
Secure Transformer Inference Made Non-interactive
Jiawen Zhang

Zhejiang University

kevinzh@zju.edu.cn

Jian Liu
�

Zhejiang University

jian.liu@zju.edu.cn

Xinpeng Yang

Zhejiang University

yangxinpeng@zju.edu.cn

Yinghao Wang

Zhejiang University

asternight@zju.edu.cn

Kejia Chen

Zhejiang University

chenkejia@zju.edu.cn

Xiaoyang Hou

Zhejiang University

xiaoyanghou@zju.edu.cn

Kui Ren

Zhejiang University

kuiren@zju.edu.cn

Xiaohu Yang

Zhejiang University

yangxh@zju.edu.cn

ABSTRACT
Secure transformer inference has emerged as a prominent research

topic following the proliferation of ChatGPT. Existing solutions are

typically interactive, involving substantial communication load and

numerous interaction rounds between the client and the server.

In this paper, we propose NEXUS, the first non-interactive pro-
tocol for secure transformer inference, where the client is only

required to submit an encrypted input and await the encrypted

result from the server. Central to NEXUS are two innovative tech-

niques: SIMD ciphertext compression/decompression, and SIMD

slots folding. Consequently, our approach achieves a speedup of

2.8× and a remarkable bandwidth reduction of 368.6×, compared

to the state-of-the-art solution presented in S&P ’24.

1 INTRODUCTION
Transformers, such as GPT [43] and BERT [16], have revolutionized

the field of artificial intelligence. They excel in a wide range of

applications such as language translation, content generation, and

question answering. However, these applications often involve

sensitive data, leading to growing concerns about user privacy. For

example, OpenAI has developed ChatGPT as an online inference

service, along with a remote API for developers, where users can

easily access the services by submitting prompts or messages.While

this approach is convenient, it poses significant privacy risks since

users’ submitted data may contain sensitive information.

Secure inference is a two-party cryptographic protocol enabling

model inference to proceed in such a manner that the server S
learns nothing about the input submitted by the clients Cs, and C
learns nothing about S’s model, except for the inference results.

Most of such protocols are designed for convolutional neural net-

works (CNNs) [2, 27, 30, 36] and some recent works also support

transformer-based models [10, 24, 26, 35, 38, 40].

It is noteworthy that many of these protocols are interactive, in-
volving substantial communication load and numerous interaction

rounds between C and S. For example, the state-of-the-art solution

for secure transformer inference, known as BOLT [40], documents

59.61GB of bandwidth comsumption and 10,509 interaction rounds

for a single inference. Such a substantial communication overhead

notably contributes to latency, especially in WAN configurations,

�
Jian Liu is the corresponding author.

and renders conventional hardware acceleration techniques such

as GPUs or FPGAs ineffective.

We emphasize the critical importance of establishing secure

inference as non-interactive, wherein C only needs to submit an en-

crypted input and await the encrypted result from S. For scenarios
demanding real-time responses, existing secure inference protocols,

whether interactive or non-interactive, fail to meet the speed crite-

ria. Nevertheless, non-interactive protocols show promise in meet-

ing this criteria by leveraging hardware acceleration. In non-real-

time scenarios such as financial planning and hospital diagnosis,

where C can tolerate an extended response latency, non-interactive

protocols are feasible, whereas interactive ones are not. This is be-

cause interactive protocols necessitate C’s computing resources to

remain engaged during the waiting period, impeding the execution

of other tasks.

Our contribution. In this paper, we propose NEXUS, which, to
the best of our knowledge, is the first non-interactive protocol for

secure transformer inference. Our approach in designing NEXUS
begins with C encrypting its input using RNS-CKKS fully homomor-

phic encryption (FHE), enablingS to execute the transformer on the

FHE-encrypted data. The single instruction multiple data (SIMD)

technique is applied to process 𝑁 = 2
15

elements in a batch, and

polynomial approximations are used to handle non-linear functions

such as GELU, softmax, layer normalization and argmax.We remark

that our approximation does not require any model retraining or

fine-tuning. Additionally, we propose two novel and fundamental

techniques to enhance the efficiency of this basic solution:

• SIMDciphertexts compression and decompression.This
technique enables C to compress 2𝑁 SIMD ciphertexts into a

single one, while allowing S to decompress them back with

4𝑁 ciphertext-plaintext multiplications and substitutions. As

a result, this technique significantly reduces the number of

ciphertexts that must be transferred, without introducing

any additional overhead for subsequent computations.

• SIMD slots folding. This technique enables the computa-

tion of an associative function 𝑓 (), such as sum and max, on

all SIMD slots of a ciphertext. The resulting value automati-

cally fills the slots of an SIMD ciphertext, allowing it to be

applied to each individual slot of the original ciphertext. The

entire process only requires log𝑁 rotations. This technique

1

can substantially improve the performance of inner-product,

softmax, layer normalization and argmax.

We believe both techniques are of independent interest. It is worth

mentioning that the state-of-the-art argmax protocol [29] requires

(𝑁 + 1) rotations and sign operations. Thanks to our SIMD slots

folding technique, we successfully reduce both operations to log𝑁 ,

resulting in a remarkable 13.3× speedup.

We provide a full-fledged implementation and systematic eval-

uation for NEXUS. Running a single inference for a BERT-base

transformer [16] consumes 1,103 seconds and 164MB of bandwidth.

This indicates a speedup of 2.8× and a bandwidth reduction of

368.6× compared to the state-of-the-art (i.e., BOLT).

We summarize our contribution as follows:

• The first non-interactive protocol for secure transformer

inference, achieving a bandwidth reduction of 368.6× over
the state-of-the-art (cf. §3);

• An SIMD ciphertexts compression and decompression tech-

nique for ciphertext packing (cf. §4);

• An SIMD slots folding technique that efficiently operates on

the slots of an SIMD ciphertext (cf. §5);

• A comprehensive implementation and evaluation (cf. §6).

2 PRELIMINARIES
In this section, we provide the necessary preliminaries for this

paper. Table 1 shows the notations that are frequently used.

Table 1: A table of frequent notations.

Notation Description

C client

S server

E() encryption

𝜋 () encoding

Enc() encoding-then encryption

ã FHE ciphertext

⊞ homomorphic addition

⊟ homomorphic subtraction

⊠ homomorphic multiplication

RotL()/RotR() left-rotation/right-rotation

Subs() substitution

Sgn() sign operation

𝐿 multiplicative depth

𝑁 ′ polynomial degree in RNS-CKKS

𝑁 # SIMD slots, 𝑁 = 𝑁 ′/2
A input matrix

W weight matrix

𝑡 # input instances

2.1 Secure inference and threat model
Secure inference is a two-party cryptographic protocol that enables

model inference between a client C and a serverS, while preserving
the privacy of both parties’ inputs. It is formally defined as follows:

Definition 1. A protocol Π between S holding a modelM and
C holding an input A is a secure inference protocol if it satisfies:

• Correctness. The output at the end of the protocol is the correct
inferenceM(A).
• Security.
– Corrupted client. There exists an efficient simulator 𝑆𝑖𝑚C
such that 𝑉𝑖𝑒𝑤Π

C ≈𝑐 𝑆𝑖𝑚C (A, 𝑜𝑢𝑡), where 𝑉𝑖𝑒𝑤
Π
C denotes

C’s view during the execution of Π (the view includes the
client’s input, randomness, and the transcript of the protocol),
and 𝑜𝑢𝑡 denotes the output of the inference.

– Corrupted server. There exists an efficient simulator 𝑆𝑖𝑚S
such that 𝑉𝑖𝑒𝑤Π

S ≈𝑐 𝑆𝑖𝑚S (M), where 𝑉𝑖𝑒𝑤
Π
S denotes S’s

view during the execution of Π.

We assume that either C or S can act as a semi-honest adversary,

adhering to the protocol specifications while endeavoring to gather

extra information during its execution. Additionally, we assume

that the adversary is computationally bounded. Formal definitions

of the threat model are provided in the Appendix E.

2.2 Transformer
Figure 1 shows the structure and workflow of a transformer. It takes

an embedding, represented as a matrix, and passes it through an

attention layer and a feed forward network. In the end, it outputs a

selection vector according to the highest value in the final logits.

Layer normalization (LayerNorm) is applied around each block.

Figure 1: Structure and workflow of a transformer.

Attention. The first step in the attention layer is to multiply the

embeddingA ∈ R𝑚×𝑛 by threematrices (W𝑄 ∈ R𝑛×𝑘 ,W𝐾 ∈ R𝑛×𝑘 ,
and W𝑉 ∈ R𝑛×𝑘) to produce a query matrix: Q = XW𝑄 , a key
matrix: K = XW𝐾 , and a value matrix: V = XW𝑉 .

For each attention unit, the transformer learns three weight

matrices: the query weights W𝑄 , the key weights W𝐾 , and the

value weights W𝑉 . For input token representation X is multiplied

with each of the three weight matrices to produce a query matrix

2

Q = XW𝑄 , a key matrix K = XW𝐾 , and a value matrix V = XW𝑉 .

The attention can be represented as:

Attention(Q,K,V) = Softmax(QK
𝑇

√
𝑘
)V.

The multi-head attention variant computes a 𝐻 -parallel attention

Attention(Q𝑗 ,K𝑗 ,V𝑗) for 𝑗 ∈ [𝐻] and then concatenate these 𝐻

resulting matrices.

Layer normalization. The input to LayerNorm is a ∈ R𝑛 , let
` = 1

𝑛

∑𝑛−1
𝑖=0 𝑎𝑖 and 𝜎 =

√︃
1

𝑛

∑𝑛−1
𝑖=0 (𝑎𝑖 − `)2, the output y ∈ R𝑛 is

calculated as:

𝑦𝑖 = 𝛾 ·
𝑥𝑖 − `
𝜎
+ 𝛽

where 𝛾, 𝛽 ∈ R are two hyper-parameters.

Feed-forward. The fully connected feed-forward network consists
of two linear transformations with a GELU activation function in

between:

FeedForward(X) = GELU(XW1 + b1)W2 + b2 .

The GELU function is calculated as [25]:

GELU(𝑥) = 1

2

𝑥 · (1 + erf(𝑥√
2

))

where the Gauss error function is erf(𝑥) = 2√
𝜋

∫ 𝑥
0
𝑒−𝑡

2

𝑑𝑡 . It is

used as an activation function due to its favorable curvature and

non-monotonicity properties.

2.3 Fully homomorphic encryption
Fully homomorphic encryption (FHE), which allows arbitrary opera-

tions to be performed over encrypted data [19], is the the primary

tool enabling us to build non-interactive secure transformer infer-

ence. The FHE scheme used in this paper is the full residue number
system (RNS) variant of Cheon-Kim-Kim-Song (CKKS) [11, 12].

RNS-CKKS is a leveled FHE, which can support computations up

to a multiplicative depth 𝐿. Both the plaintexts and ciphertexts of

RNS-CKKS are elements in a polynomial ring:

R𝑄 = Z𝑄 [𝑋]/(𝑋𝑁
′
+ 1),

where𝑄 = Π𝐿
𝑖=0
𝑞𝑖 with distinct primes 𝑞𝑖 . Once a ciphertext’s level

becomes too low, a bootstrapping operation is required to refresh

it to a higher level, enabling more computations. In a nutshell,

bootstrapping homomorphically evaluates the decryption circuit

and raises themodulus from𝑞0 to𝑞𝐿 by leveraging the isomorphism

R𝑞0 � R𝑞0 × R𝑞1 × · · · × R𝑞𝐿 [9]. Suppose the bootstrapping

consumes 𝐾 levels, then a fresh ciphertext can support 𝐿 −𝐾 levels

of computations.

RNS-CKKS supports single instructionmultiple data (SIMD), which

enables encrypting a vector a ∈ R𝑁 , where 𝑁 = 𝑁 ′/2, into a single
ciphertext and process these encrypted elements in a batch without

introducing any extra cost. To encrypt a in SIMD format, it first en-

codes a into a polynomial in R𝑄 using an encoding algorithm 𝜋 (),
and then encrypts the polynomial using an encryption algorithm

E(). Throughout this paper, we use E() to denote the encryption

of a polynomial and use Enc() to denote the SIMD encryption of a

vector:

Enc(a) = E(𝜋 (a)) .
Below, we summarize the homomorphic operations used in this

paper:

• 𝑝 (𝑥) ← 𝜋 (a). The encoding algorithm takes a vector a =

[𝑎0, ..., 𝑎𝑁−1] and outputs a polynomial 𝑝 (𝑥) ∈ R𝑄 .
• ã ← Enc(a). The encryption algorithm takes a vector a =

[𝑎0, ..., 𝑎𝑁−1] and outputs an SIMD ciphertext denoted by ã.
• a ← Dec(ã). The decryption algorithm takes an SIMD ci-

phertext ã and outputs a plaintext vector a.
• c̃← ã⊞ ˜b. The addition algorithm takes two SIMD cipher-

texts ã and ˜b; outputs Enc([𝑎0 + 𝑏0, ..., 𝑎𝑁−1 + 𝑏𝑁−1]).
• c̃← ã⊠ b. The ciphertext-plaintext multiplication takes ã
and a plaintext vector b; outputs Enc([𝑎0𝑏0, ..., 𝑎𝑁−1𝑏𝑁−1]).
• c̃← ã⊠ ˜b. The ciphertext-ciphertext multiplication takes ã
and

˜b; outputs Enc([𝑎0𝑏0, ..., 𝑎𝑁−1𝑏𝑁−1]).
• ã′ ← RotL(ã, 𝑠). The left-rotation algorithm takes ã and an

integer 𝑠 ∈ [𝑁]; left-rotates the vector by 𝑠 slots.
• ã′ ← RotR(ã, 𝑠). The right-rotation algorithm takes ã and
an integer 𝑠 ∈ [𝑁]; right-rotates the vector by 𝑠 slots.
• ã′ ← Subs(ã, 𝑘). The substitution operation takes a cipher-

text that encrypts a polynomial 𝑝 (𝑥) and an odd integer 𝑘 ;

outputs a ciphertext that encrypts 𝑝 (𝑥𝑘).
• ˜b← Sgn(ã). The sign operation, cf.§2.4.

2.4 Homomorphic sign function
As FHE only supports polynomial operations, it is nontrivial to com-

pare FHE-encrypted values in a non-interactive manner. To enable

encrypted comparisons, we leverage the polynomial approximation

of the sign function [13, 18, 34]:

𝑠𝑖𝑔𝑛(𝑥) = 𝑓 𝑑𝑓 (𝑔𝑑𝑔 (𝑥)) =

−1 −1 ≤ 𝑥 ≤ −2−𝛼

0 𝑥 = 0

1 2
−𝛼 ≤ 𝑥 ≤ 1

where 𝑓 (), 𝑔() are two polynomials and 𝑑𝑓 , 𝑑𝑔 are the number of

repetitions for them. Notice that this approximation requires the

input to fall within the interval [−1, 1]. Therefore, any input 𝑎 ∈
[𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] to the 𝑠𝑖𝑔𝑛() function must be normalized beforehand:

𝑥 := 𝑎/𝑚𝑎𝑥{|𝑎𝑚𝑎𝑥 |, |𝑎𝑚𝑖𝑛 |}.

We use Sgn() to denote running both the normalization and the

sign approximation on an SIMD ciphertext:

• ˜b← Sgn(ã): 𝑏𝑖 = 𝑓 𝑑𝑓 (𝑔𝑑𝑔 (𝑎𝑖
𝑚𝑎𝑥 { |𝑎𝑚𝑎𝑥 |, |𝑎𝑚𝑖𝑛 | })) ∀ 𝑖 ∈ [𝑁].

In our implementation, both 𝑓 () and 𝑔() are of 9-degree; we set
𝛼 = 16, 𝑑𝑓 = 2, 𝑑𝑔 = 2 and evaluate the polynomials using the

Baby-Step-Giant-Step algorithm [23].

3 BASIC DESIGN
In this section, we provide a basic design for NEXUS, aligning with
the workflow depicted in Figure 1. Later in §4 and §5, we will

integrate our proposed techniques (i.e., SIMD ciphertext compres-

sion/decompression and SIMD slots folding) to enhance this basic

design.

3

3.1 Attention
3.1.1 Matrix multiplication (ciphertext-plaintext). Recall that the
first step in the attention layer is to multiply the input matrix

A ∈ R𝑚×𝑛 by three matrices (W𝑄 ∈ R𝑛×𝑘 , W𝐾 ∈ R𝑛×𝑘 , and
W𝑉 ∈ R𝑛×𝑘) respectively:

Q := A ·W𝑄 ;

K := A ·W𝐾 ;

V := A ·W𝑉 .

We concentrate on explaining the computation of Q := A ·W𝑄 ,

noting that the same process is applicable toW𝐾 andW𝑉 .

Let 𝑎𝑖, 𝑗 ∈ R be the element in the 𝑖-th row and 𝑗-th column of A,
w𝑗 ∈ R𝑘 be the 𝑗-th row ofW𝑄 and q𝑖 ∈ R𝑘 be the 𝑖-th row of Q.
Then, q𝑖 is the vector-wise sum of (𝑎𝑖, 𝑗 ·w𝑗) ∀ 𝑗 ∈ [𝑛].

To this end, we could have C homomorphically encrypt each

𝑎𝑖, 𝑗 and send the corresponding ciphertexts to S, who can then

homomorphically evaluate MatrixMul. However, this faces two
challenges:

(1) C needs to send𝑚 · 𝑛 ciphertexts; and

(2) S needs to perform𝑚 · 𝑛 · 𝑘 ciphertext-plaintext multiplica-

tions.

We leverage SIMD to address the second challenge. Specifically, we

have C encrypt each 𝑎𝑖, 𝑗 as:

ã𝑖, 𝑗 := Enc([𝑎𝑖, 𝑗 , ..., 𝑎𝑖, 𝑗︸ ︷︷ ︸
𝑘

]) (suppose 𝑘 < 𝑁).

Then, S is able to compute Enc(𝑎𝑖, 𝑗 ·w𝑗) with a single ciphertext-
plaintext multiplication:

ã𝑖, 𝑗 ⊠w𝑗 ,

thereby reducing the total number of ciphertext-plaintext multipli-

cations to𝑚 · 𝑛. Figure 2 shows a toy example with A ∈ R2×3 and
W𝑄 ∈ R3×3.

Figure 2: A toy example of SIMD-basedmatrix multiplication

Nevertheless, C still needs to send𝑚×𝑛 ciphertexts. We propose

a method enabling C to compress them into
𝑚×𝑛
𝑁 ′ ciphertexts, while

ensuring S can decompress them and perform the aforementioned

computations (cf. §4).

3.1.2 Matrix multiplication (ciphertext-ciphertext). After obtaining
the encrypted (Q,K,V), S needs to compute Q · K𝑇 . Now, each
row of Q ∈ R𝑚×𝑘 and each column of K𝑇 ∈ R𝑘×𝑚 are encrypted

in SIMD format: Enc(q) and Enc(k𝑇). If S can compute the inner-

product between Enc(q𝑖) and Enc(k𝑇
𝑗
) ∀ 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑚], it can

obtain the encrypted result of Q · K𝑇 .
Thanks to SIMD,S can easily obtain Enc(u), where u = [𝑢0, ..., 𝑢𝑘−1]

is the element-wise product of q and k𝑇 . Now, to compute the inner-

product, S only needs to compute 𝑠 :=
∑𝑘−1
𝑖=0 𝑢𝑖 under SIMD. S

could simply rotate Enc([𝑢0, ..., 𝑢𝑘−1]) for (𝑘 − 1) times and com-

pute the sum, after which S obtains Enc([𝑠, ..., 𝑠︸︷︷︸
𝑘

]). We propose a

QuickSum algorithm that allows S to achieve this goal with only

log𝑘 rotations (cf. §5.1).

In the end, S combines the ciphertexts in each row into a single

one: ⊞𝑚−1
𝑖=0
(Enc([𝑠𝑖 , ..., 𝑠𝑖]) ⊠ b𝑖), where only the 𝑖-th slot in 𝑏𝑖 is 1

and other slots are 0s. We denote the output matrix as A ∈ R𝑚×𝑚 ,

which is the input to Softmax. Each row of A is encrypted in SIMD

format.

We remark that the MatrixMul after Softmax can be computed

in this way as well.

3.1.3 Softmax. Recall that the Softmax function needs to be ap-

plied to each row of A. The Softmax function is commonly evalu-

ated as:

𝑦𝑖 =
exp(𝑎𝑖 − 𝑎𝑚𝑎𝑥)∑𝑚−1
𝑗=0 exp(𝑎 𝑗 − 𝑎𝑚𝑎𝑥)

(1)

where 𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑎0, ..., 𝑎𝑚−1) ensures all inputs to the expo-

nential function (i.e., 𝑎′
𝑗
= 𝑎 𝑗 − 𝑎𝑚𝑎𝑥) are non-positive, achieving

numerical stability [32].

We propose a QuickMax algorithm that takes Enc([𝑎0, ..., 𝑎𝑚−1])
as input and outputs Enc([𝑎𝑚𝑎𝑥 , ..., 𝑎𝑚𝑎𝑥︸ ︷︷ ︸

𝑚

]), requiring only (log𝑚−

1) Sgn operations and log𝑚 rotations (cf. §5.2).

With Enc([𝑎0, ..., 𝑎𝑚−1]) and Enc([𝑎𝑚𝑎𝑥 , ..., 𝑎𝑚𝑎𝑥]),S could eas-

ily obtain Enc([𝑎′
0
, ..., 𝑎′

𝑚−1]). Following BumbleBee [38], we ap-

proximate the exponentiation using the Taylor series:

exp(𝑥) ≈ (1 + 𝑥

2
𝑟
)2

𝑟

, 𝑥 ≤ 0

with 𝑟 = 6, which limits the average error within 10
−5

(cf. §6.3).

Then, S could compute the exponentiation in SIMD format and

obtain Enc([𝑒0, ..., 𝑒𝑚−1]), where 𝑒 𝑗 = exp(𝑎′
𝑗
). Next, S applies

QuickSum (cf. §5.1) to obtain Enc([
𝑚−1∑︁
𝑗=0

𝑒 𝑗 , ...,

𝑚−1∑︁
𝑗=0

𝑒 𝑗︸ ︷︷ ︸
𝑚

]). In the end,

S computes the final result in SIMD format using the Goldschmidt

division algorithm [21, 41]. Algorithm 1 describes the details of our

secure Softmax.

4

Algorithm 1 Secure Softmax on RNS-CKKS

Input: ã = Enc([𝑎0, ..., 𝑎𝑚−1,0, ..., 0]) with 2𝑚 < 𝑁

Output: Enc([𝑦0, ..., 𝑦𝑚−1, 0, ..., 0]) (cf. Equation 1)

1: function Softmax(ã)
2: ã𝑚𝑎𝑥 ← QuickMax(ã) // cf. § 5.2
3: ẽ← Exp(ã⊟ ã𝑚𝑎𝑥)
4: s̃← QuickSum(ẽ) // cf. § 5.1
5: return ẽ⊠ Inverse(s̃)
6: end function

3.2 Layer normalization
For the ease of computation, we perform the following transforma-

tion to LayerNorm:

𝑦𝑖 = 𝛾 ·
𝑎𝑖 − `
𝜎
+ 𝛽

= 𝛾 · 𝑛(𝑎𝑖 − `)

𝑛

√︃
1

𝑛

∑𝑛−1
𝑖=0 (𝑎𝑖 − `)2

+ 𝛽

=
√
𝑛𝛾 · 𝑛𝑎𝑖 − 𝑛`√︃∑𝑛−1

𝑖=0 (𝑛𝑎𝑖 − 𝑛`)2
+ 𝛽.

Let 𝑧𝑖 = 𝑛𝑎𝑖 − 𝑛` = 𝑛𝑎𝑖 −
∑𝑛−1
𝑖=0 𝑎𝑖 , then

𝑦𝑖 = 𝛾
√
𝑛 · 𝑧𝑖√︃∑𝑛−1

𝑖=0 𝑧
2

𝑖

+ 𝛽. (2)

We apply QuickSum (cf. §5.1) again to compute

∑𝑛−1
𝑖=0 𝑎𝑖 and∑𝑛−1

𝑖=0 𝑧
2

𝑖
. For the inverse square root, we adopt themethod proposed

in [42], which employs Newton iteration with a proper initial value.

Algorithm 2 describes the details of our secure LayerNorm.

Algorithm 2 Secure LayerNorm on RNS-CKKS

Input: ã = Enc([𝑎0, ..., 𝑎𝑛−1,0, ..., 0]) with 2𝑛 < 𝑁

Output: Enc([𝑦0, ..., 𝑦𝑛−1, 0, ..., 0]) (cf. Equation 2)

1: function LayerNorm(ã)
2: s̃← QuickSum(ã) // cf. § 5.1
3: z̃← (𝑛 ⊠ ã) ⊟ s̃ // 𝑧𝑖 = 𝑛𝑎𝑖 −

∑𝑛−1
𝑖=0 𝑎𝑖

4: ỹ← Square(z̃)
5: ỹ← QuickSum(ỹ) // cf. § 5.1
6: ỹ← InvertSqrt(ỹ)
7: ỹ← z̃⊠ ỹ // 𝑦𝑖 = 𝑧𝑖/

√︃∑𝑛
𝑖=1 𝑧

2

𝑖

8: return (ỹ⊠ 𝛾 ⊠
√
𝑛) ⊞ 𝛽

9: end function

3.3 Feed forward
The feed forward layer involves two MatrixMuls and one GELU. For
MatrixMul, denoted as A ·W, each row of A is encrypted in SIMD

format andW is known to S. Consequently, S can employ a similar

method as described in §3.1.2:

(1) Compute the element-wise product between each row of A
and each column ofW. Notice that this time only requires

ciphertext-plaintext multiplication, unlike the ciphertext-

ciphertext multiplication used in §3.1.2.

(2) Use QuickSum to compute the dot-product.

(3) Combine the ciphertexts in each row into a single one.

We use the following piecewise polynomials to approximate

GELU(𝑥), which limits the average error within 10
−3

(cf. §6.3) when

𝑥 ∈ [−60, 60]1:

GELU(𝑥) =

0 𝑥 ≤ −4
𝑃 (𝑥) = ∑𝑖=3

𝑖=0 𝑐𝑖𝑥
𝑖 −4 < 𝑥 ≤ −1.95

𝑄 (𝑥) = ∑𝑖=6
𝑖=0 𝑑𝑖𝑥

𝑖 −1.95 < 𝑥 ≤ 3

𝑥 𝑥 > 3

(3)

We first use the Sgn operation to obtain 4 encrypted bits:𝑏0, 𝑏1, 𝑏2, 𝑏3,
s.t.,

𝑏𝑖 = 1 iff 𝑥 belongs to the 𝑖-th segment.

Then, GELU(𝑥) = 𝑏0 · 0 + 𝑏1𝑃 (𝑥) + 𝑏2𝑄 (𝑥) + 𝑏3𝑥 .
Algorithm 3 shows the details of our secure GELU. For simplic-

ity, we omit the evaluation of 𝑃 (𝑥), 𝑄 (𝑥) in Algorithm 3. We re-

mark that our algorithm can implicitly handle the cases where

𝑎 = −4,−1.95,−3:
• 𝑦 = 0.5𝑃 (𝑎) when 𝑎 = −4, which is correct given 𝑃 (𝑎) ≈ 0

in this case;

• 𝑦 = 0.5𝑃 (𝑎) + 0.5𝑄 (𝑎) when 𝑎 = 1.95, which is correct given

𝑃 (𝑎) ≈ 𝑄 (𝑎) in this case;

• 𝑦 = 0.5𝑄 (𝑎) + 0.5 when 𝑎 = −4, which is correct given

𝑄 (𝑎) ≈ 1 in this case.

Algorithm 3 Secure GELU on RNS-CKKS

Input: ã = Enc([𝑎0, ..., 𝑎𝑁−1])
Output: Enc([𝑦0, ..., 𝑦𝑁−1]) (cf. Equation 3)

1: function GELU(ã)
2: Compare 𝑎 with the breakpoints:

s̃0 ← 0.5⊠ Sgn(ã⊞ 4) // 𝑠0 = 0.5{𝑎 > −4}
s̃1 ← 0.5⊠ Sgn(ã⊞ 1.95) // 𝑠1 = 0.5{𝑎 > −1.95}
s̃2 ← 0.5⊠ Sgn(ã⊟ 3) // 𝑠2 = 0.5{𝑎 > 3}

3: Compute segment selection:

˜b0 ← 0.5⊟ s̃0 // 𝑏0 = 1{𝑥 < −4}
˜b1 ← s̃0 ⊟ s̃1 // 𝑏1 = 1{−4 < 𝑥 < −1.95}
˜b2 ← s̃1 ⊟ s̃2 // 𝑏2 = 1{−1.95 < 𝑥 < 3}
˜b3 ← 0.5⊞ s̃2 // 𝑏3 = 1{𝑥 > 3}

4: Compute GELU:

ỹ← (˜b0 ⊠ 0) ⊞ (˜b1 ⊠ 𝑃 (ã)) ⊞ (˜b2 ⊠𝑄 (ã)) ⊞ (˜b3 ⊠ ã)
5: return ỹ
6: end function

3.4 Argmax
Suppose the last layer outputs Enc([𝑎0, ..., 𝑎𝑚−1]), the final output
of the transformer should be a selection vector Enc([𝑏0, ..., 𝑏𝑚−1]),
where

𝑏𝑖 = 1 iff 𝑎𝑖 =𝑚𝑎𝑥 (𝑎0, ..., 𝑎𝑚−1), otherwise 𝑏𝑖 = 0.

The state-of-the-art non-interactive protocol that can achieve this

goal is Phoneix [29], which requires (𝑚 + 1) Sgns and (𝑚 + 1)
rotations.

We innovatively propose to approximate each 𝑏𝑖 as:

𝑏𝑖 = Sgn(𝑎𝑖 − 𝑎𝑚𝑎𝑥) + 1. (4)

1
Our experimental results show that all inputs are in this range.

5

Then, the selection vector can be easily computed as described

in Algorithm 4. It only requires log𝑚 Sgns and log𝑚 rotations,

achieving 13.3× speedup over Phoneix [29].

Algorithm 4 Secure Argmax on RNS-CKKS

Input: ã = Enc([𝑎0, ..., 𝑎𝑚−1,0, ..., 0]) with 2𝑚 < 𝑁

Output: Enc([𝑏0, ..., 𝑏𝑚−1, 0, ..., 0]) (cf. Equation 4)

1: function Argmax(𝑐)
2: ã𝑚𝑎𝑥 ← QuickMax(ã) // cf. § 5.2
3: ã← ã⊟ ã𝑚𝑎𝑥
4:

˜b← Sgn(ã) // 𝑏 = 0 or −1
5:

˜b← ˜b⊞ 1

6: return ˜b
7: end function

3.5 Placement of bootstrapping
As mentioned in §2.3 , NEXUS is based on RNS-CKKS, which is

a leveled homomorphic encryption scheme that allows at most 𝐿

multiplications on any computation path. Once a ciphertext’s level

becomes too low, bootstrapping is required to refresh it to a higher

level to enable moremultiplications. As the bootstrapping operation

is expensive, its placement is crucial for the overall performance. For

example, the input/output matrix size of GELU is R128×3072 (packed
in 12 ciphertexts), which are then reduced to R128×768 (packed in

3 ciphertexts) by the subsequent MatrixMul. Therefore, it is cru-
cial to circumvent bootstrapping during operations involving large

input/output sizes, such as GELU, by judiciously selecting the multi-

plicative depth 𝐿. Figure 3 shows the placement of bootstrapping

for a BERT-base transformer in NEXUS.

Figure 3: Placement of bootstrapping for a BERT-base trans-
former.

4 SIMD CIPHERTEXTS COMPRESSION AND
DECOMPRESSION

Suppose C wants to send 𝑁 ′ ciphertexts to S with each ciphertext

encrypting 𝑁 identical values in SIMD format: Enc([𝑎0, ..., 𝑎0︸ ︷︷ ︸
𝑁

]), ...,

Enc([𝑎𝑁 ′−1, ..., 𝑎𝑁 ′−1︸ ︷︷ ︸
𝑁

]).We have C pack [𝑎0, 𝑎1, ..., 𝑎𝑁 ′−1] into a

polynomial 𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ... + 𝑎𝑁 ′−1𝑥𝑁
′−1

and send

p̃0 := E(𝑝 (𝑥)) to S. In this way, we reduce the communication cost

from 𝑁 ′ ciphertexts to a single ciphertext. Next, we show how S
performs decompression to recover the 𝑁 ′ SIMD ciphertexts.

Notice that Subs(p̃0, 𝑁 ′ + 1) (cf. §2.3) returns:
E(𝑎0 + 𝑎1𝑥𝑁

′+1 + 𝑎2𝑥2(𝑁
′+1) + ... + 𝑎𝑁 ′−1𝑥 (𝑁

′−1) (𝑁 ′+1))

=E(𝑎0 + 𝑎1𝑥𝑁
′+1 + 𝑎2 (𝑥𝑁

′+1)2 + ... + 𝑎𝑁 ′−1 (𝑥𝑁
′+1) (𝑁

′−1))

=E(𝑎0 + 𝑎1 (−𝑥) + 𝑎2 (−𝑥)2 + ... + 𝑎𝑁 ′−1 (−𝑥) (𝑁
′−1)) .2

It is evident that p̃0⊞ Subs(p̃0, 𝑁 ′ + 1) eliminates all odd-degree

terms of 𝑝 (𝑥). Then, S can extract E(𝑎0 + 0𝑥1 + ... + 0𝑥𝑁
′−1) via

log𝑁 ′ substitutions:

p̃1 ← p̃0,⊞Subs(p̃0,
𝑁 ′

2
0
+ 1)

p̃2 ← p̃1 ⊞ Subs(p̃1,
𝑁 ′

2
1
+ 1)

p̃3 ← p̃2 ⊞ Subs(p̃2,
𝑁 ′

2
2
+ 1)

......

p̃
log𝑁 ′ ← p̃

log𝑁 ′−1 ⊞ Subs(p̃
log𝑁 ′−1,

𝑁 ′

2
(log𝑁 ′−1) + 1)

p̃
log𝑁 ′ ← p̃

log𝑁 ′ ⊠
1

𝑁 ′

given that p̃𝑖 ⊞ Subs(p̃𝑖 , 𝑁
′

2
𝑖 + 1) eliminates all 𝑑-degree terms,

where (𝑑 mod 2
𝑖 = 1). Later, we will prove that the output of this

extraction process is exactly Enc([𝑎0, 𝑎0, ..., 𝑎0︸ ︷︷ ︸
𝑁

]) (cf. Theorem 1).

Similarly, to extract E(𝑎1 + 0𝑥1 + ...+ 0𝑥𝑁
′−1), S could left-rotate

the encrypted 𝑝 (𝑥) by one term (i.e., multiply by 𝑥−1) and run the

above extraction process again. By performing this for 𝑁 ′ times,

S can get all individual encryption of [𝑎0, 𝑎1, ..., 𝑎𝑁 ′−1]. However,
this involves (𝑁 ′ log𝑁 ′) substitutions. In contrast, we propose a

method that can achieve the same goal with only 2𝑁 ′ substitutions.
Our method is based on the following observations:

• There are only two terms in the polynomial inside p̃
log𝑁 ′−1:

𝑎0+𝑎𝑁 ′/2𝑥𝑁
′/2

. IfS left-rotates this polynomial by one term

(and obtains 𝑎𝑁 ′/2 + 𝑎0𝑥𝑁
′/2

), it can extract 𝑎𝑁 ′/2 with only

one substitution (instead of log𝑁 ′).
• There are four terms in the polynomial inside p̃

log𝑁 ′−2. If S
left-rotates this polynomial by one term, it can can extract

the other two coefficients (other than 𝑎0 and 𝑎𝑁 ′/2) with
three substitutions in total.

• If S starts this already from p̃0, the extraction process be-

comes a binary tree and the leaves are exactly𝑎0, 𝑎1, ..., 𝑎𝑁 ′−1.
• To left-rotate the polynomial inside p̃𝑖 by one term, S needs

to multiply p̃𝑖 by 𝑥−2
𝑖
instead of 𝑥−1, because some terms

have been eliminated. Denoted as: p̃′
𝑖
← p̃𝑖 ⊠ 𝑥−2

𝑖
.

Based on these observations, we change the extraction process

to:

(1) p̃1,0 ← p̃0 ⊞ Subs(p̃0, 𝑁
′

2
0
+ 1),

p̃1,1 ← p̃′
0
⊞ Subs(p̃′

0
, 𝑁
′

2
0
+ 1)

2
Observe that 𝑥𝑁

′ + 1 ≡ 0 (mod 𝑥𝑁
′ + 1) and hence 𝑥𝑁

′+1 ≡ −𝑥 (mod 𝑥𝑁
′ + 1) .

6

(2) p̃2,0 ← p̃1,0 ⊞ Subs(p̃1,0, 𝑁
′

2
1
+ 1),

p̃2,1 ← p̃′
1,0

⊞ Subs(p̃′
1,0
, 𝑁
′

2
1
+ 1),

p̃2,2 ← p̃1,1 ⊞ Subs(p̃1,1, 𝑁
′

2
1
+ 1),

p̃2,3 ← p̃′
1,1

⊞ Subs(p̃′
1,1
, 𝑁
′

2
1
+ 1)

(3)

After log𝑁 ′ steps, S obtain 𝑁 ′ ciphertexts, representing the in-

dividual encryption of [𝑎0, 𝑎1, ..., 𝑎𝑁 ′−1]. Figure 4 visualizes this

process with a toy polynomial of degree-3. Algorithm 5 describes

the full decompression process. Clearly, it only requires 2𝑁 ′ substi-
tutions in total. We prove its correctness in Appendix A.

Figure 4: A toy example showcasing the decompression pro-
cess.

Algorithm 5 Secure Decompression on RNS-CKKS

Input: p̃0 = E(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ... + 𝑎𝑁 ′−1𝑥𝑁
′−1)

Output: [ã0, ..., ã𝑁 ′−1], where each ã𝑖 = Enc([𝑎𝑖 , ..., 𝑎𝑖︸ ︷︷ ︸
𝑁

])

1: function Decompress(p̃0)
2: p̃0,0 := p̃0
3: for 𝑖 = 0 to log𝑁 ′ do
4: for 𝑗 = 0 to 2

𝑖 − 1 do
5: p̃′

𝑖, 𝑗
← p̃𝑖, 𝑗 ⊠ 𝑥−2

𝑖

6: p̃𝑖+1,2𝑗−1 ← p̃𝑖, 𝑗 ⊞ Subs(𝑐, 𝑁 ′
2
𝑖 + 1)

7: p̃𝑖+1,2𝑗 ← p̃′
𝑖, 𝑗

⊞ Subs(𝑐′, 𝑁 ′
2
𝑖 + 1)

8: end for
9: end for
10: for 𝑗 = 0 to 𝑁 ′ − 1 do
11: ã𝑗 ← p̃

log𝑁 ′, 𝑗 ⊠
1

𝑁 ′

12: end for
13: re-arrange [ã0, ã1, ..., ã𝑁 ′−1] according to the order of

[𝑎0, 𝑎1, ..., 𝑎𝑁 ′−1] and return the result

14: end function

Next, we prove that each output ã𝑖 of Algorithm 5 is exactly an

SIMD ciphertext encrypting a vector of 𝑁 𝑎𝑖s.

Theorem 1. The encryption of a polynomial with only constant
term: E(𝑎𝑠 + 0𝑥1 + ... + 0𝑥𝑁

′−1) is exactly an SIMD encryption of 𝑁
identical values: Enc([𝑎𝑠 , 𝑎𝑠 , ..., 𝑎𝑠︸ ︷︷ ︸

𝑁

]).

Proof. Given that

Enc([𝑎𝑠 , 𝑎𝑠 , ..., 𝑎𝑠︸ ︷︷ ︸
𝑁

]) = E(𝜋 ([𝑎𝑠 , 𝑎𝑠 , ..., 𝑎𝑠︸ ︷︷ ︸
𝑁

])),

we only need to prove

E(𝜋 ([𝑎𝑠 , 𝑎𝑠 , ..., 𝑎𝑠︸ ︷︷ ︸
𝑁

])) = E(𝑎𝑠 + 0𝑥1 + ... + 0𝑥𝑁
′−1) .

The encoding function (i.e., 𝜋) is performed as follows:

𝜋 ([𝑎𝑠 , ..., 𝑎𝑠]) = V−1

𝑎𝑠
.
.
.

𝑎𝑠

 ,
whereV−1 is the inverse of VandermondematrixV(Z0, Z1, · · · , Z𝑁−1).
Thereby, we just need to prove:

V−1

𝑎𝑠
𝑎𝑠
.
.
.

𝑎𝑠

=

𝑎𝑠
0

.

.

.

0

(5)

By multiplying V(Z0, Z1, · · · , Z𝑁−1) to the left-hand side of Equa-
tion 5, we can get:

V(Z0, Z1, · · · , Z𝑁−1)V−1

𝑎𝑠
𝑎𝑠
.
.
.

𝑎𝑠

=

𝑎𝑠
𝑎𝑠
.
.
.

𝑎𝑠

.

By multiplying V(Z0, Z1, · · · , Z𝑁−1) to the right-hand side of Equa-

tion 5, we can get:

V(Z0, Z1, · · · , Z𝑁−1)

𝑎𝑠
0

.

.

.

0

=

1 Z0 · · · Z𝑛−1

0

1 Z1 · · · Z𝑛−1
1

.

.

.
.
.
.

. . .
.
.
.

1 Z𝑁−1 · · · Z𝑛−1
𝑁−1

𝑎𝑠
0

.

.

.

0

=

𝑎𝑠
𝑎𝑠
.
.
.

𝑎𝑠

,

which concludes the proof. □

4.1 Application to matrix multiplication
This compression-and-decompression technique can be naturally

applied to MatrixMul, as described in §3.1.1. Additionally, we intro-

duce a further optimization based on the observation that different

A ∈ R𝑚×𝑛 matrices need to be multiplied with the sameW ∈ R𝑛×𝑘
in transformer inference. For example, in GPT, the model autore-

gressively generates response words, requiring model inference

for multiple words (different As) [26]; In BERT, batch inference

is typically used to process multiple input samples (different As)
simultaneously [47]. Our goal is to reduce the amortized cost of

MatrixMul by exploiting this fact.

Let A = [a0, ..., a𝑛−1] with a𝑖 ∈ R𝑚 being each column of A.
Suppose S and C need to generate 𝑡 response words, then there

7

are 𝑡 input matrices:

A0 = [a0,0, a0,1, ..., a0,𝑛−1]
A1 = [a1,0, a1,1, ..., a1,𝑛−1]

......

A𝑡−1 = [a𝑡−1,0, ..., a𝑡−1,𝑛−1]

Let a′
𝑖
=

a0,𝑖
.
.
.

a𝑡−1,𝑖

 and q′
𝑗
:=
𝑛−1∑
𝑖=0

a′
𝑖
𝑤𝑖, 𝑗 ∀ 𝑗 ∈ [𝑘], then

Q′ = q′
0
| |q′

1
| |...| |q′

𝑘−1 =

A0W
.
.
.

A𝑡−1W

To this end, we introduce a preprocessing phase, where S sends

C the compressed (EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸
𝑡×𝑚

]) ∀ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]),3 using

our compression technique described in §4. Notice that this transfer

occurs only once, unless the model changes. Next, C performs

decompression to obtain EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸
𝑡×𝑚

]) ∀ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]. If

𝑡 ×𝑚 > 𝑁 , each [𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸
𝑡×𝑚

] occupies multiple ciphertexts. As C

has no knowledge about the inputs (i.e., As) in the preprocessing

phase, it samples U ∈
$
R(𝑡𝑚)×𝑛 , and computes:

EncS (v𝑗) ←
𝑛−1

⊞
𝑖=0

(
u𝑖 ⊠ EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸

𝑡×𝑚

])
)
, ∀ 𝑗 ∈ [𝑘]

where u𝑖 is the 𝑖-th column of U. Next, C encrypts each EncS (v𝑗)
with its own key and sends each EncC (EncS (v𝑗)) to S. Notice that
EncC (EncS (v𝑗)) ≡ EncS (EncC (v𝑗)) (see Appendix B for more

details), hence S can decrypt it and get EncC (v𝑗) ∀ 𝑖 ∈ [𝑘].
In the online phase, after knowingA′ = a′

0
| |a′

1
| |...| |a′

𝑛−1, C sends

(A′ − U) to S, which can be regarded as an one-time-pad encryp-

tion of A′, given that S does not know U. Then, S computes:

(A′ − U)W⊞ (EncC (v0) | |EncC (v1) | |...| |EncC (v𝑘))
= (A′W − V) ⊞ (EncC (v0) | |EncC (v1) | |...| |EncC (v𝑘))
= EncC (q′0) | |EncC (q

′
1
) | |...| |EncC (q′𝑘−1)

where q′
𝑗
is the 𝑗-th column of Q′. Algorithm 6 shows the detailed

process of the optimized MatrixMul. Its security proof can be found
in Appendix C.

Recall that the subsequent MatrixMul requires row-wise encryp-
tion for both Q and K (cf. §3.1.2). Nevertheless, it is noteworthy

that the multiplication of Q and K𝑇 remains feasible even when

subjected to column-wise encryption. Subsequently, the obtained

ciphertexts in each row can be combined, leading to a form of

row-wise encryption that facilitates the seamless execution of sub-

sequent operations. We provide more details in Appendix D.

3
We use EncS to denote an encryption under S’s public key. Similarly, we use EncC
to denote an encryption under C’s public key.

Table 2: Amortized communication cost for 𝑡 times of matrix
multiplication (R𝑚×𝑛 · R𝑛×𝑘). 𝑁 ′ is #elements batched in a
ciphertext. We also provide an example with real parameters
in BERT-base and GPT-2: 𝑚 = 128, 𝑛 = 768, 𝑘 = 768, 𝑁 ′ =

8192, 𝑡 = 256, 𝑒 = 144 (the 𝑒 parameter is only for CipherGPT).

Methods # FHE Ciphertexts Example

Cheetah [27] ≥ 2𝑚
√
𝑛𝑘√
𝑁 ′

2172

Iron [24] ≥ 2

√
𝑚𝑛𝑘√
𝑁 ′

192

CipherGPT [26]
2𝑒𝑛𝑘
𝑡𝑁 ′ 81

BOLT [40]
𝑚 (𝑛+𝑘)
𝑁 ′ 24

Ours (⌈𝑛𝑘
𝑁 ′ ⌉ + 𝑘 ⌈

𝑚𝑡
𝑁 ′ ⌉)/𝑡 13

We remark that this optimized MatrixMul does not compro-

mise the non-interactive property of NEXUS: C only needs to send

(A′ − U) to S and receive the inference result in online phase.

Table 2 compares the communication cost of NEXUS with the state-

of-the-art MatrixMul protocols.

5 SIMD SLOTS FOLDING
Recall that the rows of matrices Q, K, V are encrypted in SIMD for-

mat. Subsequent operations like inner-product (cf. §3.1.2), Softmax
(cf. §3.1.3), LayerNorm (cf. §3.2) and Argmax (cf. §3.4) involve com-

puting a function 𝑓 () on all SIMD slots and applying the result 𝑠

to each individual slot. For example, in Softmax and LayerNorm,
given Enc([𝑎0, ..., 𝑎𝑁−1]), S needs to obtain Enc([𝑠, ..., 𝑠︸︷︷︸

𝑁

]) where

𝑠 =
𝑁−1∑
𝑖=0

𝑎𝑖 . In this case, 𝑓 () is a sum function.

In this section, we provide a generic solution applicable to all

functions that supports associativity:

𝑓 (𝑓 (𝑎0, 𝑎1), 𝑎2) = 𝑓 (𝑎0, 𝑓 (𝑎1, 𝑎2))

As our solution operates like a fold functionality in functional pro-

gramming, we dub it SIMD slots folding.
A trivial solution is to rotate Enc([𝑎0, ..., 𝑎𝑁−1]) for (𝑁−1) times

and subsequently apply 𝑓 () to the resulting ciphertexts. Suppose
𝑁 = 4, the rotated ciphertexts are:

ã0 := Enc([𝑎0, 𝑎1, 𝑎2, 𝑎3]),
ã1 := Enc([𝑎1, 𝑎2, 𝑎3, 𝑎0]),
ã2 := Enc([𝑎2, 𝑎3, 𝑎0, 𝑎1]),
ã3 := Enc([𝑎3, 𝑎0, 𝑎1, 𝑎2]).

We can aggregate them by employing a binary tree structure:

ã0,1 := 𝑓 (ã0, ã1) = Enc([𝑓 (𝑎0, 𝑎1), 𝑓 (𝑎1, 𝑎2), 𝑓 (𝑎2, 𝑎3), 𝑓 (𝑎3, 𝑎0)]),
ã2,3 := 𝑓 (ã2, ã3) = Enc([𝑓 (𝑎2, 𝑎3), 𝑓 (𝑎3, 𝑎0), 𝑓 (𝑎0, 𝑎1), 𝑓 (𝑎1, 𝑎2)]);
and then:

𝑓 (ã0,1, ã2,3) = Enc([𝑠, 𝑠, 𝑠, 𝑠]).
This trivial solution requires 𝑁 − 1 rotations.

8

Algorithm 6 Optimized Secure MatrixMul on RNS-CKKS

Input: C holds A′ ∈ R(𝑡𝑚)×𝑛 and S holdsW ∈ R𝑛×𝑘 .
Output: Let 𝛼 = ⌈ 𝑡𝑚

𝑁
⌉, S gets Enc𝑐 (q′𝑗,0) | |...| |Enc𝑐 (q

′
𝑗,𝛼−1) ∀ 𝑗 ∈ [𝑘], where q

′
𝑗,0
| |...| |q′

𝑗,𝛼−1 is the 𝑗-th column of A′ ·W.

Preprocessing:
1: S packs the elements in W into ⌈𝑛 ·𝑘

𝑁 ′ ⌉ polynomials (notice that the order is not important), and sends the encrypted polynomials to C.
2: C runs Algorithm 5 to decompress these encrypted polynomials, and obtains Enc([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸

𝑁

]) ∀ 𝑖 ∈ [𝑛] 𝑗 ∈ [𝑘].

3: C samples U ∈
$
R(𝑡𝑚)×𝑛 , and computes:

EncS (v𝑗,0) | |...| |EncS (v𝑗,𝛼−1) ←
𝑛−1
⊞
𝑖=0

(
(u𝑖,0 ⊠ EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸

𝑁

])) | |...| | (u𝑖,𝛼−1 ⊠ EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸
𝑁

]))
)
∀ 𝑗 ∈ [𝑘],

where u𝑖,0 | |...| |u𝑖,𝛼−1 is the 𝑖-th column of U. In RNS-CKKS, C samples each u𝑖, 𝑗 as a random polynomial and multiplies it directly to

EncS ([𝑤𝑖, 𝑗 , ...,𝑤𝑖, 𝑗︸ ︷︷ ︸
𝑁

]).

4: C encrypts each EncS (v𝑗,𝑖) with its own key, and then sends each EncC (EncS (v𝑗,𝑖)) to S, who decrypts and gets EncC (v𝑗,𝑖).
Online:

5: For ∀ 𝑖 ∈ [𝑛], C sends (a′
𝑖,0
− u𝑖,0) | |...| | (a′𝑖,𝛼−1 − u𝑖,𝛼−1) to S, where a

′
𝑖,0
| |...| |a′

𝑖,𝛼−1 is the 𝑖-th column of A′. In RNS-CKKS, C encodes

each a′
𝑖, 𝑗

as a polynomial and subtracts the u𝑖, 𝑗 polynomial.

6: S computes Z := (A′ − U)W. For ∀ 𝑗 ∈ [𝑘], S computes (z𝑗,0 ⊞ EncC (v𝑗,0)) | |...| | (z𝑗,𝛼−1 ⊞ EncC (v𝑗,𝛼−1)).

Our key observation is that ã2,3 can be obtained by left-rotating

ã0,1 by two slots, hence there is no need to compute ã2 and ã3 at all.
More generally, each right-child in the binary tree can be obtained

by left-rotating the corresponding right-child by 2
𝑖
slots. Given that

we know the left-most leaf (i.e., ã0), we can compute the root (i.e.,

the final result 𝑠) in the form akin to a “Merkle tree” (cf. Figure 5).

Notice that when the number of rotated slots is a power of two,

the rotation overhead is equal to a single rotation. As a result, our

solution only requires (log𝑁 − 1) rotations.

Figure 5: A toy example for computing 𝑓 () on SIMD slots
(𝑛 = 𝑁).

However, this solution is applicable only when the length 𝑛 of

the input vector is equal to𝑁 , whereas𝑛 ≪ 𝑁 in the transformerwe

evaluated. In this case, we could transform Enc([𝑎0, ..., 𝑎𝑛−1, 0, ..., 0︸︷︷︸
𝑁−𝑛

])

into Enc([𝑎0, ..., 𝑎𝑛−1,𝑎0, ..., 𝑎𝑛−1, 0, ..., 0︸︷︷︸
𝑁−2𝑛

]) and then proceed with

the aforementioned process. Figure 6 provides a visualization of

the entire process and Algorithm 7 outlines the detailed steps. It

requires log𝑛 rotations in total.

Figure 6: A toy example for computing 𝑓 () on SIMD slots
(𝑛 ≪ 𝑁); # means the value is not important.

We remark that the (𝑁 − 2𝑛) empty slots can be used to fold

other ãs, thereby we can process
𝑁
2𝑛 vectors with a single SIMD

ciphertext. For example, in LayerNorm of BERT-base and GPT-2,

𝑛 = 128; when 𝑁 = 16, 384, we can process 32 vectors with one

ciphertext.

9

Algorithm 7 SIMD slots folding on RNS-CKKS

Input: ã = Enc([𝑎0, ..., 𝑎𝑛−1,0, ..., 0]) with 2𝑛 < 𝑁

Output: Enc([𝑠, ..., 𝑠︸︷︷︸
𝑛

, 0, ..., 0]), where 𝑠 = 𝑓 (𝑎0, ..., 𝑎𝑛−1)

1: function Fold(ã)
2: ã← ã⊞ RotR(ã, 𝑛)
3: for 𝑖 = 0 to log𝑛 − 1 do
4: s̃← RotL(ã, 2𝑖) // left-rotate by 2

𝑖
steps

5: s̃← 𝑓 (s̃, 𝑐)
6: ã := s̃
7: end for
8: return s̃⊠ [1, ..., 1︸︷︷︸

𝑛

, 0, ..., 0]

9: end function

5.1 QuickSum

Given [𝑎0, ..., 𝑎𝑛−1,0, ..., 0], S can obtain [
𝑁−1∑︁
𝑖=0

𝑎𝑖 , ...,

𝑁−1∑︁
𝑖=0

𝑎𝑖︸ ︷︷ ︸
𝑛

, 0, ..., 0]

through Algorithm 7 by replacing Line 5 with:

s̃← s̃⊞ ã.

5.2 QuickMax
Given [𝑎0, ..., 𝑎𝑛−1,0, ..., 0],S can obtain Enc([𝑎𝑚𝑎𝑥 , ..., 𝑎𝑚𝑎𝑥︸ ︷︷ ︸

𝑛

, 0, ..., 0])

where 𝑎𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑎0, 𝑎2, ..., 𝑎𝑛−1) through Algorithm 7 by replac-

ing 𝑓 () with𝑚𝑎𝑥 (). We leverage

𝑚𝑎𝑥 (𝑎, 𝑏) = 𝑎 + 𝑏 + (𝑎 − 𝑏) · Sgn(𝑎 − 𝑏)
2

to compute the𝑚𝑎𝑥 function on encrypted values. Then, Line 5 in

Algorithm 7 is replaced with:

s̃← 0.5⊠ (ã⊞ s̃⊞ (ã⊟ s̃) ⊠ Sgn(ã⊟ s̃)) .

6 EVALUATION
6.1 Implementation
We implement NEXUS in C++, utilizing the SEAL library [48] for

RNS-CKKS homomorphic encryption and FHE-MP-CNN [1] For

bootstrapping. We use HEXL [8] to accelerate SEAL on Intel CPUs.

We set the polynomial degree as 𝑁 ′ = 2
16

(hence 𝑁 = 2
15
) and

the ciphertext modulus as 1763-bit to achieve 128-bit security, fol-

lowing the “homomorphic encryption standard” [6]. We set the

multiplicative depth as 𝐿 = 35 and the depth for bootstrapping as

𝐾 = 14, which indicates that the available multiplicative depth is

𝐿 − 𝐾 = 21. We set 𝑞0 ≈ 2
60

and 𝑞𝑖 ≈ 2
50 ∀ 𝑖 ≥ 1. We leverage the

scale propagation technique [9] to eliminate the dominant noise

component.

6.2 Experimental setup
We primarily compare our work with Iron [24] and BOLT [40].

However, neither of their implementations is currently publicly

available. To enable a direct comparison with the results (of both

BOLT and Iron) reported in the BOLT paper, we conducted our

benchmarks under the same experimental setting as BOLT:

• We conducted our benchmarks on two VM instances with

3.20GHz Intel Xeon processors and 128 GB RAM.

• We control the communication bandwidth between them

using the Linux Traffic Control (tc) command. We set the

bandwidth to 3Gbps and the round-trip latency to 0.8 ms to

simulate the communication in LAN.

• Our simulation forWAN consisted of four settings: {100Mbps,

40ms}, {100Mbps, 80ms}, {200Mbps, 40ms}, and {200Mbps,

80ms}.

• The model parameters were taken from a pre-trained BERT-

base transformer [16]. The hyperparameters are the same

with BOLT.

• We set the the number of threads to 32, same as BOLT.

When measuring NEXUS, we did not distinguish between the pre-

processing time and online time,
4
as BOLT did not do this. Addi-

tionally, BOLT introduces a word elimination technique that can sig-

nificantly improve its performance but requires model fine-tuning.

As NEXUS does not require any fine-tuning, we compare with their

results that were obtained w.o. using word elimination. All results

were averaged from 10 runs.

6.3 Microbenchmarks
Matrix Multiplication. Figure 7 shows the amortized cost of

MatrixMul (cf. Algorithm 6) in LAN for multiple inputs. Consider-

ing that ChatGPT often generates several hundred words in a single

response, 𝑡 = 256 would be a reasonable number of inputs. The

amortized runtime (of 256 inputs) of NEXUS is 2.26s, 15.9× faster
than Iron and 3.3× faster than BOLT.When the number of inputs in-

creases to 1,024, which is also quite common, NEXUS demonstrates

even greater performance advantages. Specifically, it outperforms

BOLT by 4.8× in runtime and 2.6× in communication.

Non-linear Functions. Table 3 shows the comparison of non-

linear functions (GELU, Softmax, LayerNorm, Argmax). Iron and

BOLT implement such non-linear functions through secure two-

party computation, which is expensive in both bandwidth con-

sumption and communication rounds. In contrast, NEXUS holds

a superiority particularly in poor network conditions, owing to

its non-interactive feature. For example, when the bandwith is

100Mbps and round-trip latency is 80ms, NEXUS achieves:

• 11.7× speedup over Iron and 3.3× speedup over BOLT for

GELU;
• 14.3× speedup over Iron and 11.3× speedup over BOLT for

LayerNorm;
• 7.9× speedup over Iron and 3.2× speedup over BOLT for

Softmax;

Regarding Argmax, while both Phoenix and NEXUS are non-

interactive, NEXUS demands notably fewer rotations and Sgn oper-
ations. As a result, NEXUS outperforms Phoenix by 13.3× in terms

of speed.

4
In NEXUS, C needs to transfer rotate keys and bootstrapping keys, 21.6 GB in total.

However, this operation is a one-time requirement and has not been included in our

reported results.

10

Table 3: Evaluation of non-linear functions.

Setting Protocol Comm (MB) Rounds LAN WAN1 WAN2 WAN3 WAN4 Average Error

GELU
12 × R128×3072

Iron [24] 7960.00 × 12 256 × 12 126 2049 2075 4114 4118 5.8×10−4
BOLT [40] 1471.67 × 12 88 × 12 14 389 416 762 774 9.8×10−4
NEXUS 0 0 233 233 233 233 233 7.7×10−4

LayerNorm
24 × R128×768

Iron [24] 871.46 × 24 218 × 24 16 558 759 996 1158 1.7 ×10−3
BOLT [40] 599.40 × 24 220 × 24 14 430 653 723 914 -

NEXUS 0 0 81 81 81 81 81 4.5×10−4

Softmax
12 × R128×128

Iron [24] 3596.32 × 12 252× 12 60 930 964 1877 1900 3.2×10−5
BOLT [40] 1447.65 × 12 232 × 12 16 382 434 754 775 1.4×10−6
NEXUS 0 0 242 242 242 242 242 3.1×10−6

Argmax
R128

Phoenix [29] 0 0 366 366 366 366 366 4.0×10−4
NEXUS 0 0 28 28 28 28 28 2.5×10−6

1
200Mbps, 40ms

2
200Mbps, 80ms

3
100Mbps, 40ms

4
100Mbps, 80ms

The last column of Table 3 shows the average errors of these

three schemes. For Iron and BOLT, we calculated their average

errors via multiplying the ULP errors [45] reported in their papers

by their respective scales (BOLT did not report their ULP errors for

LayerNorm). For NEXUS, taking GELU as an example, we uniformly

sampled [𝑥1, ..., 𝑥1000] from the corresponding domain. For each

𝑥𝑖 , we calculated both the real 𝑦𝑖 = GELU(𝑥) and the approximated

𝑦′
𝑖
= GELU(𝑥). The average error is then computed as

∑
1000

𝑖=1 |𝑦𝑖−𝑦′𝑖 |
1000

.

The results indicate that the average errors introduced by NEXUS
are comparable to those of prior work.

6.4 Macrobenchmarks
End-to-EndPerformance.The end-to-end performance is roughly

the aggregation of the microbenchmarks. Additionally, Iron and

BOLT need to perform secure truncations to prevent overflows,

given their scaling of floating-point numbers to integers. In contrast,

NEXUS avoids the need for truncations by leveraging RNS-CKKS,

which supports floating-point numbers, but it incurs bootstrappings.

Specifically, the end-to-end workflow of NEXUS follows Figure 3.

Figure 8 shows the end-to-end performance (amortized for 128

inputs). Notably,NEXUS only consumes 164MB bandwidth, 1737.5×
reduction over Iron and 368.6× reduction over BOLT. In terms of

end-to-end runtime, NEXUS still achieves upto 11.6× speedup over

Iron and 2.8× speedup over BOLT.

Table 4 lists the runtime for each individual operation inNEXUS,
along with their corresponding proportions. Bootstrapping is the

most time-consuming part of the entire process, requiring 315s

and occupying 37.72% of the total runtime. Following bootstrap-

ping, Softmax and GELU are the next most time-consuming parts,

occupying 21.72% and 20.92% of the total runtime, respectively.

Accuracy. We evaluate accuracy with 4 datasets from the GLUE

benchmark [50], a widely adopted evaluation measure for BERT

and GPT-based transformers. Three of these datasets pertain to

BERT-base: RTE, SST-2, and QNLI, all involving classification tasks.

Table 4: Breaking down the end-to-end runtime of NEXUS.

Operation Input Time (s) %

MatrixMul R128×768 × R768×768 9 0.81%

Softmax R128×128 242 21.72%

MatrixMul R128×128 × R128×768 32 2.87%

Bootstrapping R128×768 105 9.43%

LayerNorm R128×768 40 3.59%

Bootstrapping R128×768 105 9.43%

MatrixMul R128×768 × R768×3072 36 3.23%

GELU R128×3072 233 20.92%

MatrixMul R128×768 × R768×3072 23 2.06%

Bootstrapping R128×768 105 9.43%

LayerNorm R128×768 40 3.59%

Bootstrapping R128×768 105 9.43%

Argmax R128 28 2.51%

Total - 1,103 -

The remaining dataset, Children’s Book Test (CBT), pertains to GPT,

evaluating accuracy by having GPT predict the correct word choice

from 10 options in a cloze test. As shown in Table 5, NEXUS attains
comparable levels of accuracy when compared to the plaintext

inference.

7 RELATEDWORK
Interactive secure inference for transformers.With the pro-

liferation of ChatGPT, secure transformer inference has become a

key area of research. Privformer [4], Puma [17] and Sigma [22] are

11

(a) Amortized Runtime vs. #inputs.

(b) Amortized Communication vs. #inputs.

Figure 7: Evaluation of ciphertext-plaintext matrix multi-
plication for R128×768 × R768×768 in LAN (amortized cost of
multiple inputs).

Figure 8: End-to-end inference performance (amortized cost
for 128 inputs).

three-party protocols that requires additional trust assumptions.

There are several works on secure transformer inference based

on 2PC [10, 24, 26, 35, 38, 40]. Iron [24] is an optimization of a

secure CNN protocol named Cheetah [27] and uses a more effi-

cient packing strategy to reduce the cost of matrix multiplication.

Table 5: Inference accuracy on the GLUE benchmarks using
BERT-base and GPT-2.

Model Dataset Plaintext NEXUS

BERT-base

RTE 70.04% 69.88%

SST-2 92.36% 92.11%

QNLI 90.30% 89.92%

GPT-2 CBT-CN 85.70% 85.31%

Bumblebee [38] further optimizes the packing strategy. Similar to

NEXUS, all these three protocols use polynomial coefficients to

pack matrices, but they did not make full use of the coefficients

(i.e., a large number of coefficients are wasted). In contrast, NEXUS
can use all coefficients to pack matrices, resulting in a much less

number of ciphertexts needed to be transferred. THE-X [10] and

MPCFormer [35] simply replace GELU, Softmax with a combina-

tion of ReLU and polynomials, hence both of them require model

retraining. BOLT [40] is the state-of-the-art solution for secure

transformer inference. Our experimental results show that NEXUS
achieves a speedup of 2.8× and a remarkable bandwidth reduction

of 368.6×, compared to BOLT.

Non-interactive secure inference. To the best of our knowledge,

all existing non-interactive secure inference protocols [7, 20, 28,

33, 37, 44] are designed for convolutional neural networks (CNNs).

CryptoNAS [20] and DeepReduce [28] are proposed to run the

non-linear functions like ReLU under FHE, but they cannot sup-

port the non-linear functions required by transformers, such as

GELU, softmax and layer normalization. AutoFHE [7] can automati-

cally optimize the placement of bootstrapping operations in a CNN

workflow. NEXUS is arguably the first protocol for non-interactive

secure transformer inference.

FHE acceleration. Recent research on optimizing compilers [14,

15, 49], GPU acceleration [5, 51], and specialized hardware accel-

erators [3, 31, 46] has demonstrated significant speedups for RNS-

CKKS. These results can be used directly to accelerate NEXUS. We

did not utilize them in our benchmarks because we aim to provide

a fair comparison with prior work.

8 CONCLUSION
We propose NEXUS, the first secure inference protocol for trans-
formers without the need of further interactions between the client

and the server. We propose a series of new protocols for RNS-

CKKS so that the server can efficiently and accurately compute

each layer of the transformer on the encrypted data. Given that the

non-interactive protocol is not limited by network bandwidth, we

posit that combining NEXUS with hardware acceleration makes

secure transformer inference ready for practical deployment.

REFERENCES
[1] [n. d.]. FHE-MP-CNN. https://github.com/snu-ccl/FHE-MP-CNN.

[2] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón. 2019.

QUOTIENT: two-party secure neural network training and prediction. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1231–1247.

12

https://github.com/snu-ccl/FHE-MP-CNN

[3] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil,

Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An

FPGA-based accelerator for bootstrappable fully homomorphic encryption. In

2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 882–895.

[4] Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. 2023.

Privformer: Privacy-preserving Transformer withMPC. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroSP). 392–410. https://doi.org/10.1109/

EuroSP57164.2023.00031

[5] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura Kazuaki,

and Aung Khin Mi Mi. 2020. Multi-GPU design and performance evaluation of

homomorphic encryption on GPU clusters. IEEE Transactions on Parallel and
Distributed Systems 32, 2 (2020), 379–391.

[6] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. 2021.

Homomorphic encryption standard. Protecting privacy through homomorphic
encryption (2021), 31–62.

[7] Wei Ao and Vishnu Naresh Boddeti. 2024. AutoFHE: Automated Adaption of

CNNs for Efficient Evaluation over FHE. 33st USENIX Security Symposium

(USENIX Security 24).

[8] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and Vinodh Gopal.

2021. Intel hexl: Accelerating homomorphic encryption with intel avx512-ifma52.

In Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. 57–62.

[9] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. 2021. Efficient bootstrapping for approximate homomorphic

encryption with non-sparse keys. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 587–617.

[10] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang,

Haoyi Zhou, Jianxin Li, and Furu Wei. 2022. THE-X: Privacy-Preserving Trans-

former Inference with Homomorphic Encryption. In Findings of the Association
for Computational Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and

Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin,

Ireland, 3510–3520. https://doi.org/10.18653/v1/2022.findings-acl.277

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2019. A full RNS variant of approximate homomorphic encryption. In Selected
Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer, 347–368.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[13] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient homomor-

phic comparison methods with optimal complexity. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II 26. Springer, 221–256.

[14] Sangeeta Chowdhary, Wei Dai, Kim Laine, and Olli Saarikivi. 2021. Eva improved:

Compiler and extension library for ckks. In Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography. 43–55.

[15] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed

Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing

compiler for fully-homomorphic neural-network inferencing. In Proceedings of
the 40th ACM SIGPLAN conference on programming language design and imple-
mentation. 142–156.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong

Huang, Cheng Hong, Tao Wei, and Wenguang Cheng. 2023. Puma: Secure

inference of llama-7b in five minutes. arXiv preprint arXiv:2307.12533 (2023).
[18] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. 2024. BLEACH:

cleaning errors in discrete computations over CKKS. Journal of Cryptology 37, 1

(2024), 3.

[19] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[20] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg.

2020. Cryptonas: Private inference on a relu budget. Advances in Neural Infor-
mation Processing Systems 33 (2020), 16961–16971.

[21] Robert E Goldschmidt. 1964. Applications of division by convergence. Ph. D.

Dissertation. Massachusetts Institute of Technology.

[22] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya

Gupta, Ashish Panwar, and Rahul Sharma. 2023. SIGMA: secure GPT inference

with function secret sharing. Cryptology ePrint Archive (2023).
[23] Kyoohyung Han and Dohyeong Ki. 2020. Better bootstrapping for approxi-

mate homomorphic encryption. In Cryptographers’ Track at the RSA Conference.
Springer, 364–390.

[24] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tian-

wei Zhang. 2022. Iron: Private inference on transformers. Advances in Neural
Information Processing Systems 35 (2022), 15718–15731.

[25] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).

arXiv preprint arXiv:1606.08415 (2016).
[26] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui

Ren. 2023. Ciphergpt: Secure two-party gpt inference. Cryptology ePrint Archive
(2023).

[27] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:

Lean and fast secure {two-party} deep neural network inference. In 31st USENIX
Security Symposium (USENIX Security 22). 809–826.

[28] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. 2021.

Deepreduce: Relu reduction for fast private inference. In International Conference
on Machine Learning. PMLR, 4839–4849.

[29] Nikola Jovanovic, Marc Fischer, Samuel Steffen, and Martin Vechev. 2022. Private

and reliable neural network inference. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 1663–1677.

[30] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

{GAZELLE}: A low latency framework for secure neural network inference. In

27th USENIX Security Symposium (USENIX Security 18). 1651–1669.
[31] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim, and

Jung Ho Ahn. 2023. SHARP: A Short-Word Hierarchical Accelerator for Robust

and Practical Fully Homomorphic Encryption. In Proceedings of the 50th Annual
International Symposium on Computer Architecture. 1–15.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[33] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-

Seon No, and Woosuk Choi. 2022. Low-complexity deep convolutional neural

networks on fully homomorphic encryption using multiplexed parallel convolu-

tions. In International Conference on Machine Learning. PMLR, 12403–12422.

[34] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. 2021. Minimax

approximation of sign function by composite polynomial for homomorphic

comparison. IEEE Transactions on Dependable and Secure Computing 19, 6 (2021),

3711–3727.

[35] Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang.

2023. MPCFormer: fast, performant and private Transformer inference with MPC.

International Conference on Learning Representations (ICLR) (2023).
[36] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural

network predictions via minionn transformations. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security. 619–631.

[37] Qian Lou and Lei Jiang. 2021. Hemet: A homomorphic-encryption-friendly

privacy-preserving mobile neural network architecture. In International confer-
ence on machine learning. PMLR, 7102–7110.

[38] Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Kui Ren, Cheng Hong,

Tao Wei, and WenGuang Chen. 2023. BumbleBee: Secure Two-party Inference

Framework for Large Transformers. Cryptology ePrint Archive (2023).
[39] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and

Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural

Networks. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 2505–2522. https://www.usenix.org/conference/usenixsecurity20/

presentation/mishra

[40] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider.

2024. BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transform-

ers. IEEE Symposium on Security and Privacy (SP) (2024).
[41] Hongyuan Qu and Guangwu Xu. [n. d.]. Improvements of Homomorphic Evalu-

ation of Inverse Square Root. Available at SSRN 4258571 ([n. d.]).
[42] Hongyuan Qu and Guangwu Xu. 2023. Improvements of Homomorphic Secure

Evaluation of Inverse Square Root. In International Conference on Information
and Communications Security. Springer, 110–127.

[43] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[44] Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu, Caiwen

Ding, and Wujie Wen. 2023. SpENCNN: orchestrating encoding and sparsity

for fast homomorphically encrypted neural network inference. In International
Conference on Machine Learning. PMLR, 28718–28728.

[45] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,

Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. Sirnn: A math

library for secure rnn inference. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1003–1020.

[46] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald

Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-

grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.

[47] SEAL 2023. Microsoft batch-inference. https://github.com/microsoft/batch-

inference. Microsoft Research, Redmond, WA..

[48] SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

13

https://doi.org/10.1109/EuroSP57164.2023.00031
https://doi.org/10.1109/EuroSP57164.2023.00031
https://doi.org/10.18653/v1/2022.findings-acl.277
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://github.com/microsoft/batch-inference
https://github.com/microsoft/batch-inference
https://github.com/Microsoft/SEAL

[49] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. 2023.

{HECO}: Fully Homomorphic Encryption Compiler. In 32nd USENIX Security
Symposium (USENIX Security 23). 4715–4732.

[50] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R

Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural

language understanding. arXiv preprint arXiv:1804.07461 (2018).
[51] Zhiwei Wang, Peinan Li, Rui Hou, Zhihao Li, Jiangfeng Cao, XiaoFengWang, and

Dan Meng. 2023. HE-Booster: An Efficient Polynomial Arithmetic Acceleration

on GPUs for Fully Homomorphic Encryption. IEEE Transactions on Parallel and
Distributed Systems 34, 4 (2023), 1067–1081.

A CORRECTNESS OF CIPHERTEXT
DECOMPRESSION

Theorem 2. Let 𝑁 ′ be a power of 2, 𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥1 + ... +
𝑎𝑁 ′−1𝑥𝑁

′−1 be the polynomial encoding of A, and E(𝑝 (𝑥)) be the
encryption of 𝑝 (𝑥). Then, the 𝑁 ′ output ciphertexts 𝑜0, ..., 𝑜𝑁−1 of
𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (E(𝑝 (𝑥))) satisfy:

𝑜𝑠 = Enc(𝑎𝑠 + 0𝑥1 + 0𝑥2 + ... + 0𝑥𝑁−1) ∀𝑠 ∈ [𝑁 ′]

Proof. It suffices to prove the case 𝑁 ′ = 2
ℓ
. For 𝑗 = {0, 1, ..., ℓ −

1}, we claim that after 𝑗𝑡ℎ iteration of the outer loop, we have

ciphertexts = [𝑐0, . . . , 𝑐2𝑗+1−1] such that

𝑐𝑠 = E

(
2
𝑗+1

𝑁 ′−1∑︁
𝑖=0

[
𝑎𝑖𝑥

𝑖−𝑠]
𝑖≡𝑠 mod 2

𝑗+1

)
We prove the claim by induction on 𝑗 . The base case 𝑗 = 0 is

explained before. Suppose the claim is true for some 𝑗 ≥ 0. Then

in the next iteration, there is an integer 𝑟 such that 𝑖 − 𝑠 = 2
𝑗+1 · 𝑟 ,

then we compute an array

𝑐
′
𝑠 = 𝑐𝑠 + Subs(𝑐𝑠 , 𝑁 /2𝑗+1 + 1)

= 𝑐𝑠 + E
(
2
𝑗+1

𝑁−1∑︁
𝑖=0

[
𝑎𝑖𝑥
(𝑁 /2𝑗+1+1) (2𝑗+1𝑟)

]
𝑖≡𝑠 mod 2

𝑗+1

)
= 𝑐𝑠 + E

(
2
𝑗+1

𝑁−1∑︁
𝑖=0

[
𝑎𝑖 (−1)𝑟𝑥𝑖−𝑠

]
𝑖≡𝑠 mod 2

𝑗+1

)
= E

(
[1 + (−1)𝑟] · 2𝑗+1

𝑁−1∑︁
𝑖=0

[
𝑎𝑖𝑥

𝑖−𝑠]
𝑖≡𝑠 mod 2

𝑗+1

)
= E

(
2
𝑗+2

𝑁−1∑︁
𝑖=0

[
𝑎𝑖𝑥

𝑖−𝑠]
𝑖≡𝑠 mod 2

𝑗+2

)
It is necessary to explain that when 𝑟 is odd, it is clear that the

corresponding term will be eliminated. When r is even, let’s denote

it as 𝑟 = 2𝑟 ′ (where 𝑟 ′ is an integer). In this case, only the terms

satisfying 𝑖 − 𝑠 = 2
𝑗+1 · 2𝑟 ′ will be left, and this condition can also

be expressed as 𝑖 ≡ 𝑠 mod 2
𝑗+2

.

Finally, with the above claim we show that after the outer loop,

where 𝑗 = ℓ − 1, we have an array of 𝑁 ciphertexts such that:

𝑜𝑠 = E

(
2
𝑗+1 ·

𝑁−1∑︁
𝑖=0

[
𝑎𝑖𝑥

𝑖−𝑠]
𝑖≡𝑠 mod 2

𝑗+1

)
· 1
𝑁

= E

(
𝑁 ·

𝑁−1∑︁
𝑖=0

[
𝑎𝑖𝑥

𝑖−𝑠]
𝑖≡𝑠 mod 𝑁

)
· 1
𝑁

= E(𝑎𝑠 + 0𝑥1 + 0𝑥2 + ... + 0𝑥𝑁−1)

Note that 𝑖 < 𝑁 = 2
ℓ
, so 𝑖 ≡ 𝑠 mod 𝑁 implies 𝑖 = 𝑠 . Hence 𝑜𝑠 is

an encryption of monomial 𝑁𝑎𝑠 + 0𝑥1 + ... + 0𝑥𝑁−1. To obtain an

encryption of 𝑎𝑠 , we multiply 𝑜𝑠 by
1

𝑁
in the last step (Line 12-15

in Algorithm 5). □

B COMMUTABLE ENCRYPTION
A RLWE ciphertext consists of a pair of polynomials (𝐴,𝐴𝑠 +𝑚 +𝑒).
Then, EncC (EncS (𝑚)) can be obtained by letting the client run the

following procedure:

(1) Parse EncS (𝑚) as (𝐴,𝐴𝑠S +𝑚 + 𝑒)
(2) Output (𝐴,𝐴𝑠S +𝐴𝑠C +𝑚 + 𝑒 + 𝑒′)
Decrypting it with the server’s secret key yields:

(𝐴,𝐴𝑠S +𝐴𝑠C +𝑚 + 𝑒 + 𝑒′) − (0, 𝐴𝑠S) = (𝐴,𝐴𝑠C +𝑚 + 𝑒 + 𝑒′).

Which is a valid ciphertext under client’s secret key.

C SECURITY PROOF FOR MATRIX
MULTIPLICATION

We here provide a security proof for Algorithm 6.

Correctness. The algorithm calculates U ·W in the offline phase

and A ·W = A − U ·W+U ·W in the online phase. The correctness

of the rest of the algorithm derives directly from the correctness of

Algorithm 5 and the homomorphic encryption scheme.

Privacy.We define privacy by the simulation paradigm. Namely,

the algorithm should be secure against a static semi-honest proba-

bilistic polynomial time adversary corrupt either C or S.
• Corrupted client.We require that a corrupted, semi-honest

client does not learn anything about the server’s input W.

Formally, we require the existence of an efficient simulator

𝑆𝑖𝑚𝐶 such that 𝑉𝑖𝑒𝑤𝐶 ≈𝑐 𝑆𝑖𝑚𝐶 (A), where 𝑉𝑖𝑒𝑤𝐶 denotes

the view of the client in the execution (the view includes

the client’s input, randomness, and the transcript of the

protocol).

• Corrupted server.We require that a corrupted, semi-honest

server does not learn anything about the private input A of

the client. Formally, we require the existence of an efficient

simulator 𝑆𝑖𝑚𝑆 such that 𝑉𝑖𝑒𝑤𝑆 ≈𝑐 𝑆𝑖𝑚𝑆 (W, 𝑜𝑢𝑡), where
𝑉𝑖𝑒𝑤𝑆 denotes the view of the server in the execution, and

out denotes the output, namely Enc𝑐 (A ·W).
The functionality of Algorithm 6 is denoted by F𝑀𝑎𝑡𝑟𝑖𝑥𝑚𝑢𝑙 . We

summarize the privacy of Algorithm 6 by theorem 3.

Theorem 3. Assuming F𝐸𝑛𝑐 is the homomorphic encryption func-
tionality. Algorithm 6 is a protocol that securely realize F𝑀𝑎𝑡𝑟𝑖𝑥𝑚𝑢𝑙
in the F𝐸𝑛𝑐 model.

Proof. Corrupted client. The client view consists of cipher-

texts {EncS (𝑤𝛾)}. The simulator 𝑆𝑖𝑚𝐶 can be constructed by:

(1) Output ciphertexts 𝐸𝑛𝑐S (0).
The security against a corrupted client is directly reduced to the

semantic security of the underlying RLWE encryption.

Corrupted server. The server view consists of ciphertexts

{EncC (EncS (v𝛼,𝛿))}, plaintext polynomials a𝛼,𝛽 − u𝛼,𝛽 , and the

output Enc𝑐 (A ·W). The simulator 𝑆𝑖𝑚𝑆 can be constructed by:

14

(1) The simulator follows step 2 and 3 in the algorithm with the

knowledge ofW. The only difference is that u𝛼,𝛽 is replaced

with û𝛼,𝛽 which is sample by the simulator instead of C such

that

EncS (v̂𝛼,𝛿) ← ⊞
𝛽∈[𝑛]

(
û𝛼,𝛽 ⊠ EncS (𝑤 ′(𝛿−1)𝑛+𝛽)

)
The output ciphertexts {EncC (EncS (v̂𝛼,𝛿))} are indistin-

guishable from {EncC (EncS (v𝛼,𝛿))} from the semantic se-

curity of the underlying RLWE encryption.

(2) The simulator samples and outputs random plaintext polyno-

mials {𝑝𝛼,𝛽 }. The random plaintext polynomials are indistin-

guishable from {a𝛼,𝛽−u𝛼,𝛽 } as {u𝛼,𝛽 } are uniformly random

one-time-pads in the plaintext ring R𝑄 = Z𝑄 [𝑋]/(𝑋𝑁 + 1).
Therefore, {a𝛼,𝛽 − u𝛼,𝛽 } are also uniformly random in R𝑄 .

(3) The simulator receive the output Enc𝑐 (A ·W) and forward

it.

□

D COLUMN-PACKED MATRIX
MULTIPLICATION

Suppose the matrix A ∈ R𝑚×𝑛 and B ∈ R𝑚×𝑛 packed in column

and a𝑗 , b𝑗 are column vectors for ∀ 𝑗 ∈ [𝑛]. We leverage the

element wise multiplication of SIMD and find that (a0 ⊠ b0) ⊞
(a1 ⊠ b1) · · · ⊞ (a𝑛−1 ⊠ b𝑛−1) is the diagonal-packed of matrix

A × B𝑇 . And we can continue computing the other diagonal of

matrix A × B𝑇 by just rotating the vector 𝑏0, 𝑏1, · · · , 𝑏𝑛−1 and get

the result 𝑟0, 𝑟1, · · · , 𝑟𝑛−1 in Algorithm 8.

Algorithm 8 Column-packed MatrixMul

Input: Column-packed matrix A ∈ R𝑚×𝑛 and B ∈ R𝑚×𝑛
Output: A × B𝑇 ∈ R𝑚×𝑚
1: function MatrixMul(𝐴, 𝐵)
2: for 𝑖 = 0 to𝑚 − 1 do
3: r← 0
4: for 𝑗 = 0 to 𝑛 − 1 do
5: r𝑖 ← r𝑖 ⊞ (a𝑗 ⊠ b𝑗)
6: end for
7: for 𝑗 = 0 to 𝑛 − 1 do
8: b𝑗 ← RotL(b𝑗 , 1)
9: end for
10: end for

return [r0, r1, · · · , r𝑚−1]
11: end function

E SECURE INFERENCE
In this work we assume a static semi-honest probabilistic polyno-

mial time adversary A, who corrupt either the server S or the

client C. The adversary A follows the protocol honestly. When

A corrupts the server, it may try to learn the input of the client.

When A corrupt the client, it tries to learn the model parameters.

We adopt the definition of security from [39].

We summarize the correctness and security of our proposed

protocol by theorem 4.

Theorem 4. Suppose a server having as input model parameters
M = (M1, ...,Mℓ) and a client having as input a feature vector x.
The model 𝑀 can be computed with functions 𝐺𝑒𝑙𝑢, 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚,
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 , and Matrix multiplication. A secure inference protocol Π
can be constructed utilizing Algorithm 3, 2, 1, 6, and homomorphic
operations described in Section 2.3 in the F𝐺𝑒𝑙𝑢 , F𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚,
F𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 , F𝑀𝑎𝑡𝑟𝑖𝑥𝑚𝑢𝑙 -hybrid model.

Proof. Π can be constructed by replacing the functionwith their

secure implementations. The correctness derives directly from the

underlining algorithms. The privacy of Π simply follows in the

hybrid model since only HE ciphertexts are exchanged. □

15

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Secure inference and threat model
	2.2 Transformer
	2.3 Fully homomorphic encryption
	2.4 Homomorphic sign function

	3 Basic Design
	3.1 Attention
	3.2 Layer normalization
	3.3 Feed forward
	3.4 Argmax
	3.5 Placement of bootstrapping

	4 SIMD ciphertexts compression and decompression
	4.1 Application to matrix multiplication

	5 SIMD Slots Folding
	5.1 QuickSum
	5.2 QuickMax

	6 Evaluation
	6.1 Implementation
	6.2 Experimental setup
	6.3 Microbenchmarks
	6.4 Macrobenchmarks

	7 Related Work
	8 Conclusion
	References
	A Correctness of ciphertext decompression
	B Commutable encryption
	C Security proof for matrix multiplication
	D Column-packed Matrix Multiplication
	E Secure inference

