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Abstract. The conversion between arithmetic and Boolean mask repre-
sentations (A2B & B2A) is a crucial component for side-channel resistant
implementations of lattice-based cryptography. In this paper, we present a first-
and high-order masked, unified hardware implementation which can perform
both A2B & B2A conversions. We optimize the operation on several layers of
abstraction, applicable to any protection order. First, we propose novel higher-
order algorithms for the secure addition and B2A operation. This is achieved
through, among others, an improved method for repeated masked modular re-
duction and through the X2B operation, which can be viewed as a conversion
from any type of additive masking to its Boolean representation. This allows
for the removal of a full secure addition during B2A post-processing. Compared
to prior work, our B2Aq requires 51/46/45 % less fresh randomness at first
through third protection order when implemented in software or hardware.
Secondly, on the circuit level, we successfully introduce half-cycle data paths
and demonstrate how careful, manual masking is a superior approach for mask-
ing highly non-linear operations and providing first- and high-order security.
Our techniques significantly reduce the high latency and fresh randomness
overhead, typically introduced by glitch-resistant masking schemes and uni-
versally composable gadgets, including HPC3 by Knichel et al. presented at
CCS 2022. Compared to state-of-the-art algorithms and masking techniques,
our unified and high-throughput hardware implementation requires up to
89/84/86 % fewer clock cycles and 78/71/55 % fewer fresh random bits.
We show detailed performance results for first-, second- and third-order
protected implementations on FPGA. Our proposed algorithms are proven
secure in the glitch extended probing model and their implementations are
validated via practical lab analysis using the TVLA methodology. We exper-
imentally show that both our first- and second-order masked implementation
is hardened against univariate and multivariate attacks using 100 million
traces, for each mode of operation.

1 Introduction

The security of currently deployed public key cryptographic algorithms is typically
based on the Integer Factorization or Elliptic Curve Discrete Logarithm problem. The
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threat of large-scale quantum computers is ever-increasing, potentially leaving current
algorithms and their implementations vulnerable to potential quantum attacks [63]
in the (near) future. The term ‘Post-Quantum Cryptography’ (PQC) encompasses
all alternative cryptographic algorithms, that can resist these attacks and are soon
to replace vulnerable algorithms and their implementations.

The National Institute of Standards and Technology (NIST) has recognized the
need for replacing the existing public-key standards. Launching an initial PQC stan-
dardization effort in 2016 [28] and continuing with an additional Digital Signature
(DS) competition in 2023 [32]. Noticeably, lattice-based schemes and their promising
security and performance features, are popular candidates for both competitions.
Kyber [30], Dilithium [31] and Falcon [57] will be standardized, while seven out of
40 accepted submissions for the PQC DS competition (Round 1) are lattice-based.
One of the challenges for the deployment of new post-quantum schemes is protection
against (physical) side-channel attacks.

Side-Channel Analysis (SCA) attacks aim at extracting sensitive information from
electronic devices performing security-critical applications, by observing the physical
characteristics of the calculations. First discovered and published by Kocher [47] in
1996, many types of physical behavior exist and can be abused by adversaries: exe-
cution time, instantaneous power consumption [48], Electromagnetic (EM) radiation
[36] or temperature and heat dissipation [44]. The security and confidentiality of a
cryptographic implementation can be completely broken if its physical characteris-
tics correlate to a secret key, typically called (side-channel) leakage. Many insecure
implementations, including of lattice-based schemes, have been successfully attacked
using side channels [25,42,58,59,65].

As a result, there is an urgent need for developing efficient countermeasures and
protection mechanisms. The importance of these protection mechanisms is emphasized
by NIST including them as a major evaluation criterion in the PQC standardization
process [1]. Protection against SCA attacks is a critical factor for the security of a
physical device and remains an open challenge in academia and industry.

Masking is an algorithmic and well-studied approach for protecting cryptographic
hardware or software implementations against (passive) EM or power side-channel
attacks. Following the concept of secret sharing by Shamir et al. [62], a sensitive
variable x is split into (d+1) uniform random shares (x{i}) for achieving security
order d. Each of the shares separately is uncorrelated to the secret and only if an
adversary combines information of all d+1 shares, it can learn something about the
original secret x. Operations are performed on individual shares, resulting in physical
characteristics being uncorrelated to the original secret. The masking countermeasure
[45,56,60,39,40] is popular because it can provide physical security through formal
security and adversary models. These aim at capturing real-world attack scenarios in
a precise yet abstract manner. Hence, such theoretical models allow for elegant and
high-level reasoning of SCA resilience of designs and (hardware) implementations.

Masking the operations of lattice-based crypto schemes requires a mix of both
Boolean and arithmetic mask representations. More precisely, polynomial multipli-
cation and addition are preferably performed on arithmetic shares, whereas hashing
inherently is a bitwise operation and thus prefers Boolean masking. Hence, there is
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a need for converting between both sharing types: from arithmetic to Boolean (A2B)
and Boolean to arithmetic (B2A). These conversions are costly, even more so at higher
protection orders, and are one of the major bottlenecks in masked implementations.
Related Work. Masking techniques have been applied to lattice-based cryptog-
raphy in other work, mostly targeting software implementations. This includes PQC
candidates Dilithium [53], Saber [7,22,50,35], Kyber [10,43,35,12] and NTRU [24,49].

A (secure) first-order A2B conversion was originally proposed by Goubin in [38],
with Coron et al. proposing higher-order conversions [20,21] for power-of-two moduli
(q=2k). They propose to construct the A2B conversion from the Secure Addition
(SecADD) operation, which can be seen as an arithmetic addition of two Boolean
shared variables.

However, most lattice-based schemes (incl. Kyber and Dilithium) operate on poly-
nomials with coefficients modulo a prime integer q. A secure addition modulo a prime
integer q is indicated as SecADDq and can be constructed from a regular SecADD and
additional explicit modular reduction. This expensive procedure typically involves a
combination of additional SecADD’s and Secure Multiplexers (SecMUX). Techniques
for the A2Bq/B2Aq operation have been proposed by Barthe et al. [6] and in [61].
Alternatively, methods have been proposed for first performing a modulus conversion
from a prime integer to a power-of-two one [12,53]. This allows all masked operations
to be performed modulo 2k, which is typically cheaper than the prime modulo variant
where explicit modular reduction is required. More recently, table-based approaches
have received more attention as they are becoming viable for high-order conversions
[64,23,33], yet not as efficient compared to computational approaches for now. These
techniques are out-of-scope for this work.
Contribution. We propose improvements from the algorithmic level down to the
circuit level, applicable to arbitrary protection orders. Firstly, we present an improved
secure addition for prime moduli, leading to a more efficient A2Bq and B2Aq. Sec-
ondly, our novel B2A method does not require performing a secure addition in the
post-processing stage. We also leverage the inclusion of memory elements in the
datapath as a masking countermeasure to maximize performance, essentially at no
additional overhead cost. We evaluate the security of all proposed techniques both
formally and experimentally.

Our unified, streaming hardware architecture can be dynamically configured to
perform any type of mask conversion: A2B2k/A2Bq/B2A2k/B2Aq. Our work is directly
applicable to any lattice-based PQC scheme, we specifically target Kyber parameters
in our unified implementation. To the best of our knowledge, our design strategy
results in the lowest overhead cost (latency, fresh randomness and area) compared
to the current state-of-the-art. Our findings and contributions are listed as follows:

– SecADDq requires explicit modular reduction: 2 × SecADD or a SecADD and
SecMUX. We propose a novel gadget, SecADDImpq, which utilizes implicit
modular reduction and is well-suited for As a result, the modular reduction
requires strictly 1 × SecADD operation at all protection orders, resulting in up
to 25% less fresh random bits and 20% less clock cycles for the A2Bq.

– B2A conversions require an A2B operation with expensive pre-and post-processing
stages. We simplify the post-processing stage by removing the secure addition,
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improving (among others) latency and randomness cost through our novel X2B
gadget. At first protection order, the latency and randomness requirements are
halved, for second order the randomness is reduced by 40% and latency by 33%.
We also propose a low-latency variant that has order-independent latency, which
leverages pre-computation of (random) data shares.

– By introducing circuit-level techniques, such as half-cycle data paths, we demon-
strate how the latency in glitch-resistant masking schemes can be significantly
reduced, at nearly no additional cost. We propose targeting highly non-linear
operations, like secure additions, resulting in 89% less clock cycles. We also
demonstrate that universal composability comes with an (unacceptable) high
cost and is unsuitable for masking complex operations like A2B/B2A. Instead,
by carefully masking all operations, we significantly reduce the masking overhead
(area, latency, randomness): up to 78/71/55 % less fresh randomness for first
through third protection order.

– The side-channel resistance of our implementation is formally proven and exper-
imentally verified in our Security Evaluations Lab using the Test Vector Leakage
Assessment (TVLA) methodology. Our RTL source code will be made available
at the time of publication.

Outline. Section 2 will briefly introduce the notations used throughout this work,
give necessary background information and highlight other related works. In Section
3, we present our novel secure gadgets and how they are used to construct secure
mask conversions. We discuss and argue about the security and efficiency of our
proposed methods and compare them to prior art. Next, in Section 4, we discuss
and demonstrate how they are efficiently implemented in hardware. This detailed
performance evaluation is followed by the security evaluation of our novel design in
Section 5. We conclude our work in Section 6.

2 Background & Preliminaries

2.1 Notation

The bit position (index) is indicated by the subscript, with the LSB at bit 0 (x0) and
MSB at position k−1 (xk−1) (k bit data words). All operations and units/costs are
expressed in terms of k-bit data words/shares, unless explicitly specified. Rounding
up to the next integer is denoted by ⌈·⌉.

2.2 Arithmetic, Boolean and Composite Sharing

At protection order d, a secret value x∈Fn
k is arithmetically masked by converting

it into d+1 shares x{0:d}, such that x =
∑d

i=0x
{i} modulo a predefined integer

q. For Boolean masking, the sharing of a secret value x can be reconstructed as
x=

⊕d
i=0x

{i}. Throughout this work, all sharing is considered uniformly random.
We introduce the term composite sharing for secret values that consist of a

combination of arithmetic and Boolean shares. x{a,b} corresponds to a secret value
x consisting of a arithmetic shares, each shared as b Boolean shares. Or alternatively:
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x=
∑a

i=1(
⊕b

j=1x
{i,j}) with a (total) masking order d=(a∗b)−1. Note that Boolean

masking can be seen as a special form of composite masking where all d+1 Boolean
shares belong to the same arithmetic share (a=1,b=d+1). An arithmetically shared
variable consists of d+1 arithmetic shares (a=d+1,b=1).

2.3 (Extended) d-Probing Model

The most prominent and well-studied adversary and security model, the Ishai, Sa-
hai, and Wagner (ISW) d-probing model [45], aims at capturing the capabilities of
real-world adversaries. In such a context, the adversary can probe and observe up
to d wires (intermediate values) of an ideal (glitch-less) circuit performing sensitive
operations. In this model, a (masked) circuit is dth- order probing secure if and only
if the information gained from d (noise-free and instantaneous) probes does not reveal
any information of any secret variable.

However, the discrepancy between theoretical and practical security has been
shown to be problematic in the case of the original ISW d-probing model. This has re-
sulted in the compromised security of theoretically secure designs and implementations
[51,55]. Several extensions to this original model have been proposed, aiming towards
(more accurately) capturing different physical effects (naturally) present in digital logic
circuits (CMOS) and hardware. These unintentional and undesired defaults include:

– Glitches: signal transitions due to different delay paths and switching delays
in combinational logic.

– Transitions: memory contents recombining over time (in sequential clock cycles).
– Coupling: signals in separate, but neighboring wires recombining.

An extended (and more robust) security model that introduces more powerful adver-
sary probes was proposed by Faust et al. in [34]. It introduces glitch-extended [51,52],
transition-extended [19,3] and coupling-extended probes [26], and incorporate such
(natural) physical defects as part of the adversarial model.

2.4 Masking: a Side-Channel Leakage Countermeasure

By introducing masking countermeasures, an attacker can only obtain information
about any sensitive value if they have access to all shares at once, while an incomplete
set of shares results in statistically random information. Chari et al. proved that increas-
ing the protection order of a circuit d results in an exponential increase in the effort and
number of traces required for an attacker to derive sensitive intermediate values [17].

Algorithmic Masking: Threshold Implementations (TI) & Domain-Oriented
Masking (DOM) A Threshold Implementation is a masked circuit that is inherently
immune against glitches in hardware. It performs a certain function securely on shared
data and was introduced by Nikova et al. [56]. A major challenge has been extending
this masking scheme for higher protection orders and against multivariate attacks
[8,18,9], especially without requiring expensive and tedious redesign/analysis of the
entire circuit.
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In contrast, following the DOM scheme [40], achieving d-order secure masked
circuits requires splitting sensitive variables into d+1 (independent) shares. Each
share is assigned to an independent share domain, while secure operations operate in
a domain-independent fashion. Non-linear operations require that shares cross domain
borders, which can be done securely by blinding these shares with fresh randomness
and synchronizing them using registers. Interestingly, this strategy can be trivially
extended and applied for any protection order which is why we utilize it in this work.

Creating a complex circuit, consisting of multiple such secure (DOM) gates,
requires careful analysis and introduction of countermeasures to achieve d-probing
security. In essence, the non-completeness property should always be respected and
additional mask refresh stages should be introduced in order to withstand multivariate
attacks. For hardware circuits, several security notions for composability have been
proposed: Non-Interference (NI) [4] and Strong Non-Interference (SNI) [5] in the
presence of glitches.

Definition 1 (t-(Strong)-Non-Interference [5]). A gadget with one output shar-
ing and mi input sharings is t-Non-Interferent (t-NI) (resp. t-Strong Non-Interferent
(t-SNI)) if any set of at most t1 probes on its internal wires and t2 probes on wires
from its output sharings such that t1+t2≤t can be simulated with t1+t2 (resp. t1)
shares of each of its mi input sharings.

Gate-Level Masking & Hardware Private Circuits (HPC) A different ap-
proach is based on ‘trivial composability’ and the security notion of Probe-Isolating
Non-Interference (PINI) [13] and HPC gadgets, which are derived from the DOM
scheme. Introduced by Cassiers et al. in [16], the proposed gadgets can be instantiated
at arbitrary protection orders and trivially combined into a larger circuit. In general,
trivial composability and its low verification cost and guaranteed d-probing security
comes at a high (overhead) cost, due to being overly conservative in applying certain
countermeasures. We target ‘optimized composition’ in the glitch and transition-
robust probing model in this work and as a result the overhead, introduced when
masking A2B/B2A operations, is significantly reduced compared to strictly using
(PINI) HPC gadgets.

2.5 Masking Lattice-based PQC: ML-KEM

Mask conversions are required when masking any lattice-based PQC scheme. Figure
1 illustrates the impact of different mask domains and the need for switching between
both during several sub-operations for Kyber (or ML-KEM). The decryption pro-
cedure requires performing Boolean operations, like binomial sampling and hashing.
The re-encryption stage requires performing polynomial multiplication, after which a
masked comparison is performed. Note again, these conversions are extremely costly
and result in being (one of) the main contributor(s) of run time latency. For the pseu-
docode of the full algorithms of all (future) PQC standards, we refer to their Round
3 Submissions or the official (drafts of the) NIST FIPS standards [29] respectively.
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Fig. 1: The masked Decapsulation procedure for Kyber, or ML-KEM (FIPS 203).
Operations that require Boolean masking are highlighted in blue, operations that
prefer arithmetic masking are highlighted in yellow. Mask conversions are required
to convert between these representations. [35]

3 Optimized Secure Gadgets for Mask Conversions

The following section will follow a bottom-up approach. First, we optimize the Secure
Addition (SecADDq) by focusing on the masked modular reduction. Our strategy can
be directly applied for arbitrary moduli q and arbitrary protection orders d, including
Kyber (q=3329) and Dilithium (q=8380417). By performing the modular reduction
implicitly, our approach requires strictly 2 SecADDs in total, instead of an additional
(third) SecADD or SecMUX.

Secondly, we propose two novel B2A gadgets: one low-latency (B2APreCompute)
and one area-efficient (B2AComposite) variant. The composability of all proposed
gadgets is proven secure in the glitch extended probing model and tested in TVLA set-
ting. We introduce a new primitive X2B, which eliminates a full SecADD/SecADDq

from the post-processing stage, reducing the latency and randomness requirements
at all protection orders.

Interestingly, all proposed gadgets lend themselves to highly flexible and efficient
hardware implementations, which we demonstrate in the subsequent section.

3.1 Secure Addition (SecADD)

The secure addition is equivalent to performing an arithmetic addition (s=x+y
mod q) in the Boolean domain (Equation 1). As we will demonstrate, it serves as
the primary building block for higher-order mask conversions.

s{0:d}=x{0:d}+y{0:d} mod q=

d⊕
i=0

x{i}+

d⊕
i=0

y{i} mod q (1)
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For power-of-two moduli (q=2k), the modular reduction is taken care of implicitly
during computation and prime moduli require explicit (masked) modular reduc-
tion. We first introduce strategies proposed in literature, including SecMUX-based
masked modular reduction. We demonstrate its high overhead cost and highlight a
state-of-the-art SecMUX-less strategy, applicable to first-order implementations. We
extend this method for arbitrary protection orders and demonstrate why it is not
a suitable strategy when performing multiple secure additions in succession. Finally,
we introduce the optimized SecADDImpq gadget. The ‘implicit’ modular reduction
of prime moduli allows them to be directly and efficiently chained together, which
is required for any mask conversion operation.

SecADDq = 2 × SecADD + SecMUX, from [6] Barthe et al. introduced a
simple, yet costly method for performing the SecADDq at arbitrary protection orders.
It requires calculating both s=x+y and s′=x+y−q securely, one of which will
be in range [0,q). A costly SecMUX (Equation 2) securely selects the desired shared
data (s or s′) that lies in the [0:q−1] interval, based on the carry bits c.

SecMUX(s{0:d},s′{0:d},c{0:d}k ) = SecXOR(SecAND(s,c), SecAND(s′, SecNOT(c)))
(2)

This secure gadget requires two k-bit SecAND, one SecXOR and one SecNOT oper-
ations, whereas the secure gates required to construct the secure adder itself typically
operate on smaller (1 or k/2 bit) chunks of data.

SecADDq = 3 × SecADD, from [35] Subsequently, Fritzmann et al. introduced
a method for performing a first-order SecADDq, which does not involve a SecMUX
gadget. By pre-processing the input data, which requires access to the initial masking
of either input y (or x), the SecMUX operation can be removed.

In practice, we need one of the inputs to be in range [−q,0). This can be achieved
by subtracting q from one of the inputs before it is shared: y′=y−q. The first SecADD
operates on y′ and x (or y and x′) and computes z=x+y′ (Alg. 1, Line 1). Next, a cor-
rection term c′ is constructed and is added to this intermediate result z, ensuring that
the result of the second SecADD s=z+c′ lies in [0,q) (Line 4). c′ is computed based on
the carry bits of the intermediate result z: c′=zk−1·q. If z is still negative, indicated
by the carry bit of the two’s complement representation being equal to one, c′ will be q.
As such q is securely added back to z during the second SecADD. If the intermediate
result is greater than zero, c′ will remain zero and the result will be in [0:q).

The carry bits of the intermediate result z essentially acts as a select signal for
a standard MUX, determining if zero or q is securely added back to z (Line 3). In
conclusion, the result, which lies in [0,q), is directly computed during the second
SecADD, based on the output of the first secure addition:

s=z+c′=x+y−q(+q)=x+y mod q (3)

Note that the modular reduction and the construction of c′ now is a linear (e.g.
mask-friendly) operation. There is no longer any need to explicitly select the correct
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Algorithm 1 SecADDq (without SecMUX) (extended from [35])
Input Parameter :q ▷ q is prime
Input Data :x{0:d} and y′{0:d}=y{0:d}+(2w−q) ▷ Initial masking.
Output Data :s{0:d} such that s=x+y mod q

1: z{0:d}← SecADD(x{0:d},y′{0:d})
2: c

{0:d}
0 ←z{0:d}≫(k−1) ▷ Carry bit (share-wise).

3: c′{0:d}←c{0:d} ·q ▷ Share-wise.
4: s{0:d}← SecADD(z{0:d},c′{0:d})

result, using a SecMUX. It is share-wise: no domain borders are crossed, removing
the need for fresh random shares or delay elements, except for the secure additions
themselves. As such, we can extend this method to arbitrary protection orders, as
demonstrated in Algorithm 1 by generalizing and duplicating the operation in each
share domain.

The main issue with this method arises when one of the Boolean masked inputs
is not in range [−q,0). This is the case if the output of a SecADDq operation, in
range [0,q), is directly used as the input for another SecADDq, as is the case during
an A2B (and B2A) conversion. To subtract q from a Boolean masked variable, an
additional secure addition with (2k−q) is required, as proposed in [14] (Algorithm
11). As a result, a full SecADDq now requires three SecADDs, which is costly in the
context of mask conversions.

SecADDImpq = 2 × SecADD We now propose our SecADDImpq gadget
(Algorithm 2), which requires only two SecADD operations even when performing
multiple secure additions successively, by exploiting ‘implicit’ modular reduction. We
also extend the notion of a secure addition so that two outputs are possible, one
of which is calculated in practice. One is calculated if the SecADD is one of many
subsequent secure additions that need to be calculated, or the other if it is the final one.

For the algorithm in the previous section, if the secure addition is the final op-
eration, the goal is to calculate s=x+y which lies in [0,q) with x and y consisting
of d+1 Boolean shares. As described above, this can be achieved using strictly two
SecADDs (Eq. 3 & Alg. 1) if one of the inputs is pre-processed: y′=y−q.

If another SecADDq needs to be performed subsequently, the result of the opera-
tion needs to be pre-processed (by subtracting q) as it is one of the inputs of the next
SecADDq. Instead of doing this explicitly, our novel gadget SecADDImpq allows for
this to be computed implicitly. The result will now be s′=s+(2k−q), which lies in
[−q,0), allowing for the output to be used directly as an input for the next SecADDq.

More specifically, first z=x+y′(=x+y−q) is calculated. Using this intermediate
result z, a different correction term c′ is constructed in Line 4: c′=(∼zk−1)·(−q).
This term is eventually added together with the intermediate result, in order to obtain
the final result: s′= z+c′. Intuitively, if the intermediate result lies in [−q,0), the
unshared correction term should be zero. If positive, −q should be added back to
the intermediate result in order to ensure the final result (s′) lies in [−q,0). This is
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achieved by using the Boolean inverse1 of the carry bits (zk−1) as a share-wise select
signal for a MUX. If an uneven amount of carry bits are one, the unshared value is
negative and an even amount of shares in c′ is set to −q. As a result, the unshared
c′ is equal to zero, which is desired.

Algorithm 2 SecADDImpq

Input Parameter :q ▷ q is prime
Input Data :x{0:d} and y′{0:d}=y{0:d}+(2w−q) ▷ Initial masking.
Output Data 1 :s{0:d} such that s=x+y mod q
Output Data 2 :s′{0:d} such that s′=s+(2k−q)

1: z{0:d}← SecAdd(x{0:d},y′{0:d})
2: cc

{0:d}
0 ←z{0:d}≫(k−1) ▷ Carry bit.

3: c{0:d}←cc{0:d} ·q ▷ Share-wise.
4: c′{0:d}←(∼cc{0:d})·(−q) ▷ SecNOT; Share-wise.
5: s{0:d}← SecAdd(z{0:d},c{0:d}) ▷ Final Output/Operation.
6: s′{0:d}← SecAdd(z{0:d},c′{0:d})

This extension allows for multiple secure additions to be directly chained in
succession, without the need for repeated and explicit pre-processing of one of the
inputs and thus strictly requiring two SecADDs. Such a thing is useful for A2Bq/B2Aq

conversions. The only time when access to the initial masking is required is one
of the inputs, y, of the very first secure addition of which many are performed
in succession. The input is corrected with −q before the initial sharing, so that⊕d

i=0y
′{i}= y−q. If not possible, a one-time pre-processing using the SecADD is

required.

Robust Probing Security: We now show that the SecADDImpq gadget is correct
and glitch-extended probing secure considering the leakage effects from Section 2.3.
Correctness. For prime q, explicit modular reduction is performed on z=x+y′=
x+y−q∈ [−q :q−2], because y′ lies in [−q :−1].

– z∈ [−q :−1]: c=q, so s=z+q lies in [0:q−1]. c′=0, because an uneven amount
of carry bits cc will be ‘1’ as both x and y are mod q. This ensures s′=z+0 lies
in [−q :−1].

– z∈ [0:q−2]: c=0, so s=z+q lies in [0:q−2]. c′=−q, because an even amount
of carry bits cc will be ‘1’ as both x and y are mod q. This ensures s′=z−q lies
in [−q :−2].

The algorithm returns either a value modulo q, or (mod q) - q.
Security. To argue about the higher-order security of Algorithm 2, we prove it to
be t−NI with t+1 shares. This provides resistance against a probing adversary with
t probes and allows the use of the gadget in larger compositions.
1 SecNOT (∼) on Boolean shared data is equivalent to performing binary invert on a

single share.
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Theorem 1 (). The gadget SecADDImpq (Algorithm 2) is t-NI secure.

Proof. We model Algorithm 2 as a sequence of t-(S)NI gadgets. For simplicity, we
model the linear operations in Lines 2, 3 and 4 as t-NI gadgets in hardware, which can
be trivially shown as the operations process the inputs share-wise, actually isolated in
the gadget per domain. In the glitch-extended model, the secure addition is t-NI. An
extended probe at the output of the secure adder, which is the most powerful one, can
be simulated only with the input shares [20], making the SecADDImpq gadget t-NI.

3.2 B2A

A method for converting d+1 Boolean shares to d+1 arithmetic shares (mod 2k) was
introduced in [21] and extended for arbitrary moduli q in [6]. Generally speaking, the
B2A conversion is equivalent to an A2B operation with additional (costly) pre- and
post-processing stages. We make several modifications to this procedure and propose
two new variants: A low-latency approach which requires pre-computation during the
randomness generation (Section 3.2) and a more efficient, standard B2A conversion
routine (Section 3.2). We can reduce the latency and randomness cost, mainly by
modifying the pre-and post-processing routines so that essentially only the A2B
(e.g. X2B) operation remains. Correctness and security proofs are also provided. We
conclude by comparing the overhead of published work and our methods in Table 1.

Pre-Compute B2A (Low Latency) The goal of the B2A operation is to convert
d+1 Boolean shares B{0:d} to d+1 arithmetic shares A{0:d}. The first d output
shares are newly sampled, random shares R

{0:d−1}
A : A{0:d−1}=R

{0:d−1}
A . The final

output share A{d} is computed during the remainder (and majority) of operations,
which mainly involve the d previously sampled random, arithmetic shares R{0:d−1}

A .
In the following sections, we will denote with superscript-free variables (e.g. RA) the
unshared value: RA=

∑d−1
i=0R

{i}
A mod q.

More specifically, the final share A{d} is securely computed as B−RA, so the
output A equals RA +(B−RA) = B. In practice, R{0:d−1}

A is first converted to
the Boolean domain (using an A2B), resulting in R

{0:d}
B :

⊕d
i=0R

{i}
B =

∑d−1
i=0−R

{i}
A

mod q. Next, B+RB is computed using a secure addition, as both are Boolean
shared operands. The only remaining step is to securely convert this result, using
the FullXOR gadget [21], into one share: A{d}=

⊕d
i=0(B+RB)

{0:d}.
We now remark that the A2B only involves random data and can be computed

when the randomness is sampled and temporarily stored in memory (Algorithm 3).
The main low-latency B2A algorithm now only involves operations on the actual, secret
input data: a single SecADD/SecADDq and FullXOR need to be computed at run-time,
independent of protection order (Algorithm 4) in order to obtain the final share A{d}.

Next, propose an optimization by noting that computing the negation of RA,
input of the A2B, is required. This negation is typically performed in the arithmetic
domain [21,6,35], which requires a share-wise effort (O(d)). We propose performing
this negation in the Boolean domain (SecNOT), requiring the Boolean inversion
of only a single share (O(1)). The relation between both operations is described in
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Algorithm 3 B2APreCompute
Input Data :q ▷ q=2n (n=1..k) or prime
Output Data :R

{0:d−1}
A and R

{0:d}
B such that

⊕d
i=0R

{i}
B =

∑d−1
i=0−R

{i}
A mod q

1: R
{0:d−1}
A ←Rand([0:q−1])

2: if q is prime then ▷ Modify initial masking for SecModALL.
3: for i=0,2...d−2 do
4: z{i}←A{i}

5: z{i+1}←A{i+1}−q ▷ −q correction.
6: end for
7: else
8: z{0:d−1}←A{0:d−1}

9: end if
10: z{d}←(2w−1) ▷ -1 in twos complement
11: y{0:d}←A2B(z{0:d})

12: R
{0:d}
B ←∼y{0:d} ▷ SecNOT, RB=A2B(−RA)

Equation 4. As RA only consists of d shares, the d+1-th share can be set to −1 (Line
10, Algorithm 3). The negation is now achieved through a SecNOT of the Boolean
representation of RA−1, which is computed during the A2B (Line 12). This ensures
the equivalent result (RB=−RA) is obtained.

∼x=−(x+1) (4)

Algorithm 4 B2A [Low Latency]
Input Parameter :q ▷ q=2n (n=1..k) or prime
Input Data :B{0:d}

Input Data :R
{0:d−1}
A and R

{0:d}
B such that

⊕d
i=0R

{i}
B =

∑d−1
i=0−R

{i}
A mod q

Output Data :A{0:d} such that
⊕d

i=0B
{i}=

∑d
i=0A

{i} mod q

1: z{0:d}←SecADD/SecADDq(B{0:d},R
{0:d}
B ) ▷ Algorithm 2

2: A{0:d−1}←R
{0:d−1}
A

3: A{d}←FullXOR(z{0:d}) ▷ [21]

Robust Probing Security: We now show that the B2A Low Latency gadget is cor-
rect and glitch-extended probing secure considering the leakage effects from Section 2.3.
Correctness. Algorithm 3 provides a Boolean (RB) and arithmetic (RA) represen-
tation of randomly sampled data. y is equivalent to (RA−1) in the Boolean domain.
The SecNOT operation ensures RB is equal to −(RA − 1+1) = −RA, which is
correct. In Algorithm 4, z is equal to (B−RA) through secure addition. The FullXOR
operation combines all shares into a single one, ensuring the output A is equal to
RA+B−RA=B in a shared format, which is the correct result.
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Security. To argue about the higher-order security of Algorithm (3 and) 4, we prove
it to be t−SNI with t+1 shares. This provides resistance against a probing adversary
with t probes. All pre-computations are only involving randomly sampled data, and
can hence be perfectly simulated without any extended probes. Hence, we focus on
the actual calculations in Algorithm 4.

Theorem 2 (). The gadget B2A Low Latency (Algorithm 4) is t-SNI secure.

Proof. The first d shares of the output A can be perfectly simulated without any
extended probes, as they are randomly sampled. The final share (Line 3) is calculated
with a t-SNI FullXOR gadget [21]: the SecADD/SecADDq gadget is t-NI, and is
refreshed with a t-SNI refresh with a pre-computed all-zero input sharing, with a
one-cycle latency in hardware [16]. These refreshed (registered) shares are combined
(XOR’d) into one share, which can be perfectly simulated without any extended
probes. As a result, the low-latency B2A gadget is t-SNI.

Our Improved B2A Method Now, we propose a more efficient B2A method
in Algorithm 5, which does not require any secure addition in the post-processing
stage and does not rely on pre-computation. Compared to the state-of-the-art, the
operation count is reduced and performance (latency, area and fresh randomness)
is significantly improved, in both software and hardware implementations.

As described in the previous section, the goal of the B2A operation is to
convert d + 1 Boolean shares B{0:d} to d + 1 arithmetic shares A{0:d}. Again,
A{0:d−1} = R

{0:d−1}
A is randomly sampled and the final share A{d} is computed

as B−RA. In practice, we introduce a new primitive X2B, which is a variant of the
A2B but operates on d+1 composite shares (a mix of arithmetic and Boolean shares):
z{0:d}. The composite shares z{0:d} are arithmetically shared, but each individual
share z{i} consists in turn of a number of Boolean shares, that is

∑d
i=0(

⊕d
j=0z

{i,j}).
During the X2B operation these composite shares are added together, similar to the
addition of strictly arithmetic shares during the A2B.

Our improved B2A is constructed by setting the X2B input z{0:d−1} equal to
R

{0:d−1}
A and z{d} to ∼B. Note that B consist of d+1 Boolean shares which means

that z is compositely shared, consisting of d arithmetic shares and one Boolean
sharing. The X2B is required to convert the compositely shared input, equal to
RA+(∼B)=RA−B−1, to a Boolean sharing. A negation in the Boolean domain
is performed on the X2B output to obtain the desired result B−RA. As during
regular post-processing, d+1 Boolean shares are combined into a single share using
a FullXOR to obtain the final output share A{d}.

This approach is an improvement over the state-of-the-art, as B−RA is directly
computed during the X2B and thus one does not need to perform the explicit
secure addition during post-processing. In the original method one needs to com-
pute one A2B and one secure addition, while our improved method requires only
the X2B operation. The X2B operation has the same computational cost as A2B
for first and second security order, and only slightly higher than A2B for higher
orders. For first-order implementations, the amount of secure additions is halved,
for second order one-third of secure additions is removed, etc. For prime moduli,
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we give a comparison in Table 1. In all cases we obtain a more efficient end re-
sult.

Algorithm 5 B2AComposite
Input Parameter/Data :q ▷ q=2n (n=1..k) or prime
Input Data :B{0:d}

Output Data :A{0:d} such that
⊕d

i=0B
{i}=

∑d
i=0A

{i} mod q

1: A{0:d−1},R
{0:d−1}
A ←Rand([0:q−1])

2: if q is prime then ▷ Modify initial masking for SecADDq.
3: for i=0,2...d−2 do
4: z{i}←R

{i}
A

5: z{i+1}←R
{i+1}
A −q ▷ −q correction.

6: end for
7: else
8: z{0:d−1}←R

{0:d−1}
A

9: end if
10: z{d,0:d}←∼B{0:d} ▷ z=RA−B−1
11: y′{0:d}←X2B(z{0:d})
12: y{0:d}←∼y′{0:d} ▷ y=−z−1=B−RA

13: A{d}←FullXOR(y{0:d}) ▷ A{d}=y

Robust Probing Security: We now show that the B2AComposite gadget is correct
and glitch-extended probing secure considering the leakage effects from Section 2.3.
Correctness. For the correctness of Algorithm 5 we largely refer to the proof in the
previous section. The operations in both B2A methods are identical but merged into
a single X2B operation. y′ is equivalent to A+(∼B)=A−B−1. As a result y is
equal to (−A+B+1)−1 or B−A. All shares are securely combined into a single one
in Line 13, ensuring the output A is equal to A+B−A=B, which is the same data
but shared differently.
Security. To argue about the higher-order security of Algorithm 5, we prove it to
be t−SNI with t+1 shares. This provides resistance against a probing adversary with
t probes.

Theorem 3 (). The gadget B2AComposite (Algorithm 5) is t-SNI secure.

Proof. All linear operations, including the SecNOT gadget in Lines 10 and 12, can
be modeled as t-NI gadgets. This can be trivially shown as the operations process
the inputs share-wise, actually isolated in the gadget per domain. The X2B gadget
is t−NI, as is the A2B operation [61]. The FullXOR consists of a t−SNI refresh with
all-zero input, ensuring the output can be perfectly simulated without any extended
internal or input probes.

2 Pre-Compute
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Table 1: B2Aq Cost/Overhead Comparison (d+1 shares, k-bit words).
Order # SecADD # SecMUX

[6] d 2(d+1) d+1
[35] 1 4 0
[14] d 2+3d 0
B2A Precompute (Alg. 3 & 4) d 2 + 2(d+1)2 0
B2AmodALL (Alg. 5) d 2d 0

4 High-Throughput & Low-Randomness Mask Conversions
in Hardware

In this section, we first introduce our strategy and novel techniques for implementing
the proposed secure gadgets and then demonstrate how (any d, any q) A2B/B2A
operations can be combined in a unified accelerator in hardware. When implementing
secure gadgets in hardware, it is preferred to maximally exploit its implicit parallelism
by operating on all shares at once (‘SIMD’). We introduce a high-order, layer-based
implementation, in which all shares are operated on at once. It is highly flexible: by
appropriately setting control signals, the data path is modified and the desired mask
conversion is performed. The implementation is also highly compact, all four types of
mask conversions can be performed on the same, single hardware unit with additional
pre- and/or post-processing dynamically activated depending on the exact operation.

Next, we propose and discuss the introduction of circuit-level techniques to reduce
the latency of masked implementations, at minimal additional cost. We exploit the
mandatory inclusion of registers, preventing leakage in the presence of glitches, to
increase performance. We provide the SystemVerilog source code for all designs, which
we experimentally verify to be first- and high-order secure in the next section.

4.1 Secure Addition: SecADDx

Several previous works have proposed algorithms and secure implementations of the
secure addition. A masked ripple-carry adder was proposed by Coron et al. [21], and
more hardware-focused parallel prefix-type adders by Bache et al. [2]. Essentially any
type of adder can be selected and transformed into a masked ‘SecADD’ variant by
carefully replacing its components with secure gadgets/gates. To the best of our knowl-
edge, there exists no work (& implementation) targeting higher-order protection or
maximally exploiting the parallel nature of hardware. We propose a Brent-Kung adder
architecture [11] because it is more area-efficient than a Kogge-Stone or Schlansky
architecture, at the cost of an increased latency yet high throughput.

We propose a unified and generic (hardware) design and implementation strategy,
illustrated in Figure 2: ‘SecADDx’. The fully unrolled and pipelined implementation
can compute the secure addition for power-of-two and prime moduli (using our
SecADDq, Algorithm 2), on the same hardware by setting the appropriate control
signals and using dynamic reconfiguration. Again, this is relevant because both
are necessary operations during a masked decapsulation of Kyber and can now be



16 Q. Norga et al.

performed using the same physical circuit. No physical hardware instances are reused
over time for the same (shared) coefficient and only operate on data assigned to that
specific share domain, avoiding transitional leakage in memory elements. Our novel
streaming approach, in which data flows through the entire pipelined circuit, ensures
all logic is maximally active.

Two SecADDs are instantiated, which are chained when the modulus is prime. As
described in the previous section, either s or s′=s−q can be calculated, depending
on whether that secure addition is the final one or not. Alternatively, for the secure
addition modulo a power-of-two integer, we propose using both SecADDs in parallel
instead of one being idle in this mode. Throughput is doubled in this mode, as two
shared data words (x1,y1 and x2,y2) can be accepted each clock cycle.

SecADD

SecADD

x
{0:d}
1

y′
{0:d}
1

s
{0:d}
1

x
{0:d}
2

y′
{0:d}
2

≫

SecNOT

s/s′?

q?

q?

∗

(−)q

s/s′
{0:d} or s{0:d}2

Fig. 2: Block diagram of SecADDx: reconfigurability during operation (at runtime). If
q is power-of-two, two inputs can be accepted (and outputs are produced) each clock
cycle. If q is prime, the latency doubles and a single input is accepted each clock cycle,
because both secure adders are chained. The output can be mod q or (mod q) - q.

4.2 Mask Conversions: A2Bx/B2Ax

We propose a fully pipelined, high throughput design which is related to the fact
that many (different) mask conversions need to be performed in lattice-based PQC
schemes. Specifically for Kyber, 256 coefficients per polynomial, and many poly-
nomials during the entire masked decapsulation process require A2B’s and B2A’s.
This section will first focus on the efficient and secure implementation of the A2B
operation in hardware, as it is also the major component of the B2A operation. The
B2A-specific pre- and post-processing will be discussed after.

A2B Layer We introduce the A2B Layer, the primary building block for con-
structing A2B (and B2A) conversions efficiently in hardware. It aims at maximizing
the parallelism available in hardware by operating on all shares simultaneously. As
described in Equation 5, each A2B layer doubles the level of Boolean shares and halves
the level of arithmetic sharing of a masked variable. The total share count remains
unchanged (d+1) from input to output, but the type of sharing does. By shares
moving in parallel through L=⌈log(d+1)⌉ ‘A2B layers’, all shares are converted to
Boolean shares in parallel. This is in stark contrast with proposed strategies, which
are fundamentally sequential and only operate on two shares at once.
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x{2a,b}=A2BLayer(x{a,2b}) (5)

An A2B Layer consists of two major operations: an expansion of Boolean shares
(‘Expand’) and a reduction of arithmetic shares (‘SecADDx’). The expand operation
doubles the number of Boolean shares of each arithmetic share using fresh random-
ness [21], after which the composite shares are securely added together in a pairwise
fashion. Multiple layers can be instantiated and placed in succession for higher-order
conversions, each operating on all shares in parallel while they move through all layers
in a streaming fashion. The proposed A2B strategy (in hardware) is illustrated in
Figure 3a and 3b for a two- and four-share conversion. All logic is maximally occupied
and active, as the data streams through the instantiated logic. No logic is reused for
a single shared input, avoiding any transitional leakage.

In the case of a prime modulus q, modular reduction is required. Before entering
the first layer, during the pre-processing stage, the initial masking of one of the inputs
for each SecADDx instance is explicitly corrected with −q. In between layers, the
modulus reduction will be performed implicitly (SecADDq, Algorithm 2).

Expand Expand

A0 A1−q

SecADDmodALL

x0 x1 y0 y1

B0 B1

(a) 2-share A2B.

Expand Expand Expand Expand

A0 A1−q A2 A3−q

SecADDx SecADDx

s0 s1 s′
0

s′
1

Expand Expand

SecADDx

B0 B1 B2 B3

(b) 4-share A2B.

Fig. 3: Layer-based approach for first- and third-order A2B conversions: :⊕d
i=0B

{i}=
∑d

i=0A
{i} mod q. Each layer (in gray) doubles the level of Boolean shar-

ing and halves the level of arithmetic sharing. For prime moduli q, modular reduction
is implicitly taken care of during computation in layers (s and s′ are interleaved).

B2A An architecture diagram of the X2B gadget, the main component of our
B2AComposite gadget is provided in Figure 4 which mostly uses the instantiated
A2B datapath. Again, some pre-processing is required before the initial masking.
And a FullXOR, including MaskRefresh, is required as post-processing. Our ap-
proach results in the A2B and B2A operations now having identical latency when
implemented in hardware. Interestingly, a significant portion of the computation (on
randomly sampled data) can be a target for pre-computation, highlighted in yellow.
This optimization is left as future work.

It is important to note that the minimal share count is no longer achieved during
the X2B operation at higher protection orders. Internally, the secure addition that
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operates on the input B, is of order d. This means an additional d+1 share secure
adder needs to be instantiated for d ≥ 3 in all but the final layer, which always
operates on d+1 shares. These adders are not naturally present there as they are
not required for an A2B and are only active during the B2A operation. Yet, the
randomness, area cost and latency of the full B2A is still significantly reduced.

Expand Expand Expand

A1 A2 A3−q∼B0 B1 B2 B3

SecADDxSecADDx

s0 s1 s2 s3 s′
0

s′
1

Expand

SecADDx

y′
0

y′
1

y′
2

y′
3

Fig. 4: High-order X2B: layers operate on both randomly sampled data (right) and
shared inputs (left). The right side (yellow) can be pre-computed. y=x−A is directly
computed during X2B, removing the need for a secure addition in post-processing.

4.3 Half-Cycle Path

The Domain-Oriented Masking (DOM) scheme and Threshold Implementations (TI)
both guarantee glitch-immunity, which means they proveably stay probing secure
for every possible occurrence of a glitch. This is achieved by introducing register
stages, which results in highly pipelined data paths. Instead of simply regarding
these countermeasures as introducing undesired overhead and significantly increasing
latency, they can also be leveraged positively to improve performance. In hardware,
the mandatory registers, which are present as a leakage countermeasure, essentially
result in a ‘free’ pipelining of the datapath.

The density of non-linear operations dictates the frequency of registers and hence
the performance and cycle count. However, these are often not uniformly distributed
throughout masked implementations and hence result in a non-optimal usage of the
critical path ‘budget’. Introducing additional registers to balance the datapath results
in a non-minimal overhead and latency, and only further increases implementation cost.

We propose interleaving registers clocked at the positive and negative edge in
select secure gadgets, resulting in half-cycle paths [41,27]. This circuit-level technique
can ideally halve the latency (e.g. doubles the throughput) of a tightly pipelined
secure gadget, as data is captured every half-clock cycle. As demonstrated in Figure
5, DOM and HPC3 require one cycle per masked non-linear gate and HPC1 requires
two. As a result, our Brent-Kung SecADD design would require nine or 18 clock
cycles if implemented with SOTA masking techniques. Our circuit-level optimizations
result in a latency of only five cycles.
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We implement half-cycle paths with minimal design effort, as it mainly corresponds
to identifying highly pipelined stages of the masked implementation (successive non-
linear operations) and alternating the clock edge at which the registers capture data.
The maximal operating frequency (fmax) can remain largely unaffected if pipelining
stages from masking are extremely small compared to other sections of the circuit,
which is the case for mask conversions and secure additions. They consist of only a
few boolean gates and can easily be completed within half a clock cycle of the original
clock speed, which is dictated by I/O memory transfers. The modified sections, if
identified correctly, are better utilized and operate on a high clock frequency, while
other sections run at their natural, lower clock speed.
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Fig. 5: Half-cycle data paths & Domain-Oriented Masking: the latency of highly
non-linear, tightly pipelined data paths can be halved, for free (illustrated with
SecAND & SecOR). The bottom figure illustrates the operation/gate latency for
our (first-order) Brent-Kung SecADD: requiring only 5 clock cycles instead of 9/18
for na"ive DOM/HPC3 or HPC1.

4.4 Performance Evaluation

All of the types of mask conversions required in the Kyber decapsulation (or
Dilithium/Falcon Sign) procedure can be computed using our efficient and secure
streaming hardware design (Table ??). Our first-order implementation has a utiliza-
tion of 1638 LUT and 2874 FF, and can operate on a maximum clock frequency of
150 MHz. The second-order implementation has a utilization of 7946/18032 LUT/FF
and a maximum clock frequency of 125 MHz. Through algorithmic, gadget- and
circuit-level optimizations, we reduce latency, maximize throughput and minimize
area cost. We compare other A2B/B2A algorithms with state-of-the-art masking
techniques and our algorithms with our masking techniques, including HPC1 and
HPC3. Compared to the DOM AND gate, HPC1 requires a significant amount of
additional random bits and the latency is doubled (two cycles), due to an additional
Refresh stage at the input. HPC3 has a latency of one cycle but requires double the
randomness compared to the DOM AND gate [16,46].

3 Not required for Kyber Decapsulation, but naturally supported in design.
4 Section 3
5 Section 4
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Firstly, we can observe in the first and second row the overhead for several
state-of-the-art A2B/B2A algorithms implemented using HPC1/3, which are high.
These algorithms require both expensive modular reduction (SecMUX/SecADD) and
post-processing for the B2A operation.

Secondly, these algorithms can be compared with our secure gadgets from Section
3, if naively implemented using HPC1/HPC3. The third row shows that our novel
nethods result in a lower overhead compared to the state-of-the-art algorithms at all
orders of protection. Both the latency and fresh randomness cost are reduced, due
to implicit modular reduction and a reduced SecADD count. Compared to [6], which
requires a SecMUX, the A2Bq requires around 9% less RND at first through third
protection order. Our B2A approach, through the X2B gadget, has half the latency
(and randomness) at the first protection order, as it requires only one SecADD instead
of two. Similar improvements can be expected for masked software implementations,
as these are simply the result of the removal of operations.

Thirdly, we also introduce careful masking and several circuit-level optimizations
(Section 4), resulting in the most efficient implementations for any type of A2B/B2A
conversion, at arbitrary protection order, in hardware. By not relying on universal
composability, we can reduce latency by ± 85% for all modes and at any protection
order, as demonstrated in the final row. The randomness is reduced significantly:
45/54/47 % for the A2B mod 2k, 47/48/62 % for the A2B mod q. Our novel B2A
approach, combined with our careful masking approach results in a reduction of
70/68/51 % (mod 2k) and 78/75/65 % (mod q) in fresh randomness requirements.

Interestingly, both 3- and 4-share implementations require the same latency for
A2B/B2A conversions. This is because both require two A2B layers. The 4-share
implementation does have a higher area utilization, as more & bigger adders are
instantiated within these layers, also explaining the increased fresh randomness cost.
Our B2A gadgets, based on simplified post-processing, have the same latency as the
A2B operation, for any protection order d. Compared to prior work, for which the
B2A requires around ×2 more clock cycles for first order, ×1.33 for second and third
order implementations, more than the A2B operation.

5 Security Evaluation

5.1 Measurement Setup

In this section, we describe the practical evaluation of our masked designs. The
synthesis results were obtained with the Xilinx Vivado v2021.1 compiler. We utilize
the keep_hierarchy pragma to prevent the compiler from optimizing masking coun-
termeasures away. This may result in a less-than-optimal overhead but ensures the
desired security. We collect power traces from the measurement point on the Sakura-X
evaluation board, containing a Xilinx Kintex7 FPGA. The traces are captured by
a Tektronix DPO7254 oscilloscope at a sample rate of 1GS/s while the FPGA is
externally clocked at 6MHz. We synchronized the oscilloscope and the external clock
for all our measurements.
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The mask conversion accelerator instance is duplicated 15 or 5 times6 on FPGA
for lab evaluations, to guarantee satisfactory SNR for statistical analysis, illustrated
in the mean measurement traces. All instances operate on a single, identical input
data and fresh randomness in parallel. No other operations or parts of the pipeline
are activated during the entire operation. The randomness required by our design
is supplied by a PRNG that runs on the crypto FPGA. The PRNG consists of a
Trivium cipher implementation, which is re-seeded with fresh randomness for each
mask conversion. We interleave the execution of the PRNG with the execution of
the full mask conversion to decrease the impact of noise induced by the PRNG.

5.2 Test Vector Leakage Assessment Results

We verify that our implementations do not show first-order (or second-order) uni-
variate and bivariate leakage. The non-specific, fixed vs. random t-test statistic [37]
is calculated for the implementation of all different mask conversion operations. The
threshold value of the t-test commonly used by the side-channel research community is
4.5 which provides a confidence of roughly 0.99999. If the t-test value of the measured
power trace grows over 4.5, the implementation under test is considered as insecure.
The regions of interest are indicated on all figures between vertical red lines, which
indicate the start and end of mask conversion.

Figure 6 illustrates the TVLA results of the first-order masked A2B (Figure
6a & 6b) and B2A operations (Figure 6c & 6d) (mod 213 and 3329, respectively),
displaying the mean trace and first and second order statistical moments with the
PRNG activated. Each of the subplots confirm our theoretical expectation, as no sig-
nificant evidence of first-order leakage was detected for 100 million measurements. The
second-order leakages show as anticipated. In contrast, we also include t-test results
for the implementation with the randomness turned off (set to zero), guaranteeing
that our test set-up is sound and can detect leakage (Figure 8a) with only 500K traces.

Figure 7 illustrates the TVLA result of the second-order masked A2B and B2A
operations (mod 213 and 3329), operating on three shares. The mean trace and first,
second (and third) order statistical moments with the RNG activated are displayed.
First- and second-order (univariate) leakages are not present. We want to bring the
reader’s attention to the complexities of observing higher-order leakages. For our
second-order implementation, third-order leakages show for certain modes (B2Aq),
as anticipated, and not for others. We can attribute this phenomenon to effects
described in [54]. More specifically, to observe higher-order leakage one needs to
collect much more traces. One could expect that if we continued acquiring traces
up to 500M or even 1 billion traces, our second-order implementation would exhibit
third-order leakages more clearly in other modes of operation too. We do not include
such figures due to the practical and computational infeasibility. Again, we verified
our measurement setup by turning off the randomness source (Fig. 8b), with all
present leakages not appearing when the randomness is turned on again.

We also performed second-order bivariate leakage detection tests [15], illustrated
in Figure 9. To alleviate the computational complexity of this analysis, we set the
6 for 2- & 3-share implementation
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(a) A2B mod 213. (b) A2B mod 3329.

(c) B2A mod 213. (d) B2A mod 3329.

Fig. 6: 1st & 2nd-order univariate fixed-vs.-random TVLA results for all types of first-
order mask conversions (2 shares) using 100M traces with PRNG ON. For each subfig-
ure, the upper plot shows the mean trace. The ± 4.5 threshold is marked by red lines.

point of interests at every 2 (or 5) sample points, lowering the sampling rate to
500 (or 200) MS/s for the A2B and B2A operation. First, we verified that both our
first-order implementation and second-order implementation with the PRNG turned
off show leakages, with 500K traces. We confirm the measurement setup is sound
and can detect bivariate leakages. With the PRNG switched on, no excursions of the
t-values beyond ± 4.5 occur and thus the test is passed with 100M traces.
Conclusion. From these first-and high-order univariate and bivariate tests using
TVLA methodology, we can conclude our proposed techniques and their implemen-
tations are secure. We demonstrate how our approach leads to efficient and secure
first and high-order implementations.
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(a) A2B mod 213. (b) A2B mod 3329.

(c) B2A mod 213. (d) B2A mod 3329.

Fig. 7: 1st, 2nd (&3rd)-order univariate fixed-vs.-random TVLA results for all types
of second-order mask conversions (3 shares) using 100M traces with PRNG ON. For
each subfigure, the upper plot shows the mean trace. The ± 4.5 threshold is marked
by red lines.

(a) 1st-order (2 share) implementa-
tion

(b) 2nd-order (3 share) implementa-
tion

Fig. 8: 1st (& 2nd)-order univariate fixed-vs.-random TVLA results for A2B mod 213

(2 & 3 shares) using 500K traces with PRNG OFF. For each subfigure, the upper
plot shows the mean trace.
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(a) A2B mod 213. (b) B2A mod 3329.

Fig. 9: Bivariate analysis of second-order mask conversion implementation (3 shares),
100M traces, PRNG ON. (Best viewed on screen.)

6 Conclusion

In this work, a first- and high-order hardware implementation of the mask conversion
operation, secure against differential power analysis attacks were described. These
leverage novel d−order secure gadgets and circuit-level optimizations to improve
performance at all protection orders. Including a novel SecADDq gadget, which relies
on repeated, implicit modular reduction and a novel B2A algorithm, which relies
on the novel X2B. The univariate and multivariate security is formally proven and
experimentally validated in various modes.

Instead of utilizing state-of-the-art masking techniques, which rely on universal
composability, this work leverages careful, manual masking to achieve first- and
high-order protection. It is demonstrated that such an approach leads to more rea-
sonable overheads and protects against side-channel leakage at the same degree. Also,
no tedious re-design is required when extending our approach to higher protection
orders, as we utilize the DOM-scheme. Half-cycle paths further exploit the masking
countermeasures to increase the performance of highly non-linear operations, without
requiring the explicit inclusion of additional pipelining registers.

In summary, the presented techniques result in hardware implementations with
the lowest area utilization, fresh randomness cost and latency published to this date.
Our first-order implementation requires only 1638/2874 [LUT/FF] when implemented
on FPGA. The amount of clock cycles required for a mask conversion is reduced
by up to 89%, the required amount of fresh randomness by up to 78%. The pre-
sented second-order implementation requires 7946/18032 [LUT/FF] on FPGA, which
requires up to 84% less clock cycles and 71% fewer random bits.
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