 𝑅 (𝐵) and ⟨locK, 𝐵⟩𝑖 (if not yet)
25: if 𝑡 > 2Δ then
26: if |𝐿 (𝐵) | ≥ 𝑓 + 1 for any block 𝐵 then
27: tgpe-decide (𝐵, 2, 𝐿 (𝐵))
28: if |𝑅 (𝐵) | ≥ 𝑓 + 1 for any block 𝐵 then
29: tgpe-decide (𝐵, 1, 𝑅 (𝐵))
30: if 𝑡 ≥ 3Δ then
31: for each

⟨
input, 𝐵 𝑗 , 𝜎 𝑗 , 𝜌 𝑗 , 𝜋 𝑗

⟩
𝑗 do // from inputs with higher 𝜌 𝑗

32: if |𝐸 (𝐵 𝑗) | ≥ 𝑓 + 1 then
33: tgpe-decide (𝐵 𝑗 , 0, 𝐸 (𝐵 𝑗))
34: break
35: if no block is tgpe-decided then
36: tgpe-decide ⊥

Suppose 𝐵 is chosen by all honest replicas after 𝑡 = 2Δ. No hon-
est replicas will send ⟨Ready⟩ messages for 𝐵′ at 𝑡 = 2Δ. No honest
replicas will send ⟨locK⟩ messages for 𝐵′ at 𝑡 = 3Δ. Since repli-
cas need to receive ⟨Ready⟩ or ⟨locK⟩ messages from at least one
honest replica to tgpe-decide block 𝐵′ with grade 1 and 2, 𝑝 𝑗 must
tgpe-decide 𝐵′ with grade 0.

On the other hand, according to the protocol, 𝑝𝑖 must have re-
ceived 𝑓 +1 ⟨Ready⟩ messages or 𝑓 +1 ⟨locK⟩ messages for 𝐵. There-
fore, at least one honest replica 𝑝𝑘 has broadcast a ⟨Ready⟩message
for 𝐵. 𝑝𝑘 must have forwarded a valid 𝐸 (𝐵) at 𝑡 = 2Δ. This 𝐸 (𝐵)
would be received by 𝑝 𝑗 by 𝑡 = 3Δ. 𝑝 𝑗 would tgpe-decide 𝐵 with
grade 0 instead of 𝐵′, as the ⟨input⟩ for 𝐵 has a higher VRF than
the ⟨input⟩ for 𝐵′.

As a result, 𝑝 𝑗 would not tgpe-decide 𝐵′, a contradiction. □

Algorithm 6 The pipelined ABC protocol. Code for 𝑝𝑖 .
1: Initialize the following parameters
2: 𝑣 ← 1; candidate, lock← 𝐵0; prepareQC, lockedQC ← ⊥.
3: // lockedQC is used in the recovery protocol
4: Let𝑄 be the following predicate for wT-GPE:
5: Given (𝐵,𝑞𝑐) tgpe-proposed by 𝑝 𝑗 ,𝑄 (𝐵, qc) ≡ (𝑣𝑖𝑒𝑤 (𝐵) = 𝑣) and
6: (qc is a valid prepareQC) and (𝐵.parent = qc.block) and
7: (𝑣𝑖𝑒𝑤 (qc) > 𝑣𝑖𝑒𝑤 (lock) or qc.block = lock)
8: In each view 𝑣, replica 𝑝𝑖 executes the following algorithm at every

time 0 ≤ 𝑡 ≤ 3Δ w.r.t. view 𝑣, and then enter the next view 𝑣 + 1.
9: if 𝑡 = 0 then

10: 𝐵 ← ⟨val𝑠,H(candidate), 𝑣⟩𝑖
11: tgpe-propose (𝐵, prepareQC) in wT-GPE𝑣 with predicate𝑄
12: // The following events may be triggered after view 𝑣
13: upon 𝑝𝑖 tgpe-decides (𝐵, 0, 𝐸 (𝐵)) in wT-GPE𝑣 do
14: if 𝑣𝑖𝑒𝑤 (𝐵) > 𝑣𝑖𝑒𝑤 (candidate) then
15: candidate← 𝐵, prepareQC ← 𝐸 (𝐵)
16: upon 𝑝𝑖 tgpe-decides (𝐵, 1, 𝑅 (𝐵)) in wT-GPE𝑣 do
17: if 𝑣𝑖𝑒𝑤 (𝐵) > 𝑣𝑖𝑒𝑤 (lock) then
18: lock← 𝐵, lockedQC ← 𝑅 (𝐵)
19: upon 𝑝𝑖 tgpe-decides (𝐵, 2, 𝐿 (𝐵)) in wT-GPE𝑣 do
20: if 𝐵 has not been a-delivered then
21: a-deliver 𝐵 and all the ancestors of 𝐵

LemmaB.2 (GRadedDeliveRy-1). If an honest replica tgpe-decides
(𝐵, 1, ∗), any honest replica tgpe-decides (𝐵, 0, ∗).

PRoof. If an honest replica 𝑝1 tgpe-decides (𝐵, 1, ∗), we can de-
duce that every honest replica can collect a valid 𝐸 (𝐵) at 𝑡 ≥ 3Δ
(similar to the proof of LemmaA.4).Therefore,𝐵 can be tgpe-decided
with grade 0 by any honest replica as long as no other block is tgpe-
decidewith grade 0. According to theweak consistency of wT-GPE,
an honest replica could not tgpe-decide (𝐵′, 0, ∗) with 𝐵 ≠ 𝐵′. As a
result, all honest replicas tgpe-decides (𝐵, 0, ∗). □

LemmaB.3 (GRadedDeliveRy-2). If an honest replica tgpe-decides
(𝐵, 2, ∗), any honest replica tgpe-decides (𝐵, 1, ∗).

PRoof. If an honest replica 𝑝1 tgpe-decides (𝐵, 2, ∗), it must have
received at least 𝑓 + 1 valid ⟨locK⟩ messages for 𝐵 and at least one
honest replica 𝑝2 has sent a ⟨locK⟩ message for 𝐵 at 𝑡 ≤ 3Δ. Before
𝑝2 sent the ⟨locK⟩ message, it must have collected and forwarded
a valid 𝑅(𝐵). Therefore, at 𝑡 ≥ 4Δ, every honest replica can collect
a valid 𝑅(𝐵). According to the protocol, every honest replica will
tgpe-decides (𝐵, 1, ∗). □

Proof of pipelined Koala-1. We now prove the correctness of
our ABC protocol. In this section, we prove the correctness of the
protocol shown in Algorithm 6 (the pipelining mode).

TheoRem B.4 (Safety). If an honest replica a-delivers a block 𝐵1
before it a-delivers a block 𝐵2, then no honest replica a-delivers the
block 𝐵2 without first a-delivering 𝐵1.

PRoof. Suppose an honest replica 𝑝1 a-delivers block 𝐵1 before
it a-delivers 𝐵2 and another honest replica 𝑝2 a-delivers 𝐵2 before
it a-delivers 𝐵1. W.l.o.g., we assume that 𝑝1 a-delivers 𝐵1 after it
tgpe-decides (𝐵1, 2, ∗) in wT-GPE𝑣1 . Additionally, 𝑝2 a-delivers 𝐵2
after it tgpe-decides (𝐵2, 2, ∗) in wT-GPE𝑣2 . Obviously, 𝑣1 ≠ 𝑣2, as

16

otherwise the weak consistency property of wT-GPE is violated.
W.l.o.g, let 𝑣1 < 𝑣2.

According to Lemma B.3, if 𝑝1 tgpe-decides (𝐵1, 2, ∗) for block
𝐵1 in wT-GPE𝑣1 , any honest replica 𝑝𝑖 (including 𝑝2) tgpe-decides
(𝐵1, 𝑔, ∗) in wT-GPE𝑣1 such that 𝑔 = 1. Furthermore, if 𝑝𝑖 tgpe-
decides (𝐵1, 𝑔, ∗) in wT-GPE𝑣1 such that 𝑔 = 1, by Lemma B.2, any
honest replica will tgpe-decide (𝐵1, 0, qc1) in wT-GPE𝑣1 . According
to our protocol, qc1 is a valid prepareQC with 𝑓 +1 ⟨echo⟩messages
for 𝐵1.Therefore, any honest replica that enters the next view 𝑣1+1
uses qc1 as input. Furthermore, since any honest replica (including
𝑝2) tgpe-decides (𝐵1, 1, ∗), the replica sets its lock as 𝐵1. The lock
parameter can be set as a block that extends 𝐵1 unless the replica
becomes unlocked on 𝐵1.

Since 𝑝2 tgpe-decides (𝐵2, 2, ∗) in view 𝑣2 and is locked on 𝐵1 in
view 𝑣1 (where 𝑣1 < 𝑣2), there must exist a view 𝑣3 such that the
following holds: 1) 𝑣1 < 𝑣3 ≤ 𝑣2; 2) an honest replica tgpe-decides
a block 𝐵3 inwT-GPE𝑣3 and 𝐵3 is conflicting with 𝐵1; 3) a valid qc3
is provided by the proposer of block 𝐵3 and 𝑄 (𝐵3, qc3) is verified
by at least one honest replica (as otherwise the external validity
property of wT-GPE is violated). Here, 𝑣𝑖𝑒𝑤 (qc3) < 𝑣3 as qc3 is a
proof included in the proposal of block 𝐵3. W.l.o.g., suppose 𝑣3 is
the first view such that the above holds.

Towards a contradiction, we now show that 𝐵3 cannot be a con-
flicting block of 𝐵1. According to our protocol, qc3 is a prepareQC
and consists of 𝑓 +1matching ⟨echo⟩messages. Any honest replica
𝑝𝑘 that verifies𝑄 (𝐵3, qc3) in view 𝑣3 must have a lock (denoted as
lock𝑘) such that 𝑣𝑖𝑒𝑤 (qc3) > 𝑣𝑖𝑒𝑤 (lock𝑘) or the block of qc3 is
the same as lock𝑘 . As 𝑣𝑖𝑒𝑤 (lock𝑘) ≥ 𝑣1, now there are two cases:
𝑣𝑖𝑒𝑤 (qc3) = 𝑣1 and 𝑣𝑖𝑒𝑤 (qc3) > 𝑣1. If 𝑣𝑖𝑒𝑤 (qc3) = 𝑣1, we have
𝑣𝑖𝑒𝑤 (lock𝑘) = 𝑣1. Since 𝑝1 tgpe-decides 𝐵1 with grade 2 and 𝑝𝑘
tgpe-decides lock𝑘 with grade 1 inwT-GPE𝑣1 , according to theweak
consistency of wT-GPE, lock𝑘 = 𝐵1. Therefore, the block of qc3
is also equal to 𝐵1, a contradiction. If 𝑣𝑖𝑒𝑤 (qc3) > 𝑣1, we have
𝑣1 < 𝑣𝑖𝑒𝑤 (qc3) < 𝑣3 ≤ 𝑣2. The block corresponding to qc3 is a con-
flicting block with 𝐵1 and has been verified by at least one honest
replica. However, we already assume that 𝑣3 is the first view such
that a conflicting block is proposed, a contradiction.

As 𝐵3 cannot be a conflicting block of 𝐵1, block 𝐵2 extends block
𝐵1. However, 𝑝2 a-delivers 𝐵1 after it a-delivers 𝐵2, a contradiction.

□

TheoRem B.5 (Liveness). If an honest replica a-broadcasts a mes-
sage𝑚, then all awake honest replicas eventually a-deliver𝑚.

The proof of Theorem B.5 is the same as that of Theorem A.8.

C PRACTICAL RECOVERY PROTOCOL FOR
KOALA-1

In Koala-1 presented in Sec. 3, we have assumed stable storage and
message delivery. In this section, we provide a practical recovery
protocol to remove this assumption. Similar to prior works [31, 34],
the recovery protocol is used for recovering replicas (that become
awake after sleeping) to catch up with awake replicas.

We follow the notations used by prior works and define a third
status (besides awake and asleep) called recovering. An asleep replica
first enters the recovering status before it becomes awake. The re-
covery period lasts for Γ ≥ 2Δ time. In practice, the value of Γ

may be adjusted by each replica depending on the amount of data
it needs to receive.

We present the recovery protocol for Koala-1 in Algorithm 7.
When a replica 𝑝𝑖 enters the recovering status, it first computes
the current view number 𝑣 through the global synchronous clock.
Then it broadcasts a ⟨RecoveR, 𝑣⟩𝑖 message to all replicas, starts a
timer with a duration of Γ, and waits for the reply from other repli-
cas. Upon receiving a ⟨RecoveR, 𝑣⟩𝑖 message from 𝑝𝑖 , an awake hon-
est replica 𝑝 𝑗 responds by sending to 𝑝𝑖 the values of all its local
parameters. Additionally, let 𝑡 be the time 𝑝 𝑗 receives the ⟨RecoveR⟩
messsage, 𝑝 𝑗 forwards all messages it receives for view 𝑣 until time
𝑡 + Δ. When the timer of 𝑝𝑖 expires, 𝑝𝑖 updates each of its local pa-
rameters to the latest valid one it has received, e.g., QC with the
highest view number. After that, 𝑝𝑖 sets its status as awake.

The recovery protocol can remove the stable storage and mes-
sage delivery assumption as every recovered replica is able to col-
lect all the information needed from awake replicas. In fact, al-
though 𝑝𝑖 can collect messages of every view prior to 𝑣 , it is suffi-
cient for 𝑝𝑖 to only collect all messages of view 𝑣 . Consider a view
𝑣 ′ < 𝑣 such that at least one honest replica tgpe-decides a block 𝐵
with grade 1 or 2 in VT-GPE𝑣′ (or wT-GPE𝑣′). The graded delivery
property of VT-GPE (or wT-GPE) ensures that all awake honest
replicas set their candidate and lock as either block 𝐵 or a block
higher than 𝐵. The recovery protocol then ensures that 𝑝𝑖 will up-
date its local parameters accordingly, and safety across views will
never be violated. Meanwhile, every awake replica only needs to
send its received messages of view 𝑣 until 𝑡 + Δ. This is because
𝑝𝑖 becomes online since time 𝑡 , as the awake replica receives the
⟨RecoveR⟩ message at time 𝑡 . Therefore, it is sufficient to forward
all the messages received before 𝑡 + Δ to 𝑝𝑖 .

The communication complexity of the recovery protocol is𝑂 (𝜅𝑛2+
𝑛2𝐿 + 𝑙𝑛𝐿), where 𝐿 is the size of a block, 𝜅 is the security param-
eter (i.e., length of the digital signature), and 𝑙 is the length of the
a-delivered history of the replicas.

Algorithm 7 Recovery protocol for Koala-1
1: Replica 𝑝𝑖 executes the following algorithm.
2: upon going online do
3: Let 𝑣 be the current view.
4: broadcast ⟨RecoveR, 𝑣⟩𝑖
5: upon the timer expires do
6: prepareQC ← the received prepareQC

with the highest view number
7: candidate← the block matching prepareQC
8: lockedQC ← the received lockedQC

with the highest view number
9: lock← the block matching lockedQC

10: set the state as awake and participate in the protocol’s execution
11: // respond to a recovering replica
12: upon receiving ⟨RecoveR, 𝑣⟩ 𝑗 at time 𝑡 do
13: send to 𝑝 𝑗 the current a-delivered history, candidate, lock,

prepareQC, lockedQC
14: forward to 𝑝 𝑗 all messages of view 𝑣 received until 𝑡 + Δ

17

D PROOF OF KOALA-2
We prove the correctness of the Koala-2 protocol shown in Algo-
rithm 3 and Algorithm 4 (without the GAT assumption).

Lemma D.1. If an honest replica falls asleep in a view 𝑣 and later
becomes awake, it will start the execution from view 𝑣 ′ such that
𝑣 ′ ≥ 𝑣 + 1.

PRoof. Consider an honest replica 𝑝1 that falls asleep in a view
𝑣 and 𝑝1 is the first replica that wakes up later. Towards a contra-
diction, we assume that 𝑝1 starts from view 𝑣 ′ ≤ 𝑣 after it recovers.
According to our protocol, if 𝑝1 previously entered view 𝑣 , a quo-
rum of replicas must have already entered view 𝑣−1 and sent their
⟨timeout⟩messages to 𝑝1 during the view change. Meanwhile, dur-
ing the recovery, 𝑝1 must have received timeoutQCs from a quo-
rum of replicas. As 𝑝1 enters view 𝑣 ′ after it wakes up, the highest
view number 𝑣ℎ among the timeoutQCs 𝑝1 receives is no higher
than 𝑣 ′ − 3. This is because during the recovery process, 𝑝1 waits
for a timeoutQC of a view no lower than 𝑣ℎ +2 and starts the execu-
tion from view no lower than 𝑣ℎ + 3, where 𝑣ℎ is the view number
of the highest timeoutQC 𝑝1 receives in the ⟨echo-1⟩ messages. Ac-
cording to the quorum intersection rule, at least one honest replica
must have sent a timeoutQC to 𝑝1 for a view no higher than 𝑣 ′ − 3
during the recovery process while its latest timeoutQC is for a view
no lower than 𝑣 − 2. Therefore, 𝑣 ′ ≥ 𝑣 + 1, a contradiction. □

LemmaD.2. Let qc1 and qc2 be valid QCs of any type (e.g., prepareQCs,
precommitQCs or commitQCs). If the blocks of qc1 and qc2 are con-
flicting, 𝑣𝑖𝑒𝑤 (qc1) ≠ 𝑣𝑖𝑒𝑤 (qc2).

PRoof. Towards a contradiction, let 𝑣𝑖𝑒𝑤 (qc1) = 𝑣𝑖𝑒𝑤 (qc2) = 𝑣 .
Let 𝐵1 be the block of qc1 and 𝐵2 be the block of qc2. According
to the protocol, qc1 includes 𝑛 − 𝑓 − 𝑠 matching votes for 𝐵1 and
qc2 includes 𝑛 − 𝑓 − 𝑠 matching votes for 𝐵2. According to the
quorum intersection rule, at least one honest replica must have
voted for both 𝐵1 and 𝐵2 in view 𝑣 , a contradiction. Note that the
replicamust be awake in view 𝑣 as according to LemmaD.1, if it fell
asleep in view 𝑣 , it must have already entered view 𝑣 +1. Therefore,
𝑣𝑖𝑒𝑤 (qc1) ≠ 𝑣𝑖𝑒𝑤 (qc2). □

Lemma D.3. If commitQC of a block 𝐵 is formed in view 𝑣 , every
honest replica that falls asleep in a view no lower than 𝑣 and recovers
in a view higher than 𝑣 must become locked on either 𝐵 or a block
that extends 𝐵.

PRoof. Our proof consists of two parts. First, we prove that ev-
ery honest replica that falls asleep in a view no lower than 𝑣 and
recovers in a view higher than 𝑣 must become locked on a block
𝐵′ no lower than 𝐵 during the recovery. Then, we show that 𝐵′ is
either 𝐵 or a block that extends 𝐵.

We begin with the first part. Consider an honest replica 𝑝1, the
first honest replica that falls asleep in a view no lower than 𝑣 and
wakes up in a view 𝑣 ′ where 𝑣 ′ > 𝑣 . Towards a contradiction, as-
sume 𝑝1 is locked on a block 𝐵′ after it recovers and 𝐵′ is lower
than 𝐵. In the recovery protocol, 𝑝1 broadcasts a ⟨RecoveRy-2⟩ mes-
sage and receives ⟨echo-2, 𝑣 ′, (prepareQC, lockedQC)⟩messages from
a quorum of replicas. According to the protocol, 𝑝1 only accept
⟨echo-2⟩ messages with a view number 𝑣 ′ > 𝑣ℎ +2, where 𝑣ℎ is the
view number of the highest timeoutQC 𝑝1 receives. As 𝑝1 already

entered view 𝑣 before it fell asleep, at least a quorum of replicas
must have a timeoutQC for a view no lower than 𝑣 −2 so 𝑣ℎ +2 ≥ 𝑣 .
In our recovery protocol, every honest replica waits until its view
is at least 𝑣ℎ + 3 ≥ 𝑣 + 1 before it sends an ⟨echo-2⟩ message to 𝑝1.

Meanwhile, according to our assumption, 𝑝1 is locked on a block
lower than 𝐵 after recovery. Therefore, the highest lockedQC 𝑝1
receives during recovery is lower than 𝑣𝑖𝑒𝑤 (𝐵). As a commitQC is
formed in view 𝑣 , a quorum of replicas must have become locked
on 𝐵 in view 𝑣 . According to the quorum intersection rule, at least
one honest replica 𝑝2 has been locked on block 𝐵 and it sends an
⟨echo-2⟩ message with a lockedQC for a block lower than 𝐵. This
can only happen when 𝑝2 falls asleep in a view no lower than 𝑣
and later recovers, contradicting our assumption that 𝑝1 is the first
replica that recovers in a view higher than 𝑣 . This completes the
first part of the proof.

We now show that 𝐵′ is either 𝐵 or a block that extends 𝐵. To-
wards a contradiction, we assume that 𝐵′ is conflicting with 𝐵. Let
𝑣𝑖𝑒𝑤 (𝐵′) be 𝑣1. We already show that 𝐵′ is no lower than 𝐵, we
have 𝑣1 > 𝑣 , as otherwise Lemma D.2 is violated. As 𝑝1 is locked
on 𝐵′ after it recovers, 𝑝1 must have received a lockedQC for 𝐵′
in the ⟨echo-2⟩ messages. Therefore, at least a quorum of replicas
have voted for block 𝐵′ in view 𝑣1.

There must exist a view 𝑣2 such that the following holds: 1) 𝑣 <
𝑣2 ≤ 𝑣1; 2) a block 𝐵2 is proposed in view 𝑣2 and 𝐵2 conflicts with
𝐵; 3) a valid prepareQC qc2 is provided by the proposer of block
𝐵2 and at least a quorum of replicas in view 𝑣2 vote for block 𝐵2.
Here, 𝑣𝑖𝑒𝑤 (qc2) < 𝑣2 as qc2 is a proof included in the proposal of
block 𝐵2. W.l.o.g, let 𝑣2 be the first view such that the above holds.
We already proved that at least a quorum of replicas are locked on
block 𝐵 in view 𝑣 . Therefore, according to the quorum intersection
rule, at least one honest replica 𝑝3 is locked on block 𝐵 in view 𝑣
and votes for block 𝐵2 in view 𝑣2. According to the protocol, if 𝑝3
is awake between view 𝑣 and 𝑣2, this can only happen if 𝐵2 is non-
conflicting with 𝐵. Note that the case where 𝑝3 falls asleep and
later recovers violates our assumption that 𝑝𝑖 is the first replica
that recovers in a view higher than 𝑣 . This completes the proof of
the lemma. □

CoRollaRy D.4. If the commitQC of a block 𝐵 is formed in view
𝑣 , every honest replica that becomes locked on 𝐵 in view 𝑣 will always
be locked on 𝐵 or a block that extends 𝐵.

PRoof. Suppose 𝑝1 is an honest replica that becomes locked on
𝐵 in view 𝑣 . If it remains awake after view 𝑣 , it will never update
its lockedQC to a lower one. According to the second part in the
proof of Lemma D.3, the locked block of 𝑝1 must be 𝐵 or a block
that extends 𝐵. We therefore focus on the case that 𝑝1 falls asleep in
a view no lower than 𝑣 and later recovers. According to LemmaD.3,
𝑝1 must have become locked on either 𝐵 or a block that extends 𝐵
during its recovery. □

TheoRemD.5 (Consistency). If an honest replica delivers a trans-
action 𝑡𝑥 and another honest replica delivers a transaction 𝑡𝑥 ′, both
with the same order, 𝑡𝑥 = 𝑡𝑥 ′.

PRoof. Towards a contradiction, suppose an honest replica 𝑝1
delivers a transaction 𝑡𝑥 and another honest replica 𝑝2 delivers a
transaction 𝑡𝑥 ′ with the same order, 𝑡𝑥 ′ ≠ 𝑡𝑥 . Let 𝐵1 be the block

18

that contains 𝑡𝑥 and 𝐵2 be the block that contains 𝑡𝑥 ′. Obviously,
𝐵1 ≠ 𝐵2, as otherwise the order of 𝑡𝑥 and 𝑡𝑥 ′ would not be the
same. We assume that an honest replica 𝑝1 delivers 𝐵1 after it re-
ceives a commitQC qc1 in view 𝑣1 and another honest replica 𝑝2
delivers 𝐵2 after it receives a commitQC qc2 in view 𝑣2. According
to Lemma D.2, 𝑣1 ≠ 𝑣2. W.l.o.g, let 𝑣1 < 𝑣2.

When the commitQC of 𝐵1 was formed in view 𝑣1, a quorum
of replicas must have become locked on 𝐵1. According to Corol-
lary D.4, these replicas will always be locked on 𝐵1 or a block that
extends 𝐵1. As the commitQC of 𝐵2 is formed in view 𝑣2, a quo-
rum of replicas must have voted for 𝐵2. According to the quorum
intersection rules, at least one honest replica was locked on 𝐵1 or
a block that extends 𝐵1 while it voted for 𝐵2 in view 𝑣2. Since 𝐵1
conflicts with 𝐵2, 𝐵2’s parent block must be higher than 𝐵1. By in-
duction, there must exist an ancestor block (denoted as 𝐵3) of 𝐵2
that is higher than 𝐵1 and the parent block of 𝐵3 is lower than 𝐵1.
Similarly, at least one honest replica was locked on 𝐵1 or a block
that extends 𝐵1 while it voted for 𝐵3 in view 𝑣𝑖𝑒𝑤 (𝐵3). However,
this can only happen if 𝐵3 extends 𝐵1, contradicting our assump-
tion that 𝐵2 conflicts with 𝐵1. □

Lemma D.6. If the precommitQC of a block 𝐵 is formed in view 𝑣 ,
every honest replica that falls asleep in a view no lower than 𝑣 and
recovers in a view higher than 𝑣 must have a prepareQC of a view
𝑣 ′ ≥ 𝑣 .

The proof is similar to that for Lemma D.3 and we omit the de-
tails.

CoRollaRy D.7. If the precommitQC of a block 𝐵 is formed in
view 𝑣 , every honest replica that sets a prepareQC corresponding to
𝐵 in view 𝑣 will always have a prepareQC with a view number no
lower than 𝑣 .

We can deduce this corollary from Lemma D.6. The deduction
process is similar to that for Corollary D.4.

LemmaD.8. After GST, there exists a bounded time period𝑇𝑎 such
that if the leader of view 𝑣 is honest and awake and a quorum of
awake honest replicas are in view 𝑣 at any moment of 𝑇𝑎 , then a
block is delivered.

PRoof. Suppose after GST, the leader 𝑝𝑖 is honest in a new view
𝑣 . 𝑝𝑖 can collect ⟨new-view⟩ messages from a quorum of replicas.
It computes the highest prepareQC (denoted as highQC) among
them and broadcasts a new block 𝐵 extending the block of highQC.
Any honest replica that receives block 𝐵 will compare 𝐵 with its
lockedQC and considers 𝐵 valid only if 𝐵 extends the block for the
lockedQC or highQC is higher than the lockedQC. Let qcℎ be the
highest lockedQC among all honest replicas and 𝐵ℎ be the block
for qcℎ . When qcℎ was formed, a quorum of replicas must have
set their prepareQC as the prepareQC for 𝐵ℎ in a view 𝑣 ′ < 𝑣 . Ac-
cording to Corollary D.7, the quorum of replicas will always have a
prepareQC with a view number no lower than 𝑣 ′. By quorum inter-
section, at least one honest replica within the quorum must have
sent a ⟨new-view⟩ message to the leader at the beginning of view
𝑣 . Therefore, the leader must obtain a highQC with a view number
no lower than 𝑣 ′. Due to Lemma D.2, the block of highQC must be
𝐵ℎ or a block higher than 𝐵ℎ . Therefore, Any honest replica that
receives 𝐵 in view 𝑣 will vote for 𝐵 in the pRepaRe phase.

Under the assumption that a quorum of awake honest replicas
are synchronized in view 𝑣 and 𝑝𝑖 remains awake, 𝑝𝑖 is able to
receive the ⟨pRepaRe⟩ votes for 𝐵 from a quorum of replicas and
form a prepareQC. Similarly, a quorum of honest replicas will vote
in other phases and 𝐵 will be delivered.

□

It is worth mentioning that our proof for the above lemma as-
sumes that the leader 𝑝𝑖 is awake for a sufficiently long time so
that block 𝐵 is eventually delivered. We believe this is reasonable
assumption as otherwise the protocol will never be live anyway.

TheoRemD.9 (Liveness). If an honest replica a-broadcasts ames-
sage𝑚, then all awake honest replicas eventually deliver𝑚.

PRoof. Wefirst prove that the recovery protocol is non-blocking
and all recovering replicas can eventually become awake. In the re-
covery protocol, a recovering replica 𝑝𝑖 needs to wait for 𝑛 − 𝑓 − 𝑠
⟨echo-1⟩ messages, a timeoutQC for view 𝑣ℎ + 2, and 𝑛 − 𝑓 − 𝑠
⟨echo-2⟩ messages with view numbers higher than 𝑣ℎ + 2, where
𝑣ℎ is the view number of the highest timeoutQC among received
⟨echo-1⟩messages. Since at least𝑛− 𝑓 −𝑠 honest replicas are awake
at any time, 𝑛 − 𝑓 − 𝑠 ⟨echo-1⟩ messages and 𝑛 − 𝑓 − 𝑠 ⟨timeout⟩
messages of view 𝑣ℎ + 2 can be eventually received. Thus, 𝑝𝑖 must
observe a timeoutQC at least for view 𝑣ℎ + 2. After that, 𝑝𝑖 sends a
⟨RecoveRy-2, timeoutQC⟩ to all awake replicas. Each awake honest
replica receiving the message must enter a view 𝑣 ′ > 𝑣ℎ + 2 and
then send its ⟨echo-2⟩ message. Therefore, 𝑝𝑖 must receive 𝑛− 𝑓 −𝑠
⟨echo-2⟩messages with view numbers higher than 𝑣ℎ+2. After pro-
cessing all these messages, 𝑝𝑖 can complete the recovery protocol.
Thus, all recovering replicas can eventually become awake.

Finally, due to Lemma D.8, the liveness of the protocol follows
that of HotStuff. □

E KOALA-2 UNDER THE GAT ASSUMPTION.
Koala-2 can be adapted to the GAT assumption with some minor
modifications. First, we increase the quorum size in the normal
case operation and the view change protocol from 𝑛− 𝑓 −𝑠 to 𝑛− 𝑓 .
In this way, we can reduce the lower bound to 𝑛 ≥ 3𝑓 + 𝑠 + 1 as is
proved in Sec. 5.1. Second, we slightly modify the recovery proto-
col. Specifically, after receiving the ⟨echo-1⟩ messages and obtain-
ing 𝑣ℎ , the recovering replica participates in the view change pro-
tocol for both view 𝑣ℎ + 1 and 𝑣ℎ + 2 and broadcasts two ⟨timeout⟩
messages for view 𝑣ℎ + 1 and 𝑣ℎ + 2. The motivation is to ensure
that after GAT, each recovering replica can eventually receive a
timeoutQC for view 𝑣ℎ + 2 and complete the recovery protocol. In-
deed, a timeoutQC requires 𝑛− 𝑓 ⟨timeout⟩ messages. To form the
timeoutQC of any view, all honest replicas including the recover-
ing replicas need to participate in the view change and broadcast
their ⟨timeout⟩ messages.

F TRANSFORMING OTHER BFT TO SLEEPY
CONSENSUS

Our transformation approach for Koala-2 is generic and can be ex-
tended to other partially synchronous BFT. Using PBFT as an ex-
ample [12], we show that by slightly modifying the view change

19

and recovery protocols, we can transform PBFT into a sleepy con-
sensus protocol. For completeness, we show the pseudocode of the
recovery protocol for PBFT in Algorithm 8.
• View change. We only need to insert one step before the view

change protocol of PBFT. In particular, whenever a replica starts
the view change, it first broadcasts a ⟨timeout⟩ message. Upon
receiving 𝑛 − 𝑓 matching ⟨timeout⟩ messages and forming a
timeoutQC, the replica starts the view change protocol as spec-
ified in PBFT. The timeoutQC for a view 𝑣 can be used as proof
that a sufficiently large number of honest replicas have entered
view 𝑣 , as honest replicas collect the timeoutQC before they ac-
tually start the view change.
• Recovery protocol. In PBFT, replicas do notmaintain lockedQC

but use a set of prepare certificates instead to denote the status for
blocks. Namely, in PBFT, the leader may propose multiple blocks
concurrently. For blocks of each height (i.e., sequence number in
PBFT), each replica maintains at most one prepare certificate. To
build the recovery protocol for PBFT, a recovering replica needs
to synchronize with other replicas all the prepare certificates for
blocks that are not delivered yet. Such a protocol achieves a sim-
ilar goal with the synchronization of lockedQC.

Algorithm 8 Recovery protocol for PBFT (for replica 𝑝𝑖).
1: Let curView be the current view number and s-checkpoint be the stable

checkpoint.
2: Let 𝑃 [𝑘] denote the prepare certificate for a block with sequence num-

ber 𝑘 . The highest sequence number 𝑘 such that 𝑃 [𝑘] ≠ ⊥ is viewed
as the𝑚𝑎𝑥-𝑠 of 𝑃 .

3: as a recovering replica
4: broadcast a ⟨recovery-1⟩𝑖 message
5: wait for 𝑛 − 𝑓 − 𝑠 ⟨echo-1, timeoutQC⟩∗
6: 𝑣ℎ ← the view number of the highest timeoutQC

among all received ⟨echo-1⟩ messages.
7: wait for a timeoutQC 𝑡𝑐 such that 𝑣𝑖𝑒𝑤 (𝑡𝑐) ≥ 𝑣ℎ + 2
8: timeoutQC← 𝑡𝑐
9: broadcast ⟨RecoveRy-2, timeoutQC⟩𝑖

10: wait for 𝑛 − 𝑓 − 𝑠 ⟨echo-2, 𝑣′, (s-checkpoint, 𝑃) ⟩∗
such that 𝑣′ > 𝑣ℎ + 2

11: s-checkpoint ← the s-checkpoint with the highest sequence number
among received ⟨echo-2⟩ messages

12: 𝑚𝑖𝑛-𝑠 ← the sequence number of s-checkpoint
13: 𝑚𝑎𝑥-𝑠 ← the highest𝑚𝑎𝑥-𝑠

among all 𝑃 of received ⟨echo-2⟩ messages
14: for 𝑘 =𝑚𝑖𝑛-𝑠,𝑚𝑖𝑛-𝑠 + 1, ...,𝑚𝑎𝑥-𝑠 do
15: 𝑃 [𝑘] ← the 𝑃 [𝑘] with the highest view number

among all 𝑃 of received ⟨echo-2⟩ messages
16: if no 𝑃 contains a block of sequence number 𝑘 then
17: 𝑃 [𝑘] ← ⊥
18: curView ← 𝑣𝑖𝑒𝑤 (timeoutQC) + 1
19: send ⟨view-change, curView,𝑚𝑖𝑛-𝑠, s-checkpoint, 𝑃 ⟩

to the leader of curView
20: set the state as awake and rejoin the main protocol’s execution
21: as an awake replica
22: upon receiving ⟨RecoveRy-1⟩ 𝑗 do
23: send ⟨echo-1, timeoutQC⟩𝑖 to replica 𝑝 𝑗

24: upon receiving ⟨RecoveRy-2, timeoutQC⟩ 𝑗 do
25: if 𝑣𝑖𝑒𝑤 (timeoutQC) ≥ curView then
26: start view change and proceed to view 𝑣𝑖𝑒𝑤 (timeoutQC)+1
27: send ⟨echo-2, curView, (s-checkpoint, 𝑃) ⟩𝑖 to replica 𝑝 𝑗

20

	Abstract
	1 Introduction
	2 System Model and Building Blocks
	3 Koala-1: fast Synchronous sleepy consensus
	3.1 Overview of Koala-1
	3.2 Validated Triple-graded Proposal Election
	3.3 Atomic Broadcast (ABC)
	3.4 Analysis

	4 Partially Synchronous Sleepy Consensus with Stable Storage
	4.1 Overview of HotStuff
	4.2 An Attack to HotStuff in the Sleepy Model without the Stable Storage Assumption
	4.3 A Fully-fledged Sleepy Consensus Protocol under the Stable Storage Assumption

	5 Koala-2: partially synchronous Sleepy consensus without Stable Storage
	5.1 Technical Overview
	5.2 The Modified View Change Protocol and the Recovery Protocol
	5.3 Analysis

	6 Additional Related Work
	7 Conclusion
	References
	A Proof of Koala-1
	B The pipelined Koala-1
	B.1 The Pseudocodes of Koala-1
	B.2 Correctness Proof

	C Practical Recovery Protocol for Koala-1
	D Proof of Koala-2
	E Koala-2 under the GAT assumption.
	F Transforming other BFT to sleepy consensus

