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Abstract. NIST has released the draft standard for ML-KEM, and ML-KEM is
actively used in several widely-distributed applications. Thus, the wide-spread use of
ML-KEM in the embedded worlds has to be expected in the near future. This makes
security against side-channel attacks a pressing matter.
Several side-channel attacks have previously been proposed, and one line of research
have been attacks against the comparison step of the FO-transform. These attacks
construct a decryption failure oracle using a side-channel. A recent work published
at TCHES 2022 stresses the need for higher-order masked comparisons by presenting
a horizontal attack and proposes a t-probing secure comparison operation. A sub-
sequent work by D’Anvers, Van Beirendonck, and Verbauwhede improves upon the
performance of several previous proposals.
In this work, we show that the latter masked comparison suffers from weakness similar
to those identified in the former. We first propose an approximate template attack
that requires only a very low number of traces for profiling and has an exceptionally
high noise tolerance. We show that the profiling phase is not necessary and can be
replaced by a vertical analysis of the distribution of certain points of interest without
knowledge of the targeted values. Finally, we explain how a horizontal attack may
construct a decryption failure oracle from a single trace.
We provide a leakage model of the targeted operations, which is based on the noisy
Hamming weight model. Our evaluations are carried out on a physical device to stress
the practicality of our attack. In addition, we simulate the attacks to determine the
measurement noise levels that can be handled. We discuss the underlying causes for
our attack, the difficulty of securing the Fujisaki-Okamoto transform in ML-KEM,
and draw conclusion about the (in-)sufficiency of t-probing security in this context.
Keywords: ML-KEM · Kyber · FO-Transform · SCA · Implementation Attack

1 Introduction
The post-quantum algorithms standardization process by the National Institute of Stan-
dards and Technology (NIST) recently determined the Key Encapsulation Mechanism
(KEM) to be standardized [Natb]. CRYSTALS-Kyber [BDK+18] has been chosen and will
be standardized as Module-Lattice-based Key-Encapsulation Mechanism (ML-KEM) [Nata].
ML-KEM bases its security on the hardness of lattice problems. ML-KEM has already been
adopted by a number of well-known libraries and applications [Con23, Ehr23, O’B23, Jar22].
The usage on embedded devices is anticipated due to suitable key sizes and beneficial
implementation characteristics.

Physical attacks pose a severe challenge to implementations of cryptography on con-
strained and physically accessible devices. This includes fault injection and side-channel
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attacks, which have been widely researched in the context of ML-KEM [RCDB22]. A
crucial and often discussed attack vector is the comparison step of the Fujisaki-Okamoto
(FO)-transform [GJY19, BDH+21, DHP+22]: ML-KEM defines a Public-Key Encryp-
tion (PKE) scheme and uses an FO-transform [FO99, FO13, TU16, HHK17] to obtain a
Chosen-Ciphertext Attack (CCA)-secure KEM. This is accomplished, in particular, by
decapsulating and decrypting the provided ciphertext in order to return the PKE message.
The message is then re-encrypted, and the new ciphertext is compared to the original. If
they do not match, the key exchange is rejected implicitly.

If an adversary is able to observe the outcome of this comparison it can be exploited by
a CCA to recover the secret [GJY19, BDH+21, DHP+22]: A chosen ciphertext is sent to
the KEM and causes a decryption failure which depends on the secret key. If a decryption
failure occurs, the re-encrypted ciphertext differs in statistically half the bits. However,
if the decryption is successful, the re-encrypted and the submitted ciphertext differ only
one bit. If an adversary is able to discriminate between the two cases, a decryption failure
inequality can be derived. Multiple such inequalities allow for a recovery of the secret
key as discussed in [PP21, HMS+23]. To mitigate this threat the comparison has to be
protected against physical attacks.

An often used countermeasure against Side Channel Attacks (SCAs) is masking. Sev-
eral proposals for masked comparisons exist [OSPG18, BPO+20, BDH+21, CGMZ21,
DHP+22, CGMZ23, DBV23]. However, the proposals of [OSPG18] and [BPO+20] are
insecure as discussed in [BDH+21]. D’Anvers, Heinz, Pessl, Van Beirendonck, and Ver-
bauwhede [DHP+22] show that the secured variant of [BDH+21] can be targeted by a
higher-order horizontal collision attack. While the attack [DHP+22] does not break any
security claims, the authors note its practicability and propose a higher order masked
comparison which mitigates the attack. A recent work by D’Anvers, Van Beirendonck, and
Verbauwhede [DBV23] improves upon the performance of the previous methods including
the higher-order masked comparison of [DHP+22].

Our contribution. We show that the proposal of [DBV23] suffers similar weakness as
previously identified in [DHP+22]. As in [DHP+22], we do not break any security claims
of [DBV23]. However, we show that while the proposed higher-order masked comparison
is t-probing secure, its security is questionable in practice.

First, we present a profiled attack that makes use of an approximated template. We
show that this attack is very noise tolerant and needs less than 103 traces in the profiling
phase. The number of traces required in the attack phase is close to the minimum number
of traces required in decryption failure attacks (including the previous attack of [DHP+22])
of about 7000 chosen-ciphertext with corresponding traces when targeting ML-KEM768.

Second, we show that the profiling phase is not necessary by using knowledge about
the masking scheme and the resulting distributions. The expected distributions can be
found by a vertical analysis of the measurements and templates can be built without the
knowledge of the target values. Therefore, our vertical attack avoids a profiling phase. The
attack performs only marginally worse than the profiled attack, and also requires about
7500 chosen-ciphertexts and corresponding traces for most realistic noise levels.

Third, we propose a horizontal attack that distinguishes between decryption failures
and successes using only a single trace. By analyzing the distributions caused by zero and
one bits in the masked ciphertext, we may build a template that we subsequently apply
to the trace itself. Similar to the vertical attack, the horizontal attack does not require
a profiling phase, and achieves comparable success rates. The horizontal attack allows
reducing the security of a ML-KEM instance even if only very few traces are available.

To define the attacks, we first provide an analysis of the distributions in the targeted
routine, and we build a leakage model based on the noisy Hamming weight (HW) model. We
then explain our attacks using the theoretic model, give an intuition on what enables these
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attacks, and discuss the t-probing model in this context. To evaluate the proposed approach
in a realistic scenario, we capture traces and perform the attacks on a ChipWhisperer UFO
board with an STM32F4 target board [OC14, Inca, Incb]. We complement these results
with simulations on multiple noise levels.

Conclusion and implications. We conclude that it seems particularly difficult to secure
the comparison step of the FO-transform in ML-KEM. We provide further evidence that
proving t-probing security for the FO-comparison in ML-KEM is far from sufficient. Several
provable security notions and methodologies have been proposed [BCM+23]. However, to
the best of our knowledge, these models have not been evaluated in this context, and have
also previously not been used to prove the security of comparison gadgets for ML-KEM.
Our work calls for a thorough investigation in protected comparison proposals and for
finding better suited models to prove their security.

Limitations and adversarial model. As in all physical attacks, we assume that the attack
has physical access to the device under attack; we assume that they can record several
thousand of traces. Note, that the previous attack of [DHP+22], motivation for [DHP+22]
and [DBV23], requires a comparable amount of traces. In addition, the adversary knows
the public key and is able to submit chosen ciphertexts to the device.

Moreover, the attack can be prevented by a countermeasure proposed in [PP21] that
locks the device after a certain number of decryption failures. The countermeasure stops
all comparable attacks but, unfortunately, allows for Denial of Service (DoS) attacks. The
attack that motivated the predecessor [DHP+22] of the masked comparison we target in
this work, is also prevented by this countermeasure.

Our attack does not directly apply to the previous comparison methods that use similar
methodologies [BDH+21, DHP+22]. This is also true if the instruction set features a
Galois field multiplication instruction1. Whether our attack applies to the method carried
out on such a device depends on the leakage behavior of the used instruction and the
precise implementation. As such an implementation is not available to the best of our
knowledge, and commonly used instruction sets in embedded devices do not feature such
an instruction, we do not answer this question. However, based on our results, such an
implementation has to be carefully examined to ensure that our attacks do not apply.

Finally, we carry out our non-profiled attacks assuming that the adversary can select
the Point of Interests (POIs) beforehand. We explain how these can be found using only
non-profiled techniques as well as by using a profiling device that is used merely for this
purpose. Our implementation includes a tool that semi-automatizes this task. However, it
still requires manual analysis, and we do not carry out the full non-profiled part of the
attack. Nevertheless, using the proposed method, finding points of interest is only a minor
obstacle to a determined attacker.

Open source. We publish all resources used for this work. This includes the recorded
traces, the leakage simulation, and the implementation of the algorithm for the attacks.
These resources are available as auxiliary material to this paper2.

2 Preliminaries
We first give a high-level overview over ML-KEM, which is the KEM selected for standard-
ization after round 3 of NIST competition [Natb]. In ML-KEM, flipping a single bit of an
honestly generated ciphertext may cause the decryption to fail, and if the failing decryption

1Such an instruction has been mentioned in [DBV23] as a way to improve the performance.
2Available at https://github.com/juliusjh/masked_fo_comparison_attack.
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can be observed, an adversary gains information about the long term secret key. Without
an implementation attack, the FO-transform [FO99, FO13, TU16, HHK17] prevents ob-
serving decryption failures as a chosen ciphertext always leads to a decapsulation error.
However, previous attacks have combined chosen-ciphertext attacks with side-channel or
fault analysis to observe decryption failures. We explain the underlying principle of these
attacks and provide an overview over the literature. Finally, we reiterate a recent proposal
for mitigating side-channel attacks on the comparison step of the FO-transform.

Notation. We denote elements of a ring by lower-case letters, vectors by lower-case bold
letters, Random Variable (RV) by upper-case letters, and vectors of random variables
by bold uppercase letters. For a prime q, we denote the field Z/qZ by Fq, and the ring
Fq[x]/(xn + 1) by Rq. The key pair of ML-KEM is denoted by (pk, sk), ciphertexts by
ct, re-encrypted ciphertexts by ct′, manipulated ciphertexts by c̃t, and the (decrypted)
message by m (m′). Drawing from a random distribution or from a random variable (i.e.,
from the distribution the random variable follows) is denoted by a “ $←−”.

2.1 ML-KEM
ML-KEM is the KEM selected for standardization after the third round of the NIST
standardization effort [Natb]. ML-KEM defines a Chosen-Plaintext Attack (CPA)-secure
PKE and relies on an FO-transform to obtain a CCA2-secure KEM. ML-KEM performs
its operations in the polynomial ring Rq = Fq[x]/(xn + 1), where q = 3329 and n = 256.

The PKE consists of the key generation, the encryption, and the decryption algorithm
(see Algorithms 1 to 3). The aforementioned CCAs, as well as this work, target the message
recovery during the decryption (see Algorithm 2, Line 4). The implementation attacks
then target the comparison operation of the decapsulation (see Algorithm 6).

Algorithm 1 PKE.KeyGen
Require: Randomness seeds ρ, σ
Ensure: Public key pk, secret key sk

1: Â ∈ Rk×k
q

$←− SampleUniform(ρ)
2: e, s ∈ Rk

q
$←− SampleBinomialη1(σ)

3: ê, ŝ← NTT(e), NTT(s)
4: t̂← Âŝ + ê
5: return pkpke = (t̂, ρ), skpke = ŝ

Algorithm 2 PKE.Dec
Require: sk = ŝ, ct = (c1, c2)
Ensure: Decrypted message m′

1: u← Decompress(c1, du)
2: v ← Decompress(c2, dv)
3: mpoly ← v −NTT−1(ŝ⊤ NTT(u))
4: m′ ← Compress(mpoly, 1)
5: return m′

Algorithm 3 PKE.Enc
Require: pk = (t̂, ρ), m, coins r
Ensure: Ciphertext ct = (c1, c2)

1: Â ∈ Rk×k
q

$←− SampleUniform(ρ)
2: r1 ∈ Rk

q
$←− SampleBinomialη1(r)

3: r, e2 ∈ Rk
q

$←− SampleBinomialη2(r)
4: e1 ∈ Rq

$←− SampleBinomialη2(r)
5: r̂← NTT(r)
6: u← NTT−1(Âr̂) + e1
7: mpoly ← Decompress(m, 1)
8: v ← NTT−1(t̂⊤r̂) + e2 + mpoly
9: c1 ← Compress(u, du)

10: c2 ← Compress(v, dv)
11: return ct = (c1, c2)

Figure 1: The PKE defined by ML-KEM. Note that we simplified the algorithm to provide
an overview. For details on parameters and subroutines we refer to [ABD+21]. The
relevant locations enabling decryption failure attacks are highlighted.

The key generation first samples a random matrix A ∈ Rk
q , a secret vector s ∈ Rk

q ,
and a secret error vector e ∈ Rk

q , where k ∈ {2, 3, 4}. The Module Learning with Errors
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Algorithm 4 KEM.KeyGen
Require: Randomness seeds ρ, σ
Ensure: Public key pk, secret key sk

1: z
$←− SampleUniform()

2: pk, skpke ← PKE. KeyGen()
3: h = H(pk)
4: sk← (skpke, pk, h, z)
5: return pk, sk

Algorithm 5 KEM.Encaps
Require: pk
Ensure: Ciphertext ct, shared secret K

1: m $←− SampleUniform()
2: K̄, r← G((m, H(pk))
3: ct← PKE. Enc(pk, m, r)
4: K← KDF((K̄, H(ct)))
5: return ct, K

Algorithm 6 KEM.Decaps
Require: sk = (skpke, pk, h, z), ct
Ensure: Shared secret K

1: m′ ← PKE. Dec(skpke, ctpke)
2: K̄′, r′ ← G((m′, h))
3: ct′′ ← PKE. Enc(pk, m′, r′)
4: b← Compare(ct, ct′)
5: if b then
6: return K = KDF(K′, H(ct))
7: else
8: return K = KDF(z, H(ct))
9: end if

Figure 2: The KEM defined by ML-KEM. Note that we simplified the algorithm to
provide an overview. For detailed definitions and parameters we refer to [ABD+21]. The
comparison operation and the deterministic encryption step are highlighted. G and H
denote hash functions.

(MLWE) sample given by the matrix A and t = As + e form the public key, while s is the
secret key.

The encryption, creates two additional MLWE samples by sampling r1, r, e1 and
computing u = Ar + e1, and v = t⊤r + e2. The message is transformed into a polynomial
by mapping zero bits to 0 coefficient and one bits to ⌈q/2⌋ coefficients. The ciphertext
consists of the compressed versions of u and v+mpoly. The compression and decompression
functions are defined as

Compress(x, d) =
⌈

x
2d

q

⌋
mod 2d (1)

and
Decompress(x, d) =

⌈
x

q

2d

⌋
. (2)

Note that an addition of ⌈q/4⌋ in uncompressed form often only causes a single bit to
change in compressed form.

The decryption first decompresses both ciphertext components and then computes
v − s⊤u which is equal to

mpoly + e⊤r− s⊤(e1 + ∆u) + e2 + ∆v, (3)

where the ∆ terms denote compression errors, mpoly the message in polynomial represen-
tation and all other terms are called the noise polynomial. Because all the noise terms are
small, the message can be recovered with a high probability.

2.1.1 Message Recovery

During the encryption, a 256-bit message m is encoded into a polynomial in Fq[x]/(xn + 1)
by mapping a zero bit to a zero coefficient, and mapping a one bit to ⌈q/2⌋ (Algorithm 3,
Line 7). Using the secret key, the other party may obtain a noisy version of this polynomial,
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where the noise on each coefficient depends on the secret key. To recover the message m, a
coefficient is mapped to a 0 if and only if it is closer 0 than to ⌈q/2⌋ (Algorithm 2, Line
4). If the absolute value of the noise is sufficiently small (i.e., smaller than ⌈q/4⌋), the
correct bit is recovered. Otherwise, a decryption failure occurs, and an incorrect message
is returned. The process of first encoding a bit to a coefficient, and then recovering the bit
from a noisy coefficient is shown in Figure 3.

2.1.2 The FO-Transform

The key generation of the KEM first obtains a PKE key pair by invoking the PKE key
generation. The KEM public key is then merely the PKE public key, and the secret key is
composed of the secret key of the PKE, a hash of the public key, and a random value z.

The encapsulation first samples a random message m and encrypts it into a ciphertext
ct using the encryption routine. This is done deterministically using the randomness
derived from m by hashing. Thus, for each message m there is a unique3 valid ciphertext
ct; all other ciphertexts are invalid. After the encryption, a shared secret is derived from
the ciphertext and the hash of the message from which the randomness was derived.

The decapsulation first invokes the decryption routine to obtain m′ using the secret
key. This allows one to obtain the same shared secret as the other party. In addition,
the encryption routine is invoked to obtain ct′ by encrypting m′. Again, this is done
deterministically with the randomness derived from m′ as encapsulation. There is a unique
valid ciphertext ct that corresponds to m, and in case that ct is not equal to ct′, the
decapsulation is implicitly aborted (i.e. the ciphertext is rejected), and z is returned
instead of the shared secret. This is called a decapsulation failure, which differs from a
decryption failure (in fact, in this setting, the latter prevents observing the former). The
routines of the KEM are shown in Figure 2.

2.2 Decryption Failures and Implementation Attacks
The PKE defined by ML-KEM is not secure against chosen-ciphertext attacks, and the
message recovery routine in these class of schemes may be targeted using a chosen ciphertext
attack as shown in [Flu16]. An adversary adds ⌈q/4⌋ to a single coefficient of an otherwise
valid ciphertext. Thereby, a decryption failure occurs if the noise on the coefficient is
greater (or greater-equal) than ⌈q/4⌋, as shown in Figure 4. If the adversary can generate

0

q
2

0 0

(a) 0-bit.

0

q
2

1 1

(b) 1-bit.

Figure 3: Mapping a bit to a polynomial coefficient in Fq, and then recovering it from
a noisy version of the coefficient. A bit is mapped to 0 or ⌈q/2⌋; during the decryption,
a noisy term (blue error) changes the coefficient, but does not change the recovered bit.
Figures adapted from [Her23].

3Up to hash collisions.
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1 1

(a) No failure.

1 0

(b) Failure.

Figure 4: An error term (e.g., added through a chosen-ciphertext or a fault attack) causes
a decryption failure if the noise term is positive. The total noise of a coefficient is given by
the sum of the noise term (blue arrow) and the maliciously introduced error (red arrow).
Figures adapted from [Her23].

and send such ciphertexts, they would be able to determine whether the noise term on a
single coefficient is positive or negative. The noise term itself depends on the secret key,
and after several thousands of chosen ciphertexts, the adversary may recover the long term
secret key (see, e.g., [HMS+23]).

2.2.1 CCA2-Security

ML-KEM uses a FO-transform to create a CCA2-secure KEM and mitigate the aforemen-
tioned attack. The decapsulation algorithm returns a failure whenever a decryption failure
happens, regardless of the source of the decryption failure. The comparison of the faulty
ciphertext after the re-encryption will fail. This prevents the adversary from gaining any
information because decapsulation failures hide decryption failures.

2.2.2 Side-Channel Decryption Failure Oracles

However, a side-channel or fault injection attack may allow adversaries to circumvent
this protection. If an adversary can detect the decryption failure by a side-channel the
attack can be performed (see, e.g., [GJN20, BDH+21]). This has been exploited in several
previous works, e.g., [BDH+21, HPP21, DHP+22, Del22, PP21]. Note that the ciphertexts
in question can be chosen such that the added term only changes a single bit in the
compressed form (Algorithm 3, Line 10) of the ciphertext.

These attacks construct a decryption failure oracle using an implementation attack.
An adversary sends a ciphertext that has been changed by one bit. This manipulated
ciphertext will cause a decryption failure whenever the noise term is positive (or zero for
1-bits). If this can be observed using a side-channel, a decryption failure inequality can be
derived. Except for [PP21], these attacks work as follows:

1. Honestly generate a valid ciphertext ct.

2. Add ⌈q/4⌋ to a coefficient of ct to obtain c̃t.

3. Submit c̃t to the device; the device computes ct′.

4. Observe whether a decryption failure happens using a physical attack.

5. Derive an inequality over the secret key from the noise term.

6. Repeat from 1. until sufficiently many inequalities have been recorded.

7. Recover the secret key using a key recovery method such as [HMS+23].
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Thus, whenever a physical attack reveals whether a chosen ciphertext causes a decryption
failure, the secret key of the KEM may be recovered.

Note that the manipulated ciphertext c̃t can be chosen to only differ by a single bit
from ct. However, if a decryption failure occurs, the re-encrypted ciphertext ct′ will be
indistinguishable from a uniformly random ciphertext4 Therefore, in step 4, the adversary
is required to distinguish two cases:

1. The re-encrypted ciphertext ct′ and c̃t differ in a single bit5.

2. The re-encrypted ciphertext ct′ and c̃t differ in statistically half of the bits.

2.2.3 Ciphertext Filtering

Pessl and Prokop [PP21] show how the information per used ciphertext can be improved.
They suggest a filtering step that removes ciphertexts for which the retrieved inequality
holds less information (see also [HMS+23, Section 4.3.1]). The technique amounts to using
only ciphertexts that have small ∆v (and sometimes e2) value (see Equation (5)), and it
happens without any interaction with the target, i.e., it is done purely offline. The details
of this technique are well-known (used, e.g., in [PP21, HPP21, Del22]), and we refer for
details to the respective works.

2.2.4 Recovering the Secret Key

In step 5, the adversary obtains a decryption failure inequality, i.e., a linear inequality over
the secret key components x = (e, s). The noise term in ML-KEM is given by

e⊤r− s⊤(e1 + ∆u) + e2 + ∆v, (4)

where ∆u and ∆v denote compression artifacts. Therefore, the inequalities obtained by
observing decryption failures are of the form

(−1)obs(e⊤r− s⊤(e1 + ∆u) + e2 + ∆v)[l] ≤ 0, (5)

where l is the coefficient in which the error was introduced, and obs is 0 if no decryption
failure was observed and 1 otherwise. Every trace results in an inequality, and the adversary
has to recover the secret key from these inequalities.

Several recovery methods for step 7. have previously been proposed [PP21, HPP21,
Del22, HMS+23]. The proposal that currently requires the lowest number of traces/faults
is presented in [HMS+23]. The recovery methods of [Del22, HMS+23] are error-tolerant,
i.e., the key can be recovered if decryptions have been classified incorrectly, and thus some
inequalities are incorrect. In fact, the method of [HMS+23] can handle up to 0.4 of the
inequalities being incorrect. However, in this case, the required number of inequalities is
greatly increased. In this work, we treat the recovery method as a black box and do not
improve upon the recovery method.

2.3 Masked Comparisons
The comparison operation of the FO-transform (Algorithm 6, Line 4) has been one of
the prime targets of previous discussed CCAs. In fact, [BDH+21] and [DHP+22] show
that previous masked implementations were insecure in practice, and propose (higher-
order) masked implementations. Additionally, the work of Coron, Gérard, Montoya,
Zeitoun [CGMZ21, CGMZ23] and D’Anvers, Van Beirendonck, and Verbauwhede [DBV23]
propose more efficient masked comparison operations.

4Assuming ML-KEM is secure.
5A single coefficient in uncompressed form.



Julius Hermelink, Kai-Chun Ning and Emanuele Strieder 9

Algorithm 7 Galois field comparison method defined in [DBV23]. The operations are
carried out on the individual shares, and ⊕, ⊙ denote addition, Galois field multiplication,
respectively.
Require: Boolean shared differences of the ciphertexts ∆bc.
Ensure: 0 if the difference is a shared zero, otherwise 1.

1: E(·) ← 0
2: for all i ∈ {0, . . . , length ∆bc− 1} do
3: r

$←− {0, 1}s

4: E(·) ← E(·) ⊕ (r ⊙ b[i])
5: end for
6: return Or(E(·))

2.3.1 Prior Attacks

The authors of [BDH+21] show that the previous proposals for masked comparisons [OSPG18,
BPO+20] leak information using a t-test. Subsequently, this leakage is exploited in the
aforementioned manner, and the authors explain how to secure the previously proposed
masked comparisons.

D’Anvers, Heinz, Pessl, Van Beirendonck, and Verbauwhede [DHP+22] show that a
horizontal collision attack [MME10] on the hash-based comparison of [OSPG18] may be
used to construct a decryption failure oracle. While their attack is a second-order attack
against a first-order secure implementation, and no security assumptions are broken, the
authors stress the practicability of their attack. The comparison of [OSPG18] hashes
both submitted and re-encrypted ciphertext, and the authors show that the difference
between the trace segments allows distinguishing whether the hash was called on the same
or different ciphertexts.

2.3.2 Masked Comparisons

In this work, we investigate the side-channel security of the most recent proposal in [DBV23].
By performing the comparisons in Fn

2 , they achieve a performance improvement of roughly
20-25% compared to [CGMZ23] and [DHP+22]. This allows replacing integer multiplica-
tions by Exclusive-Ors (XORs) and is coined “Galois Field Compression”. The authors
prove the security of the proposed gadgets in the t-probing model [ISW03], in particular,
the Galois Field Compression is shown [DBV23, Theorem 2] to be t-Strong-Non-Interfering
(t-SNI) [BBD+16]. Note that the comparison method has a small but positive probability
of collisions, i.e., for invalid ciphertexts to be accepted. The collision probability is 2−s

where s is a parameter of the algorithm. The authors claim that this probability cannot
be influenced by an adversary.

The core of the Galois Field Comparison algorithm is a subroutine ([DBV23, Algorithm
10, Line 5-7]) that takes the (Boolean) shared ciphertext differences ∆u and ∆v as inputs,
and computes the unshared sum in a secured manner. The differences ∆u and ∆v are
concatenated and treated as a single input of coefficients; we follow their naming scheme
in the implementation and denote this vector by ∆bc6.

For each shared polynomial coefficient of ∆bc, a random s-bit value r is sampled.
For all bits b of each share, the values of b · r are added up over F2n , which corresponds
to multiplying r and b and XOR’ing the results. If ∆bc is a shared zero, the resulting
values are all zero. The algorithm is reiterated in Algorithm 7, and the C-code from the
implementation associated to [DBV23] is shown in Listing 1.

6Implementations often denote u by b and v by c.
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Listing 1: Bitsliced implementation of Algorithm 7 as proposed by [DBV23]. The outer
loop runs over all coefficients of the bitsliced input which we denote by ∆bc.
for ( size_t i = 0; i < SIMPLECOMPBITS ; i++)
{

uint64_t R = random_uint64 ();
for ( size_t j = 0; j < NSHARES ; j++)
{

for ( size_t k = 0; k < 32; k++)
{

biti = ( BC_Bitsliced [i][j] >> k) & 1;
tmp = R * biti;
E->LSB[j] ^= tmp << k;
E->MSB[j] ^= tmp >> (64 - k);

}
}

}

3 Targeting Higher-Order Masked Comparisons
The work of D’Anvers, Heinz, Pessl, Van Beirendonck, and Verbauwhede [DHP+22] stresses
the relevance of side-channel security beyond the t-probing model. The authors propose
a higher-order masked comparison that improves upon previous work in this regard.
Subsequently, D’Anvers, Van Beirendonck, and Verbauwhede [DBV23] improve upon the
method in terms of comparison, and prove its security in the t-probing model. We explain
how this proposal can again be targeted by attacks that technically do not violate the
security guarantees, but have low requirements on the adversary and are likely very simple
to carry out in practice. All targeted settings use t ≥ 3, where t denotes the number of
shares and s = 64, which is the default of the security parameter in the implementation
of [DBV23]; we evaluate our attacks for t ∈ {3, 4}.

We first state a high-level overview over the attacks and describe the attacker model.
Then, we assume a model for distributions at the targeted locations, and compute relevant
properties. Based on the model, we then propose an approximate template attack [CRR02]
that requires a low number of traces for profiling. The proposal of [DBV23] does not allow
for a straight-forward template attack, as the randomness per share causes the distributions
to be non-normal. However, we show that the error introduced by our approximation
is rather small; this allows for profiled attacks that have very little requirements on the
attacker. We then show that the profiling phase is not required, and the masked comparison
allows for a similar attack that obtains a template from attacked traces. The template in
our attack is created without knowledge of the targeted values, i.e., no profiling phase is
required. Instead, we create the template without the knowledge of labels from traces that
are subsequently also used to recover the targeted values. Finally, we propose a horizontal
attack that creates a template from a single trace – again, without a profiling phase. By
estimating the distributions for the targeted values from several locations in the trace, we
may recover the shares without profiling.

Note that the attacks in this section are entirely based on the model assumed in
Section 3.1.3. From this model, the analysis in Section 3.2 follows, which be base our
attacks on. We show that our model is realistic in the next section where we target a
physical device.

3.1 Adversarial Model
The attacker model is similar to the attacks of [BDH+21] and [DHP+22], but targets a
different, higher-order protected implementation. In addition, we rely on the recovery
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Listing 2: The targeted inner loop of Listing 1 as in the implementation of [DBV23].
biti = ( BC_Bitsliced [i][j] >> k) & 1;
tmp = R * biti;
E->LSB[j] ^= tmp << k;
E->MSB[j] ^= tmp >> (64 - k);

method proposed in [HMS+23] and ciphertext filtering as described in [PP21].

3.1.1 High-Level Overview

The basis for the attacker model is the strategy also used in [BDH+21, DHP+22], reiterated
in Section 2.2. This means, the adversary creates m chosen-ciphertexts c̃t that differ
in a single coefficient (or even only a single bit) from an honestly generated ciphertext
ct. The ciphertext should be filtered according to the method proposed in [PP21] (see
also [HPP21, HMS+23]). These ciphertexts are sent to the device under attack using
the method of [DBV23] and cause a decryption failure in statistically half of the cases
(and decapsulation failures in all cases). The adversary then records power traces of the
“Galois Field Compression” routine (see [DBV23, Algorithm 10], reiterated in Algorithm 7
and Listing 1). From the power traces, they are asked to distinguish between decryption
failures and decryption successes. If this is successful with an accuracy of more or equal to
0.8, the secret key can be recovered.

For simplicity, we explain our attacks for a single coefficient of ∆bc (see Section 2.3.2).
The extension to several coefficients of ∆bc is straight-forward. Note that the number of
traces m has to be chosen depending on the capabilities of the attacker to run a subsequent
lattice reduction, and the accuracy of the classification (see [HMS+23]). In Section 4, we
provide an exact number for an attack on a physical device.

3.1.2 Targeted Routine

We target the core routine of the comparison proposed by [DBV23] (see Listing 1). The
input to the routine is ∆bc, a t shared vector of length 272 of 32-bit integers, and we aim
at recovering as many bits of each share as possible. However, it is sufficient to find a
single unshared bit that does not XOR to zero, which is the case in statistically half the
bits if a decryption failure occurs. Thus, recovering the bits with low accuracy is not a
problem, as the information is encoded in 271 · 32 shared bits. Listing 2 shows the targeted
inner loop of Listing 1; we aim at recovering the value of biti.

3.1.3 Leakage Assumption and Notation

In the following, we assume the HW leakage model, and target the inner loop in Listing 2.
Let l denote the index of a decapsulation/trace, i denote the index of the current coefficient
of ∆bc, j runs over the share indices, and k ∈ {0, . . . , 32} loops over the bits. The values
bl,i,j,k and rl,i model the bit extracted in the inner loop and the randomness per element
of ∆bc.

Following the model, we assume that the inner loop of Listing 2 leaks the multiplication
of bi,l,j,k and rl,i. Let hl,i = HW(rl,i) be the HW of rl,i, then we assume to observe

obsl,j,k
$←− N (bi,l,j,k · hl,i, σ), (6)

where N denotes a normal distribution and σ is the standard deviation of the measurement
noise. For simplification, we assume that we only have a single POIs per bit. Therefore,
POIs can be indexed by triples (i, j, k) and correspond to a location in the traces.
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3.2 Leakage Distributions
A straight-forward template attack on the inner loop would be to record templates for all
s + 1 possible HWs of r. However, recording s templates, where s is proposed to be 32 or
64, is hard and not necessary. We show that an adversary may record an approximate
template from at a POI ignoring that r have in fact different HWs. Let in the following
poi = (i, j, k) be a POI and let Lpoi,b be the indices of the traces where bl,i,j,k = b.

3.2.1 Distributions at 1-Bits

Given bl,i,j,k = 1, the observed value at poi in a trace l is

obsl,poi
$←− N (hl,i, σ). (7)

Let Obspoi be the RV of randomly choosing a trace l and selecting obsl,poi. This means,
for Obsl,poi denoting the RVs for the observations at a single trace, obspoi is given as

obspoi
$←− Obsl,poi, (8)

where l
$←− Lpoi,1. This is equivalent to

rl,i
$←− {0, 1}s (9)

obspoi
$←− N (HW(rl,i), σ). (10)

Thus, Obspoi is distributed as mixture distribution of weighted normal distributions:∑
h∈{0,...,s}

P (h)N (h, σ), (11)

where the distribution of the HWs is the sum of RVs following a Bernoulli distribution and
thus follows a binomial distribution with η = s. The distribution of Obspoi is shown in
Figure 5.

3.2.2 Distributions at 0-Bits

Under the leakage assumption, for l ∈ Lpoi,b, the distributions of Obsl,poi are all distributed
according to

obsl,poi
$←− N (0, σ). (12)

Thus, in this case, Obspoi is normally distribution around 0 with standard deviation σ.

0 16 32 48 64
0

0.05

0.1 Normal Distribution
Obspoi for 1 bits

(a) Obspoi for 1-bits.

−16 0 16 32 48 64
0

0.05

0.1 Obspoi for 0 bits
Obspoi for 1 bits

(b) Obspoi for 0-bits and 1-bits.

Figure 5: The distribution of Obspoi for 1-bits simulated for 7000 traces and a normal
distribution with the same mean and variance (Figure 5a), and the distributions for both
bits (Figure 5b) simulated according to our model (with σ = 5.0).
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3.3 Profiled and Non-Profiled Attacks
We are now ready to describe several attacks based on the distribution assumptions
provided in the previous section. While these are only assumptions, and our attacks are
based on them, we demonstrate in the following section that they accurately resemble the
leakage behavior of a physical device.

3.3.1 Approximate Template Attacks

To build a template, we would need to model the mixture distribution of Obspoi given
recorded traces. Given a large amount of samples, it could be possible to model these
distributions directly. However, as we only require distinguishing between a normal
distribution and the mixture distribution, we can make use of a much simpler option:
Ignoring that Obspoi for 1-bits is the mixture of several normal distributions with different
means, we may also compute a template assuming that the mixture distribution is normal.
If the noise level is sufficiently high and there is a large amount of samples, the mixture
distribution is very close to a normal distribution because the factors follow a binomial
distribution (see Equation (11) and Figure 5b). Thus, as we need to record several thousand
traces in every case to obtain sufficiently many decryption failures/successes, the error we
make when applying the template will be small.

3.3.2 Vertical Non-Profiled Attacks

In a profiled template attack, we may compute templates for 0- and 1- bits from known
∆bc values. However, under our assumptions, the distributions for 0- and 1- bits have
different means and only partially overlap for even for very high noise-levels (see Figure 5b).
In fact, we may categorize the observations at all POIs belonging to bit into two sets
(potentially with non-empty intersection). From these sets for 0- and 1- bits, we can
compute the template just as described in the previous section.

Note that separating the distributions in the simplest case is a merely using the mean
of the distribution as a threshold. However, if the distributions overlap, computing the
mean and the variance can be done only on the non-overlapping parts of the distributions,
and allows for more precise template. In our attack on a physical device described in
Section 4, the distributions could usually be separated with only little errors. Applying
the template then amounts to computing the probability of a single observation belonging
to a 0 or a 1, based on this separation.

To entirely eliminate the profiling phase, POIs have to be found without knowledge of
the ∆bc as well. We explain how this can be achieved by manual analysis in Section 3.3.4.

3.3.3 Horizontal Non-Profiled Attacks

In the attacker model, an adversary is required to record a large number of traces as only
a single inequality can be obtained per chosen-ciphertext. Therefore, it is no limitation
that vertical non-profiled require a larger number of traces to model mixture distributions
correctly. Nevertheless, Hermelink et al. [HMS+23] show that even recovering only a few
inequalities, i.e., using only a few traces in our setting, already suffices to reduce the
security of ML-KEM instance. In this setting, there might not be sufficiently many traces
for building a template without knowledge of the ∆bc. Moreover, the targeted higher-order
masked proposals were motivated by the possibility of horizontal higher-order side-channel
attacks that were comparably simple to carry out in practice. Thus, we also propose a
horizontal higher-order attack.

In fact, for a single coefficient of ∆bc, the same random value r is used. For t shares,
we may target t · 32 computations of the inner loop. As in vertical non-profiled attacks, we
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Figure 6: Difference of means after separating distribution a correctly guessed POI for the
first bit of a share, and difference of means after separating by known ∆bc. Both plots
were obtained in the setting of Section 4 with 3 shares.

may then separate the distributions and compute a template without knowledge of ∆bc.
However, in this case, both distribution are Gaussian.

3.3.4 Finding Points of Interest

The vertical and horizontal non-profiled attacks require the knowledge of POIs per targeted
bit. In a non-profiled setting, finding these locations can be achieved by manual analysis as
follows. For each potentially interesting location, the adversary assumes that the location
is distributed according the model we presented in this section. Under this assumption,
they may separate the traces in two classes, and abort if one class contains significantly
more samples than the other. If both sets contain a similar amount of samples, they then
compute the mean for both classes. If the locations is a POI for the first bit of a share,
the resulting plot will contain one large spike as well as 32 evenly spaces smaller spikes;
the latter comes from the accumulating variable in the inner loop. This pattern, shown in
Figure 7b, allows distinguishing the first POI of a share from other locations in the traces.
The remaining POIs for the share lie in between the evenly spaced spikes, and show a
large spike at a single location. Figure 6 shows the results of our method and the POIs
found in a profiled setting.

Alternatively, a profiling device of a similar kind to the targeted device may be used.
However, as opposed to common profiled attacks, the profiling device is only used to find
POIs. Moreover, a pure brute-force attack is also an option, even though it requires some
computational effort.

3.4 Underlying Principle and t-Probing Security
The proposal of [DBV23] is shown to be t-probing secure, and we do not break the security
guarantees. However, the practical complexity of our attacks is not increased by masking –
in fact, higher masking order may improve upon the attacks as more samples are available.
This leads to the question of what underlying principle enables these attacks, and why the
t-probing security is not sufficient in the case of FO-transform comparisons.

3.4.1 Information Learned from FO-Comparisons

When targeting the FO-comparison, the adversary aims to learn a single bit – decryption
failure or decryption success. This bit is encoded in all coefficients of the difference of
ciphertext ∆bc with very high probability: If a decryption failure occurs, the re-encrypted
ciphertext cannot be distinguished from randomness, and the probability of having a
coefficient being equal to the submitted ciphertext is very low. Thus, in fact, even a single
bit of ∆bc allows detecting a decryption failure with probability 1/2.

This means that a target bit is encoded in a large number of processed values. Therefore,
attacks require less accuracy, and horizontal and template attacks are easier to carry out.
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But most importantly, it enables analyzing the distributions at POIs without the knowledge
of actual labels. As a result, the masked FO-comparisons is particularly vulnerable to
higher-order attacks. It is crucial to ensure that (bits of) coefficients of ∆bc cannot be
distinguished by analyzing the distributions even with a large amount of samples.

3.4.2 The Masked Comparison of [DBV23]

In comparison to the previous proposals of [BDH+21, DHP+22], the proposal of [DBV23]
processes bits of ∆bc individually. Every bit of a coefficient of ∆bc are polynomial
coefficients over F2. While working over a Galois field enhances performance, it also causes
the zero and one bit distributions to be clearly observable. This greatly reduces the effort
for template attacks, and it enables the vertical non-profiled attack we presented. The
large amount of sample per trace with the same random mask enables our horizontal
non-profiled attack. In fact, a larger amount of shares improves our attack – higher-order
masking in the proposed way reduces the security of the comparison against our attacks.

4 Validating the Model
The attacks that we described in the previous section are based on the assumptions made
in Section 3.1.3 and on the noisy HW model. It is necessary to demonstrate that these
assumptions hold in practice and model a physical device sufficiently well to execute the
proposed attacks. We are using the ChipWhisperer [OC14] for our practical evaluations.

4.1 Measurement Setup
We target the open-source implementation7 of [DBV23] using a ChipWhisperer UFO board
with an STM32F4 target board [OC14, Inca, Incb]. Each trace has 24400 sample points and
the targeted implementation was compiled with -O28. To obtain the values for ∆bc that
are used as labels during profiling, we ran the comparison method on x86 with the same
fixed randomness. Note that we identified undefined behavior in the comparison method
(bitshift by integer width), which we corrected for the x86 implementation. We analyzed
the traces and recover the values of coefficients of ∆bc using a Python implementation.

For the following evaluation, we first create a valid ciphertext pair ct = (u, v) and
create a copy ct′ = (u′, v′) as re-encrypted ciphertext. Then, we add an error to v to
simulate the chosen ciphertext that is sent to the device. To simulate decryption successes,
we collect a trace for the comparison method called with these to inputs. To simulate
decryption failures, we compute a new, random ciphertext pair c̃t and call the comparison
on ct and c̃t.

4.2 Analyzing the Distributions
We first take a look at the reality of distributions that were modeled in Section 3. To
achieve this, we record 500 traces for decryption failures and 500 traces for decryption
successes. While this is less than required to carry out the full attack (as every trace gives
at most one decryption failure inequality), it in fact suffices to distinguish almost all traces
from just the first coefficients of ∆bc.

From the mean of the recorded distributions, inner loops and the individual shares can
be clearly identified, as shown in Figure 7a. The difference in means for 0 and 1 bits is
shown in Figure 7b, and it can be seen that the POIs for later bits are correlated to the
POIs for the first bit. This is likely the result of the accumulating variable in Listing 2.

7Published at https://github.com/KULeuven-COSIC/Revisiting-Masked-Comparison/.
8The results for compilation with -O3 differ only marginally.

https://github.com/KULeuven-COSIC/Revisiting-Masked-Comparison/
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Figure 7: The mean trace and the difference of means depending on the first bit of the first
coefficient of ∆bc. The figures were obtained using 1000 traces and with 4 shares, and
they show the processing of the first coefficient and half of the second coefficient of ∆bc.
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Figure 8: The t-test statistics for three and four shares. The bound of 4.5 is shown in red.

4.2.1 Welsh’s t-Test

In order to ensure that our attacks are not only based on easily detectable implementation
errors, we conduct a t-test. We use the same traces for the t-test as for our later evaluation.
The traces were grouped by decryption failure and success and the t-values were calculated.
The results are presented in Figure 8 and show no significant first-order leakage. Note
that in our sketched attack path we do not directly target the information of success and
failure. Instead, we partially recover the shares of ∆bc.

4.2.2 Distributions at 0 and 1 Bits

The vertical and horizontal distribution modeled in Section 3.2 are shown in Figure 9a
and Figure 9b, respectively. The distinct distributions required by our model are easily
identifiable and separating the distributions can be done with just a few errors. Only a
few outliers cannot be clearly attributed to one of the distributions. Clearly, several POIs
per bit of each coefficient of ∆bc give more reliable templates in our vertical attacks. We
do not display multivariate distributions in this part for simplicity, but instead report on
the results for several POIs in the following section.

4.3 Carrying out the attacks
For evaluation, we again used 1000 traces of which 500 are decryption failures and 500 are
decryption successes. Note that an attacker can at most obtain 1000 decryption failure
inequalities from 1000 traces, but requires at least 5500 to recover the secret key directly.
Nevertheless, we chose to use fewer traces to take different settings into account in which
only a lower number of traces is available.

We target the first coefficient of ∆bc, this means that 270 other coefficient allow
improving the precision of our attack. We aim at recovering the shares of the coefficient of
∆bc; in a decryption success, these should all XOR to zero, while in a failure, this should
be the case in statistically half the bits. As we cannot recover each bit without errors, we
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Figure 9: Vertical distribution and horizontal distributions. The vertical distribution shows
the distribution at the first POI of the first bit of the first coefficient of the first share of
∆bc, and the horizontal distribution shows the distribution at POIs for the first coefficient
of ∆bc over all shares and bits.

Table 1: Results for profiled and non-profiled attacks on 3 and 4 shares.
Attack Shares Traces (Profil/Attack) Classified Correct
Template 3 500/500 0.84 1.00
Vertical 3 0/1000 0.84 1.00
Horizontal 3 0/1000 0.82 1.00
Template 4 500/500 0.87 1.009

Vertical 4 0/1000 0.85 1.00
Horizontal 4 0/1000 0.85 1.009

classify by the amount of bits summing to zero – if less than 0.55 of the bits do not sum
to zero, we assume a decryption failure, and if more than 0.8 xor to zero, we assume a
decryption success. For traces where classification between decryption failure and success
is unclear, we may simply use more coefficients of ∆bc. Note that the recovery method
of [HMS+23] (as well as the recovery method of [Del22]) allows for recovery even in the
presence of incorrectly classified decryption successes/failures.

To evaluate the template attack, we first record a template using merely 500 traces
and evaluate the performance on the remaining 500 traces. Both vertical and horizontal
non-profiled attacks are carried out on all 1000 traces. Note that we use only 1/271 of the
available information; the success and classification ratios can be increased by using more
coefficients of ∆bc and stricter bounds.

The results for 3 and 4 shares are shown in Table 1. Note that more shares slightly
improve the horizontal attack; this might seem counter-intuitive. However, in our setting,
more shares give us more samples to build our template. Thus, this is to be expected.

5 Evaluation
In addition to the attacks on a physical device described in the previous section, we
evaluate our attacks using simulations using the model described in Section 3.

5.1 Simulation
We implemented the model described in Section 3 in Python. We simulate the attack in
dependence to the number of coefficients of ∆bc, the number of shares, the number of
POIs per targeted bit, and the number of traces. The noise level is given as standard
deviation σ of the used noisy HW model. Given these parameters, we sample simulated
traces, by sampling each POI from the RV defined in Section 3. These simulated traces

9Note that one trace was classified incorrectly.
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(a) Targeting one coefficient.

0 2 4 6 8 10 12 14 16 18 20
0

0.25

0.5

0.75

1

Noise [σ]

CR Template
CR Vertical

CR Horizontal
SR Template
SR Vertical

SR Horizontal

(b) Targeting five coefficients.

Figure 10: Results in terms of classification and success rate per standard deviation σ for
one and five coefficients of ∆bc. We also state some of the results in Table 2.

are used to carry out the same attack as on the physical device’s traces. Note that the
attacks on the physical device contains some outliers (see Figures 9a and 9b) and that
these are not included in our simulation.

5.2 Results
In the following, we report on the results using our simulation. We evaluate different
settings on 7000 traces for varying noise levels, targeting 1 and 5 coefficients of ∆bc, and
with 4 shares.

5.2.1 Distinguishing Decryption Failures and Successes

We first report on the results in terms of distinguishing between decryption failures and
successes. Note that the full attack does not require us to classify all traces and only
requires a success rate of more than 0.8. Lower success and classification rates merely
increase the required number of traces. We report on the required number of traces for
the full attack in the next section.

All results are stated for standard deviation σ ∈ {0.1, 1.0, 2.0, . . . , 20.0}. In Figure 10a,
we report on the success and classification rates for targeting 5 coefficients of ∆bc, and
Figure 10b shows the setting in which we target 5 coefficients of ∆bc.

5.2.2 Full Attack using [HMS+23]

From classifying the recorded traces, we may record decryption failure inequalities and
recover the secret key using the method of [HMS+23]. We use the implementation10

provided with [HMS+23], but modify it to work with the security level 768. Each classified
trace results in a decryption failure inequality. While unclassified traces simply do not
contribute, incorrectly classified inequalities worsen the success rate. We estimate the
number of required traces using the implementation of [HMS+23], with ciphertext filtering
with max-delta-v=5. The number of required traces to recover the secret key for security
level 768 in the setting of Figure 10b is shown in Table 2. The minimum number of
required traces in attacks exploiting decryption failures is stated under the assumption
that an attacker uses the same recovery method.

To obtain the total number of traces, we first evaluate the number of required traces
for the given correctness probability in [HMS+23]. In case of a correctness probability of 1
(corresponding to a success rate of 1) and ML-KEM768, about 7000 traces are required.
From this number, the total number of traces can be determined. Note that in many cases

10Available at https://github.com/juliusjh/improved_decryption_error_recovery.

https://github.com/juliusjh/improved_decryption_error_recovery
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Table 2: Approximate number of required traces to recover an ML-KEM 768 key per
standard deviation σ targeting 5 coefficients of ∆bc in the horizontal attack with 4 shares;
evaluated on 100 traces. Number of traces rounded to the nearest multiple of 500. The
minimum number of traces for success and classification rate 1 is 7000.

σ ≤ 2 5 10 15 20
Classification Rate 0.93 0.94 0.74 0.45 0.74
Success Rate 1.00 1.00 1.00 0.98 0.62
Required Traces 7500 7500 9500 18000 –

the key can already be recovered with significantly fewer traces. For example, with 6500
traces, we already observe a success rate of 0.9 and remaining BIKZ11 of 140. Moreover,
even with only a few traces, the security of the instance of the scheme is already reduced.

6 Conclusion
We built a leakage model for the masked comparison proposal of [DBV23], and proposed
several attacks based on it. The profiled attack requires only a very small number of
traces for profiling, and both profiled and non-profiled attacks have exceptionally high
noise tolerance. While we do not break any security claims of [DBV23], we conclude that
the masked comparison is highly insecure against side-channel attacks in practice. Our
attacks further stress the need and the difficulty of securing the FO-transform in ML-KEM
against attacks exploiting decryption failures.

6.1 Countermeasures
Several countermeasures could mitigate our attack. However, all of them have severe
drawbacks – either they enable different types of attacks, or they are costly in terms
of performance. Therefore, we recommend to evaluate the security of previous propos-
als [DHP+22], and to use those instead. Note that similar attacks may apply against these
proposal as well. However, our exact attacks do not directly apply as these proposals do
not work over F2, i.e., on single bits of coefficients of ∆bc.

6.1.1 Shuffling Countermeasures

Shuffling could be applied at three different levels: If the complete loop, including the
random constant is shuffled, the latter has to be stored and loaded from memory. This
is costly, and the HW of the constant can likely be detected which would allow for an
approximate un-shuffling again. Shuffling the inner loop (processing bits) only worsens our
success rate, but probably does not prevent the attack. Instead of recovering the shares of
a single coefficient of ∆bc, the adversary can search for a coefficient of ∆bc in which the
HW of the individual share do not match those of a masked zeros. Finally, shuffling share
indices as well as the inner loop could mitigate the attack. While we can still recover the
bits of the shares, we may not assign them to shares or positions. Nevertheless, we see this
as risky as even the total number 1-bits leaks some information: In a decryption success,
it must be divisible by two. Moreover, shuffling has previously been reversed using a
wide-variety of techniques (see, e.g., [TH08, RPD09, VMKS12, BGNT18, BS20, ABG+22,
HSST23, BNGD23]). In addition, the attacker is now only required to (partially) recover
the shuffling permutation, which is a much simpler task than targeting a more secure and
shuffled implementation. Further, it is questionable if these additional measures do not eat

11BKZ-β required to obtain the secret key from the remaining lattice instance.
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up the claimed performance improve of [DBV23]. For these reasons, we did not attempt
to fix the proposed method using shuffling.

6.1.2 Dummy Operations

Carefully introduced dummy operations that perform comparisons on random data could
mitigate our attacks. If the attacks are prevented depends on the exact way this is carried
out. However, inserting dummy operations most likely negates the performance gains
over [DHP+22], too.

6.1.3 The Countermeasure of Pessl and Prokop

Pessl and Prokop [PP21] suggest shutting down the device after a certain number of
decryption failures have occurred. This countermeasure fully prevents our attacks as well
as all previous attacks that exploit decryption failures. However, Pessl and Prokop also
note that it also leaves the device vulnerable to a very simple DoS attack.

6.2 Future Work
The comparison of the FO-transform is a highly sensitive operation of ML-KEM and
several other post-quantum KEMs. Whenever the comparison operation leaks information
about whether a decryption failure occurred, the secret key can be recovered in a few
thousand traces. In this work, we only targeted the latest and most performant masked
comparison proposal of [DBV23]. Evaluating the security of other masked comparison
methods in similar manners is highly relevant for the wide-spread adoption of ML-KEM in
the embedded world.

6.2.1 Different Masked Comparisons

The masked comparison of [DBV23] replaced the floating point arithmetic of [DHP+22]
by Galois field arithmetic, i.e, sees the bits of a value as coefficient of a polynomial over
F2. Targeting the comparison of [DHP+22] requires working on HWs of the product of
random constant and the coefficient of ∆bc (instead of a single bit of the coefficient).
Understanding under which circumstances and with what noise tolerance such attacks can
be carried out is an open question.

6.2.2 Galois Field Multiplication in Hardware

The investigated and exploited leakage model may not be observable in certain processor
architectures. This might be the case, for instance, if there is an explicit command for
Galois field multiplication in the instruction set or if the noise levels are even greater. In
general, the security of the comparison method depends on the leakage behavior of the
Galois field instruction and its application. A meticulous evaluation is necessary to make
sure that attacks of this kind are mitigated.

6.2.3 Modeling the Comparison

In ML-KEM, a chosen-ciphertext that differs by a single bit may cause a decryption failure
that leaks information if it can be observed. This makes the FO-transform comparison step
particularly difficult to defend. The notion of t-probing security has been known to not
necessarily fit the reality of a physical device [BCPZ16], but is nevertheless widely used.
However, different proposals exist [BCM+23] and could help securing the FO-transform
in ML-KEM. We provide further evidence for the necessity of advanced models to prove
security against physical attacks.
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