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Abstract 

The paper presents a short survey of the 

History of Multivariate Cryptography 

together with the usage of old broken 

multivariate digital  signatures in the new 

protocol based cryptosystems constructed in 

terms of Noncommutative Cryptography.  

Cryptography is also presented. The general 

schemes of New cryptosystems is a  

combinations of Eulerian maps and quadratic 

maps with their trapdoor accelerators, which 

are pieces of information such than the 

knowledge of them  allow to compute the 

reimages in a polynomial time. These 

schemes are illustrated by historical examples 

of Imai – Matsumoto multivariate digital 

signatures schemes and Unbalanced Oil  and 

Vinegar Cryptosystems.  

Keywords: Multivariate Cryptography, Digital 

signatures, Noncommutative Cryptography, Eulerian 

transformations , Protocol based cryptosystems,  Public 
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1 Introduction to Multivariate 

Cryptography 

The interest to serious algebraic cryptological 

studies was stimulated recently by the research in 

Post Quantum Cryptography where among 5 

core areas there are Multivariate Cryptography 

and Code - based Cryptography which need 

serious algebraic cryptography (linear codes, 

Goppa codes, Reed-Solomon codes used in Mc 

Elise cryptosystems and etc).  The NIST project 

since 2017 is concentrated on Public Keys. 

aimed for the purposes to produce the encryption 

tools or instruments   for the design of digital 

signatures  (Canteaut  et al., 2021). We has to 

admit that PQC secure quadratic multivariate 

rules can serve to create the shortest digital 

signature procedures. Recall that we have to add 

to mentioned above two directions of PQC the 

Hash based cryptography, Isogeny-based 

cryptography and Lattice based cryptography. 

We have to notice that all already NIST certified 

algorithms are not the public keys of 

Multivariate Cryptography. Quite long standing 

''The Rainbow Like Unbalanced Oil and 

Vinegar'' (RUOV) digital signature method was 

rejected due to cryptanalytic studies published in 

the Proceedings of the Eurocrypt 2021 (Canteaut  

et al., 2021), (Buellens, 2021).   The historical  

Multivariate Cryptography is a search for the 

pairs of kind  (F,T) forming the quadratic or 

cubic trapdoor accelerator where F is a quadratic 

(or cubic)  transformation of the vector space 

(Fq)
n  defined over the finite field and T is a 

polynomial invertor, i.e. the piece of information 

such that the knowledge of T  allows to compute 

reimages of F  in a polynomial time. Developers 

were hoped that the recovery of the reimage of F 

given in its standard form  without a knowledge 

of T will stay as unsolved NP-hard problem.  

Recall that the standard form is the list of 

monomials of F(xi), i=1,2,…,n ordered 

lexicographically. The fact that quadratic 

transformations of public key (F,T) can provide 

the shortest known digital signatures is 

motivating  a further search for appropriate 

trapdoor accelerators.  This search was started by 

Imai and Matsumoto ( Matsumoto et al, 1988)  

(see also ( Ding et al, 2020) ) who constructed a 

trapdoor accelerator in the case of finite fields of 

characteristic 2. They use quadratic extensions F2 

of a finite field F1=Fq, q=2m of characteristics 2 



of degree n. They expressed a bijective 

transformation of Fr, r=qn  of kind x→x t, t=qa 

+1 where  (a+1, qr-1)=1  as quadratic 

transformation F of the vector space (F1)
n. 

Authors suggested to use the standard form 

G=L1FL2 where L1 and L2 are elements of 

AGLn(F1) as the public rule corresponding to 

trapdoor accelerator (G, T), T=(L1, L2, a).The 

cryptanalytic  tools to break this potential 

cryptosystem were found by J. Patarin (see 

(Koblits, 1988) and further references). Long 

history of various modifications of Imai-

Matsumoto cryptosystems is partially reflected in  

(Ding, 2004 ) or (Goubin et al, 2011). All of 

them were broken via corresponding 

cryptanalytic tools. We just mentioned some 

other cryptosystems inclusive  Hidden Fields 

Equations suggested by J. Patarin and recent 

Unbalanced Oil and Vinegar cryptosystem for 

which corresponding cryptanalysis can be found 

in  ( Buellens, 2021).    . The fact that quadratic 

transformations of public key (F, T) can provide 

the shortest known digital signatures is 

motivating  a further search for appropriate 

polynomial invertors. The scheme is the 

following one. Let  (F, T) be the pair  such that 

the reimage of σ is not computable in polynomial 

time. Assume that Alice has (F, T) and public 

user Bob poses F. Let us assume that Alice and 

Bob use some symmetric cipher H and the hash 

function f. Bob receives encrypted by Alice 

document H(p)=c. Correspondents compute 

‘’compressed’’ message f(c)=b. Alice considers 

the equation F(y)=b. She uses her knowledge on 

T and reconstruct some reimage r of b. Finally 

Alice sends r to Bob. He is checking the relation 

F(r )=b. So Bob is sure that the decrypted by 

him document p was genuine and was   sent  by 

Alice. We believe in a future success of this 

direction of public key development. Incomplete 

list of publication with multivariate 

constructions, surveys  and  cryptanalytic studies 

is  (Ding et al, 2021), (Ding at al., 2017), (Smith-

Tone, 2022), (Smith-Tone, 2021), (Smith-Tone 

et al., 2019) , (Jayashree Dey et al., 2022), 

(Ikematsu et all, 2018), (Cartor et all, 2018), 

(Casanova et al., 2017), (Chen Jiahui et al..2020),  

(Chen Ming-Shing, et al., 2018), (Dung H. Duong 

et all, 2021). 

In most examples of known pairs (F, T) the 

reimage of F can be computed in time O(n3).  We 

refer to such T as a trapdoor accelerator. 

2  On the bridge between Multivariate and 

Noncommutative Cryptographies 

Another source of quadratic maps F with a 

trapdoor accelerators is Noncommutative 

Cryptography, which was created as attempt to 

generalise historical Diffie-Hellman protocol 

which uses cyclic group  F*p  for the elaboration 

of collision element. One can see that RSA 

cryptosystem uses cyclic subgroup of Zpq, if we 

have some encryption public rule acting 

bijectively on the space of plaintext it is 

generating corresponding cyclic group. If the 

public rule is not bijective then it is generating of 

some monogenic semigroup of large order with 

some large index. We have to mention that usage 

of abelian groups or semigroups historically was 

started from  Cesar’s cipher which use’’ belt’’ 

cyclic group on the belly of the messenger. So 

Noncommutative Cryptography  (NC) is an  

attempt to design of protocols  via procedures 

described in terms of noncommutative groups, 

semigroups or other noncommutative algebraic 

objects. It has own history (see ( Alexei G. 

Myasnikov et al. ,2011). It has very limited  impact 

on NIST-2017 program because public keys are 

different from protocol based asymmetric 

algorithm. One of the direction of 

Noncommutative Cryptography has a close 

connection with Multivariate Cryptography. 

Multivariate rule on the affine space Kn where K 

is a finite commutative ring with unity is an 

endomorphism ϭ of K[x1 , x2 ,…, xn]. It can be 

given by its values  ϭ(xi )=fi(x 1 , x 2 ,…, xn), 

i=1,2,…,n , polynomials f i  can be given by the 

lists of their  monomial terms ordered 

lexicographically. This way of presentation of ϭ 

is known as its standard form. This form allows 

to define degree of ϭ as maximal degree of  fi , 

i=1,2,…,n . All endomorphisms of K[x1 , x2 ,…, 

xn] form affine Cremona nCS(K). 



It is an important object of Algebraic Geometry 

(see (Noether, 1904)  about Mathematics of 

Luigi Cremona who was the prominent figure in 

Algebraic Geometry in the XIX century, (Yu. 

Bodnarchuk,. 2001)  and further references on 

papers which use the term affine Cremona 

group). At first look SCn(K) is not convenient 

even for the implementation of Diffie-Hellman 

protocol with the nonlinear generator g in 

general position because deg( gn)= (deg (g)) n. 

Assumption that g is belong to some 

subsemigroup S, S< nSC(K) with the Multiple 

Composition Property (MCP), i. e. the option to 

compute a composition of n elements  in a 

polynomial time,  brings the option to execute 
the protocol with generator g. Surprisingly in the 

case of n>1 variables such subsemigroups can be 

constructed. 

One of the classes of subgroups is formed by t-
stable subgroup, i.e subgroups such that maximal 

degree of its representative is  the constant t, t>1 

(see ( Ustimenko et al.,  2011), (Ustimenko, 2022)) 

. The first  constructions of such subsemigroup 

with t=2 were given in (Ustimenko, 2019, 2021). 

Assume that Alice and Bob use Diffie – Hellman 
protocol with generator of 2-stable monogenic 

subsemigroup of  nSC(K). Then the collision 

element H is the quadratic transformation. Alice 
can select the pair (F, T) where  F ϵ nSC(K)  and 

T is a trapdoor   accelerator, and send the 

standard form of F+H to Bob. So he can use F as 
the encryption tool or the instrument for 

checking digital signatures. The security of this 

scheme is based on the protocol security. Diffie-

Hellman ptotocol can be substitute for the 
protocol on Noncommutative Cryptography with 

the quadratic collision element from nSC(K) (see 

(Ustimenko , 2018). Additionally it can be used 
in the  cases of other protocols  for which can be 

constructed the deformation rule of the collision 

element H (or several collision elements) into 
quadratic transformation d(H) ( see (Ustimenko, 

2018)  or the example in (Ustimenko,2023). 

It is well known that Peter Shor suggested the 

use of quantum computer to solve Discrete 
logarithm problem in the case of F*p, where p is 

prime, in a polynomial time. Despite this fact the 

case of quadratic  gϵ nCS(K)  generating t-stable 
monogenic subsemigrop (or subsemigroup with 

MCP property) remains an interesting problem 

for cryptanalytics. The first implementation  of 

this algorithms in the case when g generates 3-

stable transformation of affine space Kn was 

considered in (Ustimenko et al., 2011), see 
(Ustimenko, 2022) for other examples. 

3 Hidden tame homomorphism 
protocols on platforms of  special 

multivariate transformations 

3.1. Abstract scheme 

The following abstract scheme can be used 

(see (Ustimenko, 2018). Assume that there are 

two families of subsemigroups  En(K) and Ln(K) 

of nCS(K)  (En(K)>Ln(K)) together with two 

families  E’m(K) and Mm(K) of subsemigroups 
mSC(K) (E’m(K)>Mm(K)) such that n>m, m=O(n) 

and there is a feasible homomorphism ψ  from 

Ln(K) into Mm(K) (computable in time O(nk)).  

We assume that  En(K) and E’m(K) has rather 

large subgroups of invertible elements. Alice and 

Bob can execute the following protocol  

 

Alice selects generators g1 , g2 ,…, gd , d≥2 

from Ln(K) and the invertible elements g and h 
from En(K) and E’m(K) respectively. 

She computes images h1=ψ(g1), h2=ψ(g2),…, 

hd=ψ(gd). After that Alice computes 

(ai=ggig
-1, bi=hhih

-1 ), i=1,2,…,d  and sends it 
to his partner Bob via open channel. 

     He take an alphabet z1, z2,…, zd  and writes the 

word zi(1)zi(2)…zi(l) of the length l=O(1), l>d,  
i(1), i(2),…, i(l) are elements from {1,2,…,d}. 

Bob computes the standard form a=ai(1)ai(2)…ai(l) 

and sends it to Alice. He computes b= 

bi(1)bi(2)…bi(l) and keeps it for himself. 
Alice computes the collision element b 

accordingly to the following procedure. 

1) She computes g-1ag =1g   
      2) she gets the standard form of ψ( 1g)=2g   

      3) computes b as h(2g)h-1. 

     The adversary has to decompose of a in its 
standard form into the word w(a1, a2,…, ad) of 

given generators a1, a2,…, ad. If he/she solves 

this NP-hard problem then the adversary has  the 

collision element as w(b1, b2,…, bd). 

 

3.2. The implementation with Eulerian 

transformation 
         Let K be a finite commutative ring with the 
multiplicative group K* of regular elements of 

the ring. We take Cartesian power nE(K) =(K*)n  



and consider an Eulerian semigroup nES(K) of 
transformations of kind  

x1 → ϻ1x1 
a(1,1) x2 

a(1,2) … xn 
a(1,n) ,  

x2 → ϻ2x1 
a(2,1) x2 

a(2,2) … xn 
a(2,n) , (1) 

… 
xm →ϻnx1 

a(n,1) x2 
a(n,2) … xn 

a(n,n)  

 

 
Let nEG(K) stand for Eulerian group of 

invertible transformations from nES(K). They act 

as bijective maps on the variety (K*) n. 

Let J={1, 2,…,m} we consider totality mPn(K) 
of all transformation of kind 

x1 → ϻ1x1 
a(1,1) x2 

a(1,2) … xm a(1,m)   

x2 → ϻ2x1 
a(2,1) x2 

a(2,2) … xm a(2,m)  
… 

xm → ϻmx1 
a(m,1) x2 

a(m,2) … xm a(m,m)   

xm+1 → ϻm+1x1 
a(m+1,1) x2 

a(m+1,2) … xm a(m+1,m) 
xm+1 

a(m+1,m) … xn 
a(m+1,n)  

xm+2 → ϻm+2x1 
a(m+2,1) x2 

a(m+2,2) … xm a(m+2,m) 

xm+1 
a(m+2,m) … xn 

a(m+2,n)  

…… 
 

 

xn →ϻnx1 
a(n,1) x2 

a(n,2) … xm a(n,m) xm+1 
a(n,m+1) … xn 

a(n,n)  

 

Let ψ: mPn(K)→mES(K) be the 
homomorphism sending   ϭ from mPn(K) into its 

restriction onto K[x1, x2,…, xm]. 

We can use described above protocol in the 

case of En(K)=nES(K),  Ln(K)=mPn(K) and 
E’m(K)=Mm(K)=mES(K). 

Alice and Bob conduct the protocol and 

elaborate the collision element C from the  
mES(K).  

 

3.3. On protocol based cryptosystem 

formed by combination of Eulerian and 

linear transformations 
 

     Examples of cryptosystems based on this 

protocol are described in (Ustimenko, 2023). We 

add the following cryptosystems constructed in 

the case of K=Zq, q=2s, s>1. 

 Alice and Bob execute 2t, t=O(1), t≥2 

sessions of the protocol and elaborate elements   

iC of kind 

x1 → iϻ1x1 
a(1,1,i) x2 

a(1,2,i) … xm a(1,m ,i )   
x2 → iϻ2x1 

a(2,1,i) x2 
a(2,2,i) … xm a(2,m,i)  

… 

xm → iϻmx1 
a(m,1,i) x2 

a(m,2,i) … xm a(m,m,i)   

where i=1,2,… , 2t, a(j,k, i) are elements from Zd,    

d=2 s-1. 

 
Noteworthy that regular elements of Zq are odd 

residues modulo q.  

Notice that matrix B=(b(i,j)) moves tuple  (x1, 
x2,…, xm)ϵ(Z*q)

m  into (y1, y2, …, ym)= (x1, x2,…, 

xm)Bϵ(Z*q)
m  if and only if each columns of B has 

odd regular components. 
Let D(m, q) be a totality of invertible matrices as 

above  acting on (Z*q)
m. 

Alice and Bob form matrices kB=(kb(i,j)) with 

entries kb(i,j)=(kϻi
kϻj)

a(i,j,k), k=1,2,…,t. 

  

 Alice selects matrices iD  , i=1,2,…, t  from 

D(m, q) with nonzero entries. Additionally she 
takes  

Jordan-Gauss elements iJ 1, 
iJ2 ,…,iJs(i), i=1, 2,…, 

t , s(i)≥2, t>1 and forms their compositions 
 iGϵmEG(Zq). She sends iG(xj)

 i+tC(xj), i=1,2, …, t, 

j=1, 2,…,m to Bob  together with matrices 
kB+kD, k=1,2,…, t. Bob restores linear 

transformations iL given by matrices iD and 
Eulerian transformations iG. 

 

Correspondents work with alphabets z1, z2,…, zt  

and y1, y2, …, yt. 

They agree via open channel on the word  zi(1)y 

zi(2)zi(2)yj(2) … zi(k-1)2)yj(k-1)zj(k), k >t 

where i(r) and j(r) are elements of {1,2, …, t}. 
Alice and Bob specialise zi as iG, i=1,2,…,k  and 

yi as iL, i=1,2,…,k-1. 

 To get digital signature of the document from 
his partner Bob computes the hash value 

hϵ(Z*q)
m  of the document.   To check the 

signatures x obtained from Alice he will use  the 
result of consecutive application of  elements 1G, 
1L, 2G, 2L,…, k-1G, k-1L, kG to x. He compares the 

resulting value c(x) with h.  

Alice uses the knowledge on the decomposition 
of iG into Jordan-Gauss elements and 

transformations iD-1  for the computation of her 

signature x. 
REMARK 1. Let E be the composition of 1G, 1L, 
2G, 2L,…, k-1G, k-1L, kG in the affine Cremona 

semigroup.  It is clear that E has linear degree 
d(m) in variable m and an exponential density. 

So the computation of the standard form of E 

takes exponential time. 

It means that adversarial attacks on this 
cryptosystem via the interception of hashes of 

documents and corresponding signatures are 

unfeasible. 
REMARK 2. Bob checks the signature in time 

O(m2). 



 

We consider some computational relations 

between Z2
s-1

  , Z*2
s
  and F2

s-1. 

Recall that Z*2
s
  is the totality of odd residues 

modulo 2 s
 . 

We consider the map ϭ from Z2
s-1

  to Z*2
s
   such 

that ϭ(t mod 2 s-1) is 2t+1 mod 2s. It is a bijection. 

Let ϭ-1
  be the inverse map from Z*2

s
   to Z2

s-1
 . 

 
Notice that elements from Z2

s-1can be written as 

b=e0+e12+e2 2
 2 +…+es-22

 s-2 mod 2 s-1, where  

eiϵ{0,1}. Element of the finite field Fq, q=2 s-1 can 

be written as  g(x)=e0+e1x+e2x
2+…+es-2x

s-2 mod 

p(x) where p(x) is the irreducible  polynomial of 

degree s-1. Let π be the map such that π(b)=g(x) 

and π -1 is the inverse map from Fq, q=2 s-1 onto 

Z2
s-1. 

Let us consider several modifications of the 

algorithm M1-M4. 
We consider transformation S-1 sending (x1, x2,…, 

xm)ϵ( Z*2
s
 )

m to (ϭ-1(x1), ϭ
-1(x2),…, ϭ-1

  (xm)) from 

(Z_2
s-1) m   and inverse bijection S. Let P be the 

map sending element (x1, x2, …., xn) from (Z2
s-1) m    

to (x1, x2, …, xm)ϵ(F2
s-1) m .    

 

M1. 
We can simplify the algorithm computationally 

to define rA as matrix with entries (ϭ(a(i,j, r)). 

So Alice sends rA+rD to Bob instead rB+rD in 

the modified algorithm. 

 

M2. rD, r=1, 2, …, t can be taken from    

GLm(Z2
s-1). These transformations will be 

delivered from Alice via sending rA+rD.  We 

identify rD with the corresponding linear 

transformations. Bob forms transformations S-1
  

rD rS =rL’ which are bijective transformations of 

(Z*2
s)m. He uses the composition E’ of  1G, 1L’, 

2G, 2L’,…, k-1G, k-1L’, kG computed via 

consecutive computations of Eulerian maps and 
transformations iL’.  

 

M3. rD, r=1, 2, …, t can be taken from    

GLm(F2
s-1).  Alice changes   rD=(rd(i,j)) for 

rD’=(π -1 (rd(i,j))) and sends  rD’+ rA to Bob. He 

restores rD.  Bob uses transformations rH= S-1 P 
( 

rD) P -1 S  of the variety (Z*2
s
 )

m . He uses the 

composition E’ of  1G, 1H, 2G, 2H,…, k-1G, k-1H, 
kG computed via consecutive computations of 

Eulerian maps and transformations iH.  

 

M4. We can use cryptosystems M2 and M3 in 

combinations. Alice delivers rD, r=1, 2, …, t, 
t+1, t+2,…, t+t’ selected in the group      

GLm(Z2
s-1). She forms S-1

  
rD r S =rL’, r=1, 2,…, t 

as in the cryptosystem M2 and forms rH= S-1 P ( 
r+tD) P -1 S  , r=1, 2,…, t’ as in M3. 

Bob uses the composition E’ of  1G, 1Y, 2G, 2Y,…, 
k-1G, k-1Y, kG where iYϵ{ rD, r=1, 2, …, t,  lH, 

l=1,2,…, t’}. He sends pairs (j, i(j)) such that 
jY=i(j)D and pairs (j, k(j)) such that jY=k(j)H to 

Alice. This information allows her to compute 

the signature. 

 

3.4. On protocol On  combinations of 

Eulerian  transformations and the maps of 

symmetric encryption. 

Let us consider the symmetric cipher working 

with the space of plaintexts (Fq)
m, q=2s-1 or 

(Zq)
m. Assume that EP be the bijective encryption 

map depending on password Q (the information 

file). 
So description of algorithm is available. We may 

assume that some part p’ of  Q can be available 

publicly. 

Alice can deliver the remaining part p’’ of P 
presented in the form of tuple (p1, p2,….,pd), piϵZq 

(or Fq) on the base of the presented above 

protocol. 
So instead of  several  elements iY of the scheme 

M4 the encryption procedure EQ can be used 

with different passwords. Alice and Bob can use 
several (O(1)) symmetric ciphers for the 

modification of the selected protocol based 

algorithm. 

 
EXAMPLE 1. 

 

Let us consider described above private key of 
Imai-Matsumoto scheme. It consist of affine 

transformation  L1: x→xA+b, b=(b1, b2, …., bm), 

L2:x→xC+d, d=(d1, d2,…, dm) and the map η: 
 x→xt, t=qa+1 where x ϵFq  and (qa, qm-1)=1. 

Let us present element a, a<m as 

a1+a2+….+am=a where  0≤ai<q and + is the 

addition in Z. 
Alice and Bob can make two sessions of the 

protocol and elaborate vectors (iϻ1, 
iϻ2,  ….,

 iϻ1)=
im, 

i=1,2 and matrices 1A and 2A. Alice computes    
S-1(1m) and sends (a1, a2,…, am)+(n1, n2,…, nm) 

where + is the operation of Zq to Bob. He 

restores parameter t.  

     Alice sends 1A+(π-1(a(i, j)) and 2A+(π-1(c(i, j)) 
to Bob. So he restores matrices A and C. Alice 

sends (π-1(b1), π
-1(b2),…, π-1(bm))+S-1(2m) to Bob. 

So he gets vector (b). Alice and Bob construct d 
simply as (a(1,1), a(2, 2),…, a(m,m)). So finally 



they share the private key of Imai-Matsumoto 

encryption. 

Correspondents make extra two sessions of the 
protocol  for the delivery of 1G and 2G from 

Alice to Bob as in previous algorithms. 

 So Bob uses the composition E of  G1 S P 

L1ηL2P
-1S-1G2 . Recall that the  computation 

of η uses the identification of the vector space 

(F2
s-1) m  with finite field F2

(s-1)m . 
Bob computes the hash value hϵ(Z*q)

m  of the 

document.   To check the signatures x obtained 

from Alice he will use  the result of consecutive 

application of  elements 1G, 1L, G1, S,  P , L1, η, 
L2, P-1, S-1, G2  to x. He compares the resulting 

value c(x) with h.  

Alice uses the knowledge on the decomposition 
of iG, i=1,2 into Jordan-Gauss elements for the 

computation of her signature x. 

REMARK 1. The complexity of conducting 
protocols for Bob is O(m3).Bob  can check the 

signature intime O(m2 ). 

 

DIGITAL SIGNATURE SCHEME 1.  
 

Let us consider the map F from (Fq)
m onto (Fq)

n 

given by the multivariate rule  
F: (x1, x2,…xm)→(y1, y2,…,yn)  where 

 y1=f1(x1, x2,…, xm), y2=f2(x1, x2,.., xm),…, 

yn=fn(x1, x2,…, xm). Let us assume that 

polynomials fi  are given in their standard forms, 
i. e. lists of monomial terms ordered 

lexicographically and n=O(m).  Let T be a 

trapdoor accelerator of F which is a piece of 
information such that the knowledge of T allows 

to compute the reimage of F in time O(m3). 

 
Let L1 be the affine transformation of (Fq)

m given 

by the matrix A and vector b. L2 stands  for the 

affine transformation of (Fq)
n given by the matrix 

C and vector d. We refer to G= L1FL2 as affine 
deformation of F. The map G has trapdoor 

accelerator (L1, L2, T). 

 
If q=2s-1 then  Alice can use quadratic F (or G) 

for the following scheme of digital signature.  

 Correspondents conduct n sessions of the 
protocol with the collision map from  mES(Zq), 

q=2s . So they get matrices  rA, r=1, 2,…,n with  

the entries from Zq’, q’=2s-1 and vectors ru=(rϻ1, 
rϻ2, …, ,

 rϻm). Additionally Alice and Bob conduct 
two protocols with the collision maps from 
mES(Zq) and nES(Zq) to get representatives of this 

semigroup 1G and 2G. 

Alice creates a transformation H in the form 

xr→∑i≤j a(i,j, r)xixj+  ϭ-1(rϻ1)X1+ ϭ-1(rϻ2) X2 + …+ ϭ-

1(rϻm) r
Xm+a(2, 1, r)=hr(x1, x2,…, xm), r=1, 2,…n. 

She writes F in the form xr→∑i≤j b(i, j, r)xixj+
 

rb1X1+
 
 
rb2X2 +

 
 …+  rbmXm+rb0 =fr(x1, x2,…, xm), r=1, 

2,…n. 
 

 Alice considers  

F’= xr→∑i≤j π-1(b(i, j, r)xixj + π-1( rb1)X1+
 π-1( 

rb2)X2 +
 
 …+ π-1( rbm)Xm+ π-1(rb0) =f’r(x1, x2,…, xm), 

r=1, 2,…, n. 

She computes hr(x1, x2,…, xm)+ f’r(x1, x2,…, xm),  

r=1, 2,…, n  and sends these polynomials to Bob. 
He restores the map F. 

To check the signatures Bob uses the 

composition E of the maps 1G, (Sm)-1 , Pm ,  F, (Pn)
 

-1, Sn, 
2G. He takes the hash value of the 

document in the form  

(h1, h2,…, hn)=h written in the alphabet Z*q. Let 
u be a signature obtained from Alice. Bob checks 

the equality E(u)=h via the consecutive 

application of transformations 1G, (Sm)-1 , Pm ,  F, 

(Pn)
 -1, Sn, 

2G. The knowledge of Alice on the 
trapdoor accelerator and the decompositions of 

Eulerian transformations into Jordan-Gauss maps 

allows her to construct the signature. 

 

REMARK 2. Practically hash function is 

convenient to compute in the form of vector over 

Fq’ and use E’ =(Pm)-1(Sm)-1E(Sn)
 -1Pn instead of 

E. Noteworthy that E’ is a Boolean map and h is 

a Boolean tuple.  

EXAMPLE 2. 
Let us discussed the above scheme 

implementation in the case of the trapdoor 

accelerator of the quadratic map from the  Oil 
and Vinegar algorithm. 

It is commonly  admitted that Multivariate 

cryptography turned out to be more successful 

historically as an approach to build signature 

schemes primarily because multivariate schemes 

provide the shortest  signature among post-

quantum algorithms.   Such signatures use 

system of nonlinear polynomial equations 

1p(x1,x2 , . . . , xn) = 1pi,j · xixj+
1pi · xi+

 1p0 

2p(x1, x2, . . . , xn) = 2p i,j · xixj +
2pi · xi +

2p0 

   … 

mp(x1,x2 , . . . , xn) = mpi,j · xixj+
mpi · xi+

 mp0 

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_signature


where kp i,j,  
kp i are elements of selected 

commutative ring K. 

   The quadratic multivariare cryptography map  
consists of two bijective affine  transformations, 

S and T of dimensions n and m, and a quadratic 

element  P’ of kind  xi →ip of formal Cremona 
group, where ip are written above elements of  

K[x1, x2,…,xn].We denote via Δ(P’) -1(y) some 

reimage of y=Δ(P(x)). The triple Δ(S) -1, Δ(P’) -1,  
Δ(T) -1 is the private keyq also known as the 

trapdoor.  

The public key is the composition S, P’ and T 

which is by assumption hard to invert without the 
knowledge of the trapdoor. Signatures are 

generated using the private key and are verified 

using the public key as follows. The message 
is hashed to a vector y via a known hash  

function. The signature is Δ(T) -1 (Δ(P’) -1)( Δ(S) -

1). The receiver of the signed document must 
have the public key P in posession. He computes 

the hash y  and checks that the signature  x 

fulfils Δ(P)(y)=x. 

  EXAMPLE. Assume that we have two groups 
of variables  z1, z2, …, zr and z’1 , z’2, …, zn-r    

such  that  the substitution  x1=z1, x2=z2,…, xr 

=zr, xr+1=z’1, xr+2=z’2,…, xn =z’n-r  converts every 
single element ip  to expression in  the  form  

Σγijkzjz’k+ Σλijkz’jz’k+ Σςijzj+ Σς’ijz’j+ϭi.  In this 

situation we have to  sign a given message y and 

the result is a valid signature x .The 
coefficients, γijk, λijk, ςij, ς’ijand ϭi must be chosen 

secretly. The vinegar variables z’i are chosen 

randomly (or pseudorandomly).The resulting 
linear equations system gets solved for the oil 

variables zi. 

Described above  unbalanced oil and vinegar 
(UOV) scheme is a modified version of the oil 

and vinegar scheme designed by J. Patarin. Both 

are digital signature protocols. They are 

algorithms of multivariate cryptography. The 
security of this signature scheme is based on 

an NP-hard mathematical problem. To create and 

validate signatures a minimal quadratic equation 
system must be solved. Solving m equations 

with n variables is NP-hard. While the problem 

is easy if m is either essentially larger or 
essentially  smaller than n, importantly for 

cryptographic purposes, the problem is thought 

to be difficult in the average case 

when m and n are nearly equal, even when using 
a quantum computer. Multiple signature schemes 

have been devised based on multivariate 

equations with the goal of achieving quantum 

resistance. We assume that parameter n can be 

selected in a free way and parameters n and m 

are connected via linear equation αn+βm+b 
where α≠0,β≠0. So m=0(n). We take integer k 

which ≥ max(n, m), k=O(n) and commutative 

ring K[x1,x2,…,xn, xn+1, xn+2,…, xk] where xi, 
i=1,2,…,n are variables of public equations  
jp(x1,x2 , . . . , xn), j=1,2, …,m and xn+1, xn+2,…,xk 

are formal variables.   
 To summarise we  say that in the case of the 

field Fq’ of characteristic 2 the map 

with the corresponding trapdoor accelerator can 

be used as the pair (F, T) in the described above 
scheme of the protocol based cryptosystem. 
 

 DIGITAL SIGNATURE SCHEME 2.  

We can substitute field Fq, q=2s-1 for 

arithmetical ring Zq in the described above digital 

signatures scheme. So F will be the map from 

(Zq)
m onto (Zq)

n  with the trapdoor accelerator. In 
that case we do not need to use π.Alice simply 

add H to F and Bob restores the standard form of 

F. 
4. Conclusions.  
 

We described the general schemes of digital 
signatures based on protocols on 

Noncommutative Cryptography implemented on 

the Platform of Eulerian transformations defined 
over arithmetical rings Zq, q=2 n.  

 Let K be a finite commutative ring.  Eulerian 

transformations are elements of semigroup of 

endomorphisms of K[x1, x2,…,xn] moving 
variable xi to a monomial term. In (Ustimenko, 

2024) these protocol is used for the secure 

delivery of quadratic transformation of affine 
space Kn from the protocol user to his/her 

partner. The security of protocol lays on the 

complexity of the word decomposition problem 
in the semigroup of Eulerian transformations. Its 

execution time is O(n 3). 

Users of the protocol share the standard form of  

quadratic transformation with a trapdoor 
accelerator  which can be used as instrument of 

digital signatures on ‘’private mode’’. The cost 

of secure delivery is O(n4). The number of signed 
documents is restricted. So users have to conduct 

protocols periodically. 

We discover that in the case of K=Zq, q=2s  there 

is an option to use one time delivery of quadratic 
transformation scheme for the establishment 

constant line for the digital signature procedure. 

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Multivariate_cryptography
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Post-quantum_cryptography


In this case there is an effective way to 

established one to one correspondence ϭ between 

set Z*q of elements of multiplicative group of Zq 
and set  Zq’, q’=2s-1. Additionally we can use 

effectively computable one to one 

correspondence π between Zq’ and the finite field 
Fq’.  So we can identify sets Z*q,  Zq’ with Fq’. 

Noteworthy that the protocol allows secure 

delivery of element from Eulerian semigroup in 
time O(n3). If K=Zq, q=2s   we can modify this 

procedure for transportation of element from 

AGLn(Fq’) or AGL(Zq’) or corresponding 

semigroups of affine transformations. 
 So Alise can  generate products 1G and 2G of 

several Jordan-Gauss transformations and deliver 

them to Bob together with  transformation 
H1ϵ

nCS(Fq’) and H2ϵ
nCS(Fq’) of degree one. 

So correspondents can use  E1=
1G H1 

2G,  E2=
1G 

H2 
2G or even one of transformations E3= 1G H1 

2G H2 
1G ,  E3= 1G H2 

2G H1 
1G .  The knowledge 

of decompositions of  1G and 2G allows Alice to 

compute the reimage x of one of the maps Ei in 

time O(n2). 
Bob can verify the signature x from Alice in time 

O(n2) because of his knowledge on iG and Hi.  

Recall that the protocol costs O(n3). So signing 
of O(nd), d≥1  documents costs O(nd+2).  

Noteworthy that degree of each Ei  is a linear 

function in variable n and the density (number of 

monomial terms is exponential. So the adversary 
is not able to restore these standard forms and we 

get a protocol based cryptosystem with the 

reference on word decomposition problem 
in the semigroup of Eulerian transformations. 

Finally we suggest to use historical quadratic 

cryptosystems defined over the finite field Fi  of 
characteristic 2  with their trapdoor accelerators 

instead of H1 and historical quadratic polynomial 

stable maps  of Noncommutative  

Cryptography  with trapdoor accelerator defined 
over arithmetical ring Zq’ instead of H2. In the 

case of such obfuscation the cost of the protocol 

based transportations of maps costs   The 
cost of single signature is O(n3). So signing of 

O(nd), d≥1 documents costs O(nd+3). This idea is 

illustrated via the case of Unbalanced Oil and 
Vinegar cryptosystem. 

Alice can deliver  Fi together with its trapdoor 

accelerator which allows to compute reimages in 

time O(n2). Then the complexity of digital 
signature procedure to sigh O(nd) documents d≥2 

will be O(nd+2). 

This idea is illustrated via the case of historical 
Imai-Matsumoto cryptosystem. 

Several cryptosystems have hidden multivariate 

nature.  We use injective maps from Z2
s-1  to Z2

s 

and F2
s-1  to Z2

s which are not homomorphic 
embeddings. Their images coincide with the 

multiplicative group  Z*2
s. 

   Boolean functions used in these cryptosystems 
are defined in the Calculus of Predicates via 

three binary operations  operations. One of them 

is multiplication of Z2
s  and remaining two are 

addition and multiplication of Z2
s-1 or F2

s-1. That 

is why cryptanalysis of defined Boolean maps 

can not be created in terms of Multivariate 

Cryptography. It requires new ideas. 
Boolean functions in two examples are 

constructed as modification of classical Imai -

Matsumoto and Unbalanced Oil and Vinegar 
cryptosystems.  
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