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Abstract: The prevailing ciphers rely on the weak assumption that their attacker is not smarter than 

expected by their designers.  The resultant crypto ecology favors the cryptographic powerhouses, and 

hinders cyber freedom, cyber privacy and cyber democracy.  This weakness can be remedied by using the 

gold standard of cryptography -- One Time Pad, OTP.  Alas, it comes with a prohibitive cost of a key as 

long as the message it encrypts. When the stakes are high enough users pay this high price because  OTP is 

immunized against smarter and better equipped attackers. Claude Shannon has shown that this size 

imposition on the key is non-negotiable in the context he analyzed. Alas, changing the context, one could 

achieve OTP equivalence. Three simple changes are introduced: (i) make the size of the key an integral part 

of the secret, (ii) every finite message is encrypted with an arbitrary part of the key, (iii) allow for open-

ended dilution of the contents-bearing bits of the ciphertext, with content-devoid bits, which don't confuse 

the intended recipient, but impose an open-ended cryptanalytic barrier before the attacker. A-priori a 

cryptanalyst is facing a set of messages each of them deemed plausible to be the one hidden in the 

ciphertext. If the ciphertext is Finite Key OTP compliant then membership in this set will not change after 

an exhaustive cryptanalytic processing of the ciphertext. This constitutes functional equivalence with OTP.  

OTP functionality with a shared finite key creates a path to digital freedom, digital privacy and digital 

democracy.  
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1.0 Introduction 
Fifty years ago cryptography divorced itself from the age-old premise stating that the encryption key 

and the decryption key are one and the same. The impact of the freedom from this limitation grew to a 

cultural tsunami; life on cyberspace is enabled by asymmetric cryptography. It is curious, in perspective, 

that until today cryptography has not released itself from the limitation of the old Kerckhoffs' principle that 

builds cryptography on the secret identity of a known count of bits. Accordingly a cipher is serviceable, as 

long as the size of its key is sufficiently large to sustain a brute force attack, given the current computing 

power, and as long as the mathematical complexity that was used to render the plaintext into the ciphertext 

is sufficiently robust to sustain smart-force attack, given the current math power.   Under these terms 

however small the key is, it should be good enough to encrypt any message, however large.  

This size variance between the key and the message renders the ciphertext to be fully committed to the 

key that generated it. The likelihood for the ciphertext to be matched with a plausible message and a 

corresponding key -- other than the one used -- is fast diminishing as the size disproportion grows. This 

reality creates a mathematical battlefield.  

 

1.1 The Mathematical Battlefield 
If a given ciphertext points unequivocally to one and only one key from the key space then the identity 

of the ciphertext bits bears a mathematical relationship to that key. That means: a smart enough 

mathematician will construct an algorithm that would regard the ciphertext as an input, and generate the key 

as an output. Cipher breached.  

Let M be an arbitrary scale of 'mathematical difficulty'. Let a given cipher C1 be associated with 

mathematical difficulty of measure M1. M1 may then be regarded as the cryptanalytic barrier of C1. We 

consider a human environment wherein t mutually apprehensive groups of people G1, G2, ... Gt share an 

information highway, but wish to remain private about their own communication, while wishing to read 

what the others are writing. Let group Gi be of higher mathematical talent than group Gi+1. for i = 1,2,...(t-1).  

The optimal strategy for the smartest group, G1, will be to introduce a cipher C1 which is associated 

with mathematical difficulty M1. M1 may then be regarded as the cryptanalytic barrier of C1.  
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The choice of C1 will be such that the measure of mathematical talent of G1, which is T1 is higher than. 

the barrier M1, while the respective talents of the other groups: T2, T3, .. Tt will be less: Ti < M1. for 

i=2,3,...t.  

In that case cipher C1 will appear as unbreakable to everyone except to the G1 people. If everyone is 

using C1 for their most sensitive secrets, then all the groups believe that their communication remains 

private. However group G1 is reading what the other are writing, even more conveniently than if no 

encryption was used. Because each group concentrates its most sensitive secrets in the C1 ciphertext, which 

group 1 reads right away.  

Over time group G2 also breaks through the mathematical barrier of C1, and now group G1 lost its clear 

advantage. In response group G1 will construct another cipher C2 which is associated with a mathematical 

breach difficulty (extracting the key from the ciphertext), M2. Where M2 > M1. Group G1 is smart enough to 

break M2: T1 > M2, but for group 2 and on we have. Ti < M2. for i=2,3,..t. Group G1 now introduces cipher 

C2 to the community of mutually apprehensive groups and impresses the community that C1 is no longer 

strong enough, but C2 is. Thereby group G1 restores its advantages.  

Overtime these "loops" will repeat through ciphers C3, C4,... etc. securing for group G1 an enduring 

advantage. 

This is a 'mathematical description' of the history of cryptography: a repeated loop; the top 

mathematical talent constructs ciphers that their adversaries, with less talent are unable to crack. These 

ciphers are promoted as 'uncrackable' as indicated by the absence of a published breach; creating a most 

desired state for the leading cryptographic powerhouse: channeling the secrets of interest into a cipher that 

appears secure to its users while it is an open book to its promoter. Over time mathematical insight on one 

hand, and computing power on the other hand together render the prevailing cipher into 'insecure'. It is then 

that the mathematical advantage of the leading cryptographic powerhouses come into action again: more 

mathematical complexity is engaged and manifest itself with a new cipher, which again most users believe 

it to be unbreakable, while its designers have the mathematical talent and the computing power to break 

them. When the new ciphers yield to their former users, this conceptual loop is repeated.  

Some sixty years ago computers became the reservoir for world data, and digital communication 

became the popular method for moving this data about. All this moving took place over a shared 

information highway. This evolution graduated cryptography from an obscure spy craft few knew anything 
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about, to a cultural mainstay where assorted algorithms were used to protect data through encryption. The 

US government was very interested to read what the world writes, and so, as is widely believed, they came 

up with this ingenious idea to impress the world with a single cipher, broadly regarded as secure, but 

secretly yielding to the government cracking tools, a combination of mathematical insight and comuting 

power . It appears to have worked, the whole world used DES -- until computers became fast enough to 

crack it with brute force and various mathematical shortcuts have surfaced. The US government then 

upgraded DES to 3DES -- a new application of the cryptographic loop described above. 3DES lasted several 

decades. In fact only in early 2024 did the US government officially retire 3DES from its data centers. 

3DES was replaced by the next loop: AES, which is in force today. AES now stands in the shadow of the 

new class of computing machine -- the quantum variety -- and the US government is now busy initiating 

another round of the same loop under the category of Post-Quantum ciphers:  another layer of mathematical 

complexity to keep the discrimination between the NSA top math talent combined with advanced 

computing, and the community without this combination of talent and machine. This strategy has an 

endemic flaw. It is never a solid assumption to believe your adversary is not smarter than expected.  

While this math-advantage strategy has served the US well for many decades, this very strategy is 

ready for retirement. Here is why:  

Since remaining the world single super power, the US has cast many weaker countries into the 

adversarial category. These many hostile, or not very friendly countries have no realistic chance to match 

the US army, air force or navy. The cost of an air carrier battle group is prohibitive for the majority of 

countries. By contrast the cyber front is where mathematical talent is coming to its power expression. Even 

a small and poor country can be fortunate enough to have a citizen with the intellectual capacity of Alan 

Turing. A single mathematical genius is all that is needed to best the NSA. A rational analysis of 

cryptographic reality will lead to the conclusion, then, that the hitherto strategy of math-advantage is 

loosing its efficacy.  

The entire field of cryptography has now to be revisited from the ground up. In fact we go back 107 

years to look again at the famous Vernam cipher, patented in 2017, which Claude Shannon, a quarter of a 

century later, proved to be unbreakable.  

What we have done in BitMint was to apply the InnovationSP, [6] and identify the underlying first 

principles of the Vernam cipher, as well as list the subtle underlying assumptions thereto.  
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1.2 Challenging the Commitment of the Ciphertext to a single Key 
The underlying principle of the cryptographic 'loops' described above is the commitment of the 

ciphertext to the cryptographic key that generated it. To crack these loops one needs to revisit this premise: 

what does it take for a ciphertext not to be committed to the key that generated it?  

Reducing this abstract premise into practical terms, we describe a "cryptographic conflict" where a 

transmitter releases into the open a ciphertext, C, aimed at a friendly recipient, such that the ciphertext will 

convey to the recipient a message m0. The environment includes an adversary who wishes to gain advantage 

from being exposed to the ciphertext.  

A cryptographic advantage is defined as follows: Any given cryptographic conflict situation may be 

defined with respect to a set Ω of plausible messages m1, m2, ... mh, each of which is associated with a 

respective probability p1, p2, ... ph to be the one which is actually carried by ciphertext C. These h 

probability values define a state entropy H for the case in point.  

𝐻	 = 	−%𝑝!	

#

$

𝑙𝑜𝑔(𝑝!) 

Accordingly we define a cryptographic advantage associated with knowledge of ciphertext C, as a 

situation where the entropy H is reduced. In other words if the h probability ratings will be less spread out 

then the ciphertext offers a cryptographic advantage to its attacker. The ideal situation from the attacker's 

point of view is that the entropy of the situation collapses to zero; one message mi is identified as the 

message conveyed by C. mi = m0. No advantage case is when the entropy of the situation remains 

unchanged.  

This is the logic used by Claude Shannon when he proved that Vernam cipher is mathematically 

secure. The Vernam cipher COTP points to all h messages as being the one sent to the recipient, and hence its 

contents does not offer the attacker any advantage.  

The current crop of ciphers where the ciphertext commits to the key that generated it, it also, therefore 

commits to the message m0 that was encrypted into C, and the cryptographic conflict becomes a 

mathematical battleground as described above.  
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If we are able to release ourselves from the 'commitment' limitation then we can switch the 

cryptographic conflict into the entropy battlefield. The sender wishes to keep the entropy of the situation as 

high as possible despite sending messages to the recipient, while the attacker wishes to push the entropy 

down, to zero if possible.  

We stop and notice that while Vernam's cipher is working very well as a zero commitment ciphertext 

generator, it is in fact an over-kill. The Vernam ciphertext will accommodate any plaintext message of same 

bit count. A message m of bit count |m| will match its COTP with 2|m| messages (and same number of keys), 

while in every practical situation the set Ω of h plausible messages is much smaller: | Ω| << 2|m| . This points 

us towards a cipher that shares the underlying principles of Vernam OTP cipher, but is only effective where 

it should be, with respect to the set of plausible messages.  

Two strategies arise: (i) explicit packing, and (ii) probability packing. In the former one packs into the 

ciphertext all the plausible h messages (the set Ω is assumed to be known to all participants in the situation). 

An omnipotent attacker will realize that the ciphertext may be interpreted through the h keys that each lead 

to its corresponding message, so all h messages are covered, and therefore the entropy of the situation 

remains unchanged, which creates OTP equivalence. A non omnipotent attacker may reveal a subset of Ω 

and may altogether miss the right message. 

In the probability packing strategy the ciphertext creates a situation where probability wise more than 

one plausible message is left with a non-zero probability to have been the one used. Unlike the former 

strategy, probability packing has continuity. It may offer a variable advantage to the attacker, diminishing 

the entropy to some degree but not to zero.  

Either strategy the commitment of the ciphertext to its generating key is being successfully challenged, 

and hence the loop strategy described above will have to be retired. A new cryptographic era comes to 

cyberspace.  

 

1.3 Allegory 
A very fitting way to describe the end of mathematical advantage cryptography is through a short 

allegory that runs like this: One very smart (VS) person engages a not-so-smart (NSS) fellow in a guessing 

game. Each in turns would toss two dice, and the other would guess. After one hundred rounds a winner is 
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declared. The smart person, VS, realized that mathematics guides one to guess the number 7 each time, 

since it is more likely than other numbers. Thus the smart fellow guessed 7 many times, but not all the 

times, to keep Not-so-Smart in the dark. Since the Not-so-Smart fellow simply chose randomly along the 

range 2-12, it so happened that VS won each time they played a game of one hundred rounds.  

Over time Mr. Not-so-smart has understood the probability calculus and he too made 7 his favorite 

choice. In order to keep their advantage the VS people upgraded the game to three dice with a guessing 

range from 3 to 18. This reaffirmed the VS math advantage for a while until the Not-so-Smart, NSS, figured 

out the new game. VS reacted by adding more complexity: if the number shown and the number guessed 

together add up to a prime number than the guesser gets another guessing chance. The very smart people 

figured the new terms to their advantage, but the NSS did not -- and kept losing.  

One bright morning the Not-so-Smart became assertive and declared: we are going to reduce the game 

to its basic simplicity -- throwing one dice only, with a guessing range of 1-6. When the games resumed VS 

realized that their math advantage has become irrelevant. The game became a level playing field!  

That is the effect of Level-Playing cryptography on the Mathematical Advantage cryptography that 

tries hard to remain relevant.  

 

2.0 Operation 
We describe operations to construct ciphers wherein the ciphertext does not commit to its generating 

plaintext, or generating key. We discuss (i) explicit packing, and (ii) probability packing. A mix of the two 

is also possible.  

Such non committing ciphertexts do not point to the key, nor to the message that generated them and 

hence this key or this message cannot be extracted from them regardless of cryptanalytic assets.  

2.1 Explicit Packaging 
To carry out explicit packaging one needs to come up with a cryptographic way to achieve contents 

discrimination.  
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Contents discrimination is defined over a ciphertext. Let the c bits of a ciphertext C sent to recipient R 

be mixed with d bits of a 'decoy text' D. Where decoytext bits are bits that are irrelevant for recipient R. The 

decoytext is content-devoid as far as recipient R is concerned. The mixture, C*(C,D) allows recipient R to 

separate it. C* → C, D, ignore D and decrypt C. This ability to discriminate between content-bearing bits 

(C) and content-devoid bits (D) is based on the shared information between the sender of the ciphertext and 

its recipient R. Say then that an attacker A looking at C* will have no way to separate the mixed stream, C* 

to C and D without access to the shared key held in secret by the parties. 

A cryptographic construction that ensures contents-discrimination as described above can be used for 

explicit packing.  

2.1.1 Explicit Packing Procedure 

We consider again a practical cryptographic conflict situation where a ciphertext C is associated with a 

set Ω comprising h plausible messages m0, m1, .... mh, each associated with probability rating, respectively 

p1, p2, ..... ph.  

Transmitter (sender) and recipient share a fully randomized key ki used to encrypt message mi to 

ciphertext ci.  

The transmitter then uses (h-1) randomized keys: k1, k2, ...ki-1, ki+1.. kh to encrypt the other (h-1) 

plausible messages m1, m2, ....mi-1,mi+1.. mh to their respective h-1 ciphertexts: c1, c2, ....ci-1,ci+1.. ch.  

Next the transmitter will mix all the decoy (t-1) ciphertexts in a content-discrimination mode with the 

true ciphertext ci, so that C = ci. and D = c1 + c2 + ....ci-1 + ci+1.. + ch, to yield:  

C* = C + D = c1 + c2 + ..... ch. 

Recipient R will readily discriminate between the decoy and the contents bearing ciphertext, extract C 

= ci from C*, then use its key ki to decrypt ci to pi.  

Attacker A will not be able to discriminate between C bits and D bits. For them every bit is potentially 

contents bearing. An omnipotent attacker will at best discover that every plausible message mi for i=1,2,...h 

can be matched with a key ki that will regard a portion of the ciphertext compendium C* as content bearing 

(ci), while regarding all other C* bits as decoy. Accordingly, the entropy of the situation before having 
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knowledge of C* is the same as after having knowledge of C*, which upgrades this cryptographic situation 

into OTP functionality -- mathematical secrecy.  

2.1.2 Explicit Packing Applications 

The explicit packing procedure is most useful in cryptographic situations where the set of plausible 

plaintext message, Ω, is well defined and rather limited. For example, stock handling instructions may range 

from 'buy' to 'sell' through 'hold'. Moving on a grid may be: right, left, up, down. In such cases the 

composite ciphertext C* will easily include all the available messages, keeping the omnipotent attacker in 

OTP confusion.  

In more common cases where the Ω set is not so well defined, one can apply the explicit packing 

procedure over a subset of Ω, and achieve a corresponding degree of OTP attacker confusion.  

Explicit packing can also be used by communicators to protect them against coercion. Let mimplicating be 

the message that implicates the communicators, and let kimplicating be the corresponding key. The 

communicators can set up another key, kinnocence and use it to encrypt an innocent message minnocent. The 

composite ciphertext C* will include both cimplicating and cinnocent. When confronted the parties point to 

kinnocent and claim they have communicated minnocent.  

The explicit packing procedure can be used to build a composite ciphertext that would be interpreted to 

different plaintext messages by different readers. 

2.2 Probability Packaging 
Probability packing is a procedure where the contents bearing bits of the ciphertext are mixed with 

randomized content-devoid bits in a growing proportion as the encrypted accumulated message becomes 

larger.  

Let a key K be used to encrypt an accumulated message M into a cipher C. Let mi be a plausible 

message of the set Ω which was not part of M. Let M be mixed with contents-devoid randomized decoy bits 

D, to form C*(C,D). For a sufficiently large D the probability for identifying a key ki that would that would 

encrypt mi to ci such that C* can be seen as composed of ci and the remainder of C*, namely Di ,  as decoy 

bits with respect to ki can be made as large as desired. And in that case the key K can be denied and ki may 

be proclaimed as the shared key so that the exchanged C* is interpreted to mi and decoy bits. An omnipotent 
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attacker will have therefore to attach a non-negligent probability to plausible message mi as the one that has 

been transmitted through C*.  

This logic applies to every member of the plausible set, Ω, thereby affirming the OTP functionality.  

This procedure applies because these new ciphers come with an unknown size of key, and any finite 

amount of message, M, may have been encrypted with only part of the shared key, therefore allowing for an 

unused key material to be claimed as above.  

This procedure applies also without denying the encryption of M. In other words the key claimed by 

the users may be ki as above or it may be K + ki. Same for any part of M.  

The measure of the probability for any given member message of the plausible set, Ω, to be deemed as 

a sent message, depends on the particular finite key OTP functionality (FKOF) cipher that is being used, but 

the overall logic applies to all qualifying ciphers.  

The key space from which ki is drawn, (Ki), is naturally large therefore for any given message mi, there 

is a large variety of corresponding key options and a matching bit string ci such that a large enough decoy 

string will include a qualifying ci.  

Mixed Packaging; Explicit packing and probability packing can be mixed. 

2.3 Contents Discrimination 
There are many ways to accomplish contents discrimination. One common method is described herein.  

Let a plaintext alphabet A be comprised of n latters a1, a2, ..... an. Let each letter ai of A be represented 

by an information "stamp" si, where si is  likely a bit string or a bit string equivalent. The set of stamps S, s1, 

s2, ..... sn is a shared secret between a transmitter and a recipient. The S values are being randomized.  

Let T be certain logical terms that may be satisfied T=1 or not satisfied T=0, as applied to a pointer 

information package pi to a pointed stamp si.  

T(pi, si) = 1; pi → si  

T(pi, si) = 0; pi !→ si  
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A transmitter will send letter ai to the recipient by sending them a pointer pi such that:  

T(pi, si) = 1; pi → si  

T(pi, sj) = 0; pi !→ sj      for j=1,2,..(i-1),(i+1),..n  

If pi does not satisfy the two conditions above then pi is regarded as decoy -- contents devoid. Any 

pointer package pi that either does not satisfy T with respect to si or satisfies T for both si and some other sj, 

where j ≠ i, qualifies as decoy.  

We further impose that every stamp si may be pointed to by an at will large infinite number of pointers, 

and each pointer may point to at will large number of stamps. This allows for a decoy-compliant ciphertext 

to be generated.  

Case in point: BitFlip [7].  Here the stamp is a bit string of arbitrary length, and the pointer is a bit 

string of same length.  The T-term is a specified Hamming distance between the stamp and the pointer.  For 

a Hamming distance close to half size of the string there are many pointer strings that point to a given 

stamp, and in turn, there are many stamps to which a given pointer may point.  A pointer string that points 

to no stamp, or that points to more stamps than one is a decoy.  A given letter can be represented by more 

than one stamp. 

 

2.4 Implementation 
Finite-Key OTP functional (FKOF) compliant ciphers use randomness extensively. The better the 

quality of the randomness they use -- the stronger they are. The weakest case is algorithmic randomness. It 

can be improved with certain tools and methodologies. The more secure is randomness generated through 

physical complexity and the most secure is quantum randomness.  

Two categories of randomness are involved: shared and unilateral. The former is used for the key and 

the latter for operational choices and for ciphertext dilution.  

Some FKOF-compliant ciphers pack a lot of information into the key by using a geometric key where 

the randomized geometry of the key structure adds entropy to the bit count. The key size is always part of 

the secret.  
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The use of unilateral randomness is managed by the transmitter, who is also the party that is most 

aware as to how sensitive a particular message is.  

No doubt that the open size of the key and the large variety of the ciphertext flow are not welcome 

situations for their well-organized cryptographic system builder. Alas, this inconvenient is a reasonable 

price for one to pay for the benefit of security against an attacker smarter than one is.  

The detailed technology, the discussions of various ciphers, etc. are extensively covered in reference: 

[1] and [2]. 

 

3.0 Digital Freedom, Digital Privacy, Digital Democracy 
In a  finite key OTP compliant regimen any two or more remote parties who share a private key can 

communicate with mathematical assurance that their data traffic cannot be hacked and unveil the contents of 

their exchange. The parties may have shared their private key a-priori, or have used any of the prevailing 

means to allow remote parties to share a secret key, but once the shared secret key is there, then FKO-

compliant cryptography will ensure private communication. This means that individuals, pairs of people, or 

a large group of people or organizations in cyberspace will have the freedom to organize, debate, 

communicate with complete privacy. This will emulate the pre cyberspace reality where people convene in 

private and communicate in confidence.  

There are further cryptographic tools that will allow parties to hide the fact that they communicated at 

all.  

One envisions the FKO-compliant regimen to allow residents in cyberspace to privately organize 

against any authoritarian power which may be aiming to choke off free speech, and the freedom to organize. 

FKO compliance will ensure power to the governed, the voters. Without FKO-compliance democracy in the 

digital age would be in jeopardy. If math-advantage remains relevant in every day cryptography then the 

powers that be can spot any budding resistance, however civilized. If the government has access to things 

people say in private, it can extinguish any attempt to assemble a counter movement in its budding state. 

The democratic freedom to speak up, to organize, is only meaningful if the people have the means to 

prepare for it without interruption. And in cyberspace these means are technology, and in particular 

cryptography.  
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One must admit that FKO-compliance privacy will also help the criminal element and terrorists among 

us, however, this is a price worth paying because what is being bought for that price is digital freedom, 

digital privacy, digital democracy.  
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