
Non-Binding (Designated Verifier) Signature
Ehsan Ebrahimi

Department of Computer Science & SnT, University of Luxembourg
ehsan.ebrahimi@uni.lu

Abstract—We argue that there are some scenarios in which
plausible deniability might be desired for a digital signature
scheme. For instance, the non-repudiation property of conven-
tional signature schemes is problematic in designing an Instant
Messaging system (WPES 2004). In this paper, we formally
define a non-binding signature scheme in which the Signer
is able to disavow her own signature if she wants, but, the
Verifier is not able to dispute a signature generated by the
Signer. That is, the Signer is able to convince a third party
Judge that she is the owner of a signature without disclosing
her secret information. We propose a signature scheme that
is non-binding and unforgeable. Our signature scheme is post-
quantum secure if the underlying cryptographic primitives are
post-quantum secure. In addition, a modification to our non-
binding signature scheme leads to an Instant Messaging system
that is of independent interest.

Index Terms—Designated Verifier Signature, Plausible Denia-
bility, End-to-End Encryption.

I. INTRODUCTION

A digital signature is probably one of the most used crypto-
graphic primitive in real life applications, in which, a Signer is
able to sign a digital message using a secret-key sk and anyone
can verify this signature using a public-key pk. A digital
signature has to have some security properties. For instance,
anyone beside the actual signer should not be able to generate
a valid signature on a new message even after seeing many
signatures generated by the Signer (unforgeability). Or the
Signer should not be able to disavow her own signature (non-
repudiation). The non-repudiation property will be achieved
inherently since a signature is publicly verifiable using pk.

However, there are some scenarios in which the non-
repudiation property might not be desirable. For instance,
the non-repudiation property of a digital signature scheme
is discussed as a problematic issue in [10] while making a
confidential and authentic online conversation using PGP [30]
and a digital signature scheme. Therefore, the Off-the-Record
Messaging (OTR) protocol [10] avoids the use a conventional
signature scheme for authenticity of the message since a pair
(encrypted message, signature) is verifiable using pk (of a
conventional digital signature) and consequently the sender of
the message would leak to an eavesdropper. In Section VI, we
propose an instant messaging protocol based on the approach
and techniques in this paper. Our instant messaging protocol
is post-quantum secure (in contrast to [10]) if the underlying
cryptographic primitives are post-quantum secure. The Off-
the-Record Messaging protocol [10] has resulted in the Signal
protocol that is currently used to transmit hundreds of billions
of messages per day [16] and has led to extensive follow-up

research [1, 2, 4, 5, 6, 7, 13, 17, 20, 21, 22, 23, 24, 25, 33,
36, 37, 47, 48, 51, 52, 58, 59, 60, 62].

Another scenario when a charity organization wants to
offer some charity contracts to philanthropists. Obviously, a
philanthropist will be doubtful to sign a charity contract that
is legally binding. In addition, the philanthropist would like
to keep track of his/her beneficence to challenge the charity
organization in the case of corruption. For instance, a charity
organization prepares a contract in which the signer donates
10k EUR to the organization in a duration of one year.
Obviously, the philanthropist prefers a non-legally binding
contract because he is not sure if its financial status till the end
of the year allows this transaction or not. In the other hand,
once the money transaction is done, the philanthropist prefers
to have a proof that he has participated in the charity activity
to avoid corruption. Note that inserting a clause in the contract
asserting that the signer is not obligated to provide money can
cause corruption as the organization may receive the fund but
it claims the opposite.

A non-binding signature would be a solution for these
scenarios. A signature scheme is non-binding if the Signer is
able to prove to a Judge the validity of a signature generated
by herself, but, she has the ability to disavow her own
signatures if she wants (plausible deniability).

One common motivation for using non-binding signatures
is to provide an initial indication of agreement or intent
without committing to a formal contract or legal obligation.
For example, in business negotiations, parties may use non-
binding signatures on a term sheet or letter of intent to indicate
agreement on certain key points before moving forward with
more formal contract negotiations. Another motivation for
using non-binding signatures is to facilitate collaboration and
communication among parties without creating legal obliga-
tions or restrictions. For example, in the context of academic
research, researchers may use non-binding signatures on col-
laborative agreements to indicate their willingness to work
together on a project without creating formal legal obligations.

One example of such contracts is named Memorandum of
Understanding (MOU) [39]. An MOU is a document that
outlines the terms of a proposed agreement between two or
more parties. It is often used in business, government, and
other contexts to establish a framework for future negotiations
or collaboration. While an MOU is not legally binding, it can
be used to demonstrate a commitment to work together and
establish a basis for future cooperation. A digital realization
of a MOU is strongly motivated.



Beside these use cases and motivating examples, we have
found the problem of inventing a non-binding signature as a
challenging and non-trivial question. Specifically, as briefed
above, the plausible deniability may not be achieved if a
signature is publicly verifiable because the Judge can verify it
as well using pk. It may seem that the techniques used in the
privacy-preserving signatures, for instance Group Signatures
[19], Ring Signatures [50], etc, can be deployed to construct
a signature schemes that is publicly verifiable and it has the
plausible deniability. We emphasize that these techniques hide
the identity of the actual signer among a group of signers, but,
still everyone is convinced that the signature is generated by
a member from a set of users including the actual signer. We
are doubtful that such techniques would lead to a signature
scheme that is publicly verifiable and it has the plausible
deniability property. The philosophical reasoning is that when
a public-key associated to a user (or to a group of users) is
used to verify a signature publicly, the identities of these users
are known to the public. Unless, there is no link between
the public keys and the users which makes the signature
scheme useless, or the link between the public keys and the
users is only known to some designated people (verifiers).
The conclusion is that a signature scheme with the plausible
deniability probably is likely to be achieved with respect to a
designated verifier.

A Designated Verifier Signature (DVS) scheme first pro-
posed in [34] allows a Signer to convince a designated verifier
that a signature is generated by himself and the Verifier is not
able to transfer the conviction to others, while anyone can
still believe that the signature is generated by one of them. A
DVS is motivated by applications like signing personal health
records, bank transactions, etc, to meet the privacy concerns
of the Signer.

A. Our Contribution

We formally define the non-binding property for a desig-
nated verifier signature scheme that is non-transferable (see
Definition 14). A DVS is non-transferable if the designated
verifier V is able to perform the signature himself and therefore
V is not able to convince a third party Judge that the Signer S
has signed the message. Our definition is intended to consider
all the cheating scenarios. Namely, S should be able to prove
the validity of a signature generated by herself in a court even
if V tries to mislead the Judge. However, V must be able to
prevent S from convincing the Judge on an invalid signature
without disclosing his secret information. And finally, if a
valid signature is generated by V (for any unknown reason),
S should not be able to claim it as her signature.

Then, we propose a designated verifier signature scheme
(Protocol 1) that is non-transferable and non-binding with
respect to our definition (Definition 14). Our scheme (Proto-
col 1) uses an IND-CCA secure key-encapsulation mechanism
(KEM), a one-way public-key encryption (PKE), a message
authentication code (MAC) and an existential unforgeable
signature scheme (Sign). The Verifier V possesses two pairs
(pkv, skv) and (pkSign, skSign) generated by PKE and Sign,

respectively. The Signer S possesses a pair (pks, sks) gener-
ated by KEM.

The Verifier V generates a pair (cs, ks) using pks, computes
a signature Σ on (pks, cs) using skSign and make cs and σ
public. To sign a message m, the Signer checks if Σ is a
valid signature for (pks, cs) using pkSign. If it is not a valid
signature, the Signer aborts. Otherwise, the Signer S decrypts
cs to get ks, chooses a random value δ and encrypts it using
pkv to get a ciphertext cv and finally it sends (m, cs, cv) and
a tag obtained from MAC using the key ks⊕ δ. It is clear that
V can verify the signature by decrypting cv .

Our protocol is non-transferable because V can generate a
signature by itself. Namely, he can choose a random value δ
and encrypt it using pkv to get a ciphertext cv and finally it
computes a tag on (m, cs, cv) obtained from MAC using the
key ks ⊕ δ.

Intuitively, S can convince a Judge on a signature generated
by herself because PKE is one-way and S should be the
generator of the signature if she knows the pre-image of cv .
Note that the signature Σ guarantees that cs is generated by
the veirfier and it is intended to be for the signer (since pks
is signed along with cs).

In a high-level, the one-time unforgeability holds since by
the IND-CCA security of KEM, (cs, ks) is indistinguishable
from (cs, k

$) for a randomly chosen k$. Then, if the adversary
with the inputs (m, cs, cv) and a tag θ obtained from MAC
using the key k$ ⊕ δ returns a forgery, it breaks the one-time
unforgeability of MAC. (See Theorem 1 for more details.)

In addition, we propose an instant messaging protocol
in Section VI. In a nutshell, instead of sending the plain
message m, the Signer encrypts m ⊕ ks along with a
random value δ using pkv to get a ciphertext cv . Then
it generates a tag θ on (cs, cv) using the key ks ⊕ δ.
Finally, it sends (cv, θ) to the Verifier. The message m
is hidden from an eavesdropper that is listening to the
communication. The Verifier can reply similarly if we add
two pairs of keys to the protocol. (See details in the Figure 2.)

Remark on Post-quantum Security. Even though we did
not state our main theorem (Theorem 1) for a quantum
polynomial-time adversary, if we use a post-quantum secure
KEM [11], a post-quantum secure PKE [46] and a post-
quantum secure MAC [9]1 in the Protocol 1, we can easily
argue the post-quantum security of our signature scheme.

B. Related Works

Undeniable Signature. One may argue that an undeniable
signature proposed in [18] might satisfy the non-binding
property if the Signer does not participate in the verification.
However, not participating in the verification is actually an
issue for an undeniable signature since the Signer should
not be able to disavow her own signature and this issue has
been addressed in later works [12]. In other words, plausible

1This work proves the post-quantum security of MAC schemes in the
superposition-access model which is a stronger level of security.



deniability is an issue for an undeniable signature but it is
wanted in a non-binding signature.

Private Contract Signature. In [28, 29], authors introduce a
type of signature called private contract signature (Definition
1 in [28]). Roughly, these are designated verifier signatures
that can be converted into universally-verifiable signatures
by either the signing party or a trusted third party appointed
by the signing party. Even though one may use the universal
verifiability of a private contract signature to show the
non-binding property, we emphasize that their protocol needs
a trusted third party to be executed. In contrast, we desire
to achieve the non-binding property for a protocol executed
between a Signer and a Verifier. In addition, their protocol
(Section 4.1) is based on Diffie-Hellman decision problem and
it heavily uses non-interactive proof of knowledge protocols.

Strong Designated Verifier. Vaguely speaking, it guarantees
that even when the Verifier is honest and does not generate
a fake signature, a third party can not distinguish a signature
transcript generated by the Signer from a fake signature
[34]. That is, anyone can generate a simulated signature
indistinguishable from a valid signature generated by the
Signer [32, 53].

Multi-designated Verifiers Signatures. In [41], authors
propose a construction of multi-designated verifiers signatures
where the signer chooses to sign a message for a fixed
numbers of specific designated verifiers. The idea of such a
protocol is to produce a signature which has the property that
any verifier is convinced that this signature has been done by
one member of a set of users, but is not able to determine
which one.

Universal Designated-Verifier Signature. A UDVS scheme
can function as a standard publicly-verifiable digital signature
but has additional functionality which allows any holder of a
signature (not necessarily the signer) to designate the signature
to any desired designated-verifier (using the verifier’s public-
key). Given the designated-signature, the designated-verifier
can verify that the message was signed by the signer, but is
unable to convince anyone else of this fact [40, 49, 55, 56, 61].

Non-Delegatability. Briefly, in a non-delegatable DVS
scheme, neither a signer nor a designated verifier can delegate
the signing rights to any third party without revealing
their secret-keys. This is achieved by the existence of an
efficient knowledge extractor that can extract either Signer’s
secret-key or Verifier’s secret-key, when given oracle access
to an adversary who can create valid signatures with a high
probability [43, 44].

Secure Disavowability: From the Section 1 in [44]: If
the DVS scheme has a disavowal protocol, it must be the
case that the Signer cannot disavow signatures, given by
herself. By this representation from [44], a signature with

secure disavowability can not be non-binding. However,
there is another representation for the disavowability in the
Section 6 of [44]: In some other schemes—that we call
disavowable—Signer can prove that (a) she signed messages
that she really signed, and (b) she has not signed signatures,
simulated by the Verifier. This representation is similar to
non-binding property that we propose in this paper with a
difference that the Signer is able to disavow signatures given
by herself in a non-binding signature.

Malleable Signatures. Some of the signature schemes allow a
modification to the signature without effecting the verifiability.
Few examples are Homomorphic Signature [35], Sanitizable
Signatures [3], Structure-Preserving Signatures on Equivalence
Classes [31], etc. We do not find an immediate connection
to deploy the malleability in favor of constructing a non-
binding signature. For instance a sanitizable signature allows
authorized semi-trusted censors to modify – in a limited and
controlled fashion – parts of a signed message without inter-
acting with the original signer [3]. It seems that a sanitizable
signature gives a flexibility to the signer to change his mind
later and this results in a non-binding signature. However, we
emphasize that once a pair (m,σ) is out by the signer, anyone
can verify that this pair is generated by the signer using the
associated public key. It is true that the signer (with the help
of the censor) can modify this pair to a new pair (m′, σ′) that
is publicly verifiable, but this does not affect the verifiability
of (m,σ) that has produced earlier. In other words, the signer
is not able to deny the origin of (m,σ).

II. PRELIMINARIES

In this section, we present necessary preliminaries for our
paper. More information regarding the definitions that have
presented without a reference can be found in [38]. The
function negl(λ) is any non-negative function that is smaller
than the inverse of any non-negative polynomial p(λ) for
sufficiently large λ.

Definition 1. A public-key encryption scheme PKE consists of
three polynomial-time (in the security parameter λ) algorithms
(PKE.Gen,PKE.Enc,PKE.Dec), such that:

1) PKE.Gen, the key generation algorithm, is a probabilis-
tic algorithm which on input λ outputs a pair of keys,
(pk, sk)← PKE.Gen(λ), called the public-key and the
secret-key for the encryption scheme, respectively.

2) PKE.Enc, the encryption algorithm, is a probabilistic
algorithm which takes as input a public-key pk and
a message m ∈ MSP and outputs a ciphertext c ←
PKE.Encpk(m). The message space, MSP, may depend
on pk.

3) PKE.Dec, the decryption algorithm takes as input a
secret-key sk and a ciphertext c and returns a message
m. It is required that the decryption algorithm returns
the original message with a high probability for every
(pk, sk) generated by PKE.Gen(λ) and every m ∈ MSP.



The algorithm PKE.Dec returns ⊥ if a ciphertext c is
not decryptable.

Definition 2. We say a public-key encryption scheme PKE =
(PKE.Gen,PKE.Enc,PKE.Dec) is one-way if for any PPT
adversary A:

Pr[A(pk, c) = m : (pk, sk)← PKE.Gen(λ),

m
$←− MSP, c← PKE.Encpk(m)] ≤ negl(λ).

We define IND-CPA security for a public-key encryption
scheme. We present the real-or-random security definition in
which the adversary should not be able to distinguish an
encryption of a chosen message from an encryption of a
random message.

Definition 3. We say a public-key encryption scheme PKE =
(PKE.Gen,PKE.Enc,PKE.Dec) is is IND-CPA secure if for
any PPT adversary A:

|Pr[b = 1 : m← A(pk),
c∗ ← PKE.Encpk(m), b← A(pk, c∗)]−

Pr[b = 1 : m← A(pk),m$ $←− MSP,

c∗ ← PKE.Encpk(m
$), b← A(pk, c∗)]| ≤ negl(λ),

where (pk, sk)← PKE.Gen(λ).

We define a message authentication code scheme below.

Definition 4 (Message Authentication Code (MAC)). A mes-
sage authentication code MAC consists of three (possibly
randomized) algorithms MAC.Gen, MAC.Tag, MAC.Verif:

• The algorithm MAC.Gen on input λ returns a key k.
• The algorithm MAC.Tag on inputs m, k returns a tag

θ.
• The algorithm MAC.Verif on inputs m, k, θ returns 1

(accept) or 0 (reject).
The MAC should fulfill the correctness property, that is, the
MAC.Verifk returns accept on input of (m, θ) generated by
MAC.Tagk.

Definition 5 (One-time Unforgeability: MAC).
We say a message authentication code MAC =
(MAC.Gen,MAC.Tag,MAC.Verif) is one-time
unforgeable if for any PPT adversary A, for any message m
and any k generated by MAC.Gen, the following holds:

Pr[MAC.Verifk(m
′, θ′) = 1 ∧ (m′, θ′) ̸= (m, θ) :

θ ← MAC.Tag(m, k), (m′, θ′)← A(m, θ)] ≤ negl(λ).

Definition 6 (Signature Scheme). A signature scheme Sign
consists of three (possibly randomized) algorithms S.Gen,
S.Sign, S.Verif:

• The algorithm S.Gen on input λ returns two key pk, sk.
• The algorithm S.Sign on inputs m, sk returns a signature

σ.
• The algorithm S.Verif on inputs m, pk, σ returns 1

(accept) or 0 (reject).

The Sign should fulfill the correctness property, that is, the
S.Verifsk returns accept on input of (m,σ) generated by
S.Signpk where pk, sk are generated by S.Gen.

Definition 7 (Existential Unforgeability). A signature scheme
Sign := (S.Gen,S.Sign,S.Verif) is existential unforgeable
if for any PPT adversary A, and any (pk, sk) generated by
S.Gen, the following holds:

Pr[S.Verifpk(m,σ) = 1 ∧ (m,σ) /∈ L :

(m,σ)← AS.Signsk(L)] ≤ negl(λ),

where L is a list to store the A’s signature queries to Signsk.

Definition 8 (Key Encapsulation Mechanism (KEM)). A key
encapsulation mechanism KEM consists of the following
(possibly randomized) algorithms.

• A key generating algorithm KEM.Gen that on input λ
returns a pair key (pk, sk).

• An encryption algorithm KEM.Enc that on input λ and a
public-key pk, outputs a pair (c, k), where k is a key and
c is a ciphertext. (The algorithm KEM.Enc may need a
random input r in each execution.)

• A decryption algorithm KEM.Dec that on input λ, a
secret-key sk, a ciphertext c, outputs either a key k or ⊥.

The key encapsulation mechanism has to have the correctness
property, that is, KEM.Decsk(c) = k with a high probability
when (c, k) is obtained from KEM.Enc.

We say a key encapsulation mechanism is strongly correct
if a PPT adversary is not able to maliciously generate a
ciphertext that violates the correctness property.

Definition 9 (Strongly Correct KEM). A key encapsulation
mechanism KEM = (KEM.Gen,KEM.Enc,KEM.Dec) is
strongly correct if for any PPT adversary A,

|Pr[k∗ ̸= k ∧ k∗ ̸=⊥ ∧KEM.Encpk(r) = (c, k) :

(c, k, r)← A(pk), k∗ ← KEM.Decsk(c)] ≤ negl(λ),

where (pk, sk)← KEM.Gen(λ).

Informally, a KEM is IND-CCA secure if the adversary
is not able to distinguish between a pair (c∗, k∗) generated
by KEM.Enc and (c∗, k$) (where k$ is chosen randomly
from the key space), even with access to the decryption oracle
(except for c∗.)

Definition 10 (IND-CCA). We say KEM =
(KEM.Gen,KEM.Enc,KEM.Dec) is IND-CCA secure if
for any PPT adversary A,

|Pr[b = 1 : (c∗, k∗)← KEM.Enc(pk),

b← AKEM.Decc ̸=c∗ (c∗, k∗)]−

Pr[b = 1 : (c∗, k∗)← KEM.Enc(pk), k$
$←− K,

b← AKEM.Decc ̸=c∗ (c∗, k$)]| ≤ negl(λ),

where K is the set of all possible keys, (pk, sk) ←
KEM.Gen(λ) and KEM.Decc ̸=c∗ is the same as KEM.Dec
except it does not decrypt c∗ for the adversary.



In the following, we define a designated verifier signature
scheme.

Definition 11 (Designated Verifier Signature [44]). A desig-
nated verifier signature scheme DVS with security parameter
λ is defined by the following probabilistic algorithms:

• An algorithm DVS.SGen which takes λ as input, and
outputs a pair of keys (pks, sks).

• An algorithm DVS.VGen which takes λ as input, and
outputs a pair of keys (pkv, skv).

• An algorithm DVS.VSetup which takes λ and pks as
input and returns a public parameter cs and a secret
parameter ks.

• A designated verifier signing algorithm DVS.Sign which
takes a message m, a signing secret-key sks, a verifying
public-key pkv and a public parameter cs as inputs and
returns a value σ.

• A designated verifying algorithm DVs.Verif which takes
a bit string σ, a signing public-key pks, a verifying secret-
key skv and a pair public and secret parameter (cs, ks)
as inputs, and returns a bit b (reject or accept).

• A PPT algorithm Sim that on inputs m, cs, skv, pks
returns a value σ.

• A PPT algorithm Judge that on the inputs of the public
parameters and some inputs from the Signer and Verifier
either accepts (returns 1) or rejects (returns 0). Note that
the description of this algorithm depends on the scheme.

A designated verifier signature scheme DVS should fulfill the
correctness property in which DVs.Verif returns accept on a
signature generated by DVS.Sign.

Intuitively, a DVS is one-time unforgeabile if any PPT
adversary given a signature and public parameters (including
cs) is not able to forge a new signature.

Definition 12 (One-time Unforgeability (DVS) ). A designated
verifier signature is one-time unforgeable if for any PPT
adversary A, for any message m and any (pks, sks) and
(pkv, skv) generated by DVS.SGen and DVS.VGen respec-
tively, the following holds:

Pr[DVs.Verif(m′, cs, σ
′) = 1 ∧ (m′, σ′) ̸= (m,σ) :

(cs, ks)← DVS.VSetup(pks), σ ← DVS.Sign(m, sks, cs, pkv),

(m′, σ′)← A(m, cs, σ, pks, pkv)] ≤ negl(λ).

Informally speaking, a designated verifier signature scheme
is non-transferable if the Verifier is able to produce a signature
indistinguishable from a signature outputted by the Signer.
This is shown by the existence of a PPT algorithm Sim
that given the secret-key of the Verifier can simulate a valid
signature indistinguishable from a signature outputted by the
Signer.

Definition 13 (Non-transferability [44]). We say a designated
verifier signature scheme is non-transferable if there exists a
PPT algorithm Sim such that for any PPT distinguisher D, for

any message m and any (pks, sks) and (pkv, skv) generated
by DVS.SGen and DVS.VGen respectively:

|Pr[b = 1 : (cs, ks)← DVS.VSetup(pks),

σ ← DVS.Sign(m, sks, cs, pkv), b← D(m,σ, cs, pks, pkv)]−
Pr[b = 1 : σ ← Sim(m, (cs, ks), skv, pks),

b← D(m,σ, cs, pks, pkv)]| ≤ negl(λ).

III. NON-BINDING SIGNATURE

The non-transferability property of a designated signature
scheme guarantees that a designated verifier V is not able to
convince a third party that a signer S has indeed performed the
signature without revealing its secret information. This holds
since a designated verifier is able to produce a signature that is
indistinguishable from the Signer’s signature. But this property
causes a huge drawback. Namely, what if V denies the validity
of a signature produced honestly by S. Imagine that the Signer
S is an employee that has signed a work contract with an
employer V digitally using a non-transferable DVS. Then, the
employer V is able to deny S’s signature. To remedy this,
we need a DVS scheme in which the Signer is able to legally
prove to a Judge (without revealing its secret information) that
she is the Signer of the work contract in case of V’s denial.

We say a DVS is a non-binding signature if the Signer is
able to prove to a Judge the validity of a signature of her own,
but, she has the ability to disavow her own signatures if she
wants (plausible deniability). The non-transferability property
is helping to construct a non-binding signature since the Signer
can simply claim that the signature is generated by the Verifier
himself.

In the following, we formally define a non-binding sig-
nature. In the definition, the Judge is a PPT algorithm that
on some inputs from the participants (Signer and Verifier)
either accepts (returns 1) or rejects (returns 0). Note that the
description of this algorithm depends on the scheme.

The Item 1 in the Definition 14 guarantees that the Signer is
able to prove to a Judge the validity of a signature of her own.
In the definition, the Signer should be able to provide some
extra information sts to convince the Judge. (It is desired that
sts does not contain the secret information of the Signer.)
Even if the Verifier may generates cs maliciously and is able
to provide the Judge with some information stv to mislead
the Judge.

The Signer may try to convince the Judge on an invalid
signature in the court. Of course the Verifier may be able to
dispute her claim, however, we do not want that the Verifier
displays his secret information (used in DVs.Verif) to the
Judge. We add the Item 2 to the definition and we denote the
extra information provided by the Verifier with stv.

Finally, we prevent the Signer to convince the Judge on a
signature outputted by the Verifier in the Item 3. The third
case may be unlikely in real-world scenarios and we add it to
the definition for completeness.

In a nutshell, the Judge on inputs sts, stv, m, σ, cs, pks
and pkv returns a bit b. Here, σ is either generated by the



Signer or Sim. And the information sts and stv are provided
by the Signer and the Verifier, respectively.

In each case, we differentiate the malicious entity with a
star ∗.

Definition 14 (Non-Binding). A non-transferable DVS is
non-binding if for any message m and any (pks, sks) and
(pkv, skv) generated by DVS.SGen and DVS.VGen respec-
tively, there exists a PPT algorithm Judge such that the
following three cases hold:

1) The Signer S is able to convince the Judge on the
validity of her own signature without revealing its secret:

Pr[b = 1 ∧ b′ = 1 : (cs, ks)← DVS.VSetup∗,

(sts, σ)← S(pks, sks, cs,m, pkv),

b′ ← DVs.Verif(m,σ, cs, ks, skv),

stv ← V∗(pks, cs, ks, skv,m, σ)

b← Judge(sts, stv,m, σ, cs, pks, pkv)] ≥ 1−negl(λ).

2) The Signer S should not be able to convince the Judge
on an invalid signature:

Pr[b = 1 ∧ b′ = 0 : (cs, ks)← DVS.VSetup,

(sts, σ)← S∗(pks, sks, cs,m, pkv),

b′ ← DVs.Verif(m,σ, cs, ks, skv),

stv ← V(pks, cs, ks, skv,m, σ)

b← Judge(sts, stv,m, σ, cs, pks, pkv)] ≤ negl(λ).

3) The Signer S should not be able to convince the Judge
on a signature outputted by the verifier:

Pr[b = 1 : (cs, ks)← DVS.VSetup,

σ ← V(m, cs, skv, pks),

sts ← S∗(pks, sks,m, cs, σ, pkv),

stv ← V(pks, cs, skv,m, σ)

b← Judge(sts, stv,m, σ, cs, pks, pkv)] ≤ negl(λ).

IV. PROTOCOL

In this section, we define our protocol that is constructed
from a key-encapsulation mechanism, a public-key encryption
scheme and a message authentication code. We emphasize that
using post-quantum version of these constructions will lead to
a post-quantum DVS scheme.

Protocol 1 (Figure 1). The protocol uses a key-encapsulation
mechanism KEM := (KEM.Gen,KEM.Enc,KEM.Dec),
a public-key encryption scheme PKE :=
(PKE.Gen,PKE.Enc,PKE.Dec), a signature scheme
Sign := (S.Gen,S.Sign,S.Verif), and a message authenti-
cation code MAC := (MAC.Gen,MAC.Tag,MAC.Verif).

1) The Signer invokes KEM.Gen on input λ to get a pair
(pks, sks). It makes pks public.

2) The Verifier invokes PKE.Gen and S.Gen on input λ
to get a pair (pkv, skv) and (pkSign, skSign). Then, it
runs KEM.Enc on the input pks to get a pair (ks, cs).

Setup:
(pkSign, skSign)← S.Gen(λ)
(pks, sks)← KEM.Gen(λ),
(pkv, skv)← PKE.Gen(λ)

rv
$←− R,

KEM.Encpks(rv) = (ks, cs)
Σ := SignskSign(pks,cs)

Public Parameters: (pks, pkSign, pkv,Σ, cs)

Signer(m, sks) Verifier(skv, ks)
b← S.VerifskSign(pks, cs,Σ)
if b = 0 abort. Otherwise:
ks ← KEM.Dec(sks, cs)

δ
$←− MSP, rs

$←− R
cv = PKE.Enc(pkv, δ; rs)
θ = MACδ⊕ks(m, cv, cs)

m, σ=(cv,θ)−−−−−−−−−−−→

δ ← PKE.Dec(skv, cv)
b← MAC.Verifδ⊕ks(θ,m, cv, cs)

RETURN b

Fig. 1. Non-Binding Designated Verifier Signature.

It makes pkSign, pkv, cs and Σ := Signsksign(pkv, cs)
public.

3) The Signer checks if Σ is a valid signature for pkv, cs
using pkSign. If no, it aborts. Otherwise, it invokes
KEM.Dec on the inputs sks and cs to get a value
ks. Then it executes PKE.Enc on the inputs pkv and
a random value δ to get a ciphertext cv . To sign a
message m, it computes θ = MACδ⊕ks

(m, cv, cs) and
sends m,σ = (cv, θ) to the Verifier.

4) The Verifier invokes PKE.Dec on the inputs skv and
cv to get a value δ′. Then it returns the output of
MAC.Verifδ′⊕ks on inputs (m, cv, cs) and θ.

5) The PPT algorithm Judge first checks if Σ is a valid
signature for (pks, cs). If this signature is not valid,
it aborts and return 0. Otherwise, it is given sts =
(km, δ, rs) checks if PKE.Encpkv (δ; rs) = cv and if
the verification of MAC with the key km holds true.
In case one of these two checks fails, the Judge aborts
and returns 0 (reject). Otherwise, the Judge given
stv = (ks, rv), (if the verifier does not provide any
information, (ks, rv) := (0, 0) by Judge) verifies if
KEM.Encpks(rv) = (cs, ks) and ks ̸= km ⊕ δ. If both
checks holds true, it returns 0, otherwise, it returns 1
(accept).

Remark. Since cs is public and a signature σ is generated
with respect to (ks, cs), our scheme is not a strong designated
verifier signature.



Theorem 1. The signature scheme in Protocol 1 is one-
time unforgeable, non-transferable and non-binding if KEM
is IND-CCA secure, PKE is one-way secure MAC is one-time
unforgeable and Sign is existential unforgeable.

Proof. Before getting to the details of the proof, we remark
that the purpose of using a signature scheme Sign is to make
the protocol non-interactive and to make sure that the setup
phase is generated by the intended verifier. Assuming that the
signature Σ is a valid signature on (cs, pks), we continue to
show the rest of the properties.
Non-transferability. We construct a simulator Sim that given
(ks, cs), skv can simulate a signature perfectly. To sign a
message m, the simulator executes PKE.Enc on the inputs
pkv and a random value δ to get a ciphertext cv . Then,
it returns (m, cv, cs) and θ = MACδ⊕ks

(m, cv, cs) as the
signature on m. It is clear that the distribution of the Sim’s
signature on m is equal to the one outputted in Protocol 1.

Non-binding: We show that the Protocol 1 is non-binding.
In the following, we illustrate the PPT algorithm Judge
more and show how it satisfies the non-binding property. The
algorithm Judge on inputs m, cs, pks, pkv and σ = (cv, θ)
inquires from the Signer and the Verifier information sts
and stv, respectively. Recall that in the definition, there are
three different cases and in each case it is determined which
party is malicious. Note that when the Verifier is malicious,
potentially, his input to the Judge is dishonestly generated or
even no information is provided. Without loss of generality,
we assume that in this case a malicious verifier provides
malevolently information to mislead the Judge. This loss of
generality comes from the description of the Judge algorithm
below that is convinced by an honest signer without the need
of the verfiier’s participation. In other words, generating no
information is equivalent to assuming that the input of the
verifier is a zero bitstring (with a proper length).

An honest Signer has to provide the pre-image of cv (both
δ and rs) and a verification key for MAC, that is, sts =
(km, δ, rs). And an honest Verifier has to provide the pre-
image of cs (both k′s and rv), that is, stv = (ks, rv).

Then the Judge given sts = (km, δ, rs) checks if
PKE.Encpkv (δ; rs) = cv and if the verification of MAC
with the key km holds true. In case one of these two checks
fails, the Judge aborts and returns 0 (reject). (At this point,
if the Judge does not abort, he is convinced that the signer
is honest unless the verifier maliciously alters his opinion.)
Otherwise, the Judge given stv = (ks, rv), (if the verifier
does not provide any information, (ks, rv) := (0, 0)) verifies
if KEM.Encpks(rv) = (cs, ks) and ks ̸= km ⊕ δ. If both
checks holds true, it returns 0, otherwise, it returns 1 (accept).

1) In this item, we show that the Signer can convince
the Judge on a signature generated by herself. For a
signature σ = (cv, θ = MACδ⊕ks

(m, cs, cv)) gener-
ated honestly by the Signer, the information sts =
(ks⊕ δ, δ, rs) can convince the Judge with a probability
close to 1 − negl(λ). Namely, the Judge checks if

PKE.Encpkv (δ; rs) = cv and if the verification of MAC
with the key δ⊕ ks holds true. Note that V can mislead
the Judge if he finds a collision on cs with a different
k′s. That is, if V is able to provide stv = (k′s, r

′
v) such

that KEM.Encpks(r
′
v) = (cs, k

′
s). But this holds with

a negligible probability by the strongly correctness of
KEM.

2) In this item, we show that the Signer is not able
to convince the Judge on an invalid signature σ =
(cv, θ) on (m, cs). Let sts = (km, δ, rs) be the in-
formation provided by the Signer. Let us assume that
PKE.Encpkv (δ; rs) = cv and the verification of MAC
with the key km holds true. (Otherwise, the Judge rejects
the Signer’s claim, anyway.) Note that cs is generated
by the honest Verifier, therefore, he can provide stv =
(ks, rv) such that KEM.Encpks(rv) = (cs, ks). Now
since a signature σ = (cv, θ) on (m, cs) is not valid,
the algorithm DVs.Verif returns 0. That is, the MAC
verification of θ with the key ks ⊕ δ fails. Therefore,
km should not be equal to δ ⊕ ks and consequently the
Judge returns 0.

3) For a valid signature σ = (cv, θ =
MACδ⊕ks(m, cs, cv)) generated by Sim, S is not
able to convince the Judge by the one-wayness of PKE.
(S is not able to return the pre-image of cv .)

One-time Unforgeability. Let assume that the signature σ =
(cv, θ) where θ = MACδ⊕ks(m, cs, cv) is generated (hon-
estly) by the Sign algorithm. We show that any PPT adversary
A given m, cs, cv and θ is not able to forge a new signature.
That is, the adversary A is not able to return a valid signature
(m′, cs, c

′
v, θ

′) where (m′, c′v, θ
′) ̸= (m, cv, θ).

Let assume that a PPT adversary A is able to break the
one-time unforgeability of the scheme with a non-negligible
probability ϵ. We construct a reduction adversary B that breaks
the IND-CCA security of KEM under the assumption that
MAC is secure.2

The reduction adversary B when giving a challenge cipher-
text (c∗s, k

∗
s), it runs PKE.Gen on inputs λ to get a pair

(pkv, skv), it chooses a random value δ and computes cv ←
PKE.Encpkv (δ) and θ∗ = MACδ⊕k∗

s
(m, c∗s, cv) for a message

m. Then, it runs A with the inputs λ, pks, pkv,m, c∗s, cv and
θ∗. When the adversary A returns an output m′, c∗s, c

′
v and θ′,

it runs the verification of MAC on (m′, c∗s, c
′
v, θ

′) with the key
δ⊕k∗s . If the verification of MAC returns accept, B returns 1,
otherwise it returns 0.

Note that when (c∗s, k
∗
s) is generated by KEM.Enc, the

values c∗s, cv, θ
∗ are generated as A expects, therefore, B

returns 1 with the probability ϵ. However, when k∗s is a
randomly chosen key, c∗s and k∗s are irrelevant. This means that
k∗s⊕δ is a random value as well that is only used to execute the
MAC. Therefore, if the adversary returns a forgery m′, c∗s, c

′
v ,

θ′, it breaks the one-time unforgeability of MAC. Since MAC

2p1 ∧ p2 → q ⇐⇒ ¬q → ¬p1 ∨ ¬p2 ⇐⇒ ¬q ∧ p1 → ¬p2 where
p1, p2 and q represent the security of MAC, KEM and DVS respectively in
the theorem.



is one-time unforgeable, B returns 1 only with a negligible
probability in this case and this finishes the proof.

A. Discussion

We discuss some crucial points in favor of our signature
scheme based on some scientific critics and reviews that the
article has received in the previous submission.

• It may seem that anyone can generate a valid pair of
message and signature using our scheme. Even though,
the protocol allows any two parties communicate using
their public keys, we emphasize that in the setup phase,
the verifier generates a pair (ks, cs) using the public-
key pks and makes cs public. In addition, it publishes
a signature Σ on these values. Then a valid signature is
generated with respect to cs. Therefore, a third party is
not able to generate a valid signature without knowing
ks.

• Connection with Identification Schemes. Our protocol
may seem to be an interactive protocol that is reminiscent
of an identification scheme [26]. This is arguable since the
verifier needs to generate (ks, cs) and then to broadcast
((cs, pks),Σ) over a public channel. In contrast, the most
of identification schemes are in the form of a three-
round protocol with three messages, commit, challenge
and response. Finally, in our protocol, the signer identifies
itself to the verifier (authenticity) and signs a message,
but, an identification scheme is only used to identify
a party. In addition, the anonymity of the signer is
preserved against an external observer since the transcript
of the protocol can be generated by the verifier.

• We emphasize that the one-time unforgeability is defined
and proved with respect to the value cs that is not
costly to regenerate. In other words, the verifier and the
signer do not need to generate new pairs (sks, pks) and
(skv, pkv) to sign a new message. Therefore, the one-time
unforgeability is not limiting in our protocol.

V. COMPARISON

In this article, we investigate the non-binding property for a
signature scheme that has not been introduced or studied in the
literature so far. Beside that, our design approach is different
from the previous DVS schemes and uses known cryptographic
primitives.

Most of the previous DVS schemes are based on Discrete
Logarithm Assumption [32, 40, 40, 41, 43, 44, 49, 53, 55, 56,
61] and are not post-quantum secure. Few Lattice-based DVS
schemes are available [42, 45, 63]. A DVS based on Isogeny-
based assumptions has been presented in [57] and later it has
been concluded insecure in [27] by key reuse attacks.

In the Table I, we present few existing designated verifier
signature schemes. Then we discuss which of them satisfy the
Definition 14 (the non-binding definition) introduced in this
paper. Since our definition is stated in the standard model, the
schemes that are constructed in the random oracle model are

not eligible to be verified by the Definition 14.3 In addition,
there exist signature and encryption schemes that are secure in
the random oracle model, but for which any implementation
of the random oracle results in insecure schemes [15]. Even
though these separation examples are artificially invented, the
cryptographic community prefer to use the random oracle
model when there is no provable-secure construction in the
standard model, or when the use of the random oracle model
significantly improves the efficiency. For this reasons, we do
not compare the protocols in the random oracle model with
ours.

Protocol in [32]. In the SDVS protocol in [32], the Signer
chooses a random value x and makes pks := gx public. The
Verifier chooses a random value y and makes pkv := gy

public. To sign a message m, the Signer computes k := pkxv
and sends PRFk(m) where PRF is a pseudo-random
function. We argue that this protocol does not satisfy the
non-binding property. In more details, the Signer on the
input σ := (m,PRFk(m)), is not able to provide convincing
information sts to the Judge that σ is generated by her.
The reason is that since pks = gx is public, the verifier
is able to compute the key k = gxy as well and generate
σ := (m,PRFk(m)) for any message m. Therefore, if the
Verifier claims that (m,PRFk(m)) is generated by him,
there is no way that the Signer can oppose this claim. In
other words, there is no algorithm Judge that satisfies the
non-binding property.

Protocol in [45]. The key generating algorithm of the
SDVS protocol in [45] generates two pairs of keys
(pks, sks) := ((As, pk

(s)), (Ts, sk
(s))) and (pkv, skv) :=

((Av, pk
(s)), (Tv, sk

(v))) in which As and Av are some
matrices with the corresponding trapdoor matrices Ts and Tv ,
respectively. And (pk(s), sk(s)) and (pk(v), sk(v)) are two pairs
of keys generated by the key generating algorithm of a public-
key encryption scheme. In order to sign a message m, the
Signer on inputs sks, pks, pkv chooses a randomness r and
outputs a vector σ = (vs,vv, cs, cv) with the components are
explained in the coming lines. The vector vs is drawn from a
distribution that depends on H(m, r) (H is a hash function)
and As while vv is drawn from a distribution using a specific
sampling algorithm. The values cs and cv are the encryption
of r with the keys pk(s) and pk(v), respectively.

We argue that this protocol does not satisfies the non-
binding property. Our reasoning is that the randomness r
is encrypted with both keys pk(s) and pk(v). Consequently,
the knowledge of r would not convince the Judge since
both the Signer and the Verifier can obtain the randomness
r from σ. The other two vectors vs,vv are drawn from some

3Since in the random oracle model (ROM) all parties including the Judge
have access to the random oracle, a non-binding definition in ROM would
not be the same at the Definition 14. Furthermore, the security analysis in
the quantum random oracle model [8] is needed to show the post-quantum
security.



TABLE I
COMPARISON.

scheme type non-transfer assumption standard model non-binding

[32] SDVS ✓ DDH ✓ ×
[32] SDVS ✓ DL & GDH4 × −
[44] DVS ✓ DDH × −
[53] SDVS ✓ DL × −
[40] SDVS ✓ (C-D-G)BDH5 × −
[14] SDVS ✓ R-SIS × −
[45] SDVS ✓ LWE & SIS ✓ ×
Ours DVS ✓ any ✓ ✓

distributions in which the Signer may not be able to convince
the Judge that she has invoked the sampling algorithms.

VI. APPLICATION

In this section, we discuss how our techniques and approach
in this paper is useful to make a confidential and authentic
online communication channel.

Note that the off-the-record messaging protocol in [10] uses
Diffie-Hellman key exchange protocol. An eavesdropper Eve
can store all the communication between Alice and Bob and
later when a large-scale quantum computer is available she
can decrypt all the messages exchanged between them using
the Shor’s algorithm [54].

We sketch a (post-quantum secure) instant messaging pro-
tocol obtained by modifying the Protocol 1. Vaguely speaking,
the sender (the Signer in the Protocol 1) encrypts the message
m XOR with ks along with the value δ using an IND-CPA
secure public encryption scheme resulting in a value cv . Then,
it sends this value cv and a tag θ on it using the MAC scheme
to the receiver. (In other words, the Signer does not send
the plain message anymore.) Note that, if we add two more
pair of keys to the protocol, the receiver can reply similarly.
(See Figure 2.) We use an IND-CPA secure public encryption
scheme to be sure that neither the message nor the session key
would leak to Eve.

We depict a conversation between Alice and Bob in Fig-
ure 2. The first messages (I am Bob, c1a) is sent by Bob
to share the first session key. We do not add a signature to
the message because a man-in-the-middle attacker Eve can
not gain by changing the content of the message. In more
details, if Eve changes the value c1a or the identity of Bob,
neither she nor Bob can obtain the message sent by Alice later.
This is considered a disruption attack and nothing more. And
obviously, changing both values is only a disruption attack as
well. The rest of session keys in Figure 2 are included inside
of MAC to be sewn with the message.

As discussed by the designers of OTR in [10], if Alice
encrypts her messages to Bob’s public encryption key, and
signs them with her own private signature key, an eavesdropper
Eve that stores all the communication can later read all the
messages sent by Alice if she manages to obtain Bob’s private
key. However, in our protocol, first, Eve should manage to
obtain both Bob’s private key skpb and Alice’s private key skka

Setup:
(pkka, sk

k
a)← KEM.Gen(λ) (pkkb , sk

k
b )← KEM.Gen(λ)

(pkpa, sk
p
a)← PKE.Gen(λ) (pkpb , sk

p
b)← PKE.Gen(λ)

Alice(ma, sk
k
a, sk

p
a) Bob(mb, sk

k
b , sk

p
b)

Generating First Session key:
r1a

$←− R
KEM.Encpkka(r

1
a) = (k1

a, c
1
a)

(I am Bob, c1a)←−−−−−−−−−−−−−−−−−−
Generating Next Session Key:

r1b
$←− R

KEM.Encpkk
b
(rb) = (k1

b , c
1
b)

Encrypting ma :
k1
a ← KEM.Dec(skka, c

1
a)

δa
$←− MSP, α1

b
$←− R

c′b = PKE.Enc(pkpb , δa,ma ⊕ k1
a;α

1
b)

θ = MACδa⊕k1
a
(c1b , c

′
b, c

1
a)

c1b , (c′b,θ)−−−−−−−−−−−−−−−−−−−−→
Reading the Message:

(δa, ma ⊕ k1
a)← PKE.Dec(skpb , c

′
b)

b← MAC.Verifδa⊕k1
a
(θ, c1b , c

′
b, c

1
a)

if b = 1 return ma

Generating Next Session key:
r2a

$←− R,
KEM.Encpkka(r

2
a) = (k2

a, c
2
a)

Encrypting mb :
k1
b ← KEM.Dec(skkb , c

1
b)

δb
$←− MSP, α1

b
$←− R

c′a = PKE.Enc(pkpa, δb,mb ⊕ k1
b ;α

1
b)

θb = MACδb⊕k1
b
(c2a, c

′
a, c

1
b)

c2a, (c′a,θb)←−−−−−−−−−−−−−−−−−

Fig. 2. Instant Messaging Protocol.



to read the message ma
6. Second, even if Eve manages to

obtain both skpb , skka and consequently reads ma, she can not
be convinced that the message ma is sent by Alice. This is
due to the non-binding property of the signature (c′b, θ).

Our instant messaging protocol has an extra property that
Alice can convince a third party Judge that she has sent the
message ma if it is needed. Note that if Alice and Bob are two
agents for an organization that are conducting a confidential
communication in which not sending the message ma will
have some legal consequences for Alice, an instant messaging
protocol as OTR protocol [10] might not be the right choice
for Alice to use.

VII. CONCLUSION AND OPEN PROBLEM

We define a non-binding property for a designated verifier
signature scheme in this paper. We propose a DVS that is
non-transferable and non-binding. In addition, we propose
an Instant Messaging protocol by modifying our non-binding
signature scheme. A formal security proof of our messaging
protocol in the Universal Composability Framework (similar
to [16]), is not in the scope of this project and remains an
open question.

VIII. ACKNOWLEDGMENT

Ehsan Ebrahimi was supported by the Luxembourg Na-
tional Research Fund under the Junior CORE project QSP
(C22/IS/17272217/QSP/Ebrahimi). We thank Benjamin Dowl-
ing for a discussion about our Instant Messaging Protocol.

REFERENCES

[1] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: Security notions, proofs, and modulariza-
tion for the signal protocol. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, volume 11476 of Lecture Notes in Computer
Science, pages 129–158. Springer, 2019.

[2] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis
Tselekounis. Security analysis and improvements for the
IETF MLS standard for group messaging. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part I,
volume 12170 of Lecture Notes in Computer Science,
pages 248–277. Springer, 2020.

[3] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros,
and Gene Tsudik. Sanitizable signatures. In Sabrina
De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, Computer Security - ESORICS 2005,
10th European Symposium on Research in Computer Se-
curity, Milan, Italy, September 12-14, 2005, Proceedings,

6Obtaining two secret-keys from two different individuals is harder.

volume 3679 of Lecture Notes in Computer Science,
pages 159–177. Springer, 2005.

[4] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determin-
ing the core primitive for optimally secure ratcheting.
In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, De-
cember 7-11, 2020, Proceedings, Part III, volume 12493
of Lecture Notes in Computer Science, pages 621–650.
Springer, 2020.

[5] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya
Nyayapati, and Igors Stepanovs. Ratcheted encryption
and key exchange: The security of messaging. In
Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, volume 10403 of
Lecture Notes in Computer Science, pages 619–650.
Springer, 2017.

[6] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler.
On the price of concurrency in group ratcheting pro-
tocols. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference,
TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, volume 12551 of Lecture Notes in
Computer Science, pages 198–228. Springer, 2020.

[7] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-
Alain Fouque, Cristina Onete, and Elena Pagnin. SAID:
reshaping signal into an identity-based asynchronous
messaging protocol with authenticated ratcheting. In
IEEE European Symposium on Security and Privacy,
EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019,
pages 294–309. IEEE, 2019.

[8] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja
Lehmann, Christian Schaffner, and Mark Zhandry. Ran-
dom oracles in a quantum world. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Pro-
ceedings, volume 7073 of Lecture Notes in Computer
Science, pages 41–69. Springer, 2011.

[9] Dan Boneh and Mark Zhandry. Quantum-secure message
authentication codes. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 592–
608. Springer, 2013.

[10] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-
the-record communication, or, why not to use PGP. In
Vijay Atluri, Paul F. Syverson, and Sabrina De Capitani
di Vimercati, editors, Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES



2004, Washington, DC, USA, October 28, 2004, pages
77–84. ACM, 2004.

[11] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS - kyber:
A cca-secure module-lattice-based KEM. In 2018 IEEE
European Symposium on Security and Privacy, EuroS&P
2018, London, United Kingdom, April 24-26, 2018, pages
353–367. IEEE, 2018.

[12] Joan Boyar, David Chaum, Ivan Damgård, and Torben P.
Pedersen. Convertible undeniable signatures. In Alfred
Menezes and Scott A. Vanstone, editors, Advances in
Cryptology - CRYPTO ’90, 10th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 189–205. Springer,
1990.

[13] Andrea Caforio, F. Betül Durak, and Serge Vaudenay.
Beyond security and efficiency: On-demand ratcheting
with security awareness. In Juan A. Garay, editor, Public-
Key Cryptography - PKC 2021 - 24th IACR International
Conference on Practice and Theory of Public Key Cryp-
tography, Virtual Event, May 10-13, 2021, Proceedings,
Part II, volume 12711 of Lecture Notes in Computer
Science, pages 649–677. Springer, 2021.

[14] Jie Cai, Han Jiang, Pingyuan Zhang, Zhihua Zheng,
Guangshi Lyu, and Qiuliang Xu. An efficient strong
designated verifier signature based on -sis assumption.
IEEE Access, 7:3938–3947, 2019.

[15] Ran Canetti, Oded Goldreich, and Shai Halevi. The ran-
dom oracle methodology, revisited. J. ACM, 51(4):557–
594, 2004.

[16] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank
Varia. Universally composable end-to-end secure mes-
saging. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology - CRYPTO 2022 - 42nd
Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 3–33. Springer, 2022.

[17] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The
signal private group system and anonymous credentials
supporting efficient verifiable encryption. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, pages 1445–1459. ACM,
2020.

[18] David Chaum and Hans Van Antwerpen. Undeniable
signatures. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 1989, Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 212–216. Springer,
1989.

[19] David Chaum and Eugène van Heyst. Group signatures.

In Donald W. Davies, editor, Advances in Cryptology -
EUROCRYPT ’91, Workshop on the Theory and Applica-
tion of of Cryptographic Techniques, Brighton, UK, April
8-11, 1991, Proceedings, volume 547 of Lecture Notes
in Computer Science, pages 257–265. Springer, 1991.

[20] Kaiming Chen and Jiageng Chen. Anonymous end
to end encryption group messaging protocol based on
asynchronous ratchet tree. In Weizhi Meng, Dieter
Gollmann, Christian Damsgaard Jensen, and Jianying
Zhou, editors, Information and Communications Security
- 22nd International Conference, ICICS 2020, Copen-
hagen, Denmark, August 24-26, 2020, Proceedings, vol-
ume 12282 of Lecture Notes in Computer Science, pages
588–605. Springer, 2020.

[21] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the signal messaging protocol. J. Cryptol.,
33(4):1914–1983, 2020.

[22] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt.
On post-compromise security. In IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 164–178. IEEE
Computer Society, 2016.

[23] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon
Millican, and Kevin Milner. On ends-to-ends encryp-
tion: Asynchronous group messaging with strong security
guarantees. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1802–1819. ACM, 2018.

[24] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Au-
rora Naska. Clone detection in secure messaging: Im-
proving post-compromise security in practice. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, pages 1481–1495. ACM,
2020.

[25] F. Betül Durak and Serge Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement with linear complexity.
In Nuttapong Attrapadung and Takeshi Yagi, editors,
Advances in Information and Computer Security - 14th
International Workshop on Security, IWSEC 2019, Tokyo,
Japan, August 28-30, 2019, Proceedings, volume 11689
of Lecture Notes in Computer Science, pages 343–362.
Springer, 2019.

[26] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

[27] Steven D. Galbraith, Christophe Petit, Barak Shani, and
Yan Bo Ti. On the security of supersingular isogeny
cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi,



editors, Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, vol-
ume 10031 of Lecture Notes in Computer Science, pages
63–91, 2016.

[28] Juan A. Garay, Markus Jakobsson, and Philip D.
MacKenzie. Abuse-free optimistic contract signing.
In Michael J. Wiener, editor, Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pages 449–466. Springer, 1999.

[29] Juan A. Garay and Philip D. MacKenzie. Abuse-free
multi-party contract signing. In Prasad Jayanti, editor,
Distributed Computing, 13th International Symposium,
Bratislava, Slovak Republic, September 27-29, 1999,
Proceedings, volume 1693 of Lecture Notes in Computer
Science, pages 151–165. Springer, 1999.

[30] Simson L. Garfinkel. PGP - pretty good privacy: encryp-
tion for everyone (2. ed.). O’Reilly, 1995.

[31] Christian Hanser and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and their
application to anonymous credentials. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, volume 8873 of Lecture Notes
in Computer Science, pages 491–511. Springer, 2014.

[32] Qiong Huang, Guomin Yang, Duncan S. Wong, and
Willy Susilo. Efficient strong designated verifier sig-
nature schemes without random oracle or with non-
delegatability. Int. J. Inf. Sec., 10(6):373–385, 2011.

[33] Joseph Jaeger and Igors Stepanovs. Optimal chan-
nel security against fine-grained state compromise: The
safety of messaging. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 33–62. Springer, 2018.

[34] Markus Jakobsson, Kazue Sako, and Russell Impagli-
azzo. Designated verifier proofs and their applications.
In Ueli M. Maurer, editor, Advances in Cryptology
- EUROCRYPT ’96, International Conference on the
Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, volume
1070 of Lecture Notes in Computer Science, pages 143–
154. Springer, 1996.

[35] Robert Johnson, David Molnar, Dawn Xiaodong Song,
and David A. Wagner. Homomorphic signature schemes.
In Bart Preneel, editor, Topics in Cryptology - CT-RSA
2002, The Cryptographer’s Track at the RSA Conference,
2002, San Jose, CA, USA, February 18-22, 2002, Pro-
ceedings, volume 2271 of Lecture Notes in Computer

Science, pages 244–262. Springer, 2002.
[36] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Effi-

cient ratcheting: Almost-optimal guarantees for secure
messaging. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, volume
11476 of Lecture Notes in Computer Science, pages 159–
188. Springer, 2019.

[37] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A
unified and composable take on ratcheting. In Dennis
Hofheinz and Alon Rosen, editors, Theory of Cryp-
tography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings,
Part II, volume 11892 of Lecture Notes in Computer
Science, pages 180–210. Springer, 2019.

[38] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography. Chapman and Hall/CRC Press,
2007.

[39] Marina Kolb. The Memorandum of Understanding, pages
141–162. Palgrave Macmillan UK, London, 2013.

[40] Fabien Laguillaumie and Damien Vergnaud. Designated
verifier signatures: Anonymity and efficient construction
from any bilinear map. In Carlo Blundo and Stelvio
Cimato, editors, Security in Communication Networks,
4th International Conference, SCN 2004, Amalfi, Italy,
September 8-10, 2004, Revised Selected Papers, volume
3352 of Lecture Notes in Computer Science, pages 105–
119. Springer, 2004.

[41] Fabien Laguillaumie and Damien Vergnaud. Multi-
designated verifiers signatures. In Javier López, Si-
han Qing, and Eiji Okamoto, editors, Information and
Communications Security, 6th International Conference,
ICICS 2004, Malaga, Spain, October 27-29, 2004, Pro-
ceedings, volume 3269 of Lecture Notes in Computer
Science, pages 495–507. Springer, 2004.

[42] BaoHong Li, YanZhi Liu, and Sai Yang. Lattice-based
universal designated verifier signatures. In 15th IEEE
International Conference on e-Business Engineering,
ICEBE 2018, Xi’an, China, October 12-14, 2018, pages
329–334. IEEE Computer Society, 2018.

[43] Yong Li, Helger Lipmaa, and Dingyi Pei. On delegatabil-
ity of four designated verifier signatures. In Sihan Qing,
Wenbo Mao, Javier López, and Guilin Wang, editors,
Information and Communications Security, 7th Interna-
tional Conference, ICICS 2005, Beijing, China, Decem-
ber 10-13, 2005, Proceedings, volume 3783 of Lecture
Notes in Computer Science, pages 61–71. Springer, 2005.

[44] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated
verifier signature schemes: Attacks, new security notions
and a new construction. In Luı́s Caires, Giuseppe F.
Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Lisbon,
Portugal, July 11-15, 2005, Proceedings, volume 3580



of Lecture Notes in Computer Science, pages 459–471.
Springer, 2005.

[45] Geontae Noh and Ik Rae Jeong. Strong designated
verifier signature scheme from lattices in the standard
model. Secur. Commun. Networks, 9(18):6202–6214,
2016.

[46] Chris Peikert. A decade of lattice cryptography. IACR
Cryptol. ePrint Arch., page 939, 2015.

[47] Bertram Poettering and Paul Rösler. Towards bidirec-
tional ratcheted key exchange. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture
Notes in Computer Science, pages 3–32. Springer, 2018.

[48] Mario Di Raimondo, Rosario Gennaro, and Hugo
Krawczyk. Secure off-the-record messaging. In Vijay
Atluri, Sabrina De Capitani di Vimercati, and Roger
Dingledine, editors, Proceedings of the 2005 ACM Work-
shop on Privacy in the Electronic Society, WPES 2005,
Alexandria, VA, USA, November 7, 2005, pages 81–89.
ACM, 2005.

[49] Parvin Rastegari, Mehdi Berenjkoub, Mohammad Dakhi-
lalian, and Willy Susilo. Universal designated verifier
signature scheme with non-delegatability in the standard
model. Inf. Sci., 479:321–334, 2019.

[50] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How
to leak a secret. In Colin Boyd, editor, Advances in
Cryptology - ASIACRYPT 2001, 7th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Gold Coast, Australia, December
9-13, 2001, Proceedings, volume 2248 of Lecture Notes
in Computer Science, pages 552–565. Springer, 2001.

[51] Paul Rösler, Christian Mainka, and Jörg Schwenk. More
is less: On the end-to-end security of group chats in
signal, whatsapp, and threema. In 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 415–
429. IEEE, 2018.

[52] Lior Rotem and Gil Segev. Out-of-band authentication
in group messaging: Computational, statistical, optimal.
In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science,
pages 63–89. Springer, 2018.

[53] Shahrokh Saeednia, Steve Kremer, and Olivier Markow-
itch. An efficient strong designated verifier signature
scheme. In Jong In Lim and Dong Hoon Lee, editors,
Information Security and Cryptology - ICISC 2003, 6th
International Conference, Seoul, Korea, November 27-
28, 2003, Revised Papers, volume 2971 of Lecture Notes
in Computer Science, pages 40–54. Springer, 2003.

[54] Peter W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In 35th Annual Sym-

posium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994, pages 124–
134. IEEE Computer Society, 1994.

[55] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and
Josef Pieprzyk. Universal designated-verifier signatures.
In Chi-Sung Laih, editor, Advances in Cryptology -
ASIACRYPT 2003, 9th International Conference on the
Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, November 30 - December 4,
2003, Proceedings, volume 2894 of Lecture Notes in
Computer Science, pages 523–542. Springer, 2003.

[56] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk.
Efficient extension of standard schnorr/rsa signatures into
universal designated-verifier signatures. In Feng Bao,
Robert H. Deng, and Jianying Zhou, editors, Public Key
Cryptography - PKC 2004, 7th International Workshop
on Theory and Practice in Public Key Cryptography,
Singapore, March 1-4, 2004, volume 2947 of Lecture
Notes in Computer Science, pages 86–100. Springer,
2004.

[57] Xi Sun, Haibo Tian, and Yumin Wang. Toward quantum-
resistant strong designated verifier signature from isoge-
nies. In Fatos Xhafa, Leonard Barolli, Florin Pop, Xi-
aofeng Chen, and Valentin Cristea, editors, 2012 Fourth
International Conference on Intelligent Networking and
Collaborative Systems, INCoS 2012, Bucharest, Roma-
nia, September 19-21, 2012, pages 292–296. IEEE, 2012.

[58] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha
Fahl, Henning Perl, Ian Goldberg, and Matthew Smith.
Sok: Secure messaging. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 232–249. IEEE Computer Society,
2015.

[59] Nik Unger and Ian Goldberg. Deniable key exchanges
for secure messaging. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-16, 2015,
pages 1211–1223. ACM, 2015.

[60] Nik Unger and Ian Goldberg. Improved strongly deniable
authenticated key exchanges for secure messaging. Proc.
Priv. Enhancing Technol., 2018(1):21–66, 2018.

[61] Damien Vergnaud. New extensions of pairing-based
signatures into universal designated verifier signatures.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, Automata, Languages and
Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
II, volume 4052 of Lecture Notes in Computer Science,
pages 58–69. Springer, 2006.

[62] Hailun Yan and Serge Vaudenay. Symmetric asyn-
chronous ratcheted communication with associated data.
In Kazumaro Aoki and Akira Kanaoka, editors, Ad-
vances in Information and Computer Security - 15th
International Workshop on Security, IWSEC 2020, Fukui,
Japan, September 2-4, 2020, Proceedings, volume 12231



of Lecture Notes in Computer Science, pages 184–204.
Springer, 2020.

[63] Yongqiang Zhang, Qiang Liu, Chengpei Tang, and Haibo
Tian. A lattice-based designated verifier signature for
cloud computing. Int. J. High Perform. Comput. Netw.,
8(2):135–143, 2015.


