
Some Improvements for the PIOP for ZeroCheck

Angus Gruen
Polygon Zero

Abstract

Most multivariate proof systems require, at some point, an algebraic
check against the rows of the trace. One popular protocol for this is
known as zerocheck which is a sumcheck based protocol which proves
a constraint function is zero over the n-dimensional Boolean hyper-
cube. One of the drawbacks of running zerocheck over a small field, is
that it usually involves a large number of evaluations of the constraint
polynomial over a cryptographically large extension field G.

We describe several improvements to the zerocheck protocol over a
small field F which both reduce the number of constraint evaluations
the prover needs to perform and shifts some computation from the
extension field back into the base field F. Specifically, for a table of
length 2n, integer parameter 1 ≤ k ≤ n and constraint function C
of degree d with evaluation costs CF, CG we show the protocol can be
performed with prover cost roughly

2n
(
1 +

CG

2kCF

)
(d− 1)CF.

To check the proof, the verifier needs to perform a single interpo-
lation of degree 2kd and n interpolations of degree d. Thus varying k
allows for a tradeoff between prover and verifier cost.

1 Introduction

This paper is concerned with optimizing a particular Polynomial Interactive
Oracle Proof (PIOP).

Generically, PIOPs allow a prover (P) to convince a verifier (V) of the
veracity of some claim. The “Polynomial” keyword implies that this protocol
will consist of a set of rounds where in each round P will send V a polynomial
(or a commitment to a polynomial) and V will reply with a vector of random
field elements. At the end of the protocol, V can choose to either accept or
reject the claim by querying the polynomials at a small number of points
and testing a small set of polynomial relations.

The sumcheck protocol [Lun+92] is a simple PIOP which allows P to
prove the summation of a multivariate function f over the Boolean hyper-

1

cube
v =

∑
X∈Hn

f(X).

The elegance of sumcheck is that it allows P to prove that v is the sum with
V’s workload only linear in n.

Thanks to its simplicity and versatility and, in part, due to a lack of
alternatives, the sumcheck protocol is one of the key algorithms behind
multivariate SNARKS.

We will be focused on a specific and common use case of sumcheck known
as the zerocheck [Che+22]. The zerocheck protocol aims to prove that

f(X) = 0 ∀ X ∈ Hn.

As observed in [Set20; Che+22] it is possible to reduce the zerocheck protocol
to a sumcheck protocol by taking an inner product with a suitable function
over Hn. We will discuss this in mor detail in Section 2.3. The purpose of
this paper is to describe some improvements to the zerocheck protocol which
reduce how much work P needs to perform. As a rough guide

• Section 2 introduces notation and gives explicit descriptions of the
sumcheck and zerocheck protocols. We also discuss the cost model we
will be using to look for improvements.

• Section 3 describes a couple of minor protocol tweaks which improve
the efficiency of zerocheck in all cases with no downside. We stress
that there is no reason to not apply these tweaks in a performance
oriented implementation of zerocheck.

• Section 4 describes how P can leverage a Gröbner basis decomposition
of the constraint function to further reduce their workload. Note that
these improvements make no change to the protocol. It is simply a
method which allows P to compute the required information with less
effort.

• Section 5 discusses improvements related to skipping rounds in the
protocol. These reduce the work of P but do have a minor trade-off of
increasing V’s work somewhat (Though it remains linear in n).

• Section 6 gives an updated zerocheck protocol taking into account the
improvements from previous sections.

Note that Sections 3, 4 and 5 are essentially independent and so are pre-
sented here roughly in order of the complexity required to implement them.
The ideas contained within should also generalize to other sumcheck/ze-
rocheck like protocols though we do not discuss such generalizations here.

2

1.1 Related Work

The recent paper [Tha23] looked at a similar problem but took an alterna-
tive path. Broadly the ideas in [Tha23] focus on reducing the cost of each
evaluation of the constraint polynomial. In contrast, the improvements con-
tained in this manuscript are focused on reducing the number of evaluations
needed. It goes without saying that these works can and should be applied
in conjunction.

2 Preliminaries

2.1 Algebraic Preliminaries

Let F = Fp denote a fixed finite field and G = Fpm an extension field of
cryptographic size1. Given a subset D ⊂ Fp and a function f : D → Fp, we

use2 f̂ and [[f]] to denote the polynomial interpolate of f and an oracle of
f respectively.

The interpolant f̂ ∈ Fp[X] is the unique polynomial of degree ≤ |D| − 1

such that f̂ |D = f . An oracle [[f]] for f is a commitment3 which, given
an element a, allows us to produce both f(a) and a proof that this is the
correct value.

Throughout most of this document we will be dealing with multivariate
polynomials f̂ ∈ Fp[X0, · · · , Xn−1] which can make notation a little messy.
To help with this we will always use a bold fontX to denote vectors with cap-
ital letters denoting indeterminates and lower case letters evaluation points.
There are also a collection of different ways in which we can evaluate f̂ .
We can evaluate it on n single elements f̂(X0, · · · , Xn−1), a vector X of
length n, f̂(X), or some combination of vectors whose combined length is
n, f̂(X0, · · · ,Xi). We will use these three pictures interchangeably.

A monomial is a simple product of the form Xi = Xi0
0 · · ·Xin−1

n−1 . These
form a basis for the vector space of multivariate functions, meaning every
such function admits a unique decomposition

f̂(X) =
∑
i

fi X
i

where the sum is over all i with fi ̸= 0. We define the Xj-degree of Xi to
be ij and the total degree to be i0 + · · ·+ in−1. The Xj and total degrees of

f̂ are the maximal Xj and total degrees of any monomial appearing in its
decomposition.

1In particular this usually means pm > 2128.
2In cases where f is already a polynomial or it is unambiguous we occasionally drop

the .̂
3We ignore the specific choice of commitment here.

3

A special case occurs when all Xi-degrees are ≤ 1, in which case the
polynomial is called multilinear.

Remark 2.1. A multilinear polynomial is uniquely determined by its evalu-
ations over the boolean hypercube Hn = {0, 1}n.

An important class of polynomials are the interpolates of δ functions.
Given a domain D, the delta function on D is the unique function D×D →
{0, 1} ⊂ F given by

δD(X,Y) =

{
1 X = Y

0 X ̸= Y
.

This function is interpolated by the polynomial

δ̂D(X,Y) =
∑
d∈D

∏
i∈D
i ̸=d

(X − i)(Y − i)

(d− i)2
.

This can now be used to define the interpolate for any function on D as

f̂(X) =
∑
d∈D

f(d)δ̂D(X, d).

These δ̂ also naturally extend to multivariate product domains. If D =
D0 × · · · ×Dn−1 then

δ̂D(X,Y) =

n−1∏
i=0

δ̂Di(Xi, Yi).

These can be used to interpolate multivariate polynomials over product
domains in an identical way to the univariate case.

The reason why polynomials are so widely used in proof systems essen-
tially comes down to the following lemma:

Lemma 2.2 (Schwartz-Zippel). Let F be a field and f ∈ F[X0, · · · , Xn−1] be
a polynomial of total degree d. If we randomly sample n elements r0, · · · , rn−1

from F then

Pr[f(r0, · · · , rn−1) = 0] ≤ d

|F|

Note that this can be equivalently stated as, given 2 different polynomials
f, g of degree d, the probability that f(r0, · · · , rn−1) = g(r0, · · · , rn−1) at a
randomly chosen point is ≤ d

|F| . Translating, this means that if we work
over a big enough field and evaluate 2 low degree polynomials at the same
random point. Then, if the evaluations agree, we can conclude with high
probability that our polynomials are equal. This lemma is the key cog in all
the security analysis we will do in this paper.

4

2.2 SumCheck

Before getting to zerocheck, we first give a brief overview of the well known
sumcheck protocol [Lun+92; Tha22]. Assume a prover P has committed to
a multivariate function f̂ and wishes to prove that

v = v0 =
∑
x∈Hn

f̂(x).

We assume that from context4 that the verifier V knows one global piece of
information, namely a positive integer d which satisfies

max
i

(degxi
f̂) ≤ d.

The protocol works by iteratively reducing P’s claim to a summation
over a smaller hypercube.

1. Setup. P sends V a value v and a commitment [[f]].

2. Rounds 0 · · ·n− 1. At the start of the i’th round, P wishes to prove

vi =
∑

x∈Hn−i

f̂(r,x)

where r = (r0, · · · , ri−1) ∈ Gi is a vector of random elements with rj
sent by V in the j’th step.

(a) P computes

vi+1(X) =
∑

x∈Hn−i−1

f̂(r, X,x)

for5 X = 0, · · · , d and send the values to V.
(b) V check that

vi = vi+1(0) + vi+1(1)

rejects if this fails and otherwise responds by by sending the next
random variable ri ∈ G.

(c) Both P and V interpolate vi+1(X) to compute vi+1 = vi+1(ri)

3. Round n. V queries the commitment [[f]] at r = (r0, · · · , rn−1) and
accepts if any only if

vn = f(r).

As desired, V’s work consists of only an O(n) number of interpolations
of degree d.

For a discussion of the completeness and soundness of this protocol, see
A.1.

4The standard case is that P has a collection of multilinear functions f1, · · · , fl and
f̂ = Q(f1, . . . , fL) where Q is public polynomial of small degree d

5As vi+1(X) has degree ≤ d this determines vi+1. Depending on the situation, a
different set of d+ 1 points might be preferable.

5

2.3 ZeroCheck

Let’s turn to the situation that the remainder of the paper will focus on.
Assume P starts with a table T of size6 2n × l and a constraint polynomial
C with known total degree ≤ d which vanishes on every row of the table

C(Ti,0, · · · , Ti,l−1) = 0. (1)

P wishes to prove to V that C vanishes on every row in a way such that V
only performs O(n) work (so the naive method of sending both T and C is
out).

There is a standard method to reformulate this problem in the language
of polynomials. Reinterpret each column as evaluations of a multilinear
polynomial ωi on the hypercube Hn and define

C(X) = C(ω0(X), · · · , ωl−1(X)).

Then P commits to the polynomials ωi(X) ∈ F[X0, · · · , Xn−1], C(ω) ∈
F[ω0, · · · , ωl−1] and then needs to prove that C(x) = 0 for all x ∈ Hn.
Following [Set20; Che+22], this can be reduced to a sumcheck using

δ̂Hn(X,Y) = δ̂n(X,Y) =

n∏
i=1

(XiYi + (1−Xi)(1− Yi)).

Given a random α ∈ Gn define the function

F̂ (α) =
∑
x∈Hn

δ̂n(α,x) C(x).

Then with high probability F̂ (α) = 0 if and only if C(X) vanishes on Hn.
Thus P can apply the sumcheck protocol we just introduced to prove

that F̂ (α) = 0 for an α supplied by the verifier. For the technical details
regarding the completeness and soundness see A.2.

2.3.1 Prover Costs

The only work outside of the usual sumcheck algorithm that V needs to
perform is in sampling and sending α which is clearly also linear in n.

Thus let us turn to studying the cost to P of this protocol. This will be
our main guiding parameter which we will seek to minimise throughout the
rest of the paper.

The majority of the cost for P to run the zerocheck protocol can be split
into 3 distinct parts.

6For simplicity we will assume for now that the height of the table is a power of 2.
Note that we will be able to work with a weaker assumption for our final protocol.

6

• Multilinear Interpolation. Given the evaluations of ωi(X) over Hn, in
the i’th round P needs to compute ωi(r, X,x) with r = (r0, · · · , ri−1) ∈
Gi supplied by the verifier, X ∈ {0, · · · , d+ 1} and x ∈ Hn−i−1.

• Constraint Evaluation. Given the evaluations of ωi(r, X,x) for all
i ∈ {0, · · · , l − 1}, compute

C(r, X,x) = C(ω0(r, X,x), · · · , ωl−1(r, X,x))

• Auxiliary Work. The remainder of the computations P needs to do.
This includes multiplying constraints by the δn factor and summing
up the results over x ∈ Hn−i−1. There is also a small polynomial in-
terpolation of vi+1(X) to compute vi+1(ri) and potentially some other
minor things.

We assume henceforth that the cost to P is dominated by the second
bullet, constraint evaluation. This is often the case when T is the trace of a
proof system which is the main use for zerocheck. Thus our goal should be
to minimise the number of constraint evaluations we need to do.

That being said there is one more important consideration to make.
Arithmetic operations in F will be much cheaper than those in G. Hence
we use CF (CG) to denote the cost of evaluating C when all entries are in F
(CG). The first case occurs only in round 0 before V has sent r0.

In round i, as vi+1(X) has degree d + 1, P needs to compute and send
vi+1(X) at (d + 2) locations each of which requires 2n−i−1 evaluations of
C (As vi+1(X) is a sum over Hn−i−1). Hence the number of constraint
evaluations needed will be

(d+ 2)

(
2n−1CF +

n−1∑
i=1

2n−i−1CF

)
∼ (d+ 2)2n−1

(
CF + CG

)
3 Minor Protocol Tweaks

We start with a couple of small changes to the protocol described above
which provide an immediate improvement.

3.1 Sending less data

The simplest tweak involves simply shifting a small amount of extra work
onto the verifier. Recall that in round i, P sends V the values vi+1(X) for
X = 0, · · · , d+ 1 after which V checks that vi = vi+1(0) + vi+1(1). Instead
of doing this, P can simply not send vi+1(1) and let V fill in this value via7

vi+1(1) = vi − vi+1(0).

7Alternatively, this can equivalently be used by P to compute vi+1(1) from vi+1(0)

7

Similarly, in the zeroth round, an honest prover will always send v1(0) =
v1(1) = 0 meaning this doesn’t actually require any evaluations.

This reduces the cost to

d2n−1CF + (d+ 1)2n−1CG

3.2 Slight modification of the Protocol

Next, observe that the instance of sumcheck that we perform is more struc-
tured than the standard sumcheck. In particular it can be viewed as a
weighted sumcheck as discussed in [Mei13; BCS21]. This interpretation al-
lows us to make a minor change which improves both the efficiency and
security of the protocol.

Fast forwarding to the i’th round of the protocol the verifier has, over
the previous i rounds, sent r = (r0, · · · , ri−1). Currently the protocol asks
P to send the polynomial

vi+1(X) =
∑

x∈Hn−i−1

δ̂n(α, (r, X,x))C(r, X,x).

But, instead, consider what happens if P instead sends evaluations of

v′i+1(X) =
∑

x∈Hn−i−1

δ̂n−i−1((αi+1, · · · , αn−1),x)C(r, X,x)

These two functions are related via

vi(X) = v′i(X)δ̂i+1((α0, · · · , αi), (r, X))

and this δi+1 factor is entirely known by V as they know both α and r.
The improvement comes from the fact that deg v′i(X) = degX vi(X)− 1

meaning P needs to evaluate v′i on one fewer point.
The main protocol change comes from the inter-round checks. Instead

of the constraint
vi = vi+1(0) + vi+1(1)

we have the modified constraint

(1− αi)v
′
i+1(0) + αiv

′
i+1(1) = v′i.

Hence we can combine this with the previous observation so P can evaluate
and send even less data.

As a side benefit, δ̂n−i−1 is also cheaper8 to compute than δ̂n.
With these two improvements combined the cost reduces to

∼2n−1(d− 1)CF + 2n−1dCG

In the common d = 3 case these simple improvements already reduce
the cost by a factor of 5

3 .

8You can recursively construct a table of evaluations of δ̂n−i from a table of evaluations
of δ̂n−i+1.

8

3.3 Improved ZeroCheck Protocol:

Let’s quickly run through what this new and improved zerocheck protocol
looks like. We postpone a discussion of its soundness to section A.3.

1. Setup and Round 0

(a) P commits to the constraint function C of degree d which holds
over the rows of table of length 2n.

(b) V samples9 α ∈ Gn and sends to P.
(c) P computes

v′1(X) =
∑

x∈Hn−1

δ̂n−1((α1, · · · , αn−1),x)C(X,x)

for X ∈ 2, · · · , d and sends to V.
(d) V samples r0 ∈ G and sends to P. Additionally, V interpolates

v′1(X) from the data sent by P along with v′1(0) = v′1(1) = 0 and
computes v′1 = v′1(r0).

2. Rounds 1 · · · (n − 1). At the start of the i’th round, V has just com-
puted v′i = v′i(ri−1) and sent ri−1 to the P who has added it to
r = (r0, · · · , ri−2).

(a) P computes

v′i+1(X) =
∑

x∈Hn−i−1

δ̂n−i((αi+1, · · · , αn−1),x)C(r, X,x)

for X ∈ 0, 2, 3, · · · , d and sends to V.
(b) V samples ri ∈ G and sends to P. Then, V interpolates v′i+1(X)

from the data sent by P along with

v′i+1(1) =
1

αi

(
v′i − (1− αi)v

′
i+1(0)

)
and computes v′i+1 = v′i+1(ri).

3. Final Check

(a) After rn has been sent, P computes C(r) and sends it to V, along
with a commitment proof.

(b) V accepts if and only if C(r) = v′n.

9We never actually use α0 so V can send one element less than usual too.

9

4 Algebraic Improvements

With some care, it is also possible for an honest prover to make use of
computations performed in earlier rounds to avoid some work in later rounds.

4.1 Algebraic Interlude

For an honest prover, C(x0, · · · , xn−1) does actually vanish on Hn and so
admits a decomposition of the form

C(x0, · · · , xn−1) =
n−1∑
i=0

xi(xi − 1)Qi(x0, · · · , xn−1).

This follows as a corollary to the Hilberts Nullstellensatz as the ideal ⟨xi(xi−
1)⟩ is radical with vanishing set equal to Hn. As stated so far, these Qi

are not unique10 but we can produce a decomosition with nice properties
using polynomial long division with remainder (//). Define Rn = C and for
i = 0, · · · , n− 1,

Qi, Ri = Ri+1//xi(xi − 1).

Then R0 is exactly the multilinear extension of the evaluations of C on Hn

which is 0 by assumption11.
If we study the degrees of the Qi, Ri produced by this process, we find

that

degxi
(Qj) ≤

degxi

(C) j > i

degxi
(C)− 2 i = j

1 j < i.

(2)

In particular we observe that if given a random vector r = (r0, · · · , ri) then
Qj(r,X) is multilinear in X for all j ≤ i. Additionally, defining the sum

Qi(r,X) =

i∑
j=0

rj(rj − 1)Qj(r,X),

this is precisely the unique multilinear polynomial equal to C(r,X) for all
X ∈ Hn−i. We immediately see that for indeterminate X and x ∈ Hn−i−1

C(r, X,x)−Qi(r, X,x) = X(X − 1)Qi+1(r, X,x).

Hence in each round of the protocol we only introduce 1 extraQ whose evalu-
ations can be computed from C and Q. Additionally, when we come to com-
puting Qi we will have already fixed the first i components by r0, · · · , ri−1

and so Qi(r, X,X) will be degree d− 2 in X and multilinear in X. Thus it
is entirely determined by its evaluations over [0, · · · , d]×Hn−i−1.

10A counter example to uniqueness is C = x0(x0−1)x1(x1−1) were both Q0 = 0, Q1 =
x0(x0 − 1) and Q0 = x1(x1 − 1), Q1 = 0 are valid decompositions.

11If C did not vanish on Hn you could still compute this decomposition but R0 would
be non 0

10

4.2 Application

Let’s see how the prover, P, can make use of this12 to reduce how many
times they need to compute C.

1. Round 0. In the initial round, whenever P computes C(X,x), they

save C(X,x)
X(X−1) in a table. As

C(X,x) = X(X − 1)Q0(X,x) ∀x ∈ Hn−1.

after all computations, P will have a table consisting of Q0(X,x) for
X = 2, · · · , d and x ∈ Hn−1.

Then when V sends r0, for each x ∈ Hn−1, P can interpolate Q0(X,x)
to compute and store

Q0(r0,x) = r0(r0 − 1)Q0(r0,x).

2. Round 1. As Q0(r0,x) = C(r0,x) for all x ∈ Hn−1, we can immedi-
ately compute v2(0) without needing any evaluations of C. Essentially
we have replaced each evaluation of C with an interpolation13 of degree
d− 2 which will usually be much faster.

Moreover, asQ0 is linear in x1, our knowledge ofQ0(r0, 0,x), Q0(r0, 1,x)
determines Q0(r0, X,x) for all X. Then, as for all x ∈ Hn−2,

C(r0, X,x) = r0(r0 − 1)Q0(r0, X,x) +X(X − 1)Q1(r0, X,x),

when P computes C(r0, X,x) they can also save Q1(r0, X,x).

Now, when V sends r1, for each x ∈ Hn−2, P interpolates14 Q0(r0, X,x)
and Q1(r0, X,x) to compute and store

Q1(r0, r1,x) = r0(r0 − 1)Q0(r0, r1,x) + r1(r1 − 1)Q1(r0, r1,x).

3. Round i. At the end of the last round, P has received the randomness
ri−1 and computed and stored

Qi−1(r,x) =
i−1∑
j=0

rj(rj − 1)Qj(r,x)

12The is also a slightly simpler approach which the prover can use where they simply
save all the C(r, X,x) in the i’th round and then interpolate to get C(r, ri,x) which can
be used in the i + 1’th round. The downside compared to the approach presented here
is that all interpolations will have degree d not d − 2. This might turn out to be more
efficient though as you avoid some auxiliary field multiplications and adds.

13Needed to compute Q0(r0,x).
14Note again the first interpolation is degree 1, the second is degree d− 2.

11

for all x ∈ Hn−i. Again, P can immediately compute vi+1(0) as
Qi−1(r, 0,x) = C(r, 0,x) for all x ∈ Hn−i−1.

Next, similarly to before, as P computes v′i(X) for X = 2, · · · , d, they
can simultaneously determine Qi−1(r, X,x) and use this to compute
and save Qi(r, X,x).

Then, when V sends ri, for each x ∈ Hn−i−1, P interpolatesQi−1(r, X,x)
and Qi(r, X,x) to compute and store

Qi(r,x) = Qi−1(r,x) + ri(ri − 1)Qi(r,x)

for all x ∈ Hn−i−1.

Whilst there are some additional costs generated here15, this will reduce
the number of constraint evaluations will to

2n−1(d− 1)(CF + CG).

It also has no effect on soundness or completeness no changes are made to
what is sent to V.

5 Skipping rounds

In the protocol, the initial round is particularly special as it is the only round
in which we are able to evaluate C over the base field F.

Motivated by this it seems natural to wonder if it is possible to per-
form more work in this first round to save ourselves work in future rounds.
The most natural option16 would be, in the first round, to compute the
multivariate polynomial

v(X0, · · · , Xk−1) =
∑

x∈Hn−k

δ̂n−k((αk, · · · , αn−1),x)C(X0, · · · , Xk−1,x).

This polynomial could then either be sent directly to V or can be used to
more easily compute the univariate polynomials for the first k steps.

The problem with this idea is that as v is a polynomial of degree d in
each Xi, to determine v we would need to compute it at (d+1)k points. For
obvious reasons this scales badly as k increases. The trick is to do the same
idea but keep everything univariate.

15Indeed it’s possible that in some cases these costs should outweigh benefits. This
optimisation is likely to be situation specific

16Thanks to Shahar Papini for suggesting this idea and for useful discussions about it.

12

5.1 The Univariate Skip

The key idea is to replace the base hypercube by some product of the form17

D × Hj where D is a multiplicative subgroup18 of Fp. Given a column of
our table we interpret this as the polynomial fi(x0, x1, · · · , xj) with

degxk
fi(x0, · · · , xj) ≤

{
|D| − 1 k = 0

1 otherwise.

As C has maximal degree d in the fi, we see that

degx0
(C) = d(|D| − 1).

Thus, in the initial round, P computes the univariate polynomial

v(X) =
∑
x∈Hj

δ̂j(α,x)C(X,x)

which will be a polynomial of degree d(|D| − 1). If |D| = 2k (which would
correspond to skipping the first k rounds) P needs to compute only d(2k−1)
evaluations which is far less than the (d+1)k evaluations the earlier attempt
required.

Evaluations with x ∈ D are free as the constraint evaluates to 0 on
D ×Hj and so the total number of evaluations needed will be

2j(d(|D| − 1) + 1)− 2j |D|.

The simplest case to compare occurs when |D| = 2k and j = n− k were the
cost becomes

2n−k(d− 1)(2k − 1)CF.

This compares very favourably to the standard approach which costs

2n−1(d− 1)CF + 2n−k(d− 1)(2k−1 − 1)CG.

for the first k rounds. Hence this methods directly replaces CG evaluations
with CF ones.

The main drawbacks are that it involves sending more data and increases
the amount of work that V will need to do as they will need to compute a
polynomial interpolation of size ∼ |D|d.

There is however also a potentially massive hidden advantage which is
how it interacts with padding. In general padding is needed to ensure that
the columns of the table have length 2n. However, using this approach we
can relax this restriction to columns having size k2n for some k diving p−1.
Depending on the situation this may be able to massively reduce the amount
of padding which will lead to further large speedups.

17It is also possible here to use a collection of polynomials p̂ : D → Hi but the resulting
polynomial is usually higher degree.

18It’s also possible to get this working for more general D.

13

6 An Efficient Zero Check Protocol

Assume that P wishes to prove that a degree d polynomial C vanishes on
every row of a table T of size19 2n× l. Additionally fix an integer parameter
k which captures a tradeoff between prover work and verifier work.

1. Setup and Round 0

(a) P indexes the rows of the table by D × Hn−k. Each column i
is interpreted as evaluations of a polynomial fi(x0, x1, · · · , xn−k)
satisfying

degxj
fi =

{
|D| − 1 j = 0

1 j ∈ [1, · · · , n− k].

P commits to a constraint function

C(x0, x1, · · · , xn−k) = C
(
ω0(x0, · · · , xn−k), · · · , ωl−1(x0, · · · , xn−k)

)
of total degree ≤ d in the f ’s and which holds over the rows of
the table.

(b) V samples a vector α ∈ Gn−k and sends it to P.
(c) P computes

v0(X) =
∑

x∈Hn−k

δ̂n−k(α,x)C(X,x)

for (d− 1)(|D| − 1) + 1 distinct values of X all disjoint from |D|
and sends the results to V.

(d) V samples r0 ∈ G and sends to P. Additionally, V interpolates
v0(X) from the data sent by P along with v0(X) = 0 for all
X ∈ |D| and computes v0 = v0(r0).

2. Rounds 1 · · ·n− k.

At the start of the i’th round, V has just computed vi−1 = vi−1(ri−1)
and sent ri−1 to the P who has added it to r = (r0, · · · , ri−1). Provided
i < n− k + 1 we repeat:

(a) P computes

vi(X) =
∑

X∈Hn−k−i

δ̂n−k−i((αi+1, · · · , αn−k),x)C(r, X,x)

for X ∈ 0, 2, 3, · · · , d and sends to V.
19As commented earlier, this protocol works identically (And indeed more efficiently) if

the table has length |D|2n−k for |D| < 2k. This potentially allows for a zerocheck protocol
with far less padding.

14

(b) V samples ri ∈ G and sends to P. Then, V interpolates vi(X)
from the data sent by P along with

vi(1) =
1

αi
(vi−1 − (1− αi)vi(0))

and computes vi = vi(ri).

3. Final Check

(a) After rn has been sent, P computes C(r) and sends it to V, along
with a commitment proof.

(b) V accepts if and only if C(r) = v′n.

The proof that this protocol is cryptographically sound follows from a
simple tweak to the standard argument and can be found in section A.4.

6.1 Prover and Verifier Costs

It is immediate that the verifier (V) needs to perform a only a single inter-
polation of degree (|D| − 1)d = (2k − 1)d and n− k interpolations of degree
d.

In round 0, the prover needs to evaluate C(y,X) for all (y,X) ∈ [|D|, · · · , d(|D|−
1)]×Hn−k. This is (d− 1)(|D| − 1)2n−k = (d− 1)(2k − 1)2n−k evaluations
in total all occurring in F.

In round i > 0, the prover needs to evaluate C(r, y,X) for (y,X) ∈
[0, 2, 3, · · · , d]×Hn−k−i. This initially looks like d2n−k−i evaluations but is
actually (d− 1)2n−k−i as the y = 0 case can be determined from data com-
puted in previous rounds using the method in Section 4. These evaluations
are all over G.

Hence the total number of constraint evaluations for P is

(d− 1)(2k − 1)2n−kCF+
n−k∑
i=1

(d− 1)2n−k−iCG + CG

∼ 2n−k(d− 1)(2k − 1)CF + 2n−k(d− 1)CG

∼ 2n
(
1 +

CG
2kCF

)
(d− 1)CF.

Letting G be an extension of degree 4 we assume that

CG ∼ 16CF

due to the increased multiplication cost. Then setting d = 3 the cost be-
comes

2n+1

(
1 +

16

2k

)
CF

15

Compared to the initial cost of

5× 17× 2n−1CF.

Setting k = 4 we find that V needs to do a single interpolation of degree 48
but in exchange we have reduced the work of P by a factor of

5× 17

8
∼ 10.6

Thus even with conservative choices of k, this improved protocol will lead
to a decent speed up to any proof systems which use zerocheck.

Acknowledgements

Many thanks to Daniel Lubarov, Ulrich Haböck, Trung Can and Shahar
Papini, Ole Spjeldnæs, for useful ideas, comments and discussions.

16

References

[1] Jonathan Bootle, Alessandro Chiasa, and Katerina Sotiraki. “Sum-
check Arguments and their Applications”. In: CRYPTO 2021. https:
//eprint.iacr.org/2021/333. 2021.

[2] Binyi Chen et al. HyperPlonk: Plonk with Linear-Time Prover and
High-Degree Custom Gates. Cryptology ePrint Archive, Report 2019/1355.
https://eprint.iacr.org/2022/1355. Oct. 2022.

[3] Carsten Lund et al. “Algebraic Methods for Interactive Proof Systems”.
In: J. ACM 39.4 (Oct. 1992), pp. 859–868. issn: 0004-5411. doi: 10.
1145/146585.146605.

[4] Or Meir. “IP = PSPACE using Error-Correcting Codes”. In: SIAM
Journal on Computing. Vol. 42. Full paper: https://eccc.weizmann.
ac.il/report/2010/137. 2013.

[5] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs with-
out Trusted Setup”. In: CRYPTO 2020. Full paper: https://eprint.
iacr.org/2019/550. 2020.

[6] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. Jan. 2022. isbn:
978-1-63828-124-5. doi: 10.1561/9781638281252.

[7] Justin Thaler. The Sum-Check Protocol over Fields of Small Charac-
teristic. https://api.semanticscholar.org/CorpusID:265352651.
Nov. 2023.

A Soundness Proofs

Completeness and soundness are are 2 crucial properties of protocols that
always need to be checked. Completeness refers to the probability that P
will be unable to convince V to accept a true statement and soundness refers
to the probability that a malicious prover (MP) will be able to convince V
to accept a false statement. In our applications here, our protocols will all
be complete meaning they have a completness of 1. Thus most of the work
will be in checking that the protocol is cryptographically sound, meaning its
soundness is < 2−δ for some δ > 100.

The proofs here are all either standard and appear elsewhere in other
literature (e.g. [Lun+92; Che+22]) or are relatively simple tweaks to the
standard proofs to match the protocol tweaks we propose. We provide them
for completeness and for readers less familiar with the topic.

For our soundness proofs we will distinguish between the true function
(vi) and what MP sends to V (vi) using an overbar. Additionally, for the
protocols here, there are no interesting strategies of MP other than simply
hoping by random chance vi and vi are equal at the chosen sampled point.

17

https://eprint.iacr.org/2021/333
https://eprint.iacr.org/2021/333
https://eprint.iacr.org/2022/1355
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://eccc.weizmann.ac.il/report/2010/137
https://eccc.weizmann.ac.il/report/2010/137
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://doi.org/10.1561/9781638281252
https://api.semanticscholar.org/CorpusID:265352651

A.1 SumCheck

Completeness is essentially trivial. If the claim is true and P follows the
protocol then V will always accept. To check soundness, assume that MP
wishes to falsely prove that

v0 =
∑
x∈Hn

f̂(x).

In order to not get caught in round 0, MP must send v1(0), v1(1) such that
v1(0) + v1(1) = v0 ̸= v0. Hence either v1(0) ̸= v1(0) or v1(1) ̸= v1(1) or
both.

Applying the Schwartz-Zippel lemma to v1, v1, this means that with
probability20 d

|G| , v1(r0) ̸= v1(r0). If these are equal then MP has succeeded
in fooling the verifier and if not, we can repeat this argument for round 1
and so on so forth. Applying the union bound21, the probability that MP
can fool the verifier will be

nd

|G|
=

nd

|F|m

and so the protocol is sound provided G is sufficiently large.

A.2 ZeroCheck

Note that if C(Ti,0, · · · , Ti,l−1) starts as a polynomial of total degree ≤ d,
then all individual degrees C(X) are also bounded by d and so

degXi
δ̂n(α,X)C(X) ≤ d+ 1 (3)

which is known by V assuming they already know d. Hence P and V are
able to run the protocol as claimed22.

Next observe that if C(X) = 0 for allX ∈ Hn then F̂ (α) is precisely the 0
polynomial. Thus completeness follows from the completeness of sumcheck.

On the other hand, if ∃ y ∈ Hn such that C(y) ̸= 0, then

F̂ (y) =
∑
x∈Hn

δ(y,x)C(x) = C(y) ̸= 0

and so F̂ (α) is not the zero polynomial. As F̂ (α) is a multilinear polynomial
in α, the Schwartz–Zippel lemma then shows that

Pr
[
(F̂ (α) = 0 | α ∈ Gn

]
≤ n

|G|
.

20It is essential here that the rj are sampled in G and not F
21

Pr

(⋃
i

Ei

)
≤
∑
i

Pr(Ei)

22We need to check this as the sumcheck protocol does not work if P is allowed to send
polynomials of arbitrary degree to V.

18

Hence by taking a union bound, the soundness of zerocheck will be n
|G| plus

the soundness of sumcheck which, will be n(d+1)
|G| due to the degree bound

computed in Equation (3) giving an overall soundness of

n(d+ 2)

|G|
.

A.3 Tweaked ZeroCheck

As before if the claim is true and P is honest they can simply23 follow the
steps above and V will accept.

Soundness is also abstractly clear if we recall that, at every stage V is
able to compute what P would have sent in the original protocol. Hence the
soundness must as worst be equal. However we run through the argument
again here just to triple check everything.

Assume that MP wishes to falsely prove that every row satisfies a con-
straint C. This means that with probability n

|G| ,

v0 =
∑
x∈Hn

δ̂n(α,x)C(x) ̸= 0.

As
v0 = α0v

′
1(1) + (1− α0)v

′
1(0) ̸= 0,

at least one of v′1(0), v
′
1(1) must be non 0. By construction, V always as-

sumes v′1(0) = v′1(1) = 0 and so, regardless of what MP sends for the other
values, with probability d

|G| , v
′
1(r0) ̸= v′1(r0). If these are equal then MP has

succeeded in fooling the verifier and if not, we can repeat a similar argument.
In round i,

v′i = αiv
′
i+1(1) + (1− αi)v

′
i+1(0)

′

and so, if v′i ̸= v′i then (v′i+1(0), v
′
i+1(1)) ̸= (v′i+1(0), v

′
i+1(1)). Thus, again

with probability d
|G| , v

′
i(ri) ̸= v′i(ri).

Applying the union bound, the probability that MP can fool the verifier
is bounded above by24

n

|G|
+ n

d

|G|
=

n(d+ 1)

|G|
.

Hence not only has the cost decreased, the soundness has also improved and
so this is a strict improvement over the standard zerocheck protocol.

23We do need to assume that αi is never 0 but this doesn’t change the soundness analysis
in the slightest so is fine to do. It’s a good general policy to sample α ∈ Gn\{0, 1} anyway.

24This analysis can be improved slightly in several directions. E.g. we actually do not
need to send/consider α0. But the improvements are all small.

19

A.4 Improved ZeroCheck

As each fi has degree |D| − 1 in x0, C has degree d(|D| − 1) in x0 and
thus v0(X) has degree d(|D| − 1). Hence V is able to interpolate v0(X)
from the data sent in round 1 along with the assumption v0(y) = 0 for all
y ∈ D. In future rounds, vi has degree d and the prover sends values for
0, 2, 3, · · · d. Thus as V knows α they can compute vi(X) and so the verifier
is able to follow the protocol as stated and if an honest prover simply follows
the protocol it will always be accepted.

Assume again that a malicious prover (MP) wishes to falsely prove that
every row satisfies a constraint C. This means that we can find a row
(y,x) ∈ |D| ×Hn−k with C(y,x) ̸= 0 and so with probability n−k

|G| ,

v0(y) =
∑

x∈Hn−k

δ̂n−k(α,x)C(y,x) ̸= 0.

As V assumes that v0(y) = 0 for all y ∈ |D| when it interpolates v0(X),

regardless of what MP sends for the other values, with probability d(|D|−1)
|G| ,

v0(r0) ̸= v0(r0). If these are equal then MP has succeeded in fooling the
verifier and if not, then we are in an identical situation to the tweaked
zerocheck protocol so the soundness proof from there carries through.

Applying the union bound, the probability that MP can fool the verifier
is bounded above by

n− k

|G|
+

d(|D| − 1)

|G|
+ (n− k)

d

|G|
=

d(|D| − 1) + (n− k)(d+ 1)

|G|

=
d(2k − 1) + (n− k)(d+ 1)

|G|

20

	Introduction
	Related Work

	Preliminaries
	Algebraic Preliminaries
	SumCheck
	ZeroCheck
	Prover Costs

	Minor Protocol Tweaks
	Sending less data
	Slight modification of the Protocol
	Improved ZeroCheck Protocol:

	Algebraic Improvements
	Algebraic Interlude
	Application

	Skipping rounds
	The Univariate Skip

	An Efficient Zero Check Protocol
	Prover and Verifier Costs

	Soundness Proofs
	SumCheck
	ZeroCheck
	Tweaked ZeroCheck
	Improved ZeroCheck

