
Differential cryptanalysis with SAT, SMT,
MILP, and CP: a detailed comparison for

bit-oriented primitives

Emanuele Bellini2[0000−0002−2349−0247], Alessandro De
Piccoli1[0000−0002−6399−3164], Mattia Formenti2[0009−0001−0069−6146], David
Gerault2[0000−0001−8583−0668], Paul Huynh2[0000−0002−6965−3427], Simone

Pelizzola1[0009−0006−3991−1161], Sergio Polese, and Andrea
Visconti1[0000−0001−5689−8575]

1 Università degli Studi di Milano, Milano, Italia
{name.lastname}@unimi.it

2 Technology Innovation Institute, Abu Dhabi, UAE
{name.lastname}@tii.ae

Abstract. SAT, SMT, MILP, and CP, have become prominent in the
differential cryptanalysis of cryptographic primitives. In this paper, we
review the techniques for constructing differential characteristic search
models in these four formalisms. Additionally, we perform a system-
atic comparison encompassing over 20 cryptographic primitives and 16
solvers, on both easy and hard instances of optimisation, enumeration
and differential probability estimation problems.

Keywords: Differential cryptanalysis · SAT · SMT · MILP · CP.

1 Introduction

The design and analysis of block ciphers is a time-consuming and error-prone
task that involves tracing the propagation of bit-level or word-level patterns of
all sorts, following intricate rules. Automatic tools have made such tasks signifi-
cantly easier. In the case of differential cryptanalysis [9], one of the most widely
used analysis technique, the studied patterns (differential characteristics) repre-
sent the propagation of a XOR difference between the inputs through the cipher,
and are studied through the following methods: (1) ad hoc (include search al-
gorithms implemented from scratch in general purpose programming languages,
e.g. Matsui algorithm [34]); (2) Boolean Satisfiability and Satisfiability Modulo
Theory (SAT/SMT); (3) Mixed-Integer Linear Programming (MILP); (4) Con-
straint Programming (CP). In this paper, we provide an extensive review and
performance comparison for the last three techniques for the search of differential
characteristics for various ciphers.

Contributions Our contributions are twofold:



2 Bellini et al.

– We provide an extensive review of modeling techniques in SAT, SMT, MILP
and CP for the search of differential characteristics, in Section 3;

– We extensively compare these 4 methods on 3 different tasks: finding one
optimal differential characteristic, enumerating all optimal differential char-
acteristics, and estimating the probability of a differential. These tests are
performed with 7 SAT solvers, 3 SMT solvers, 2 MILP solvers, 4 CP solvers,
on over 20 primitives, resulting in the largest scale comparison of differential
cryptanalysis models to date. The results are presented in Section 4.

The research community stands to benefit greatly from this extensive review
and comparison of techniques, which provides a further steps towards a better
understanding of how to solve the instances that are still out of reach.

2 Preliminaries

A symmetric cryptographic primitive is usually a sequence of linear and nonlinear
components transforming a plaintext (possibly with a key) into a ciphertext,
usually by applying a simple round function to update the state for a number
of rounds, each round using a round key derived from a key schedule algorithm.

Differential cryptanalysis focuses on studying the probability of differentials,
which map an XOR difference in the plaintexts to a differences in the ciphertexts.
This probability is usually bounded by the probability of a differential charac-
teristics, i.e., a sequence of expected differences at each round (as described in
Section A); the probability of the corresponding differential is related to the
combined probabilities of all differential characteristics sharing the correspond-
ing input and output differences, but varying in the internal rounds. Finding the
optimal (highest probability) differential characteristic, or enumerating differ-
ential characteristics with given properties, is a highly combinatorial problem.
In recent years, it has increasingly been tackled through declarative approaches
(Section B), where the cryptographer describes the problem and leaves its res-
olution to a solver, usually SAT, SMT (Satisfiability Modulo Theories), MILP
(Mixed Integer Linear Programming) and CP (Constraint Programming).

The search typically involves one set of variables per round to hold the dif-
ference state after each component of the primitive, as well as a set of variable
for the probabilities. These variables usually contain the weights (base 2 loga-
rithm of the reciprocal of the probabilities) for practical reasons. The problem
of finding an optimal differential characteristic can then be expressed as assign-
ing values for all state variables, such that known difference propagation rules
are satisfied, and the sum of the probability weights is minimised, following the
Markov cipher assumption of independent rounds.

The representation of these variables, and the expression of the propagation
rules, vary between SAT, SMT, MILP and CP.

The propagation rules for linear components are simple, as differences prop-
agate deterministically through them:



Cryptanalysis with SAT, SMT, MILP and CP 3

Proposition 1. Let f : {0, 1}m → {0, 1}n be a linear function and let ∆x⃗ ∈
{0, 1}m be an input difference; then ∆y⃗ = f(∆x⃗). (Proof: f(x⃗ +∆x⃗) = f(x⃗) +
f(∆x⃗))

On the other hand, propagation through non-linear operations are stochastic,
and represent the main difficulty of the problem, due to the resulting combina-
torial explosion. In Section 3, we detail the models used for propagation of the
linear and nonlinear components used by the analyzed ciphers.

Related Work Differential cryptanalysis using declarative frameworks (SAT,
SMT, MILP or CP) was introduced through MILP in [37], and has since then
been an active research field (a review of techniques is given in Section 3). It
is known [53] that the modeling choices for the search problem, independently
of the chosen declarative framework, have a significant impact on the perfor-
mance of the search. Additionally, within a given framework, it is difficult to
predict what specific solver performs best: competitions such as the SAT com-
petition [27] or the MiniZinc challenge for Constraint Programming solvers [36]
pit existing solvers against each other on vast ranges of problems, but rarely
cryptography-related ones. The choice of a model and a solver having such dras-
tic impact on the ability to solve relevant differential cryptanalysis problems,
research comparing the available options is important.

In [51] and [24], the authors use Constraint Programming tools to test the
effectiveness of four solvers on PRESENT and AES, showing that for best dif-
ferential characteristic search Chuffed is the best-performing solver on small in-
stances, while Gurobi and Picat-SAT scale better. In [50], different SAT solvers
are compared against a divide-and-conquer-based MILP model from [54] on a
wide range of ciphers. In [18], the authors compare different models for the search
of the best differential trails of SKINNY, including one for MILP, one for SAT,
and one for CP. Following a two-stage search, their analysis showed that, in
this case, this search is better performed with a MILP model in the first stage
(enumerate the truncated trails with the smallest number of active S-box). CP
performed best for the second stage, in which the truncated trails of the first
stage are instantiated.

Despite extensive research in the area, many problems, such as the probabil-
ities of differential characteristics for over 9 rounds of SPECK128 [50], are still
out of reach. It is our hope that our large-scale comparison between solvers and
modeling techniques will help chosing the right techniques to solving these.

3 Cipher components models

In this section, we review existing techniques to model different operations, in
each of the studied declarative frameworks.

We use the following notation: x denotes inputs, y outputs and w weight; su-
perscripts denote input numbers and subscripts bit positions. If no input number
is given, the input is only one; if no bit position is given, the variable is intended
to be a single bit. Finally, we will use the vector notation x⃗ = (x0, . . . , xn−1) to



4 Bellini et al.

denote the whole input, using 0 as the index of the Most Significant Bit (MSB).
The models described in this section are bit-based, rather than word-based.

3.1 XOR component

XOR is a linear function and Proposition 1 applies, so that we can directly apply

the bitwise model ∆y =
n−1⊕
i=0

∆xi.

– SAT: for n = 2, the CNF is

(¬∆x0, ∆x1, ∆y)∧(∆x0,¬∆x1, ∆y)∧(∆x0, ∆x1,¬∆y)∧(¬∆x0,¬∆x1,¬∆y).
(1)

When n > 2, one can operate in the following two ways: the first consists of
the direct encoding without any additional variables; the second consists of
performing a sequence of only two inputs XORs using intermediate variables
that we will call di in the following way:

d0 = ∆x0⊕∆x1, di = ∆xi+1⊕di−1 for 1 ≤ i ≤ n−3, ∆y = ∆xn−1⊕dn−3.
(2)

Note that the CNF in Equation 1 represents every possible assignment veri-
fying ∆y = ∆x0 ⊕∆x1. Therefore, a direct encoding of an XOR involving n
variables will have 2n clauses. In our analysis, when n > 2, we have preferred
to use a sequential XOR, as depicted in Equation 2, keeping the number of
clauses linear in the number of variables, i.e. 4(n− 1) clauses [50].

– SMT: a XOR theory is natively present for n = 2 or more.
– MILP: 2-input XOR is commonly modeled with four inequalities:

{∆x0 +∆x1 ≥ ∆y}, {∆x0 +∆y ≥ ∆x1}, {∆x1 +∆y ≥ ∆x0}, {∆x0 +∆x1 +∆y ≤ 2}.
(3)

We also considered an alternative, with a dummy variable, which can easily
be generalized to any arbitrary number of inputs:

{∆x0 + · · ·+∆xn−1 +∆y = 2d} (4)

While this results in a smaller and constant number of inequalities, the LP-
relaxation of the resulting problem—that is, the same optimization problem
without integrality constraint on the variables—is weaker than the one ob-
tained with Equation 3. Indeed, any fractional solution of Equation 3 is also
a solution of Equation 4. However, the converse is not true. For instance, for
n = 2, ∆x0 = ∆x1 = 1

5 , ∆y = 1
2 is a solution for Equation 4 when d = 9

20 but
does not satisfy Equation 3. For this reason, we favored Equation 3 over the
more concise expression of Equation 4. This was also backed by our exper-
iments Midori64, whose linear layer contains several n-XORs: even though
both expressions seemed to yield similar performance for 2 and 3 rounds, a
difference started to be noticeable for 4 rounds as the search for the optimal
trail with Gurobi took less than 2 minutes using Equation 3, while it took
more than 30 minutes with Equation 4.



Cryptanalysis with SAT, SMT, MILP and CP 5

– CP: the XOR can be seen as the addition modulo 2, i.e. ∆y = ∆x0 +∆x1

(mod 2). The same can be applied when dealing with more than 2 inputs:

∆y = ∆x0 +∆x1 + . . .+∆xn−1 (mod 2).

3.2 Rotation and shift components

Rotation and shift are linear functions to which Proposition 1 directly applies.

– SAT: an equality can be translated in an if-and-only-if logic, so, the model
that we have used is (∆yi ∨ ¬f(∆xi)) ∧ (¬∆yi ∨ f(∆xi)).

– MILP: the equality is expressed as two inequalities: {∆yi ≥ f(∆xi), ∆yi ≤
f(∆xi)}.

– SMT, CP: both formalisms natively include equality constraints.

3.3 Linear layer component

For the linear layer, Proposition 1 directly applies. Considering the linear func-
tion f represented as a vector-matrix product, the linear layer is simply a set of
equalities of the form ∆y = ∆x0 ⊕∆x1 ⊕ . . .⊕∆xn−1.

If n = 1, then, we have no XOR and we can directly encode the equality. If
n ≥ 2, we refer to the XOR component for encoding the equality.

3.4 S-box component

An S-box is a nonlinear vectorial Boolean function that transforms an m-bit
input into an n-bit output. Commonly, m = n and usual values for n are up
to 8. For instance, we take the 3-bit S-box defined as S = (S0, S1, . . . , S7) =
(3, 2, 7, 0, 4, 1, 6, 5), meaning that S(i) = Si.

In order to study the differential of the S-box, it is usually affordable to
consider its Difference Distribution Table (DDT). We start from a m× n table
filled with zeros and for each input pair (i, j), we compute ∆x⃗ = i ⊕ j and
∆y⃗ = Si ⊕ Sj and increase the (∆x⃗,∆y⃗) entry by one. Our SAT, SMT and
MILP models also operate on other tables related to the DDT:

– ∗-DDT, using the same notation of [1], a truncated DDT, in which all the
non-zero entries of the DDT are replaced by 1.

– w-DDT, which contains the weights3 of the probability of the (∆x⃗,∆y⃗) entry.

Considering the previous 3-bit S-box S, we show its DDT in Table 1a and
the associated w-DDT and ∗-DDT in Table 1b and Table 1c respectively.

3 It should be noted that the entries of this table are not always integers, as a DDT
might contain entries that are not powers of 2.



6 Bellini et al.

Table 1: DDT of the S-box S = (3, 2, 7, 0, 4, 1, 6, 5) and its associated tables.

(a) DDT

∆x⃗
∆y⃗

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 2 0 2 0 2 0 2
2 0 0 4 0 4 0 0 0
3 0 2 0 2 0 2 0 2
4 0 2 0 2 0 2 0 2
5 0 0 4 0 0 0 4 0
6 0 2 0 2 0 2 0 2
7 0 0 0 0 4 0 4 0

(b) w-DDT

∆x⃗
∆y⃗

0 1 2 3 4 5 6 7

0 0 · · · · · · ·
1 · 2 · 2 · 2 · 2
2 · · 1 · 1 · · ·
3 · 2 · 2 · 2 · 2
4 · 2 · 2 · 2 · 2
5 · · 1 · · · 1 ·
6 · 2 · 2 · 2 · 2
7 · · · · 1 · 1 ·

(c) ∗-DDT

∆x⃗
∆y⃗

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
2 0 0 1 0 1 0 0 0
3 0 1 0 1 0 1 0 1
4 0 1 0 1 0 1 0 1
5 0 0 1 0 0 0 1 0
6 0 1 0 1 0 1 0 1
7 0 0 0 0 1 0 1 0

– SAT: we will refer to the S-box presented above for concrete examples,
thus, in the following, we will use the bit representation of values, i.e. ∆x⃗ =
(∆x0, ∆x1, ∆x2), ∆y⃗ = (∆y0, ∆y1, ∆y2) and w⃗ = (w0, w1). The value for the
weight has only two bits since from Table 1b, it is clear that the maximum
weight wmax here is 2, so two bits will be enough to represent the weight.
Generally speaking, we need ⌈log2(wmax)⌉ bits to encode the weight.
Ankele and Kölbl presented a method to compute the CNF representing the
w-DDT of an S-box [3]. Basically, they compute the ∗-DDT and, for every
(∆x⃗,∆y⃗) having the relative entry equal to 0, they encode the constraint

¬(∆x⃗ ∧∆y⃗ ∧ w) ⇒ ¬∆x⃗ ∨ ¬∆y⃗ ∨ ¬w

for every possible weight. For instance, for the pair (2, 3) in w-DDT, we use

¬(¬∆x0 ∧∆x1 ∧ ¬∆x2 ∧ ¬∆y0 ∧∆y1 ∧∆y2 ∧ w0 ∧ w1)

to avoid the triplet (∆x⃗,∆y⃗, w⃗) = (2, 3, 2). The procedure must be repeated
for every triplet that is not present in Table 1b. Summing up, we can say that
they build the complementary set of the possible triplets shown in Table 1b.
For a high number of cipher rounds, this method results in a number of
constraints, i.e. clauses, which is not handy for SAT solvers.
In order to reduce the number of constraints, we model the w-DDT as a
sum of products. In this way, we directly encode only all allowed triplets.
For instance, considering the triplet (2, 4, 1) in w-DDT, we use as a model

(¬∆x0 ∧∆x1 ∧ ¬∆x2 ∧∆y0 ∧ ¬∆y1 ∧ ¬∆y2 ∧ ¬w0 ∧ w1)

∨ (¬∆x0 ∧∆x1 ∧ ¬∆x2 ∧ ¬∆y0 ∧∆y1 ∧∆y2 ∧ w0 ∧ ¬w1)

Clearly, a SAT solver can not handle a sum of products. Therefore we have
used the heuristic Espresso algorithm [11] in order to reduce it to a product-
of-sum, i.e. a CNF. As already pointed out in [3], this technique is only
applicable to DDTs containing entries that are powers of 2.



Cryptanalysis with SAT, SMT, MILP and CP 7

– SMT: we use the same model presented for SAT.
– MILP: The bitwise modeling of a differential propagation through an S-box

of size greater than 6 bits remained a hard problem until the work of Ab-
delkhalek et al. was published [1]. Their approach relies on logical condition
modeling, already introduced by Sun et al. [52], and uses the product-of-sums
representation of the indicator function of the ∗-DDT, as in SAT and SMT.
Taking the example again from Table 1a, let f be the 6-bit to 1-bit boolean
function associated with the ∗-DDT shown in Table 1c. That is, f(∆x⃗,∆y⃗)
= 1 only if the propagation is possible, where ∆x⃗ = (∆x0, . . . ,∆xn−1) and
∆y⃗ = (∆y0, . . . ,∆yn−1) denote the input and output difference, respectively.
The product-of-sums representation of f is as follows:

f(∆x⃗,∆y⃗) = (∆x0 ∨∆x1 ∨∆x2 ∨∆y0 ∨∆y1 ∨∆y2)

∧ · · · ∧ (∆x0 ∨∆x1 ∨∆x2 ∨∆y0 ∨∆y1 ∨∆y2),

where ∆a is the negation of ∆a. Each term of the product represents one
impossible transition in the ∗-DDT. For instance, the first term (∆x0 ∨
∆x1 ∨∆x2 ∨∆y0 ∨∆y1 ∨∆y2) corresponds to the impossible propagation
0x0 → 0x1. This means that the number of terms corresponds to the number
of null entries in the ∗-DDT, which can be rather high for an 8-bit S-box. For
this reason, finding a minimal, equivalent set of inequalities is a crucial step
in the modeling of large S-boxes. Several algorithms have been described for
the Boolean function minimization problem, such as the Quine-McCluskey
algorithm [44,45,35] or the heuristic Espresso algorithm, already mentioned
for SAT. Once a simplified product-of-sum is returned, each term can be
rewritten as a linear inequality. For instance, (∆x0 ∨ ∆x1 ∨ ∆x2 ∨ ∆y0 ∨
∆y1 ∨∆y2) = 1 becomes:

∆x0 +∆x1 +∆x2 +∆y0 +∆y1 + (1−∆y2) ≥ 1.

After removing all impossible propagation for a given ∗-DDT table, the ac-
tual probabilities of the differential transitions of the S-box need to be taken
into account. To do so, [1] proposed to separate the ∗-DDT into multiple
wk-DDT tables, such that wk-DDT only contains entries with the same
weight wk, that is: wk-DDT[i, j] = 1 if w-DDT[i, j] = wk and 0 otherwise.
The use of indicator constraints (such as the big-M method) ensures that
only a single wk-DDT is active:
• for each S-box, we introduce a binary variable Q equal to 1 if the S-box

is active, 0 otherwise;
• similarly, for each wk-DDT, a binary variable Qwk

that equals 1 when
the set of inequalities representing the wk-DDT need to be effective.

Setting
∑

Qwk
= Q ensures that whenever an S-box is active, only one

wk-DDT is effective; and the weight of the S-box can be modeled as
∑

wk ·Qwk
.

– CP: table constraints allow for a straightforward representation of the S-box
component. Indeed, they enforce a tuple of variables to take its value among
a list of allowed tuples, explicitly defined as the rows of a table. In particular,



8 Bellini et al.

each row will contain the following three elements concatenated: an input
difference, an output difference, and the weight of the probability for the
input/output difference pair. In our bitwise representation, the input and
output differences are the concatenations of m and n single-bit variables,
respectively. An entry of the table is thus a m+ n+ 1 tuple.

Remark 1. We highlight that the S-box constraints represent a considerable
amount of the constraints in SAT, SMT and MILP formalisms. In fact, the
PRESENT S-box (4 bits) constraints are roughly one-half of the total con-
straints.

3.5 AND/OR component

As the AND and OR are bitwise operations, one can easily build their DDTs.
Indeed, they can be seen as 2-to-1 S-boxes repeated in parallel for as many times
as the bit length of the inputs. This is equivalent to the approach explained in [2,
Section 3].

– SAT: we reuse the techniques described in Subsection 3.4 obtaining:

(¬∆y ∨ w) ∧ (∆x0 ∨∆x1 ∨ ¬w) ∧ (¬∆x0 ∨ w) ∧ (¬∆x1 ∨ w).

– SMT: since satisfying a sum-of-products is easier than satisfying a product-
of-sum, we encoded the AND component with the following model for a
single bit:

(¬∆x0 ∧ ¬∆x1 ∧ ¬∆y ∧ ¬w) ∨ (∆x0 ∧ w) ∨ (∆x1 ∧ w).

– MILP, CP: we reuse the techniques described in Subsection 3.4 to model
its DDT.

3.6 Modular addition component

Due to the intractable size of the DDT, even if using wordsize equal to 32 bits, the
method adopted for the modular addition is the Lipmaa Moriai algorithm [31],
based on two conditions:

1. eq(∆x⃗0 ≪ 1, ∆x⃗1 ≪ 1, ∆y⃗ ≪ 1) ∧ (∆x⃗0 ⊕∆x⃗1 ⊕∆y⃗ ⊕ (∆x⃗1 ≪ 1)) ̸= 0

2. 2− hw(¬ eq(∆x⃗0,∆x⃗1,∆y⃗)∧mask(n−1))

with eq(x, y, z) := (¬x⊕ y)∧ (¬x⊕ z), that is, eq(x, y, z) = 1 ⇔ x = y = z, and
for any n, mask(n) := 2n − 1.

– SAT: first of all, observe that eq(∆x0
i , ∆x1

i , ∆yi) for 1 ≤ i ≤ n − 1 is used
in both conditions, therefore, using w for the Hamming weight variable, we
model

wi = ¬ eq(∆x0
i , ∆x1

i , ∆yi) (5)



Cryptanalysis with SAT, SMT, MILP and CP 9

using the following CNF

(∆x0
i ∨ ¬∆yi ∨ wi) ∧ (∆x1

i ∨ ¬∆x0
i ∨ wi) ∧ (∆yi ∨ ¬∆x1

i ∨ wi)

∧ (∆x0
i ∨∆x1

i ∨∆yi ∨ ¬wi) ∧ (¬∆x0
i ∨ ¬∆x1

i ∨ ¬∆yi ∨ ¬wi)

which is exhaustive for the second condition. By only considering the Least
Significant Bit, the first condition can be encoded as

∆x0
n−1 ⊕∆x1

n−1 ⊕∆yn−1 = 0 ⇒ ∆yn−1 = ∆x0
n−1 ⊕∆x1

n−1 (6)

for which we refer to the XOR component. Finally, taking the advantage of
Equation 5 and using a dummy variable, for 0 ≤ i ≤ n− 2, we need

(¬wi ∧ (di ⊕∆x1
i ) = 0) ∧ (di = ∆x0

i+1 ⊕∆x1
i+1 ⊕∆yi+1) (7)

which turns into the following CNF

(∆x1
i ∨ ¬d ∨ w) ∧ (¬∆x1

i ∨ d ∨ w)

∧(∆x0
i+1 ∨∆x1

i+1 ∨ d ∨ ¬∆yi+1) ∧ (∆x0
i+1 ∨∆x1

i+1 ∨ ¬d ∨∆yi+1)

∧(∆x0
i+1 ∨ ¬∆x1

i+1 ∨ d ∨∆yi+1) ∧ (¬∆x0
i+1 ∨∆x1

i+1 ∨ d ∨∆yi+1)

∧(∆x0
i+1 ∨ ¬∆x1

i+1 ∨ ¬d ∨ ¬∆yi+1) ∧ (¬∆x0
i+1 ∨∆x1

i+1 ∨ ¬d ∨ ¬∆yi+1)

∧(¬∆x0
i+1 ∨ ¬∆x1

i+1 ∨ d ∨ ¬∆yi+1) ∧ (¬∆x0
i+1 ∨ ¬∆x1

i+1 ∨ ¬d ∨∆yi+1)

Note that this is a different approach from the one in [50]. Indeed, although
our model has two more clauses in comparison, the number of variables per
clause is reduced and can thus speed up the SAT solving process.

– SMT: since SMT has more expressive capability, we have encoded a bitwise
model in a similar way to SAT. We simply report the implementation details:
• we have used ¬wi = (∆x0

i = ∆x1
i = ∆yi) instead of Equation 5;

• we have directly used ∆yi ⊕∆x0
i ⊕∆x1

i = 0 in Equation 6;
• we have used wi∨¬(∆x0

i+1⊕∆x1
i+1⊕∆yi+1⊕∆x1

i ) instead of Equation 7.
– MILP: implementing the Lipmaa-Moriai as is in MILP would be rather in-

efficient, as expressing simple if-then-else statements requires extra variables
and constraints. Instead, it is possible to directly derive a small set of linear
constraints by listing all valid patterns for (∆x⃗0, ∆x⃗1, ∆y⃗,∆x⃗0 ≪ 1, ∆x⃗1 ≪
1, ∆y⃗ ≪ 1) that satisfy the conditions imposed by the Lipmaa-Moriai al-
gorithm, as done by Fu et al. [21]. In their paper, the authors obtained 65
linear inequalities for each bit. This set of constraints was then reduced by
using a greedy algorithm or the Espresso minimizer. As such, the differential
behavior of addition modulo 2n could be represented using 13(n − 1) + 5
linear inequalities in total.

– CP: in the CP model, the constraints for modular addition involve the pre-
liminary step of declaring three shifted arrays representing the carry (the
shifts in the first condition) and an additional array eq with the results of
the eq function. The constraint is then a straightforward implementation of
the Lipmaa-Moriai algorithm. The eq function is easily defined thanks to the
all equal() global constraint. Then, the output difference constraints are
derived from the first condition:



10 Bellini et al.

• if the eq constraint is satisfied, then the difference propagation is deter-
ministic and its constraint is given by the second part of the condition,
i.e. ∆x⃗0 ⊕ ∆x⃗1 ⊕ ∆y⃗ ⊕ (∆x⃗1 ≪ 1) = 0. In other words, the output
difference is the XOR of the inputs and carry differences;

• otherwise, no more constraints are needed, and the transition will have
weight 1. The weight variable is constrained to be n− sum(eq).

4 Experimental results

In this section, we present a comparison of formalisms and solvers for differential
cryptanalysis problems. In particular, we examine the 3 following tasks:

1. Task 1 the search for an optimal differential trail (easy and difficult in-
stances);

2. Task 2 the enumeration of all optimal trails;
3. Task 3 the estimation of the probability of a differential.

For these three tasks we will present the results we obtained on different
ciphers, based on the data available in literature and how accurately the cor-
responding graph would present the experimental comparison between the best
solvers for each formalism.

It has been observed in previous works, such as [17], that the fastest solver
on small instances does not always scale up to more difficult instances of the
same problem; therefore, we study both cases for the search of an optimal trail.

In the first two cases, no constraints are imposed on the input and output;
in the third case, the weight, or objective function, is fixed to the optimal value;
in the last case, the input and output differences are fixed, and all trails with a
probability greater than a fixed lower bound are enumerated.

Optimization is natively supported for CP and MILP, whereas increasing
objective values are tested until the problem is satisfiable for SAT and SMT.
The enumeration of solutions is performed natively in CP, by adding constraints
forbidding each new solution after it is found for the other formalisms.
All tests were run on a server with the following configuration, on which no more
than half the threads were used at any given time:

– CPU: 2 x Intel(R) Xeon(R) Gold 6258R;
– Number of Cores/Threads: 2 x 28 Cores/2 x 56 Threads
– Base/Max CPU frequency achievable: 2.7 GHz / 4.0 GHz
– Cache: 38.5 Mb
– Memory: 768GB @2933 MHz;
– Operating System: Ubuntu 18.04.5 LTS.

In this framework, many algorithms are taken into account, considering block
ciphers, stream ciphers and hash functions. In particular, the following families
of ciphers have been analyzed:



Cryptanalysis with SAT, SMT, MILP and CP 11

– Block ciphers: Simon and Speck, Threefish, LEA, DES, Midori, PRESENT,
TEA, XTEA;

– Permutations: Gift, Gimli, Keccak, Ascon, ChaCha, Xoodoo,
– Hash functions: SHA1, SHA-224, SHA-256, SHA-384, SHA-512, Blake, Blake2,

MD5.

For each cipher, we tested several rounds. We did not use results found in
smaller rounds for the higher round case.

4.1 Choice of solvers

In our testing activities, we not only compare formalisms but also try to identify
which solver performs best for a given formalism and a given problem. Below is
the list of solvers we used for each formalism.

– SAT Solvers: CaDiCal (1.5.3) [7]; CryptoMiniSat (5.11.4) [49]; Glucose
Syrup (4.1) [4]; Kissat (3.0.0) [7]; MathSAT (5.6.9) [13]; Minisat (2.2.1) [20];
Yices2 (2.6.4) [19]. All solvers were run with their default parameters and
options.

– SMT Solvers: MathSAT (5.6.9) [13]; Yices2 (2.6.4) [19]; Z3 (4.8.12) [38].
All solvers were run with their default parameters and options. Note that
the SMT models developed in Section 3 need the QF UF logic in SMT-LIB
standard, therefore we excluded Boolector [40] and STP [22].

– MILP Solvers: GLPK [41], Gurobi [26]. SCIP [6] was considered, but since
our MILP models were written using the solver interfaces provided by the
SageMath MILP module, which do not include SCIP, it was not included.

– CP Solvers: Chuffed [12], Gecode [47], OR-tools [25], Choco [43]. Our model
are written in the MiniZinc [39] language, which interfaces to these solvers.

4.2 Comparison for Task 1

The first problem of this comparison is that of the optimal objective value (and
a satisfying trail).

We considered representatives of block ciphers, permutations and hash func-
tions and fixed the number of rounds with two different ideas in mind: we wanted
to compare the performances of the different formalisms and solvers on easier
problems, obtained by considering instances of various ciphers on a low num-
ber of rounds (2 to 6). To make our results meaningful we set a minimum time
threshold of 2 seconds: if any solver is able to finish the 6-round instance in less
than that, we repeat the test for a higher number of rounds, until this threshold
is crossed. These will be called quick tests. In addition, we ran a comparison on
slow tests, composed of more difficult instances of Simon, Speck, and PRESENT.

For each test we measured the solving time (time to solve the model) and
the building time (time to build the model). The sum of building and solving
time will be referred to as the combined time.



12 Bellini et al.

Quick Tests In this section, we present a comparison of solvers on easy crypto-
graphic instances for all the primitives mentioned in Section 4. The solver with
the lowest combined time for a given instance is awarded a win. The best solver
for each cipher is the one with the highest number of wins. The winner of our
competition (for every formalism) is the solver that performs best for the highest
number of ciphers (more than 20, each from round 2 to 6).

C
aD
iC
al

C
ry
pt
oM

in
iS
at

G
lu
co
se

K
iss
at

M
at
hS
AT

M
in
isa
t

Y
ic
es
2

0

10

20

30

40

w
in
s

MathSAT Yices2 Z3
0

20

40

w
in
s

GLPK Gurobi
0

20

40

w
in
s

C
hu
ffe
d

O
R
-T
oo
ls

C
ho
co

G
ec
od
e

0

10

20

30

w
in
s

(a) SAT (b) SMT

(c) MILP (d) CP

Fig. 1: Comparison of the number of victories of each solver, per formalism, on
the set of easy instances.

The graphs in Figure 1 report the results of these competitions:

– Among SAT solvers, Kissat and Yices2 emerge as the clear winners. It should
also be noted that the timings reported from Glucose are computed taking
multithreading into account, and thus do not faithfully represent the real
time needed to obtain the results;

– In the SMT solvers category, Z3 and MathSAT are always inferior to Yices2,
which is thus clearly the best SMT solver in our testing;



Cryptanalysis with SAT, SMT, MILP and CP 13

– In CP and MILP, the difference between different solvers is not as clear cut:
while Gecode and Gurobi are the fastest solvers overall, Chuffed and GLPK
often manage to be at least equal to them in their respective models.

In Figure 2, we present the results of the quick tests for Simon32, Speck32,
PRESENT, Gimli, and BLAKE4, for the best solver of each formalism we found
before. These tests were run with a timeout of 10 minutes, which was extended
by another 10 minutes if no solver returned within the first time slot. We refer to
Section C for the exhaustive list of timings. In all these cases, SAT consistently
appears as the superior option.

2 3 4 5 6

0

5

10

15

20

Rounds

ti
m
e

Kissat

Yices2

Gurobi

Chuffed

2 3 4 5 6

0

20

40

60

80

Rounds

ti
m
e

Yices2-SAT

Yices2-SMT

Gurobi

Gecode

2 3 4 5 6

0

500

1,000

1,500

Rounds
ti
m
e

Kissat

Yices2

Gurobi

Chuffed

2 3 4 5 6

0

50

100

150

200

250

300

Rounds

ti
m
e

Kissat

Yices2

Gurobi

Chuffed

2 3 4 5 6

0

100

200

300

400

Rounds

ti
m
e

Kissat

Yices2-SMT

Gurobi

Gecode

(a) Simon32 (b) Speck32 (c) Gimli

(d) BLAKE (e) PRESENT

Fig. 2: Graph comparisons between the best solvers for each formalism on differ-
ent ciphers testing the function find lowest weight trail.

Figure 2a and Figure 2b show very similar performances between SAT and
SMT for Simon and Speck; the detailed times are given in Table 5 and Table 6
of Section C. On the other hand, SAT dominated on a primitive with a larger
state, Gimli, as shown in Figure 2c and Figure 2d: SAT is the only formalism to
complete the 6-round test within the 10 minutes time limit.

4 As an example, we selected, respectively, three small state block ciphers, (one An-
dRX, one ARX, one S-Box based), one large state permutation (384 bits) and one
large state ARX hash (512 bits)



14 Bellini et al.

Slow tests In this section, we run a comparison on longer instances, described
in Table 2, with a timeout of 24 hours.

Table 2: The instances of our long tests set; optimal weight for a fixed number
of rounds is found and compared to known results for correctness.

Cipher Rounds Weight Reference

PRESENT 18 78 [50]
Simon32 12 34 [33]
Simon64 19 64 [33]
Speck32 9 30 [5]
Speck64 13 55 [5]

The results are reported in Table 3; solving and building time are expressed
in seconds, while the memory used is in megabytes. In the table, inf is reported
when the solver does not provide a reliable way to measure its memory usage.

These tests were ran for all paradigms, but the solvers that returned within
the 24 hours timeout were mostly SAT, showing a clear advantage on this prob-
lem; MILP only finished within the timeout once (and came out on top) for
SIMON32. We ran all tests with the best current known techniques for each
for each formalism, except for MILP for which we use techniques from [1], even
though we are aware of the improvements from [10,30] and plan to add them
in the future. Chances are that the improvements from [10,30] will yield better
performances for MILP solvers.

For 9 rounds of SPECK32, the known best trail was retrieved, but only SAT
and SMT solvers finished within the time limit. For PRESENT and SPECK64,
only SAT solvers finished within the time limit, with a clear advantage for Kissat.

These results contrast with the quick tests: Yices2, which was the best overall
solver on the quick tests, is not able to find the Speck32 or Present64 trail, while
CaDiCal, CryptoMiniSat and Glucose can.

We also see a notable increase in time when the state size is increased: while
some SAT solvers can find the lowest known trail for Speck64 on 13 rounds, we
can see that the time needed is much higher than the one needed for Speck32,
and no solver among all formalisms is able to find the lowest weight trail for
Speck128 within the timeout of 24 hours.

4.3 Comparison for Task 2

It has been shown that a solver being fast at finding one solution is not always as
fast for enumerating solutions with fixed variables, such as the objective value;
for instance, in [23], a SAT solver is used to find solution patterns, which are
then explored with a CP solver. In this experiment, we only tested the solvers
that returned within the timeout in the find lowest weight trail experiment.

As we can see in Figure 3a and Figure 3b, SAT is still a suitable formalism
for this problem, though with a different top performer (Yices over Kissat).



Cryptanalysis with SAT, SMT, MILP and CP 15

Table 3: Results on the optimization problems on the difficult instances, for the
solvers that finished within the timeout of 24 hours.

(a) PRESENT 64/80, 18 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.13 789.75 325.69 78 Kissat
SAT 0.23 2761.93 311.17 78.0 CaDiCal
SAT 0.14 5757.36 163272.00 78.0 CryptoMiniSat
SAT 0.13 28624.79 inf 78.0 Glucose

(b) Simon 32/64, 12 rounds

Formalism Building time Solving time Memory Weight Solver

MILP 0.95 53.20 0 34.0 Gurobi
SAT 0.03 86.43 208.72 34.0 CaDiCal
SAT 0.03 93.24 218.80 34.0 Kissat
SAT 0.03 132.63 inf 34.0 Glucose
SAT 0.03 432.77 14.39 34.0 Yices2
SAT 0.03 439.43 55.56 34.0 CryptoMiniSat
SMT 0.03 896.70 54.81 34.0 Z3
SAT 0.03 393369.00 56.82 34.0 MathSAT
SMT 0.03 469589.00 21277.00 34.0 Yices2
SMT 0.03 518824.00 100809.00 34.0 MathSAT

(c) Simon 64/128, 19 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.11 533.09 257.62 64.0 Kissat
SAT 0.13 64929.70 410.49 64.0 CaDiCal
SAT 0.07 346522.15 inf 64.0 Glucose

(d) Speck 32/64, 9 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.04 99.01 220.45 30.0 Kissat
SAT 0.03 764.28 209.79 30.0 CaDiCal
SAT 0.03 1963.10 inf 30.0 Glucose
SAT 0.03 3266.48 100.24 30.0 CryptoMiniSat
SMT 0.04 75977876.00 817426.00 30.0 MathSAT

(e) Speck 64/128, 13 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.12 437.96 259.22 50.0 Kissat
SAT 0.12 67051.43 300.97 50.0 CaDiCal

Furthermore, this time CP’s performances improve greatly and in Figure 3c CP
is actually the sole formalism to finish within the timeout.



16 Bellini et al.

2 3 4 5 6

0

10

20

30

40

Rounds

ti
m
e

Yices2-SAT

Yices2-SMT

Chuffed

2 3 4 5 6

0

1

2

3

4

5

Rounds

ti
m
e

Yices2-SAT

Yices2-SMT

Gurobi

Chuffed

2 3 4 5 6

0

20

40

60

Rounds

ti
m
e

Chuffed

(a) Simon32 (b) Speck32 (c) Gimli

Fig. 3: Graph comparisons between the best solvers for each formalism on differ-
ent ciphers testing find all trails function.

4.4 Comparison for Task 3

Our final test compares the time taken to estimate the probability of a differ-
ential: the input and output differences were fixed, along with a bound on the
probability, and all satisfying trails were enumerated. We used the differentials
reported in [3]; in particular, we tested the ones reported for 7 rounds of Speck64,
and 14 rounds of Simon32. In addition, we ran this test on 4 rounds of Midori128
to evaluate the influence of a large S-box, which typically favors CP and its table
constraints. The results, under a timeout of 6 hours, are reported in Table 4.

For the case of SIMON, we were not able to enumerate all the weights re-
ported in [28] within the timeout, so we only enumerated trails with weights
between 38 and 49. As expected, due to the 8-bit S-box, CP was the fastest for
Midori128, with all 4 solvers finishing under 12 seconds (Table 4a), followed by
SAT solvers, from CryptoMiniSat, which runs in about 13 minutes to MiniSAT
(1h24m). Lastly, SMT solvers exhibit even slower performance. With the excep-
tion of Yices2, where the performance difference between using SAT or SMT as a
formalism is relatively small, all other solvers take over 2 hours to complete, and
MathSAT even times out. SPECK, an ARX block cipher, behaves differently: in
Table 4b, the only formalism to finish the tests within the timeout is SAT, with
the fastest being CaDiCal, which takes around 46 minutes. Due to the inherently
boolean nature of ARX operations, an advantage for SAT was expected.

4.5 Speeding up CryptoMiniSat

In a final batch of experiments, we tested the differential probability estimation
experiment using the maxsol option in CryptoMiniSat; this option lets Cryp-
toMiniSat enumerate solutions up to a given maximum number. In this set of
experiments, we set this number of solutions to 106, which is arbitrarily higher
than the highest number of solutions we observed.

For the 3 ciphers under study, CryptoMiniSat becomes the fastest solver of
all the tested ones with this strategy and finishes within 3 seconds for Midori, 40



Cryptanalysis with SAT, SMT, MILP and CP 17

Table 4: Timing results on the differential probability estimation experiments.

(a) MIDORI 64/128
4 rounds
∆x⃗ = 0x0002002000002000

∆y⃗ = 0x0000022222022022

896 trails, − log2(p) = 23.7905

Formalism Time Solver

CP 10.00 Chuffed
CP 10.28 Gecode
CP 10.49 OR Tools
CP 11.26 Choco
SAT 795.71 CryptoMiniSat
SAT 846.49 Yices2
SMT 874.31 Yices2
SAT 941.33 Kissat
SAT 960.07 CaDiCal
SAT 1168.56 Glucose
SAT 1206.09 MathSAT
SAT 5092.36 MiniSAT
SMT 8366.91 Z3

(b) SPECK 64/128
7 rounds
∆x⃗ = 0x4000409210420040

∆y⃗ = 0x8080a0808481a4a0

75 trails, − log2(p) = 20.9538

Formalism Time Solver

SAT 2789.58 CaDiCal
SAT 3400.27 Kissat
SAT 3416.21 Glucose
SAT 8785.10 CryptoMiniSat

minutes for SPECK64, and 30 minutes for SIMON32. The significant increase in
speed allows us to test larger weights, with a maximum of 58 in this experiment.
As a result, we can enumerate a significantly greater number of trails than in
our previous experiments, while still maintaining much faster solving times.

5 Conclusion

Differential cryptanalysis is one of the main techniques when testing the strength
of symmetric ciphers, and fast evaluation helps designers set the parameters of
new primitives; this paper reviews the existing modeling techniques for SAT,
SMT, MILP and CP, and compares their performances through different solvers.

In the comparison, solvers from all categories were tested on finding an opti-
mal differential trail, enumerating optimal trails, and estimating the probability
of a differential, for block ciphers, permutations and hash functions.

Overall, SAT solvers were the winners of this comparison for ARX primitives
and SPNs, such as PRESENT or Midori. In terms of solvers, Kissat dominated
the SAT category, Yices2 the SMT pool, Gurobi in MILP and Chuffed won CP.

Even though SAT was the winner in most cases, CP obtained a victory when
enumerating the trails of a differential for Midori, in line with previously observed
results. On the other hand, when using the maxsol option, CryptoMiniSat took
the win for enumeration problems.

This work is one further step towards a better understanding of what meth-
ods to use for solving differential cryptanalysis problems. A systematic study,



18 Bellini et al.

with more primitives and more problems, would be extremely beneficial to the
community. Indeed, in future works, we plan to extend similar comparisons for
(1) other families of ciphers (such as SPNs or ciphers with large state) and (2) for
other types of cryptanalysis, such as linear, differential-linear, and rotational-xor
cryptanalysis.

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-
ing for (large) s-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer (2014)

3. Ankele, R., Kölbl, S.: Mind the gap - A closer look at the security of block ci-
phers against differential cryptanalysis. In: Cid, C., Jr., M.J.J. (eds.) Selected Ar-
eas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers. LNCS, vol. 11349, pp. 163–
190. Springer (2018)

4. Audemard, G., Simon, L.: Glucose and syrup: Nine years in the sat competitions.
Proceedings of SAT Competition pp. 24–25 (2018)

5. Bellini, E., Gérault, D., Protopapa, M., Rossi, M.: Monte carlo tree search for au-
tomatic differential characteristics search: Application to SPECK. In: Isobe, T.,
Sarkar, S. (eds.) Progress in Cryptology - INDOCRYPT 2022 - 23rd International
Conference on Cryptology in India, Kolkata, India, December 11-14, 2022, Pro-
ceedings. LNCS, vol. 13774, pp. 373–397. Springer (2022)

6. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van
Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L.,
Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T.,
Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Re-
hfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner,
M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP
Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (December 2021)

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

9. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

10. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

11. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis, The Kluwer International Se-
ries in Engineering and Computer Science, vol. 2. Springer (1984)

12. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed,
a lazy clause generation solver, https://github.com/chuffed/chuffed, last accessed
March 19th, 2023

https://github.com/chuffed/chuffed


Cryptanalysis with SAT, SMT, MILP and CP 19

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer (2013)

14. Dantzig, G.B.: Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation 13, 339–347 (1951)

15. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

16. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

17. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
SKINNY with scalpel - comparing tools for differential analysis. IACR Cryptol.
ePrint Arch. p. 1402 (2020)

18. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
Efficient methods to search for best differential characteristics on SKINNY. In:
Sako, K., Tippenhauer, N.O. (eds.) Applied Cryptography and Network Security -
19th International Conference, ACNS 2021, Kamakura, Japan, June 21-24, 2021,
Proceedings, Part II. LNCS, vol. 12727, pp. 184–207. Springer (2021)

19. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. LNCS, vol. 8559,
pp. 737–744. Springer (2014)

20. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer (2003)

21. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: Milp-based automatic search algorithms
for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS,
vol. 9783, pp. 268–288. Springer (2016)

22. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer Aided Verification, 19th International Confer-
ence, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. LNCS, vol. 4590,
pp. 519–531. Springer (2007)

23. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018)

24. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278 (2020)

25. Google: Or-tools - google optimization tools, https://developers.google.com/
optimization, last accessed March 19th, 2023

26. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)
27. Heule, M., Iser, M., Jarvisalo, M., Suda, M., Balyo, T.: Sat competition 2022,

https://satcompetition.github.io/2022/results.html, last accessed March 2nd, 2023
28. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-

ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer (2015)

29. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming
problems. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulley-
blank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Pro-
gramming 1958-2008 - From the Early Years to the State-of-the-Art, pp. 105–132.
Springer (2010)

30. Li, T., Sun, Y.: Superball: A new approach for MILP modelings of boolean func-
tions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022)

https://developers.google.com/optimization
https://developers.google.com/optimization
https://satcompetition.github.io/2022/results.html


20 Bellini et al.

31. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. IACR Cryptol. ePrint Arch. p. 1 (2001)

32. Liu, Y.: Techniques for Block Cipher Cryptanalysis. Ph.D. thesis, KU Leuven,
Faculty of Engineering Science (9 2018), available at: https://www.esat.kuleuven.
be/cosic/publications/thesis-306.pdf

33. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in simon-like ciphers. IACR
Cryptol. ePrint Arch. p. 178 (2017)

34. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer (1992)

35. McCluskey, E.J.: Minimization of boolean functions. Bell System Technical Journal
35, 1417–1444 (1956)

36. MiniZinc: Minizinc challenge 2022 results, https://www.minizinc.org/
challenge2022/results2022.html, last accessed March 2nd, 2023

37. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Information Security and Cryptology - 7th International Conference, Inscrypt 2011,
Beijing, China, November 30 - December 3, 2011. Revised Selected Papers. LNCS,
vol. 7537, pp. 57–76. Springer (2011)

38. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)

39. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer (2007)

40. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014)

41. Oki, E.: Glpk (gnu linear programming kit) (2012)
42. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)
43. Prud’homme, C., Godet, A., Fages, J.G.: choco-solver, https://github.com/

chocoteam/choco-solver, last accessed March 19th, 2023
44. Quine, W.V.: The problem of simplifying truth functions. American Mathematical

Monthly 59, 521–531 (1952)
45. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly

62, 627–631 (1955)
46. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,

Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)
47. Schulte, C., Tack, G., Lagerkvyst, M.Z.: Gecode, https://www.gecode.org/index.

html, last accessed March 19th, 2023
48. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-

fiability. IEEE Trans. Computers 48(5), 506–521 (1999)
49. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer
(2009)

50. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

51. Sun, S., Gérault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Analysis
of aes, skinny, and others with constraint programming. IACR Trans. Symmetric
Cryptol. 2017(1), 281–306 (2017)

https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf
https://www.minizinc.org/challenge2022/results2022.html
https://www.minizinc.org/challenge2022/results2022.html
https://github.com/chocoteam/choco-solver
https://github.com/chocoteam/choco-solver
https://www.gecode.org/index.html
https://www.gecode.org/index.html


Cryptanalysis with SAT, SMT, MILP and CP 21

52. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Evalua-
tion and (Related-key) Differential Characteristic Search: Application to SIMON,
PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer
(2014)

53. Xu, S., Feng, X., Wang, Y.: On two factors affecting the efficiency of MILP models
in automated cryptanalyses. IACR Cryptol. ePrint Arch. p. 196 (2023)

54. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security
evaluation algorithm against differential/linear cryptanalysis using A divide-and-
conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438–469 (2019)

A Differential cryptanalysis

Differential cryptanalysis, first proposed by Biham and Shamir in 1990 [9], is
a statistical cryptanalysis technique, very effective against many cryptographic
primitives, such as block or stream ciphers or hash functions. Given two inputs
to the primitive with difference∆x through a chosen operation (we use the XOR,
the most common) the technique studies how this value propagates through the
iterated operations to reach an output difference ∆y.

The differential probability of a given input/output pair of differences for a
vectorial Boolean function is the probability for that pair to yield over all the
possible pairs of inputs with said input difference. For a function f and two
differences ∆x and ∆y, we will denote this probability with dpf (∆x → ∆y).

It is currently infeasible to compute the output difference for a block cipher
for all the possible pairs of inputs, considering its large size, and building the
table with all the frequencies for each pair of input/output difference (that is
called Difference Distribution Table, in short DDT). To facilitate the analysis,
we can use the fact that block ciphers are often iterative functions, i.e. they are
the composition fr−1 ◦ . . . ◦ f0 of simpler keyed round functions fi’s.

We define a r-round differential trail (or characteristic) for an iterative func-
tion f = fr−1 ◦ . . . ◦ f1 ◦ f0, as a sequence of differences

∆0
f0−→ ∆1

f1−→ . . . → ∆r−1
fr−1−−−→ ∆r

and a differential as a pair of input/output differences. In the case of the whole
composite primitive, the differential

∆x
f0◦...◦fr−1−−−−−−−→ ∆y.

has probability equal to the sum of the probabilities of all the differential char-
acteristics with ∆0 = ∆x and ∆r = ∆y, where the probability of the charac-
teristic is usually computed as the product of the probabilities of each interme-
diate differential of the chain. In particular, one can rely on the assumption of
independence between each differential so that the resulting probability, when
considering the composition of vectorial Boolean functions, is computed by the
following:



22 Bellini et al.

Proposition 2. Let f1 and f2 be two vectorial Boolean functions

f1 : {0, 1}l → {0, 1}m , f2 : {0, 1}m → {0, 1}n.

and let ∆x⃗ ∈ {0, 1}l, ∆y⃗ ∈ {0, 1}m and ∆z⃗ ∈ {0, 1}n be three differences such
that

dpf1(∆x⃗ → ∆y⃗) = p1 dpf2(∆y⃗ → ∆z⃗) = p2.

Then, we have
dpf2◦f1(∆x⃗ → ∆z⃗) = p1 · p2.

To simplify the search for the most probable differential trail, it is common
to search for the best differential characteristic instead, assuming its probability
to be a good approximation of the target one, even if this is not always true [3].

In general, there is no efficient way to compute the precise probability of a
differential characteristics. To do so, some fundamental assumptions on block
ciphers are commonly used, such as the Markov cipher assumption, the Hypoth-
esis of stochastic equivalence and the Hypothesis of independent round keys (see
e.g. [32, Section 2.2.1]).

B Formalisms

In order to search for differential trails having the highest possible probability,
we will make use of several constraints problems solvers adopting 4 different
formalisms. The problem underlying the search of differential trails can be set
from a general point of view.

Problem 1. Given a set of variables (unknown elements with a fixed domain) and
a set of constraints (e.g. relations representing the propagation of the difference
through the cipher), it is required to find an assignment of the variables to values
in their domains, that is a mapping associating to each variable a value in its
domain, that satisfies all the constraints.

We will call the resolution process procedure. In the following, we specialize
the general terminology for each of the 4 formalisms we have used.

B.1 Satisfiability (SAT)

The terminology is as follows:

– variables are Boolean unknowns; a literal is either an unknown Boolean
quantity vi or its negation ¬vi;

– constraints are clauses; a clause is a disjunction of literals,
∨n−1

i=0 xi; the set of
clauses is called Conjunctive Normal Form (CNF) and it is the conjunction

of all the clauses,
∧m−1

j=0

(∨nj

i=0 xij

)
;

– the main procedures are DPLL [16,15] or CDCL [48], improved in the actual
implementations.



Cryptanalysis with SAT, SMT, MILP and CP 23

B.2 Satisfiability Modulo Theories (SMT)

The terminology is as follows:

– variables are unknown Booleans xi coming from the quantifier free theory,
i.e. the Boolean logic;

– constraints are formulae in the chosen theory involving Boolean symbols;
– the main procedures are Lazy or Eager [8]; due to the simplicity of imple-

mentation, Lazy is the most widely implemented.

B.3 Mixed-Integer Linear Programming (MILP)

The terminology is as follows:

– variables are unknown quantities xi that can either be booleans, integers (Z)
or continuous (R);

– constraints are linear inequalities of the form a0x0+a1x1+· · ·+an−1xn−1 ≤ b
with ai, b ∈ Q; moreover we have an objective function of the form z =
c0x0 + c1x1 + · · ·+ cn−1xn−1 to be maximized or minimized, with ci ∈ Q;

– the main procedures are the Simplex algorithm [14], Branch-and-bound [29]
and Branch-and-cut [42].

B.4 Constraint Programming (CP)

The terminology is as follows:

– variables are unknown quantities belonging to a specific domain, i.e. pairs
(xi, Di). In our models we will either have Boolean variables (Di = {0, 1})
or more generic integer variables (Di ⊆ N);

– constraints are relations which involve a subset of the variables. There are
several types of constraints that can be used to model CP problems; in our
models we used linear equations of integer variables (eventually modulo 2),
logical combinations of linear equations of integer variables through the usual
operators (AND, OR, NOT) and table constraints.

– the main procedures are Backtracking search, Local Search and Dynamic
programming [46].

C Experimental results tables

In Table 5, we use the following notation: BT = Building Time, ST = Solving
Time, NR = Number of Rounds, W = Weight.



24 Bellini et al.

NR=2, W=2 NR=3, W=4 NR=4, W=6 NR=5, W=8 NR=6, W=12
Formalism Solver BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.00 213.81 0.00 0.02 213.44 0.00 0.04 214.22 0.01 0.11 214.72 0.01 0.36 215.47
SAT CaDiCal 0.00 0.00 203.40 0.00 0.02 203.61 0.00 0.07 204.23 0.01 0.16 205.01 0.02 0.45 206.13
SAT CryptoMiniSat 0.00 0.00 5.59 0.00 0.03 5.80 0.01 0.06 5.82 0.01 0.15 6.12 0.01 0.51 6.84
SAT MiniSAT 0.00 0.04 10.56 0.00 0.07 10.57 0.01 0.21 10.71 0.01 0.42 11.01 0.02 1.25 11.30
SAT Yices2 0.00 0.00 3.50 0.00 0.01 3.63 0.00 0.04 3.76 0.01 0.08 3.76 0.01 0.23 4.02
SAT MathSAT 0.00 0.01 8.60 0.01 0.03 8.60 0.00 0.06 9.11 0.01 0.14 9.37 0.01 0.41 10.14
SAT Glucose 0.00 0.01 inf 0.01 0.04 inf 0.00 0.14 inf 0.01 0.25 inf 0.02 0.85 inf
SMT Yices2 0.00 0.02 6.76 0.00 0.04 6.95 0.01 0.09 7.24 0.01 0.16 7.56 0.01 0.40 8.02
SMT MathSAT 0.00 0.05 15.52 0.00 0.10 16.81 0.01 0.15 18.10 0.00 0.27 19.91 0.01 0.71 23.00
SMT Z3 0.00 0.05 18.63 0.00 0.12 19.04 0.01 0.22 19.63 0.01 0.44 20.55 0.01 1.42 21.77
CP Chuffed 0.00 0.00 0.12 0.00 0.01 0.19 0.00 0.09 0.28 0.00 0.63 0.28 0.00 20.46 0.42
CP Gecode 0.00 0.00 inf 0.00 0.02 inf 0.00 0.16 inf 0.00 1.22 inf 0.00 30.34 inf
CP Choco 0.00 0.03 inf 0.00 0.12 inf 0.00 0.49 inf 0.00 2.76 inf 0.00 63.79 inf
CP OR Tools 0.00 0.02 inf 0.00 0.03 inf 0.00 0.20 inf 0.00 1.29 inf 0.00 33.13 inf

MILP GLPK 0.06 0.11 0.00 0.07 1.03 0.00 2.85 0.19 0.00 2.96 0.41 0.00 - - -
MILP Gurobi 2.78 0.01 0.00 2.92 0.09 0.00 0.08 7.60 0.00 0.15 38.71 0.00 3.07 0.66 0.00

Table 5: Comparison results on Simon 32/64

NR=2, W=1 NR=3, W=3 NR=4, W=5 NR=5, W=9 NR=6, W=13
Formalism Solver BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.00 213.46 0.00 0.02 214.79 0.01 0.07 215.38 0.01 0.47 216.47 0.02 2.46 218.04
SAT CaDiCal 0.01 0.00 204.06 0.00 0.03 203.95 0.01 0.09 205.85 0.01 0.54 206.74 0.02 1.92 207.89
SAT CryptoMiniSat 0.00 0.01 5.79 0.00 0.04 5.87 0.01 0.07 6.02 0.02 0.71 7.50 0.02 4.26 11.65
SAT MiniSAT 0.00 0.03 10.56 0.01 0.10 10.73 0.01 0.27 10.84 0.01 1.94 10.30 0.02 15.88 11.54
SAT Yices2 0.01 0.00 3.63 0.00 0.02 3.63 0.01 0.06 3.89 0.02 0.33 4.16 0.02 3.17 4.72
SAT MathSAT 0.00 0.01 8.60 0.00 0.04 9.11 0.01 0.10 9.37 0.01 0.63 10.66 0.02 3.43 13.23
SAT Glucose 0.00 0.01 inf 0.00 0.04 inf 0.01 0.19 inf 0.01 0.69 inf 0.02 3.42 inf
SMT Yices2 0.00 0.01 6.79 0.01 0.04 7.07 0.01 0.10 7.55 0.01 0.66 8.27 0.02 4.38 10.22
SMT MathSAT 0.00 0.03 16.04 0.01 0.14 19.39 0.01 0.41 25.58 0.01 1.53 35.89 0.02 9.25 65.57
SMT Z3 0.00 0.04 18.67 0.01 0.12 19.30 0.01 0.36 20.27 0.01 2.17 22.66 0.02 12.88 26.92
CP Chuffed 0.00 0.00 0.05 0.00 0.04 0.12 0.00 0.81 0.19 0.00 132.69 0.28 - - -
CP Gecode 0.00 0.00 inf 0.00 0.01 inf 0.00 0.33 inf 0.00 74.62 inf - - -
CP Choco 0.00 0.04 inf 0.00 0.24 inf 0.00 17.41 inf - - - - - -
CP OR Tools 0.00 0.02 inf 0.00 0.06 inf 0.00 0.47 inf 0.00 28.44 inf - - -

MILP GLPK 0.04 14.92 - - - - - - - - - - - - -
MILP Gurobi 2.70 0.05 0.00 2.93 0.29 0.00 3.02 1.33 0.00 2.84 3.27 0.00 3.09 21.44 0.00

Table 6: Comparison results on Speck 32/64

NR=2, W=0 NR=3, W=0 NR=4, W=1 NR=5, W=6 NR=6, W=7
Formalism Solver BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.04 0.02 173.08 0.05 0.03 181.31 0.06 0.21 191.15 0.08 18.40 225.68 0.11 55.87 237.44
SAT CaDiCal 0.03 0.02 162.30 0.05 0.03 171.22 0.06 0.12 184.59 0.08 47.38 208.79 0.11 62.59 230.71
SAT CryptoMiniSat 0.03 0.02 10.18 0.04 0.02 12.15 0.06 0.13 16.20 0.09 73.82 112.40 0.11 83.68 97.73
SAT MiniSAT 0.04 0.21 14.57 0.05 0.31 16.07 0.06 1.01 21.82 0.09 280.28 103.45 0.11 367.98 235.89
SAT Yices2 0.04 0.00 6.29 0.05 0.00 7.69 0.06 0.20 10.02 0.09 84.74 40.92 0.11 150.09 51.24
SAT MathSAT 0.03 0.04 15.43 0.05 0.06 18.27 0.06 0.30 23.42 0.09 162.17 134.20 0.11 284.66 257.83
SAT Glucose 0.04 0.04 119.50 0.05 0.04 124.34 0.06 0.18 inf 0.09 110.01 inf 0.11 166.23 inf
SMT Yices2 0.02 0.05 12.22 0.03 0.07 15.21 0.05 0.21 23.92 0.09 127.53 71.81 0.11 222.02 94.72
SMT MathSAT 0.02 0.28 37.68 0.03 0.81 56.50 0.05 1.01 92.64 0.10 174.88 268.01 0.12 331.54 307.70
SMT Z3 0.02 0.21 37.20 0.03 0.34 68.50 0.05 2.12 76.78 0.09 448.57 163.91 0.13 666.45 254.68
CP Chuffed 0.01 0.01 3.16 0.02 0.03 4.75 0.02 0.07 4.75 - - - - - -
CP Gecode 0.01 0.03 inf 0.01 0.05 inf 0.02 0.26 inf - - - - - -
CP Choco - - - - - - - - - - - - - - -
CP OR Tools - - - - - - - - - - - - - - -

MILP GLPK - - - - - - - - - - - - - - -
MILP Gurobi 0.94 0.44 0.00 3.02 382.40 0.00 - - - - - - - - -

Table 7: Comparison results on Blake 512



Cryptanalysis with SAT, SMT, MILP and CP 25

NR=2, W=4 NR=3, W=6 NR=4, W=10 NR=5, W=16 NR=6, W=28
Formalism Solver BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.04 0.14 225.93 0.05 0.88 233.74 0.09 5.47 245.46 0.08 27.92 262.10 0.12 355.12 302.89
SAT CaDiCal 0.04 0.20 215.73 0.07 1.00 222.27 0.08 4.57 233.96 0.09 23.03 251.19 0.12 484.81 288.71
SAT CryptoMiniSat 0.04 0.42 9.55 0.05 1.61 9.55 0.07 11.40 20.57 0.09 70.18 48.39 - - -
SAT MiniSAT 0.03 1.14 13.90 0.05 3.53 16.64 0.07 24.27 21.23 0.09 217.81 45.50 - - -
SAT Yices2 0.04 0.14 5.70 0.05 1.34 7.70 0.07 12.17 12.64 0.09 81.29 18.93 - - -
SAT MathSAT 0.04 0.34 14.68 0.05 2.06 19.42 0.04 14.44 32.57 0.09 103.20 56.91 - - -
SAT Glucose 0.04 0.21 inf 0.05 0.99 inf 0.07 7.21 inf - - - - - -
SMT Yices2 0.03 0.34 12.98 0.05 1.62 18.63 0.07 9.16 27.50 0.11 75.54 42.49 - - -
SMT MathSAT 0.04 0.87 52.13 0.05 2.89 80.23 0.07 14.35 125.35 0.11 99.44 208.36 - - -
SMT Z3 0.04 1.47 39.06 0.05 5.10 72.12 0.07 33.32 136.04 0.11 569.40 149.982 - - -
CP Chuffed 0.02 0.30 0.94 0.01 22.01 1.41 - - - - - - - - -
CP Gecode 0.02 0.15 inf 0.03 22.39 inf - - - - - - - - -
CP Choco 0.02 46.04 inf - - - - - - - - - - - -
CP OR Tools 0.02 0.72 inf - - - - - - - - - - - -

MILP GLPK 0.57 75.56 0.00 - - - - - - - - - - - -
MILP Gurobi 4.50 1.45 0.00 5.92 22.49 0.00 7.62 452.57 0.00 - - - - - -

Table 8: Comparison results on Gimli 384

NR=2, W=4 NR=3, W=8 NR=4, W=12 NR=5, W=20 NR=6, W=24
Formalism Solver BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.03 218.14 0.02 0.14 219.83 0.03 0.46 222.53 0.03 5.64 226.42 0.03 11.02 231.10
SAT CaDiCal 0.02 0.04 207.43 0.02 0.19 209.20 0.02 1.08 212.66 0.03 5.78 216.67 0.04 11.25 220.55
SAT CryptoMiniSat 0.02 0.04 6.08 0.02 0.04 6.08 0.03 0.81 7.99 0.03 9.37 13.23 0.03 31.09 21.76
SAT MiniSAT 0.02 0.21 11.07 0.02 0.21 11.07 0.03 3.43 12.58 0.03 21.28 14.02 0.03 62.39 15.38
SAT Yices2 0.01 0.01 3.89 0.02 0.13 4.29 0.03 0.49 4.73 0.03 5.74 6.04 0.03 18.47 7.27
SAT MathSAT 0.02 0.05 9.37 0.02 0.89 33.57 0.03 0.80 11.95 0.03 7.08 16.59 0.04 18.93 18.91
SAT Glucose 0.02 0.08 inf 0.02 0.42 inf 0.02 1.29 inf 0.03 8.12 inf 0.03 15.87 inf
SMT Yices2 0.02 0.09 7.84 0.02 0.27 9.18 0.03 0.73 11.03 0.04 6.16 14.11 0.05 16.91 18.37
SMT MathSAT 0.02 0.29 25.06 0.02 0.89 33.57 0.03 2.32 47.23 0.04 9.97 71.47 0.05 27.06 91.30
SMT Z3 0.02 0.50 20.94 0.02 1.66 23.75 0.03 4.13 27.24 0.04 18.51 42.50 0.05 42.97 73.78
CP Chuffed 0.01 0.00 0.19 0.01 0.11 0.28 0.01 3.13 0.42 - - - - - -
CP Gecode 0.01 0.00 inf 0.01 0.08 inf 0.01 2.43 inf 0.01 399.94 inf - - -
CP Choco 0.01 0.04 inf 0.01 0.31 inf 0.01 7.12 inf - - - - - -
CP OR Tools 0.01 0.25 inf 0.01 0.47 inf 0.01 4.80 inf - - - - - -

MILP GLPK 0.20 1.01 0.00 - - - - - - - - - - - -
MILP Gurobi 3.08 0.07 0.00 3.20 0.53 0.00 3.37 0.92 0.00 3.44 3.81 0.00 3.64 111.07 0.00

Table 9: Comparison results on Present 64/80


	Differential cryptanalysis with SAT, SMT, MILP, and CP: a detailed comparison for bit-oriented primitives

