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Abstract. Differential privacy is a fundamental concept for protecting individual
privacy in databases while enabling data analysis. Conceptually, it is assumed that
the adversary has no direct access to the database, and therefore, encryption is not
necessary. However, with the emergence of cloud computing and the «on-cloud»
storage of vast databases potentially contributed by multiple parties, it is becoming
increasingly necessary to consider the possibility of the adversary having (at least
partial) access to sensitive databases. A consequence is that, to protect the on-line
database, it is now necessary to employ encryption. At PoPETs’19, it was the first
time that the notion of differential privacy was considered for encrypted databases,
but only for a limited type of query, namely histograms. Subsequently, a new type of
query, summation, was considered at CODASPY’22. These works achieve statistical
differential privacy, by still assuming that the adversary has no access to the encrypted
database.
In this paper, we argue that it is essential to assume that the adversary may eventu-
ally access the encrypted data, rendering statistical differential privacy inadequate.
Therefore, the appropriate privacy notion for encrypted databases that we use is com-
putational differential privacy, which was introduced by Beimel et al. at CRYPTO
’08. In our work, we focus on the case of functional encryption, which is an ex-
tensively studied primitive permitting some authorized computation over encrypted
data. Technically, we show that any randomized functional encryption scheme that
satisfies simulation-based security and differential privacy of the output can achieve
computational differential privacy for multiple queries to one database. Our work
also extends the summation query to a much broader range of queries, specifically
linear queries, by utilizing inner-product functional encryption. Hence, we provide
an instantiation for inner-product functionalities by proving its simulation sound-
ness and present a concrete randomized inner-product functional encryption with
computational differential privacy against multiple queries. In term of efficiency, our
protocol is almost as practical as the underlying inner product functional encryption
scheme. As evidence, we provide a full benchmark, based on our concrete implemen-
tation for databases with up to 1 000 000 entries. Our work can be considered as a
step towards achieving privacy-preserving encrypted databases for a wide range of
query types and considering the involvement of multiple database owners.
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1 Introduction

Differential privacy is a data analysis paradigm proposed by Dwork et al. in
[20,19] to guarantee the privacy of individuals. In broad terms, the objective is
to ensure that the presence or not of an individual’s data in a database does not
significantly impact the results of a data analysis. This is done by blurring the
results with some noise, all the while having a precise notion of the trade-off be-
tween privacy of the individual and accuracy of the data analysis. To implement
this, the concept of privacy mechanism is used: a randomized algorithm that
takes as input a database and some query and outputs a string. The objective is
for this output to be a noisy statistic, where some noise has been added to the
real value such that the distributions of the output from the mechanism applied
to two databases differing in only one individual are very close. The usefulness of
this concept can be seen in the vast amount of academic literature written on the
topic (according to the recent survey in [17] over 200 variants of the concept have
been proposed so far) and also in real life applications, like the ones by the US
Census Bureau [23], Google [22], or Microsoft [18]. Despite the obvious interest
in the discipline, there are still some largely unexplored areas, e.g. its interaction
with encryption, the potential limitation of an adversary’s computational power
or even a wider range of privacy mechanisms.

This paradigm was conceptualized to be used in a setting where a database
owner who is storing a database wants to release some privacy preserving statis-
tics to untrusted analysts. As such, it was defined as a statistical property, i.e.,
that holds even against a computationally unbounded adversary. However, due
to the recent rise in popularity of cloud computing and especially cloud storage
of vast databases, this model is today not sufficient to deal with all practical
cases. What if the data owner wants to delegate the storage to an external cloud
storage service (mainly for cost reasons) while permitting untrusted analysts to
make queries?

Differential privacy and encrypted database. To better handle these situations,
the concept of encrypted private databases has been introduced by Agarwal et
al. in [6], where the database owner and the database holder (the cloud storage
server) need not be the same entity. In this case, the first step consists, for the
data owner, in encrypting its database before sending it to the storage server.
Then, when an external analyst wants to ask a query to the database, it nego-
tiates with the database owner for a token which can be used with the storage
server to obtain a noisy (differentially private) statistic without further need of
the database owner, as can be seen in the diagram of Fig. 1.

However, Agarwal et al., and the subsequent works on the subject [11], rely
on standard (statistical) differential privacy arguments, needing to make the
assumption that the untrusted analyst has no direct access to the encrypted
database. We argue, though, that it is essential to assume that at some point
a malicious adversary may have access to such encrypted database, e.g., by
colluding with the storage server. Hence, contemplating statistical differential
privacy with its computationally unbounded untrusted analyst is inadequate,
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Fig. 1. Diagram of interactions.
A database owner wants to outsource a database to a (honest but curious) server so
that private data analysis can still be performed on it. As such, an encrypted database
is sent to the server (step 1), and when an analyst wants to perform a query over the
database, some negotiation takes place with the database owner which results in a
token being received by the analyst (step 2). This token enables the analyst in

conjunction with the server to obtain a differentially private noisy statistic (step 3).

given that encryption schemes are proven secure only against computationally
bounded adversaries.

Putting both data encryption and differential privacy together, we obtain
that data confidentiality during storage and computation is provided from the
former, while the latter protects the data when the response of the query is
displayed. Hence, both are necessary to get a full protection of data during all its
life cycle. Given this model, statistical DP assumes a statistical adversary which
can obviously break any encryption whose security relies on a computational
assumption. Therefore, when combining DP with encrypted database, we can at
best achieve privacy and security against a computational adversary. If we were
to use standard statistical DP, we would need to consider a statistical adversary
and then could not restrict the adversary computationally only when attacking
the encryption. We have to consider that any potential adversary trying to breach
the DP should have the same capabilities when attacking the encrypted database.

Computational Differential Privacy. The concept of computational differential
privacy, introduced by Beimel et al. in [12] and Mironov et al. in [35], has been
extensively used in private multi-party computation, i.e., differentially private
data analysis over a database owned by more than one entity. The main interest is
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that in such setting, it gives much more useful mechanisms than using statistical
differential privacy. Indeed, the required noise scales is a much lower order in the
multi-party setting [33]. However, in the so-called “client-server” setting, where
there is only one database owner, the situation has been less studied, and is not
so clear. It was shown by Bun et al. in [15] that there exists a task for which there
is a computationally differentially private mechanism but any statistically dif-
ferentially private mechanism will forcibly be inefficient. More recently, Ghazi et
al. showed in [25] that there exists a non-natural task using strong cryptographic
assumptions for which a computationally differentially private mechanism exists
but has no statistically differentially private mechanism.

In the domain of computation over encrypted data, three main paradigms
exist: multi-party computation (MPC), fully homomorphic encryption (FHE),
and functional encryption. MPC addresses the most general form of computa-
tion, but it has a shortcoming of requiring a high level of interactions between
the parties. This requirement is not practical for specific types of queries on a
database. The problem with FHE is that decrypting a ciphertext provides “all
or nothing” information. Consequently, when responding to queries from an an-
alyst, the database owner must be the one to recover the encrypted database
from the server, decrypt it and compute the corresponding noisy result for each
query and send it to the analyst. Then there will need to be interaction between
the server and database owner for every query while being no meaningful in-
teraction between the server and the analyst. This violates the requirement to
achieve independence for the database owner from interacting with the server
for each query from the analyst. For a more detailed discussion see Appendix
B. Hence, our idea is to study the case of (randomized) functional encryption,
which seems to be the most appropriate in the setting given by Figure 1.

Randomized functional encryption. Functional encryption is a cryptographic
concept in which any user in possession of a ciphertext, related to a plain message
x, and a functional key skf for a function f , can obtain in clear the evaluation
f(x). In our context, it’s obvious that we need private functional encryption as
the database owner must manage both the encryption and the key generation
processes.

In the case of a randomized functional encryption, the function f could be
probabilistic, which permits us, in our setting, to manage the noise inherent to
differential privacy. Such possibility was first defined by Alwen et al. in [10] and
Goyal et al. in [27] to extend the concepts of functional encryption towards ran-
domized functionalities. More specifically, a randomized functional encryption
scheme takes a description of a randomized (probabilistic) function over a plain-
text and randomness space, and generates a functional decryption key. When a
ciphertext is decrypted with this functional key an evaluation of the probabilis-
tic function is obtained, with different randomness for different ciphertexts. In
the diagram in Fig. 1, what we propose is that the database is encrypted us-
ing randomized functional encryption (step 1), and the negotiation between the
Database Owner and the Analyst involves the former computing a functional
key for the latter (step 2). With this key and a query made to the Server, the
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Analyst can obtain statistical information of the database with some differential
private noise, using the functional decryption procedure (step 3).

More specifically, Goyal et al. in [27] give an instantiation for randomized
functional encryption for polynomial-sized circuits which was then used by Garg
et al. in [24] to construct fully secure functional encryption for all circuits, based
on multilinear maps. These works were furthered by Komargodski et al. in [31]
and Agrawal and Wu in [7] where they give a generic transformation to transform
any deterministic functional encryption to a randomized version, the former in
the private-key setting and the latter in the public-key setting. Those three
works [27,31,7] mention that randomized functional encryption could be used to
perform (computational) differentially private analysis on sensitive data, but fail
to give a formal analysis of this extension. In this work, we give such analysis.

1.1 Our Contributions

Based on this context, we provide four main contributions in this paper.

1. A new formalization for private functional encryption in the context of compu-
tational differential privacy. Firstly, we present a new formalization for private
encrypted databases based on functional encryption schemes. Focusing on static
databases, we give formal correctness and security notions, taking into account
the collusion between a malicious server and a malicious analyst. As far as we
know we are the first to consider formal security directly for the collusion be-
tween these two entities.

2. A generic result for computational differential privacy in the setting of ran-
domized functional encryption. Secondly, we provide a differentially private
mechanism in the context of an encrypted static database which uses a generic
randomized functional encryption scheme. We prove that our result is compu-
tationally differentially private as long as the used randomized functional en-
cryption scheme satisfies simulation soundness and the scheme instantiates a
standard differentially private mechanism. The use of computational differential
privacy also allows us to prove this privacy against a possible collusion between
the analyst and the server in contrast to previous proposals. We obtain such
property by incorporating both the ciphertext and the functional key in the
privacy mechanism. This result formalizes and proves the intuition given in [27]
about the relation between randomized functional encryption and computational
differential privacy.

3. An efficient randomized inner product functional encryption scheme. Thirdly,
we give an instantiation for randomized inner product functional encryption,
and we prove its simulation soundness. Our construction is based on any generic
(deterministic) inner product functional encryption scheme and any distribution
guaranteeing statistical differential privacy to the noisy inner product, both used
as black-boxes.
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4. A computationally differential private encrypted database supporting linear
queries. Finally we provide a solution for computationally differentially private
encrypted database supporting linear queries, which uses our above randomized
inner product functional encryption as a building block. Through our generic re-
sult, we prove its computational differential privacy against several inner product
queries and collusion between a malicious analyst and server. To the best of our
knowledge, this is the first proposal of an encrypted database supporting several
inner product differentially private queries and collusion between a malicious
analyst and server. We finally provide an implementation of the scheme, proving
its practical efficiency for databases with up to 1 000 000 entries.

1.2 Related Works and Comparisons

In regards to encrypted databases from which private data analysis can be per-
formed, to the best of our knowledge, there are only two existing works.

The first encrypted and private database was proposed by Agarwal et al.
in [6]. They proposed a solution for histogram queries based on several differ-
entially private encrypted counters under continuous observations, one per bin
of the histogram. This result is based on the work by Chan et al. [16] which
is instantiated making use of structured encryption. In general terms, a differ-
entially private counter was instantiated for each of the bins of the histogram
and encrypted through homomorphic encryption while the structured encryp-
tion scheme is used by the database owner to be able to perform non-noisy data
analysis on the database.

The second one is a proposal by Bakas et al. in [11] which instantiates a sum-
mation of vector coordinates for a database under continuous observation. For
that, they consider a multi-input functional encryption scheme allowing different
queries, depending on the subset of coordinates being added. In their system,
the knowledge of two of their functional keys allows for easy computation of
the key for another query without using the master secret key, thus disproving
it being a full functional encryption scheme. Regarding the privacy mechanism,
they use similar methods to [6] but encrypt only a counting mechanism for each
coefficient, without making use of structured encryption.

Compared to those two works, we improve them in three ways, which we now
detail. This is also given in Table 1.

1. More important class of queries. In this paper, additionally to our generic
result, we give a concrete scheme for linear queries. Linear queries and how to
secure databases under them has been a well studied subject [39,32].

Definition 1 (Equation 3, [39]). A linear query for some data elements
x1, . . . , xk has the form

q(x1, . . . , xk) =

k∑
i=0

ai · xi

for some k > 1 and fixed query weights ai.
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Table 1. Comparison with related works on differential privacy in encrypted databases.

Proposal Query type Access to database DP type
(via collusion)

[6] Histogram 7 Statistical
[11] Summation 7 Statistical

Our work Inner product 3 Computational

The most notable cases are predicate counting queries (e.g. histograms, marginal
queries and group-by queries) and weighted sum queries (e.g. weighted averages,
differences and evaluation of linear regression models).

2. Encrypted databases and/or encrypted mechanisms. In the seminal work by
Agarwal et al. [6], the basic concept they deal with is as follows: a database is
hidden and an analyst can ask queries, receiving a differentially private response,
while the database owner can still perform non-noisy queries to the database.
To instantiate such properties for private histogram queries they make use of
both a structured encryption scheme and a set of encrypted differentially private
counters. The overall idea is that the database is encrypted through a structured
encryption scheme through which the database owner can perform non-noisy
queries, while the histograms are instantiated through an encrypted differentially
private counter for each of the bins. The analyst can only access the latter and not
directly the encrypted database. This means that there are both an encrypted
database and an encrypted private mechanism at the same time, and the different
entities have access to different objects, depending on their rights.

In [11] the option of getting rid of the encrypted database is explored. In
essence, for each coefficient of the vector they encrypt a slightly more elabo-
rated counter than in [6], through the use of an encryption scheme with certain
homomorphic properties. Then, when an analyst asked for a key to compute
the summation of a subset of coefficients, the sent key is the sum of the re-
spective private keys. This means their solution is based only on an encrypted
private mechanism. It follows that the ability for the database owner to perform
non-noisy queries to the database is lost.

It is also worthy of note that in [27] an instantiation of a randomized en-
cryption for polynomial-sized circuits is given, based on indistinguishability ob-
fuscation. In their discussion the authors say that their results extend directly
to differential privacy, but without giving any formal treatment of it. Their case
would also be in the side of having only an encrypted mechanism, since non-
noisy statistics may not be queried to the ciphertexts. This is also due since the
setting in which they contemplate is different to ours, since the server has the
master secret key and acts as an intermediary between the database owners and
the analyst.

The direction taken in this work is to explore the possibility of getting rid
of the encrypted private mechanisms and leaving only an encrypted database
where the mechanism is “baked into” the encryption scheme. Hence, we allow
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both the data owner and the analyst to make queries on it. We consider that
this is relevant in a real-life application.

The overall idea is to have an encrypted database with which several differ-
ent tokens related to a query can be used to extract the desired output. Ideally
this can be used to obtain both differentially private and non-noisy responses
depending on the token applied, and our inner product construction based on
(randomized) functional encryption satisfies this. The use of functional encryp-
tion instead of structured encryption is due to the need of a building block
capable of supporting randomized functionalities, and furthermore opens the
door to extending the mechanism to several different databases being queried
privately with the same token in the future.

But this decision makes the differential privacy analysis slightly more delicate
than in previous works due to mainly two reasons. First of all, the tokens received
by the adversary are now more relevant and should be directly included in the
differential privacy analysis. This means that parts of the encryption scheme are
being studied through the differential privacy analysis: the classical statistical
differential privacy no longer makes sense, given that the security definitions of
encryption schemes necessarily rely on probabilistic polynomial time adversaries.
Thus we decided to use computational differential privacy instead, as introduced
in [12]. Secondly, the previous works essentially use ` independent private mech-
anisms, one for each “independent” query they allow. This allows them to extend
privacy for one query to several directly. However, we are considering our differ-
ent queries as forming part of the same mechanism, and as such must make it
explicit in our differential privacy analysis.

Multiple queries in the context of differential private mechanism is something
that has already been studied in the literature, for the non-encrypted case. In
such case, it is necessary to take of the noise that is used so that nobody can,
query after query, remove it. Such existing work consider either adding noise
proportional to a query index [40], or managing the noise accordingly [29]. For
linear queries, this can simply be thwarted by only accepting linearly indepen-
dent queries. In any case, our work does not introduce any new issue regarding
this multiple queries case, and any of the above method can obviously be adapted
to our result.

3. Managing a collusion between server and analyst. As mentioned before, dif-
ferential privacy originated as a means to ensure the privacy on an individual
while performing data analysis over a database. The general idea is to compute
the (exact) statistic and then add some carefully chosen noise such that the re-
sult is precise enough to be useful but such that the distributions obtained from
databases with and without the data of an individual respectively are very close.
In this setting, it makes sense to consider this property as statistical, or in other
words, that it holds against a computationally unbounded analyst to cover all
bases.

However, when considering our setting of private encrypted databases, one
must consider the possibility of the encrypted database eventually falling in
the hands of a malicious entity. The noteworthy difference from the original
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setting of differential privacy is that, as we have mentioned before, the security
of encryption schemes is usually only guaranteed against PPT adversaries. As
such, analyzing the privacy of our setting when the malicious entity has access to
the actual ciphertexts (as is the case of a collusion between a malicious analyst
and a malicious server) against a computationally unbounded entity is no longer
adequate. This leads us to argue that computational differential privacy should
be used to analyze such private encrypted databases.

More specifically, in our case we analyze a non-obvious mechanism. The pre-
vious works consider the mechanism as only the output obtained by the analyst
when using a token with the server. However, we consider our mechanism to be
the output together with the token and the ciphertexts, and prove that even
having access to all these outputs simultaneously, a PPT analyst cannot break
(computational) differential privacy. Since all the information in possession of
both the analyst and the server is contained in the output of this mechanism,
we succeed in proving differential privacy against a collusion between them.

1.3 Organisation

In Section 2 we give the formalizations necessary to follow our results. In Section
3 we give the generic result of computational differential privacy for randomized
functional encryption. In Section 4 we present our randomized inner product
instantiation and prove it correct and secure. In Section 5 we present our proposal
for computationallly differentially private encrypted database supporting linear
queries and in Section 6 we give some more concrete results the implementation
of our proposals. Finally, in Section 7 we give our conclusions and a frame for
future works.

2 Formalizations

In this section we will recall the classical definitions and introduce our new
definitions.

2.1 Notations

One-dimensional elements (such as those in X , Z, G...) will be noted as lower-
case letters (x, y, . . .), while multi-dimensional elements (such as those in X `,
Z`, G`...) will use bold lower-case letters (x,y, . . .). For a natural number q > 0
we denote as [q] the set {1, . . . , q}. Let D be a probability distribution, x ← D
means the element x is sampled from the distribution D, while for any set Y,
y

$←− Y means that y is sampled uniformly at random from Y. Finally, a function
f is said to be negligible over n (f = negl(n)) if for all k ∈ N>0, there exists
n0 ∈ N>0 such that for any n > n0 then |f(n)| < 1/nk.
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2.2 Differential Privacy

Differential privacy is a private data mechanism property first proposed by
Dwork et al. in [20,19] as a way to guarantee in a precise manner the privacy
for the data of an individual in a pool of data. In broad terms, the way this is
ensured is by adding some noise to the statistic computed over the dataset in
such a way that the probability of getting the same result with two different
databases (one with the individual’s data and one without) is essentially the
same. This notion of privacy soon became the main paradigm, and more than
200 variants have been defined since then, as by the survey made by Desfontaines
and Pejó in [17].

A basic concept needed to properly define differential privacy is that of neigh-
bourhood between databases. This concept specifically delineates what is the
difference in the database between adding an individual’s data or not. In our
case we will say that two databases are neighbouring if their `1 distance is at
most one. The standard definition for this property is (ε, δ)-differential privacy
for static databases as stated below. In this work we will constrain ourselves
to the study of static databases. From this section onward we will consider X
to be a database space, R to be a randomness space, S to be an output space
contained in the multidimensional real numbers and F a family of deterministic
functions f : X → S representing the queries to obtain the plain statistics.

Definition 2 (Adapted from Definition 2.4, [21]). Let ε, δ be two real
numbers. A randomized algorithm for f ∈ F , Mf : X × R → S is (ε, δ)-
differential private ((ε, δ)-DP) if for all S ⊆ S, every pair of neighbouring
databases x, x′ ∈ X and r, r′ ← R

Pr [Mf (x; r) ∈ S] ≤ eε · Pr [Mf (x
′; r′) ∈ S] + δ.

There are two slight changes from Definition 2.4 in [21]. First of all, we have
adapted the definition of randomized function to be in line with the standard in
randomized functional encryption, and as such have added the specific random-
ness seed as an input. Secondly, we have explicitly added which query f ∈ F the
mechanism M is protecting. This is also for ease of notation further down the
line, when considering several different queries and relating to the key generation
in the randomized functional encryption scheme.

Note that this definition handles only one query at a time, and we would be
interested in the property for Q queries. However, since the output space S must
be contained on the multidimensional reals, one can consider the query space
as FQ and each query for the mechanism as the conjunction of Q queries. That
way this definition allows for analysis for multiple queries.

The previous definition is statistical, in the sense that it takes into account the
distribution of all possible outputs, however, when trying to combine them with
cryptographic concepts, we find that this would correspond to playing against
computationally unbounded adversaries. As such, combination of these more
statistical (and more standard) variants of differential privacy with well-known
cryptographic primitives and methods proves to be sometimes unfeasible and/or
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Table 2. Experiment b for (Q, εκ)-IND-CDP.

Experiment b :

1: (x0, x1, st)← A1(1
κ) with x0, x1 ∈ X neighbouring

2: b̃← AO(xb,·,·)
2 (st)

Output: b̃

unrealistic. Therefore it is natural to consider relaxations on the definition of
differential privacy to allow for bounding the adversary to being computationally
efficient. This is what Mironov et al. proposed in [35], which we adapt to our
needs.

Definition 3 (Adapted from Definition 3, [35]). Let κ ∈ N be a security
parameter, Q be an integer and M : X × F ×R → S a randomized algorithm.
Then, for a stateful PPT algorithm A the attack game works as follows. The
challenger C selects a bit b $←− {0, 1} and proceeds with experiment b (Table 2)
where the oracle O(xb, ·) denotes the evaluation of the mechanismM(xb, ·; r) for
some r ← R.

We say thatM provides (Q, εκ)-indistinguishable computational differential
privacy ((Q, εκ)-IND-CDP) if there exists a negligible function negl(·) such that
for any A limited to accessing O Q times

Pr
[
b̃ = 1|b = 0

]
≤ eεκ · Pr

[
b̃ = 1|b = 1

]
+ negl(κ).

There are several changes from Definition 3 in [35]. The two clearer ones
are as we discussed with Definition 2, where we have adopted the standards
for randomized functional encryption. A part from this, we also consider a PPT
adversary instead of a Turing machine with polynomial sized advice string since,
as mentioned before, the computational power of the adversary needs to be the
same when considering privacy as when considering security. Finally, despite the
fact that we could consider the query space as FQ to expand to handling Q
queries, however, we are interested in allowing for adaptivity in the choice of
query for the adversary. As such, we have considered a stateful adversary.

There is one important thing to note about this definition. Were the adversary
A to be computationally unbounded, then this only says that for any fixed κ the
mechanism M is (εκ, δκ)-DP for a negligible δκ and any set of Q queries. This
means that any mechanism that satisfies (εκ, δκ)-DP for all sets of Q queries and
δκ negligible on κ, will also satisfy εκ-IND-CDP.

Note that to prove a one-query mechanism adaptive for several queries in
statistical differential privacy, the property of composability is required, which
is not known if it holds for computational differential privacy. However, since our
generic result ties the adaptive computational differential privacy of the whole
mechanism understood as the whole randomized functional encryption scheme
to the adaptive computational privacy of only the output, as long as the output
satisfies the adaptivity, the property transfers to the whole mechanism. There-
fore, if we choose an output distribution for the scheme that satisfies statistical
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differential privacy (and therefore composability) our mechanism will be private
against an analyst choosing queries adaptively.

Finally, two additional key concepts, that we recall below, need to be taken
into account when considering the efficiency of concrete constructions for differ-
ential privacy: the sensitivity, which is used to measure accurately the size of
the noise needed to privatize a specific query; and the utility of a given mecha-
nism, which essentially tells how close the noisy statistic will be to the expected
non-noisy value.

Definition 4 (Adapted from Definition 3.1, [21]). Let x, x′ ∈ X be two
neighbouring databases. The `1-sensitivity of a function f is

∆f := max
‖x−x′‖1=1

‖f(x)− f(x′)‖1.

This can be naturally extended to the `1-sensitivity of a family of queries by
taking the maximum over the family of queries.

Definition 5 (Adapted from Definition 2.4, [16]). LetM : X×F×R → S,
M(x, f ; r) = f(x) + e(r) for some database space X , response space S, function
space F : X → S and randomness space R be a differentially private mechanism.
We sayM is (α, δ)-useful if

Pr [|M(x, f ; r)− f(x)| ≤ α] ≥ 1− δ

for any x ∈ X , f,∈ F and r ← R.

2.3 Randomized Functional Encryption

Given that our objective is to mix functional encryption with differential privacy
(which inherently uses randomness to blur the information) it is clear that we
need to introduce some randomness into the functional encryption. To do so, we
will follow the paradigm set by Goyal et al. in [27] for general randomized func-
tional encryption. In this section we will consider X to be a database space, R to
be a randomness space, S to be an output space and F a family of randomized
(probabilistic) functions f : X ×R → S, where r ∈ R is understood as the seed
for the probabilistic sampling of the randomized function f and as such, as true
randomness completely unknown to the adversary. The reason for this is to be
able to ensure that for any database x ∈ X , f(x; r) is computed always with
the same random seed, otherwise the database could be leaked by sampling the
random function with multiple different seeds. We will focus on the secret key
variant of randomized functional encryption, which is defined as follows.

Definition 6 (Adapted from Section 2, [27]). Let κ ∈ N>0 be a security
parameter. We define a secret-key randomized functional encryption scheme sup-
porting the family of randomized functions F the following tuple of PPT algo-
rithms:
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– SetUp(1κ,F): given the security parameter and family of functions as an
input, it outputs some public parameters param and a master secret key msk.
We will assume the public parameters as inputs in all other algorithms.

– Enc(msk, x): given the master secret key msk and some plaintext x ∈ X as
inputs, it outputs a ciphertext cx.

– KeyGen(msk, f): given the master secret key msk and a description of the
randomized function f ∈ F as inputs, it outputs a functional key skf .

– Dec(cx, skf ): a deterministic algorithm that given a ciphertext cx and a func-
tional key skf as inputs, it outputs a string s.

There is a correctness notion linked to this definition of encryption scheme,
however it is not as straightforward as in standard functional encryption due
to the randomization of the output. Because of this, we need to assure the
computational indistinguishability of the output string from the Dec algorithm
with the functionality output. Our definition is as follows.

Definition 7. Let κ ∈ N>0 be a security parameter and RFE = (SetUp,Enc,
KeyGen,Dec) be a secret-key randomized functional encryption scheme support-
ing the family of randomized functions F . We say it is correct if for any plaintext
x and any set of functions f1, . . . , fQ ∈ F the following distributions are com-
putationally indistinguishable:

– Real(1κ,F) := {si ← Dec(cx, skfi)}i∈[Q], where
(param,msk)← SetUp(1κ)
cx ← Enc(msk, x).
skfi ← KeyGen(msk, f i) for all i ∈ [Q].

– Ideal(1κ,F) := {f i(x; ri)}i∈[Q] where ri ← R.

This definition differs from the one in [27] because it is stated for only one
plaintext instead of several. The difference lies in the fact that their construc-
tions are both for several simultaneous plaintexts and in the public key setting
so the adversary can obtain as many ciphertexts as it wants. By considering sev-
eral plaintexts in the definition it ensures that the randomness in the output is
distinct for different ciphertexts and different functional keys. More specifically,
it is required that for one same functional key, different ciphertexts give different
outputs and viceversa, which ensures that the randomness in the output comes
from both the randomness in the encryption and key generation. Also note that
simply having some randomness in both encryption and key generation does not
satisfy the condition since they could simply not be used for the randomness in
the output. The encryption scheme of our proposal in Section 4 is an example
of this behaviour.

However, in this work we are interested in the case of randomized functional
encryption as a means of constructing a differentially private mechanism sup-
porting several queries to one database and we are in the secret key setting. As
such, it makes sense to consider this relaxation of the definition so as to allow
solutions which do not change the noise for different ciphertexts, since we will
only be considering one.
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The same distinction between selective and adaptive adversaries can be done
in the randomized setting as in the deterministic one, as well as both the in-
distinguishability and simulation based security and their non-equivalence. For
the purpose of this work we have slightly changed the simulation-based security
definition to add a condition on how the key generator simulator works. In our
case we are interested in the particular case of randomized functional encryp-
tion schemes implementing differential private data analysis, and there are some
schemes that satisfy the definition in [27] that very clearly will not be differ-
entially private. For example, let FE = (SetUpFE,EncFE,KeyGenFE,DecFE) be a
functional encryption scheme and D be a probability distribution. We define
a simple randomized functional encryption scheme RFE = (SetUpRFE,EncRFE,
KeyGenRFE,DecRFE) as follows:
– SetUpRFE(1κ,F) :

(mskFE, paramFE)← SetUpFE(1κ)
Output (mskRFE, paramRFE) = (mskFE, paramFE)

– EncRFE(mskRFE, x) :
cx ← EncFE(mskFE, x)
Output cx

– KeyGenRFE(mskRFE, f) :
ef ← D

skf ← KeyGenFE(mskFE, f)
Output skRFEf = (ef , skf̂ )

– DecRFE(cx, skRFE
f ) :

f(x)← DecFE(cx, skf )
s← f(x) + ef
Output s

It is clear that this scheme cannot be differentially private since the noise
is given out in the functional key. However, if FE is simulation sound against
one ciphertext, this scheme will also be simulation secure against one ciphertext
following the definition in [27]. By substituting the FE algorithms for their re-
spective simulators we get the simulators for the RFE scheme. More details can
be found in Appendix C.

This situation means that the definition given in [27] is not enough to char-
acterize randomized functional encryption for differential privacy: we need a
stronger definition. To obtain it, we make use of a characteristic of the stan-
dard definition, where the key generation simulator algorithm has access to the
ideal functionality KeyIdeal. This ideal functionality takes as input a randomized
function g and for every xi in the challenge it outputs vgi = g(xi; r

i) with some
chosen randomness ri from the randomness space.

For our new stronger definition, we will ask an extra requirement from the
key generation simulator algorithm: the simulator to query the KeyIdeal and to
output a simulated functional key sk∗g which should satisfy that for any simu-
lated ciphertext c∗i the decryption algorithm’s output is Dec(c∗i , sk∗g) = vgi . This
allows us to discard the trivial schemes since without having access to the chal-
lenges xi, the key generation simulator algorithm cannot recover the noise to be
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Table 3. Real and ideal experiments in 1-SEL-SIM security for RFE.

ExprealA (1κ,F)
1: (x, st1)← A1(1

κ,F) where x ∈ X
2: (param,msk)← SetUp(1κ,F)
3: cx ← Enc(x,msk)

4: γ ← AO1(msk,·)
2 (cx, st1)

Output: (x, {f}, {skf}, γ)

ExpidealA,Sim(1
κ,F)

1: (x, st1)← A1(1
κ,F) where x ∈ X

2: (param, c∗x, st′)← EncSim(1κ,F)
3: γ ← AO

′
1(st
′,·)

2 (c∗x, st1)
Output: (x, {f ′}, {sk∗f ′}, γ)
text

output in the functional key. More details can be found in Appendix C. Further-
more, we show that our instantiation for randomized inner product satisfies this
requirement so it is not an unattainable condition. We have also adapted the
definition to the secret key setting.

Definition 8. Let κ ∈ N>0 be a security parameter and RFE = (SetUp,Enc,
KeyGen,Dec) be a secret-key randomized functional encryption scheme for the
randomized function family F . We say RFE is 1-SEL-SIM-secure if there exists a
PPT simulator Sim = (EncSim,KeyGenSim) such that for every PPT adversary
A = (A1,A2), the outputs of the real and ideal experiments (see Table 3) are
computationally indistinguishable, where the oracles are described as follows.

1. Real Experiment: O1(msk, ·) refers to the non-simulated key generation
oracle KeyGen(msk, ·). The set {f} denotes the key queries made by A2.

2. Ideal experiment: O′1(st′, ·) denotes the simulated key generation algorithm
KeyGenSim(st′, ·) that has oracle access to the ideal functionality KeyIdeal(x, ·).
The functionality KeyIdeal accepts key queries f ′ and returns vf

′
= f ′(x; r)

for some chosen randomness r ← R. We require that for simulated ciphertext
c∗x and simulated key sk∗f ′ the decryption value is as such Dec(c∗x, sk∗f ′) = vf

′
.

The set {f ′} denotes the queries made by KeyGenSim to KeyIdeal.

In this definition we only consider the case for one challenge ciphertext, since
that is all we need for our results. However, the “strengthening” of the definition
is easily extendable to several ciphertexts. Also note that for our definition we
do not consider a decryption oracle where the adversary can input a ciphertext
and a function to obtain the function applied to the ciphertext. This is due to
the fact that it will allow us to prove simulation soundness for a greater amount
of instantiations.

2.4 Private Functional Encryption

The end goal is to instantiate a private encrypted database supporting linear
queries. Agarwal et al. gave in [6] a formalization as to what properties such
an object should satisfy. In their formalization they consider them as private
structured encryption schemes for dynamic databases, in this work we adapt
their paradigm to private functional encryption scheme for static databases. Let
us give the definition for which we take Definition 4.1 in [6] as a reference.
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Definition 9. Let κ ∈ N>0 be a security parameter, ε > 0 a privacy parame-
ter and Q ∈ N>0 a positive integer. We define a private functional encryption
scheme for static databases supporting the family of queries F with error distri-
bution Dε as the following tuple of polynomial time protocols:

– SetUpDO,S,A((1
κ, 1ε, x);⊥; (f1, . . . , fQ)): is a three-party protocol involving

the database owner DO, server S and analyst A. The database owner inputs
the security and privacy parameter κ, ε as well as the database x, the server
inputs nothing and the analyst inputs the set of Q queries they want to ask
f1, . . . , fQ ∈ F . As output, the database owner receives a master secret key
msk, the server receives an encrypted database cx and the analyst receives a
set of functional keys skf1 , . . . , skfQ . Everyone receives a set of parameters
param.

– EQueryDO,S((msk, g); cx): is a two-party protocol involving the databases
owner DO and the server S. The database owner inputs the master secret
key msk and a query g ∈ F , while the server inputs the encrypted database cx.
As output, the database owner receives a response s and the server receives
nothing.

– PQueryA,S(skfi ; cx): is a two-party protocol between the analyst A and the
server S. The analyst inputs a functional decryption key skfi , while the
server inputs the encrypted database cx. As output, both receive the response
si.

Note that in this definition, to keep in line with the definition from [6] we
have decided to put the queries asked as an input to the setup phase. This
way the setup remains a three-party protocol between all the entities and the
private query a two-party protocol between the analyst and the server. Despite
this, the functional encryption paradigm offers us more flexibility and another
way of conceiving the protocols may be considered. For example, by allowing
the analyst adaptivity on their query requests the setup phase becomes a two-
party protocol between the database owner and the analyst and the private
query phase becomes a concatenation of two two-party protocols, one between
the analyst and the database owner and one between the analyst and the server.
This alternative definition may seem more appropriate for some cases and makes
full use of the adaptivity for computational differential privacy in Definition 3.

As usual, this new object needs a correctness definition where, differently
than in [6] we consider that both types of queries should be considered in this
analysis. Our definition is based on Definition 4.2 in [6].

Definition 10. Let κ ∈ N>0 be a security parameter, ε > 0 a privacy parame-
ter, Q ∈ N>0 a positive integer and PFE = (SetUp, EQuery,PQuery) be a private
functional encryption scheme for static databases supporting the family of func-
tions F with error distribution Dε. We say it is correct if for any database x and
any set of queries f1, . . . , fQ ∈ F the following distributions are computationally
indistinguishable:

– Real(1κ,1ε) := {si ← PQueryA,S(skfi ; cx)}i∈[Q] where, (msk; cx; (skf1 , . . . ,

skfQ))← SetUpDO,S,A((1
κ, 1ε, x);⊥; (f1, . . . , fQ)).
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– Ideal(1κ,1ε) := {f i(x) + ei}i∈[Q] where ei ← Dε

and for any database x and query f ∈ F the following probability holds

Pr
[
s← EQueryDO,S((msk, f); cx) 6= f(x)

]
= negl(κ)

where the probability is taken over (msk; cx; (skf1 , . . . , skfQ))← SetUp((1κ, 1ε, x);
⊥; (f1, . . . , fQ)).

Finally we need to discuss the security notion. In [6] they describe three types
of adversary: persistent, statistical and snapshot. The first one refers to an ad-
versary corrupting permanently the server, the second one refers to an adversary
corrupting the analyst and the third one refers to an adversary corrupting the
server at only one point in time. A security definition for each one of them is
given, however, the possible collusions between these adversaries are not formally
handled. We argue that by giving one single security definition considering the
case of collusion between a malicious server and analyst contains all the rest of
individual cases, and therefore proving this last security implies all the rest.

Definition 11. Let κ ∈ N>0 be a security parameter, ε > 0 a privacy parameter,
Q ∈ N>0 a positive integer and PFE = (SetUp, EQuery,PQuery) a private func-
tional encryption scheme for static databases supporting the family of queries
F with error distribution Dε. We denote f1, . . . , fQ ∈ F as F . We say PFE is
1-database-secure and private if there exists a PPT simulator Sim = (SetUpSim,
EQuerySim) such that for every PPT adversary A = (A1,A2) corrupting both
the server S and analyst A the outputs of the real and ideal experiments (see
Table 4) are computationally indistinguishable, where the oracles are described
as follows:
– Real Experiment: O1 refers to the non-simulated encrypted query protocol

EQueryDO,S(msk, ·; ·). The set {f} denotes the queries asked to this oracle,
O2 refers to the private query protocol PQueryA,S(·; ·). The set {s} denotes
the responses of O2,

– Ideal Experiment: O′1 refers to the simulated encrypted query protocol
EQuerySimDO,S(st

′, ·; ·). The set {f ′} denotes the queries made to this or-
acle, O′2 refers to the private query protocol PQueryA,S(·; ·). The set {s′}
denotes the responses of O′2,

and the mechanismM defined as follows

M(x, F ; r) =


cx ← SetUprDO,S,A((1

κ, 1ε, x);⊥;F )
sk
f̂i
← SetUprDO,S,A((1

κ, 1ε, x);⊥;F )
s← PQueryA,S(skfi ; cx)

(1)

satisfies (Q, ε)-IND-CDP.

3 CDP for Randomized Functional Encryption

In this section we provide our results for a differentially private mechanism sup-
porting randomized functional encryption for the private queries in encrypted
databases.
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Table 4. Real and ideal experiments in 1-database security for PFE.

ExprealA (1κ, 1ε)

1: (x, F, st1)← A1(1
κ) where x ∈ X and F ∈ FQ

2: (msk; cx, skf1 , . . . , skfQ)← SetUpC,A(1
κ, 1ε, x;F )

3: γ ← AO1(msk,·,·),O2(·,·)
2 (cx, st1)

Output: (x, {f}, {s}, γ)

ExpidealA,Sim(1
κ)

1: (x, F, st1)← A1(1
κ) where x ∈ X and F ∈ FQ

2: (st′; c∗x, sk∗f1 , . . . , sk
∗
fQ)← SetUpSimC,A(1

κ, 1ε;F )

3: γ ← AO
′
1(st
′,·,·),O′2(·,·)

2 (c∗x, st1)
Output: (x, {f ′}, {s′}, γ) text

3.1 Overview

Following the notation of Fig. 1, we would have that the encrypted database
is cx in the form of a functional encryption ciphertext (step 1); the negotiation
between the database owner and the analyst (step 2) consists in the analyst
sending a function f and the database owner responding with the functional key
skf̂ ; and the noisy statistic (step 3) consists on a string of the form f(x) + ef ,
computed by the server with cx and skf̂ , using the decryption procedure of the
functional encryption.

More precisely, let M′ be a classical differentially private mechanism such
that for a plain database x and a function f it outputs the value f(x)+ef for ef
sampled from some distribution Dε that renders the mechanism statistically dif-
ferentially private. Our idea is to then obtain a randomized functional encryption
RFE = (SetUp,Enc,KeyGen,Dec) such that the output of the decryption algo-
rithm Dec(cx, skf̂ ) is distributed as f̂(x) = f(x) +Dε, where msk← SetUp(1κ),
cx ← Enc(msk, x) and skf̂ ← KeyGen(msk, f̂).

The next step is to properly define the privacy mechanismM that most ac-
curately represents our problem. It is clear that the mechanism must incorporate
the noisy statistic during both the decryption and the functional key processes,
since both outputs are received by the analyst at some point during the inter-
action. If the server was to be trusted, those two values would suffice as a DP
mechanism. However, since the objective is to deal with an honest but curious
server, the database encryption process should also be considered in the privacy
mechanism. Therefore, when looking at all three steps, considering the three val-
ues (ciphertext, functional key and noisy plaintext) within the DP mechanism,
we are capable to cover for a collusion between the server and the analyst. As
such, our DP mechanismM on input a database x and query f outputs cx, skf̂
and Dec(cx, skf̂ ). Note that the value Dec(cx, skf̂ ) is redundant since it can be
computed from cx and skf̂ . However, we put it in to keep coherence with the
analysis given in Figure 1 and to emphasize the information available through
both the analyst (the functional key) and the server (encrypted data).

Given this DPmechanism, it is obvious that the standard statistical definition
of differential privacy is no longer adequate, since an adversary with unlimited
power can always break the underlying encryption and get all the information
about the database. Therefore our proof below is done using the above defined
(Q, εκ)-IND-CDP (see Definition 3), hence using the simulators of our new secu-
rity definition for randomized functional encryption (see Definition 8).
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3.2 Formal Analysis

Let us start the formal analysis. Let F be the family of deterministic functions
such that ∀f ∈ F , f : X → S. Let R be a set of random values and let e : R → S
be a sample generation function over a pre-defined distribution Dε with values in
S. From that, we define the family F̂ of randomized functions such that ∀f̂ ∈ F̂ ,
f̂ : X × R → S and f̂(x; r) = f(x) + e(r), where r ← R is used as a seed to
sample e(r)← Dε. Such definition next permits us to formally define mechanism
M′ : X × F × R → S such that M′(x, f ; r) = f̂(x; r). This corresponds to a
classical DP mechanism for a function f ∈ F . Our purpose in this section is
to generically transform it into an equivalent DP mechanism for an encrypted
database.

For this purpose, we consider RFE = (SetUp,Enc,KeyGen,Dec) as a secure
secret-key randomized functional encryption scheme for the family of randomized
functions F̂ . Therefore, using the structure given in Figure 1, and based on the
notions and notations given in Section 2, we define the following.

1. The encrypted database corresponds to cx ← Enc(msk, x) where x ∈ X is a
plain database, and where (param,msk) ← SetUp(1κ, F̂) as previously been
executed once for all by the database owner;

2. the negotiation is done for a set of queries represented as functions f̂1, . . . , f̂Q ∈
F̂ and gives, for all i ∈ [Q], skf̂i ← KeyGen(msk, f̂ i);

3. the noisy statistic phase executes, for all i ∈ [Q], si ← Dec(cx, skfi) which is
obtained by the analyst.

From the correctness of the used RFE, we obtain that ∀i ∈ [Q], si is computa-
tionally indistinguishable from the value f̂ i(x; ri) = f i(x)+e(ri), where ri ← R.

Let us now focus on our new DP mechanismM for an encrypted database.
As we consider that both the server and the analyst could be corrupted. Such
a DP mechanism must include all the information available to both, namely cx,
skf̂ and Dec(cx, skf̂ ) for one specific query. But we now need to take care of
the used randomness, and be more precise on where it should be put. To be
as generic as possible, we consider that the randomness space is divided into
two parts. Hence, R = Rx ×Rf and ∀r ∈ R, r can be written as r = (rx, rf ),
where rx ∈ Rx (resp. rf ∈ Rf ) is the seed for the randomness sampled in the
encryption (resp. key generation) algorithm to compute cx (resp. skf̂ ). Then our
DP mechanism for encrypted databaseM : X ×F×R → S is defined as follows.

M(x, f ; (rx, rf )) =


cx ← Encrx(msk, x)

skf̂ ← KeyGenrf (msk, f̂)

s← Dec(cx, skf̂ )

(2)

for (rx, rf )← R.
From all that, we can now proceed to our main result of this section.

Theorem 1. Let F be a family of functions, and let M′ be a DP mechanism
for functions in F . Let RFE be a randomized functional encryption scheme for
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the family of randomized function F̂ derived from F as defined above. Let κ ∈ N
be a security parameter. If RFE is 1-SEL-SIM secure and M′ is (εκ, δκ)-DP for
Q queries and some δκ negligible over κ, then the DP mechanism over encrypted
databaseM defined above is (Q, εκ)-IND-CDP.

Proof. First note that as explained in Section 2.2, statistical differential privacy
implies computational differential privacy, as such, we only need to prove the
result for M′ being (Q, εκ)-IND-CDP. We will prove this through a series of
Games. Let A be a PPT adversary playing the (Q, ·)-IND-CDP attack game for
mechanismM, let Sim = (EncSim,KeyGenSim) be the simulator algorithms for
the RFE scheme and let κ ∈ N be a security parameter. Changes on Game i are
made over Game i− 1.

Game 0. This is the attack game for (Q, ·)-IND-CDP and mechanismM as seen
in its definition, but we will refer to the challenger as B.

Game 1. In this game we change the value obtained from the decryption algo-
rithm for an evaluation of the randomized function. As such, for the oracle O
when receiving f i, B samples ri ← R and computes si = f i(xb) + e(ri). Finally,
it sends to A the following response

O1(xb, f
i, ri) =


cxb
skf̂i

si.

Game 2. In this game we simulate the ciphertext and functional keys using the
RFE scheme simulator. As such, after choosing the bit b, and receiving x0, x1 from
A, the challenger B uses EncSim(1κ, F̂) and obtains the simulated ciphertext c∗xb
and the state st′. It then simulates the the oracle as follows. When receiving the
function f i, B executes the algorithm KeyGenSim(st′, f̂ i) substituting the call to
KeyIdeal for si and receives the simulated functional key sk∗

f̂i
. Finally, it sends

to A the following response

O2(xb, f
i, ri) =


c∗xb
sk∗
f̂i

si.

Game 3. In this game, B will act as a challenger for the adversary A in the
(Q, ·)-IND-CDP attack game for mechanismM while acting as an adversary for
the challenger C in the (Q, ·)-IND-CDP attack game for mechanism M′. More
concretely, when B receives x0, x1 from A it forwards them to C. Then, for chal-
lenge queries, when receiving function f i, B queries oracle O′ to C and receives
vi =M′(xb, f i, ri) for some ri ← R. It substitutes si in Game 1 for vi and sends
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to A the following response.

O3(xb, f
i, ri) =


c∗xb
sk∗
f̂i

vi.

Analysis. Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If
b = 0 it interacts with the adversary A as in Game i, otherwise it interacts as
in Game j. At the end of the interaction, A will make its guess b̃ ∈ {0, 1}. We
define

Advij(A) :=
∣∣∣∣Pr [b̃ = b

]
− 1

2

∣∣∣∣
for i = 0, 1 and j = i + 1. Also, since we know Advij(A) is the advantage on
distinguishing Game i from Game j, for any function over a Game g, i.e. any
computable value from information from the game, the following holds

|g(Game i)− g(Game j)| ≤ Advij(A).

For this proof, let us define for any Game i the function

AdviDP =
Pri
[
b̃ = 1|b = 0

]
Pri
[
b̃ = 1|b = 1

] .
From Game 0 to Game 1. It is clear that Dec(cxb , skfi) and f i(xb) + e(ri) are
computationally indistinguishable because of the correctness of the RFE scheme,
which means that Adv01(A) = 0 and therefore

Adv0DP(A) = Adv1DP(A).

From Game 1 to Game 2. The only change is swapping all the non-simulated
algorithms from RFE for their simulators. It is clear that if A could distinguish
between Game 1 and Game 2 we could construct an adversary A′ able to distin-
guish the real and ideal experiments for the 1-SEL-SIM security game for RFE.
As such we get that

Adv12(A) ≤ Adv1-SEL-SIM-RFE(A′) ≤ ε1-SEL-SIM-RFE

and therefore ∣∣Adv1DP(A)− Adv2DP(A)
∣∣ ≤ ε1-SEL-SIM-RFE.
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From Game 2 to Game 2. The view for adversary A does not change, since si
and vi are identically distributed by definition. This means that Adv23(A) = 0
and therefore

Adv2DP(A) = Adv3DP(A)

and in turn, given that B (as an adversary to C) has the same output as A we
get

Adv3DP(A) = Adv3DP(B).

To conclude the proof, we assume thatM′ is (Q, εκ)-IND-CDP, so for adver-
sary B we know

Pr3
[
b̃ = 1|b = 0

]
≤ eεκ · Pr3

[
b̃ = 1|b = 1

]
+ negl2(κ) (3)

for some negligible function negl2(·), which implies

Adv3DP(B) ≤ eεκ +
negl2(κ)

Pr3
[
b̃ = 1|b = 1

] .
Note that since Pr3

[
b̃ = 1|b = 0

]
+Pr3

[
b̃ = 1|b = 1

]
= 1 and inequality 3 holds,

then Pr3
[
b̃ = 1|b = 1

]
cannot be negligible, which in turn means that

negl2(κ)

Pr3
[
b̃ = 1|b = 1

] = negl1(κ)

for some negligible function negl1(·).
Finally, using the results from the transitions between games we get

Adv0DP(A) ≤ Adv3DP(B) + ε1−SIM−FE

≤ eεκ + negl1(κ) + ε1−SIM−FE

which implies

Pr0
[
b̃ = 1|b = 0

]
≤ eεκ · Pr0

[
b̃ = 1|b = 1

]
+

+ (negl1(κ) + ε1−SIM−FE) · Pr0
[
b̃ = 1|b = 1

]
≤ eεκ · Pr0

[
b̃ = 1|b = 1

]
+ negl0(κ)

for some negligible function negl0(·), as we wanted to see.

Remark 1. Theoretically, we can obtain an RFE scheme from a FE scheme in a
generic manner [7]. However, this approach results in inefficient constructions.
In the following section, we show that an efficient construction can be achieved
for the class of inner-product functions.
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4 Randomized Inner-Product Scheme

In this section we present our instantiation of a randomized inner-product func-
tional encrypion scheme using an arbitrary IPFE scheme and prove its security.
We finally obtain a concrete RIPFE scheme, from the general result of Theorem
1 in the previous section.

The most important concept to take a hold of is the fact that the noise must
be sampled during the key generation phase since it must be different for every
query while at the same time it must be hidden to satisfy differential privacy. The
naive idea is then to use function-hiding inner product functional encryption [13]
to hide the noise. However, it would need to be used as a building block towards
constructing a RIPFE scheme, and would only result in a pairing-based scheme
(very expensive with respect to exponentiations), since achieving function-hiding
for inner products without pairings is a well-known open problem. To circum-
vent that, we expand on the ideas by Hamdi in [28], using the concept and the
construction of a multi-input functional encryption scheme for inner product
introduced in [4]. More precisely, the function we want to implement is seen as
a two-input function:

– one is the message x is used during the encryption phase with a long-term
key u, as d = x + u. To manage the fact that a ciphertext can be used
several times with several different functional key queries, we then encrypt
such one-time ciphertext using a standard IPFE ; and

– one is a DP noise ey is used during the key generation phase with an
ephemeral key u′y, as d′y ← ey + u′y.

Next, our functional key generation generates (i) one functional secret for the
vector y using the master secret key of the basic IPFE, and (ii) one functional
key related to the two-input function encryption of [4], as zky ← 〈u,y〉 + u′y.
Finally, using the IPFE decryption and the property of the two-input functional
encryption, we can easily recover 〈x,y〉+ ey.

The final detail we must be careful with is the use of one-time pads and
which finite group we are using them in. To be able to apply exactly our previ-
ous description, the base IPFE scheme would need to take inputs from a finite
group, and have its outputs on the exact same finite group so as to be able
to subtract the one-time pads out. There exist some instantiations that satisfy
this, for example the ones in sections 4.2 and 5.2 in [9]. However, most efficient
instantiations take bounded inputs inside Z which makes the use of the one-time
pad non-trivial to implement. Despite that, by using a property which most of
current instantiations of IPFE satisfy called two-step decryption (first defined in
[4]). The basic idea is that the bounded integer inputs are encoded into finite
group where the operations of the scheme are performed and then the results are
decoded back into Z. It is in this intermediate finite group where the one-time
pad is performed.
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4.1 Formal Description of the Scheme

Now we can give the formal description. Let `,X, Y ∈ Z>0 and F`,X,Y be the
family of inner products such that y ∈ F`,X,Y means that y(x) = 〈x,y〉 for
any x ∈ Z` with ‖x‖∞ < X and y ∈ Z` with ‖y‖∞ < Y . Let IPFE =
(SetUpIPFE,EncIPFE,KeyGenIPFE,DecIPFE) be an inner-product functional encryp-
tion scheme for the family of functions F`,X,Y that satisfies the following prop-
erty: two-step decryption.

Property 1 (Adapted from Property 1, [4]). An inner-product functional encryp-
tion scheme IPFE = (SetUp,Enc,KeyGen,Dec) satisfies the two-step decryption
property if there exist PPT algorithms SetUp′,Dec1,Dec2 and a function E such
that:

1. For all κ, `,X, Y ∈ Z>0, the algorithm SetUp′(1κ,F`,X,Y ) outputs (param,msk)
where param contains a bound B ∈ Z>0 and a description of a commutative
group G (with operation ◦) of order L > ` · X · Y , defining the function
E : ZL × Z→ G.

2. For all (param,msk) ← SetUp′(1κ,F`,X,Y ), cx ← Enc(msk,x) and sky ←
KeyGen(msk,y) we have

Dec1(cx, sky) = E(〈x,y〉, noise(cx, sky))

for some noise function. Furthermore, it holds for all x,y, Pr[noise(cx, sky) >
B] < negl(κ). Note that we are assuming that the encryption algorithm works
for inputs greater than the bound.

3. Given any γ ∈ ZL and param, E(γ, 0) can be efficiently computed.
4. The function E is linear, more specifically for any γ, γ′ ∈ ZL and any

noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′, noise+ noise′).

5. For all γ < ` ·X · Y , and noise < ` ·B, Dec2(E(γ, noise)) = γ.

In other words, the decryption is done in two steps, where only the second one
is affected by the bound on the inputs and its inverse can be computed efficiently
only knowing the public parameters. The basic example are schemes based on
the DDH assumption (Section 3 in [8]), where the function E(γ, noise) = gγ with
g being the generator of the cyclic group G stated in the public parameters. It
is proven in [4] that LWE and DCR based constructions also satisfy this prop-
erty (for example Section 4 in [9] and Section 4 in [8]). It is for the inclusion
of instantiations based on approximate encryption like LWE that the noise is
incorporated to the function E .

With this property defined, we proceed to describe our randomized scheme.
Let Dε be a probability distribution over Z and F̂`,X,Yε as defined in Section
3. Then we define our randomized inner product functional encryption scheme
RIPFE = (SetUpRIPFE,EncRIPFE,KeyGenRIPFE, DecRIPFE) for the family of func-
tions F̂`,X,Yε as presented in Figure 2.
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SetUpRIPFE(1κ, F̂`,X,Yε ) :
Choose distribution Dε over Z
Choose α such that Pr[|Dε| ≥ α] = negl(κ)
Choose L > ` ·X · Y + α

u
$←− Z`L

(paramIPFE,mskIPFE)← SetUpIPFE(1κ,F`,X+α/(`·Y ),Y )

Output (paramRIPFE,mskRIPFE) = ((L,Dε, param
IPFE), (u,mskIPFE))

EncRIPFE(mskRIPFE,x) :
d← x+ u (mod L)

cd ← EncIPFE(mskIPFE,d)
Output cd

KeyGenRIPFE(mskRIPFE,y) :
ey ← Dε

u′y
$←− ZL

d′y ← ey + u′y (mod L)

sky ← KeyGenIPFE(mskIPFE,y)
zky ← 〈u,y〉+ u′y (mod L)

Output skRIPFEy = (d′y, sky, zky)

DecRIPFE(cd, sk
RIPFE
y ) :

E(〈d,y〉, noise(cx, sky))← Dec1IPFE(cd, sky)
s← Dec2(E(〈d,y〉, noise(cx, sky)) ◦ E(d′y − zky, 0))
Output s

Fig. 2. Randomized inner-product functional encryption scheme RIPFE.

4.2 Correctness and Security

First we need to verify that this is a correct randomized functional encryption
scheme for F̂`,X,Yε .

Proposition 1. The RIPFE scheme defined in Figure 2 is a correct randomized
functional encryption scheme for F̂`,X,Yε .

Proof. Let x ∈ Z` with ‖x‖∞ be any plaintext and ŷ1, . . . , ŷQ ∈ F̂`,X,Yε any set
of randomized functions. Then for any i ∈ [Q] we get that si ← Dec(cd, sk

RIPFE
yi )

satisfies the following.

si = 〈d,yi〉+ d′yi − zkyi
= 〈x,yi〉+ 〈u,yi〉+ ey + u′yi − (〈u,yi〉+ u′yi)

= 〈x,yi〉+ eyi .

This is clearly the same distribution as ŷ(x; r) for r ← R since ey is sampled
from Dε independently for every query y.
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We will now prove the simulation soundness of our scheme by lifting the
security guarantee form the base IPFE scheme to the randomized version.

Theorem 2. Let IPFE be a 1-SEL-SIM-secure inner product functional encryp-
tion scheme. Our construction RIPFE in Figure 2 is a 1-SEL-SIM-secure ran-
domized functional encryption scheme.

Proof. We will prove the result through a series of Games. Let A be a PPT
adversary playing the 1-SEL-SIM security game for RIPFE, and let κ ∈ N be a
security parameter. Changes on Game i are made over Game i − 1. Let also
SimIPFE = (EncSimIPFE,KeyGenSimIPFE) be the simulator for the IPFE scheme.

Game 0. This is the 1-SEL-SIM security real experiment for RIPFE as described
below

Exp0A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (param,msk)← SetUp0(1κ, F̂`,X,Yε )

3: cd ← Enc0(x,msk)

4: γ ← AO
0
1(·),O

0
2(·,·)

2 (cd, st1)
Output: (x, {ŷ}, {skŷ}{s}, γ)

where SetUp0, Enc0, O0
1, O0

2 are the regular RIPFE algorithms and oracles.

Game 1. In this game we simulate the ciphertext. The experiment develops into
the following.

Exp1A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (L,Dε, param
IPFE,mskIPFE)← SetUp1(1κ, F̂`,X,Yε )

3: (c∗d, st
′)← Enc1(mskIPFE)

4: γ ← AO
1
1(msk,st′,x,·),O1

2(·,·)
2 (c∗d, st1)

Output: (x, {ŷ}, {skŷ}{s}, γ)

Where the Enc1 and O1
1 algorithms are described below and SetUp1, O1

2 are the
same as in Game 0.
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SetUp1(1κ, F̂`,X,Yε ) :
Choose distribution Dε over Z
Choose α such that Pr[|Dε| ≥ α] = negl(κ)
Choose L > ` ·X · Y + α

(paramIPFE,mskIPFE)← SetUpIPFE(1κ, 1`, X + α/(` · Y ), Y )

Output (L,Dε, param
IPFE,mskIPFE)

Enc1(msk) :

d∗
$←− Z`L

st′ ← d∗

cd∗ ← EncIPFE(mskIPFE,d∗)
Output (cd∗ , st

′)

O1
1(msk, st′,x, ŷ) :

ey ← Dε

u′y
$←− ZL

d′y ← ey + u′y (mod L)

sky ← KeyGenIPFE(mskIPFE,y)
zk∗y ← 〈d∗,y〉+ u′y − 〈x,y〉 (mod L)
Output sk1ŷ = (d′y, sky, zk

∗
y)

Game 2. In this game we will simulate the noise using the KeyIdeal functionality
described in Definition 8. The experiment changes into the following.

Exp2A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (L,Dε, param
IPFE,mskIPFE)← SetUp2(1κ, F̂`,X,Yε )

3: (c∗d, st
′)← Enc2(mskIPFE)

4: γ ← AO
2
1(msk,st′,·),O2

2(·,·)
2 (c∗d, st1)

Output: (x, {ŷ}, {skŷ}{s}, γ)

Where the O2
1 algorithm is described below and SetUp2, Enc2 and O2

2 are the
same as in Game 1.
O2

1(msk, st′, ŷ) :

d′∗y
$←− ZL

v ← KeyIdeal(x, ŷ)

sky ← KeyGenIPFE(mskIPFE,y)
zk∗y ← 〈d∗,y〉+ d′∗y − v
Output sk2ŷ = (d′∗y , sky, zk

∗
y)

Game 3. In this Game we add a challenger C∗ playing the 1-SEL-SIM security
game for the IPFE scheme in the real world, with the added change that in the
decryption oracle, were it to fail to compute the response due to the inputs
being outside the bounds, it returns Dec1(cx, sky) instead of nothing. As such,
the experiment changes into the following.
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Exp3A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (L,Dε, param
IPFE, c∗d, st

′)← Enc3,C
∗
(1κ, F̂`,X,Yε )

4: γ ← AO
3,C∗
1 (st′,·),O3,C∗

2 (·,·)
2 (c∗d, st1)

Output: (x, {ŷ}, {skŷ}{s}, γ)

Where the Enc3, O3,C∗
1 and O3,C∗

2 algorithms are described below.

Enc3,C
∗
(1κ, F̂`,X,Yε ) :

Choose distribution Dε over Z
Choose α such that Pr[|Dε| ≥ α] = negl(κ)
Choose L > ` ·X · Y + α

d∗
$←− Z`L

st′ ← d∗

(paramIPFE, cd∗)← ExprealIPFE(1
κ,F`,X+α/(`·Y ),Y

ε ,d∗)
Output: (L,Dε, param

IPFE, cd∗ , st
′)

O3,C∗
1 (st′,y) :

d′∗y
$←− ZL

v ← KeyIdeal(x, ŷ)
zk∗y ← 〈d∗,y〉+ d′∗y − v
sky ← OC

∗

1 (y)
Output sk3ŷ = (d′∗y , sky, zk

∗
y)

O3,C∗
2 (cx, sk

3
y)

If DecIPFE works
s← OC∗2 (cx, sky)
Output: s+ d′∗y − zk∗y

Else
s← OC∗2 (cx, sky)
Output: Dec2(s ◦ E(d′∗y − zk∗y, 0))

Game 4. In this Game we add the simulators from the base IPFE. The experiment
develops into the following.

Exp4A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (L,Dε, param
IPFE, c∗d, st

′)← Enc4,C
∗
(1κ, 1`, 1ε, X, Y )

4: γ ← AO
4,C∗
1 (st′,·),O4,C∗

2 (·,·)
2 (c∗d, st1)

Output: (x, {ŷ}, {skŷ}{s}, γ)

Where the Enc4, O4
1 and O4

2 algorithms are described below.
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Enc4,C
∗
(1κ, F̂`,X,Yε ) :

Choose distribution Dε over Z
Choose α such that Pr[|Dε| ≥ α] = negl(κ)
Choose L > ` ·X · Y + α

d∗
$←− Z`L

st′ ← d∗

(paramIPFE, cd∗)← ExpidealIPFE (1
κ,F`,X+α/(`·Y ),Y

ε ,d∗)
Output: (L,Dε, param

IPFE, cd∗ , st
′)

O4,C∗
1 (st′,y) :

d′∗y
$←− ZL

v ← KeyIdeal(x, ŷ)
zk∗y ← 〈d∗,y〉+ d′∗y − v
sky ← O′C

∗

1 (y)
Output sk3ŷ = (d′∗y , sky, zk

∗
y)

O4,C∗
2 (cx, sk

3
y)

If DecIPFE works
s← O′C∗2 (cx, sky)
Output: s+ d′∗y − zk∗y

Else
s← O′C∗2 (cx, sky)
Output: Dec2(s ◦ E(d′∗y − zk∗y, 0))

Game 5. In this game we finalize the simulation. As such, the experiment remains
as follows.

Exp5A(1
κ, F̂`,X,Yε )

1: (x, st1)← A1 where x ∈ Z`, ‖x‖∞ < X

2: (c∗d, st
′)← EncSimC

∗
(1κ, F̂`,X,Yε )

3: γ ← AO
′C∗
1 (st′,·),O′C

∗
2 (·,·)

2 (c∗d, st1)
Output: (x, {ŷ′}, {skŷ′}{s′}, γ)

Where EncSimC
∗
corresponds to Enc4,C

∗
,O′C∗1 (st′, ·) immediately callsO4,C∗

1 (st′, ·),
and O′C∗2 (·, ·) immediately calls O4,C∗

2 (·, ·).

Analysis. Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If
b = 0 it interacts with the adversary A as in Game i, otherwise it interacts as
in Game j. At the end of the interaction, A will make its guess b̃ ∈ {0, 1}. We
define

Advi(i+1)(A) :=
∣∣∣∣Pr [b̃ = b

]
− 1

2

∣∣∣∣
for i = 0, 1.
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From Game 0 to Game 1. In this change, we have swapped u + x for d∗ in
encryption (since in key generation u = d∗ − x). As such, given that the secret
key u and the challenge x are chosen independently, which means that u + x
and d∗ are equally distributed. Therefore, Adv01(A) = 0.

From Game 1 to Game 2. Analogously to the previous step, u′y and ey are
independent, and therefore, both u′y + ey and d′∗y are equally distributed (and
u′y = d′∗y − ey). Then, Adv12(A) = 0.

From Game 2 to Game 3. Game 3 is a rewriting of Game 2 but using the real
experiment for the base IPFE with challenger C∗, where the view of the adversary
is not modified in any way. Therefore Adv23(A) = 0.

From Game 3 to Game 4. In this change we have swapped from the real to
the ideal experiment in the base IPFE scheme. As such, the distinguishing game
between Game 2 and Game 3 is the 1-SEL-SIM game for the IPFE scheme with
challenger C∗. Therefore, Adv34(A) ≤ ε∗1−SEL−SIM−IPFE.

From Game 4 to Game 5. Game 5 is a rewriting of Game 4, where the view of
the adversary is not modified in any way. Therefore Adv45(A) = 0.

Finally, adding it all up and considering that Game 0 is the real experiment
and Game 5 is the ideal experiment we get that

Advreal/ideal(A) = Adv01(A) + Adv12(A) + Adv23(A) + Adv34(A) + Adv45(A)
= ε∗1−SEL−SIM−IPFE

as we wanted to see.

Remark 2. Note that the simulation soundness in which we base our result is
against a challenger for the IPFE scheme C∗ who in case of failure of the decryp-
tion algorithm outputs Dec1IPFE(cd, sky) instead of returning nothing nothing
which is the response for the challenger C in standard simulation soundness for
IPFE schemes. However, we argue that given the fact that our security model
does not contemplate a decryption oracle with inputs a ciphertext and a function
(instead of ciphertext and functional key) both challengers are equivalent.

Remark 3. Note that even if we have only proven 1-SEL-SIM security for our
proposal, this implies 1-SEL-IND which can be then extended to arbitrarily many
ciphertexts, as shown in [27]. This means that, in terms of security, by relying
on the less constraining indistinguishability security we have selective security
for arbitrarily many ciphertexts.

4.3 Efficiency Considerations

For a generic IPFE, our RIPFE scheme needs no extra inner-product slot to handle
the noise, in other words, it is constructed with little overcost (both in storage
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Table 5. Generic efficiency estimates for RIPFE.

msk cx sky
Size IPFE`msk + `|G| IPFE`cx IPFE`sky + 2|G|

SetUp Enc KeyGen Dec

Comp. time IPFE`SetUp + ` · tUsampl IPFE`Enc + ` · tadd
IPFE`KeyGen + tDsampl + tUsampl+

+` · tprod + (`+ 1) · tadd
IPFE`Dec + tadd + tsubs

as in computation time) in respect to the base IPFE scheme. More in detail, in
storage this overcost consists in the extra one-time pad key u in the master secret
key and two extra integers (namely d′y and zky) in the functional decryption key.
In computation time the overcost consists: during the SetUp the sampling of u,
in Enc an extra ` additions, in KeyGen sampling ey and u′y together with an
inner product and two extra additions and in Dec there is an extra addition and
substraction as well as the computation of the function E . All those elements are
summarized in Table 5. In regards to the notation on this table, the integer κ
is the security parameter, and we denote as IPFE`s the size or computation time
(depending on what the string s makes reference to) of the base IPFE scheme
for ` coefficients.

5 Private encrypted database

In this section we describe our full system for a computationally differentially
private encrypted database supporting linear queries, following the model given
in Section 2.4. Our system is based on the randomized inner product functional
encryption scheme given in the previous section, and the generic DP mechanism
described in Section 3. We prove that such system is secure and private even
against a collusion between the analyst and the server, using the security re-
sults of the two previous sections. We finally give some words about a practical
deployment of such system.

5.1 Description of the System

LetDO be a Data Owner, S be an external server that stores sensitive databases,
and let A be an analyst wanting to make requests on the stored databases. The
overall idea of our system is to use the randomized inner product scheme to cover
the private queries from the analyst, and to get advantage of the non-noisy IPFE
scheme embeded into the randomized version (see the previous section for de-
tails) to answer the queries from the database owner, thanks to some non-noisy
keys. Indeed, following the formalization given in Section 2.4, the EQuery from
DO are only based on the IPFE, while the PQuery from A are based on the
RIPFE. The latter is divided into two parts: the SetUp and the KeyGen are
executed during the system setup and the Dec is done during the query part.

Let us now formally describe the private encrypted database. Let Dε be a
distribution over Z, let IPFE = (SetUpIPFE,EncIPFE, KeyGenIPFE,DecIPFE) be a
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generic inner product functional encryption scheme for the family of functions
F`,X,Y satisfying two-step decryption and let RIPFE = (SetUpRIPFE,EncRIPFE,
KeyGenRIPFE,DecRIPFE) be the randomized inner product functional encryption
scheme described in Figure 2, defined using the same IPFE. This is essentially
that the same IPFE scheme is used both alone for the EQuery from DO and as
the underlying primitive for the RIPFE scheme used for the PQuery.

Our private encrypted database supporting inner product queries over a static
database PIPFE = (SetUp,EQuery,PQuery) is then given in Figure 3.

SetUpDO,S,A((1
κ, F̂`,X,Y

ε , x);⊥; (y1 . . . yQ)) :
1. DO computes the following
a. (mskRIPFE, paramRIPFE)← SetUpRIPFE(1κ, F̂`,X,Yε ).
b. cx ← EncRIPFE(mskRIPFE,x).
c. skRIPFEyi ← KeyGenRIPFE(mskRIPFE,yi) for i ∈ [Q].

2. DO keeps mskRIPFE secret.
3. S receives cx.
4. A receives skRIPFEy1 , . . . , skRIPFEyQ

EQueryDO,S((mskRIPFE, g); cx) :
1. DO computes skIPFEy ← KeyGenIPFE(mskIPFE, g).
2. DO receives cx from S.
3. DO computes r ← DecIPFE(cx, sk

IPFE
g )− 〈u, g〉.

PQueryA,S(sk
RIPFE
yi ; cx) :

1. S receives skRIPFEyi from A.
2. S computes r ← DecRIPFE(cx, sk

RIPFE
yi ).

3. A receives r.

Fig. 3. Private functional encryption scheme supporting inner product queries PIPFE

5.2 Correctness, Security and Privacy

We need to prove the full security of our PIPFE scheme.

Theorem 3. Let IPFE be a correct inner product functional encryption scheme
and let RIPFE be as described in Figure 2. Then the PIPFE described in Figure 3
is a correct private functional encryption scheme for static databases supporting
the inner product family of queries with distribution D.

Proof. For EQuery, the correctness of the base IPFE gives us that Pr[s← Dec(cx,
skg) 6= 〈x+u, g〉] = negl(κ) as long as these are distributed as follows (param,msk)
← SetUp(1κ), cx ← Enc(msk,x) and skg ← KeyGen(msk, g), conditions satisfied
by the protocols SetUp and EQuery from PIPFE, which gives us the expected
equality between the output of EQuery and 〈x, g〉.
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For PQuery, we need to prove that the output of PQuery(skRIPFEyi , cx) is
computationally indistinguishable from 〈x,y〉 + ei with ei ← D for all i ∈ [Q],
when cx and skRIPFEyi are generated in SetUp. From the SetUp defined in PIPFE,
this comes from Proposition 1.

Theorem 4. Let IPFE be a 1-SEL-SIM-secure inner product functional encryp-
tion scheme and let RIPFE be as described in Figure 2. Then our construction
PIPFE described in Figure 3 is a 1-database secure and private functional encryp-
tion scheme for static databases supporting the inner product family of queries
with distribution D.

Proof. First of all, for the simulation part of Definition 11 (Table 4), let us define
the PPT simulator Sim = (SetUpSim,EQuerySim) as follows where Y denotes the
set of Q queries y1, . . . ,yQ ∈ F and EncSim,KeyGenSim are the simulators for
the RIPFE scheme. For the exact formulation of these simulators we refer to the
proof of Theorem 2.

SetUpSimC,A(1
κ, F̂

`,X,Y

ε ;Y ) :
1. C computes the following
a. (c∗x, st′)← EncSim(1κ)
b. sk∗yi ← KeyGenSim(st′, ŷi) for i ∈ [Q]

2. C receives st′
3. A receives c∗x and sk∗y1 . . . sk∗yQ .

EQuerySimC,A((st
′, g); c∗x) :

1. C retrieves c∗x from A

The indistinguishability between SetUp and SetUpSim comes directly from
the indistinguishability of the EncSim and KeyGenSim simulators, which is proven
in Theorem 2, while EQuery and EQuerySim are indistinguishable to the adver-
sary since its view of the protocol does not change.

Finally, for the privacy mechanism part of Definition 11, from the definition of
PIPFE, the mechanism in Equation 1 is the same as the mechanism in Equation
2. Consequently, the privacy comes directly from Theorem 1.

6 Implementation Considerations

6.1 Differential Privacy Considerations

The first choice is what distribution will be used for the privacy mechanism.
Since the distribution Dε must be over Z, we take for the DP mechanismM′ the
geometric distribution, as described in [26]. More specifically, the mechanismM′
with error distribution sampled from D ∼ Geo(exp(−ε/∆)) is a (ε, 0)-DP mecha-
nism, where ∆ is the `1-sensitivity of the family of functions F and Geo(·) refers
to the two-sided geometric distribution. We refer to Appendix D for the proof.
For the sampling of this two-sided geometric we use the fact that a two-sided ge-
ometric distribution is the substraction of two one-sided geometric distributions
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as shown in Proposition 3.1 in [30], while the one-sided geometric is sampled
through the same algorithm as the NumPy library [2] rewritten in C. Having
the precise distribution allows us also to make estimates about utility, which in
broad terms measures how close the noisy response is to the actual value.

It follows that the utility of our mechanism is O
(
1
ε

)
·∆·log

(
2
δ

)
for any fixed δ

(for the proof we refer to Appendix D). This means that there is a linear relation
between the sensitivity of our family of queries and the size of the noise. As such
it would be ideal to control this sensitivity. In the case of the inner product
functionality, the sensitivity of a family of vectors is the sum of the maximum
coefficient of each of them, which is bounded by Q·Y . So in general the bigger the
coefficient the bigger the noise, which makes sense since the purpose of this noise
is to blur the statistic, and bigger coefficient generally means bigger difference
between neighbouring databases. In comparison to the work by Bakas et al. [11],
given that they add noise to each coefficient, their utility depends on the size of
the database ` instead4.

6.2 Implementation Specifics

For a concrete implementation we have opted for the IPFE scheme over the ring
Z from [9] (the scheme is shown in Appendix E), which is proven to be simulation
sound under the DDH assumption [8]. The DDH-based constructions are actually
the most efficient currently known. Note that the decryption algorithm will only
be able to recover the value when computing the discrete logarithm is efficient,
therefore the responds needs to be smaller than some bound B = poly(κ). Then,
by using the baby-giant steps algorithm presented in [38] we can recover the
discrete logarithm in Õ(B1/2). For the practical implementation we will consider
B to be ≈ 240, so that the discrete logarithm is computed in ≈ 0.5s.

Using our notation, the query result will be at most ` · X · Y + α with
probability δ where α represents the noise size and is computed as in Proposition
3 in Appendix D, so we can take α = (Q · Y )/ε · log(2/δ). We will assume the
number of queries asked Q = 16, the bound for these queries Y = 27 and
the parameters ε = 0.1 and δ = 2−100 all constant, and variate the amount
of database entries ` with the bound these entries X, while putting a lower
bound of 16 bits to X. Note that these values can be changed while keeping
` · X · Y + α ≈ 240 or increased if we can assume a longer computation time
for the discrete logarithm and therefore decryption time. In the case of very
large number of entries, the discrete logarithm computation time is no longer
the dominating factor so the bound B could be increased without notable effects
on the decryption computation time, this is the reason why the lower bound to
|X| makes sense.

The proof of concept implementation was written in C and using the library
CiFEr [1]. Some optimization was done, given the fact that we use a secret-
key scheme instead of a public-key one, which allows us to reduce computations
during setup given that the secret key can be used in the encryption and the
4 Note that the sensitivity of the summation query is 1.
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Table 6. Efficiency values for RIPFE instantiation based in [8].

` |X| msk cx sky

Sizes

10 24 3 MB 3 KB 1 KB
100 21 3 MB 37 KB 1 KB
1 000 18 4 MB 375 KB 1 KB
10 000 16 13 MB 3 MB 1 KB
100 000 16 112 MB 36 MB 1 KB
1 000 000 16 1 GB 366 MB 1 KB

` SetUp Encrypt KeyGen Decrypt

Comp. time

10 2.4442 s 0.0199 s 0.0001 s 0.6717 s
100 2.4832 s 0.1810 s 0.0001 s 0.6899 s
1 000 2.4468 s 1.7230 s 0.0005 s 0.7506 s
10 000 2.4533 s 17.2846 s 0.0060 s 1.2976 s
100 000 2.5095 s 172.3905 s 0.0603 s 5.0688 s
1 000 000 3.1905 s 1720.3186 s 0.5974 s 24.8064 s

adversary has no access to this encryption key, therefore, precomputations for
fast exponentiations can be performed during set up. More concretely, we apply
the fixed-base comb method for fast exponentiations [34, Chapter 14, Section
14.6.3 iii] in the exponentiations used during the encryption (with precompu-
tations done during set up) and the wNAF-based interleaving exponentiation
method for fast simultaneous multiple exponentiation [36, Section 3.2] for the
multiple exponentiations during the decryption algorithm.

We give in Table 6 the resulting values when run for different values of ` for
128-bit security (assuming a 3072 bit RSA modulus, as recommended by the
NIST). The code was executed with Intel R© CoreTM i7-9800X (3.8GHz). Note
that due to the form of the construction (see Appendix E) the encryption al-
gorithm is easily parallelisable, so the timings could be easily reduced by using
more cores. The timings grow linearly with the number of entries of the database
` for all algorithms, which is a lower bound for inner-product functional encryp-
tion schemes, so the overcost to obtain computational DP is quite low. In the
case of the decryption and the set up algorithms the linear growth is overshad-
owed for small ` by computations that are constant by choice of the parameters.
In case of the decryption algorithm this is the discrete logarithm computation
for ` < 100 000 while in case of the set up it is the precomputations for the
fixed-base comb algorithm for ` < 1 000 000. With these values we show the
practical utility of our construction.

7 Conclusion

Our results may inspire follow-up works on the subject. Reducing the require-
ments for the reductions from simulation-based security to indistinguishability-
based security would be an intriguing challenge. Moreover, it would tackle the
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issue of multiple ciphertexts, as in the indistinguishability setting, security for
one ciphertext usually implies security for multiple ciphertexts.

Another direction is to extend these results to the dynamic database setting,
which would vastly open the implementation possibilities. However, due to the
nature of dynamic databases, where the analyst can reuse the functional key
to retrieve the noisy statistic from the updated database, adaptive simulation
security for an unbounded number of ciphertexts might be required. In the case
of inner product functional encryption, this is not possible, as mentioned in
[8]. Furthermore, most efficient privacy mechanisms for dynamic databases rely
on adding noise for each change to the database. As a result, some form of
homomorphism must be implemented in conjunction with our design.

Acknowledgements We thank Bastien Vialla, Nicolas Desmoulins and Maxime
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A Definitions for Functional Encryption

Generic functional encryption schemes can be defined as private key or pub-
lic key. We will use the private key version to better conform with the model
presented in Figure 1. Since we are considering a sole database owner protect-
ing their database outsourced to the server, it makes little sense to allow for
other entities to encrypt over the database. For the purpose of this section we
will consider X to be a database space, S an output space and F a family of
deterministic functions f : X → S.

Definition 12 (Adapted from Definition 2.3, [3]). Let κ ∈ N>0 be a secu-
rity parameter. We define a secret-key functional encryption scheme supporting
the family of functions F the following tuple of PPT algorithms:

– SetUp(1κ,F) : given the security parameter as input, it outputs some public
parameters param and a master secret key msk. We will assume the public
parameters as inputs in all other algorithms.

– Enc(msk, x) : given the master secret key msk and a plaintext x ∈ X as
inputs, it outputs a ciphertext cx.

– KeyGen(msk, f) : given the master secret key msk and a function f ∈ F as
inputs, it outputs a functional key skf .

– Dec(cx, skf ) : given a ciphertext cx and a functional key skf as inputs, it
outputs a string s.

As usual with encryption schemes, there is a correctness notion, which fol-
lows the standard definitions of correctness for encryption: for any plaintext x
and function f ∈ F , then Pr[s ← Enc(cx, skf ) 6= f(x)] = negl(κ) where the
probability is taken over (param,msk) ← SetUp(1κ,F), cx ← Dec(msk, x) and
skf ← KeyGen(msk, f).

Also, as with correctness, there are two main security definitions analogous
to those for encryption: indistinguishability and simulation security. However,
unlike in public key encryption, these two definitions are not equivalent, specif-
ically, indistinguishability-based security does not imply simulation-based secu-
rity. This was already discussed by Boneh, Sahai and Waters in [14] and O’Neill
in [37] which leads to a plethora of different security definitions.

Another notable difference in the definitions is due to the appearance of the
functional keys which are independent to the ciphertexts. As such there is a
distinction in when the adversary is allowed to ask for functional keys. We say
an adversary A is selective if it is only allowed to ask for functional keys after
setting the challenge, while we say A is adaptive if, on top of that, it can also ask
for functional keys before setting the challenge. There has been plenty of study
about possibility and impossibility of each type of security (selective or adaptive,

https://doi.org/10.1007/978-3-642-32873-2_2
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indistinguishability or simulation based) for generic functional encryption with
positive and negative results. Therefore, it must be evaluated in a case by case
basis for each type of functionality. In the case of inner product functional en-
cryption it is well-known (as mentioned in [8]) that adaptive simulation security
for an unbounded number of ciphertexts is not possible.

In this work we focus on selective simulation security against one challenge
ciphertext for secret key functional encryption, so let us give its definition.

Definition 13 (Adapted from Section 2.3, [8]). Let κ ∈ N>0 be a security
parameter and let FE = (SetUp,Enc, KeyGen,Dec) be a functional encryption
scheme for the function family F . We say FE is 1-SEL-SIM secure if there exists
a PPT simulator Sim = (EncSim,KeyGenSim) such that for every PPT adversary
A = (A1,A2), the outputs of the real and ideal experiments experiments (see
Table 7) are computationally indistinguishable, where the oracles are described
as follows.

Table 7. Real and ideal experiments in 1-SEL-SIM security for FE.

ExprealA (1κ,F)
1: (x, st1)← A1 where x ∈ X
2: (param,msk)← SetUp(1κ,F)
3: cx ← Enc(x,msk)

4: γ ← AO1(msk,·),O2(·,·)
2 (cx, st1)

Output: (x, {f}, {skf}, {s}, γ)

ExpidealA,Sim(1
κ,F)

1: (x, st1)← A1 where x ∈ X
2: (param, c∗x, st′)← EncSim(1κ,F)
3: γ ← AO

′
1(st
′,·),O′2(·,·)

2 (c∗x, st1)
Output: (x, {f ′}, {sk′f}, {s′}, γ) text

1. Real Experiment: O1(msk, ·) refers to the non-simulated key generation
oracle KeyGen(msk, ·). The set {f} denotes the key queries made by A2.
O2(·, ·) refers to the decryption oracle Dec(·, ·). The sets {skf}, {s} denote
the functional keys queried by A and the responses of the oracle respectively.

2. Ideal Experiment: O′1(st′, ·) refers to the simulated key generation oracle
KeyGenSim(st′, ·). The set {f ′} denotes the key queries made by A2.
O′2(·, ·) refers to the decryption oracle Dec(·, ·). The sets {sk′f}, {s′} denote
the functional keys queried by A and the responses of the oracle respectively.

B Discussion about other Privacy Enhancing
Technologies

Privacy enhancing technologies (PETs) are a compendium of technologies in-
cluding both functional encryption as well as differential privacy, so it begs the
question whether other of these technologies could be used to fulfill the model
at discussion, more specifically fully homomorphic encryption (FHE) and multi-
party computation (MPC).

FHE encompasses encryption schemes with the property that one can operate
on the ciphertexts with a ring structure while maintaining the structure of the
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underlying plaintexts (i.e. the addition or multiplication of ciphertexts is a ci-
phertext of the corresponding operation over the plaintexts). As most encryption
schemes, let them be public key or secret key, only the (private) secret key can
be used for decrypting any ciphertext (either pre or post computation) and this
leads to an issue in our model from Figure 1, since the decryption will need to
be done by the database owner. The scheme would be as follows for a database
x = (x1, . . . , x`) and linear query y = (y1, . . . , y`), the database owner sends the
encrypted database to the server (note that in this case the ciphertext will need
to be cut into pieces cx1 , . . . , cx`). Then whenever an analyst has a query they
send it to the database owner who encrypts to get cy1 , . . . , cy` . The database
owner sends the ciphertexts to the server who computes c〈x,y〉 =

∑
cxi · cyi and

returns it to the database owner. The database owner decrypts the ciphertext
and samples some noise before sending the noisy statistic to the analyst, as it is
shown in Figure 4.

cyi ← Enc(yi)

〈x,y〉 ← Dec
(
c〈x,y〉

)
e← D

Database Owner

Encrypted database
cx1 , . . . , cx`

c〈x,y〉 =
∑
cxi · cyi

Server

Query y

Analyst

cy1
, . .
. , c

y`

c〈x,
y〉

y

〈x,y〉+ e

Fig. 4. Diagram of interactions for the FHE based solution.
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Note that in this case there is no interaction between the server and the
analyst, thus defeating the purpose of FHE, since the database owner could send
an encrypted database through a regular encryption scheme and for each query
retrieve and decrypt the ciphertext, to then compute the query and the noise
for answering the analyst.

MPC includes very general forms of computation, usually revolving around
secret sharing and the computation of those secrets under specific circumstances.
The drawback of using MPC is usually the high level of interaction between
the several parties to allow for the recovery of the secret. In this case, a 2PC
protocol could be conceived where one same secret share could be used to recover
different functions of the database when interacting with different shares from
the other party. In such position then, referencing Figure 1, step 1 would be
sending this “privileged” share related to the database, while step 2 would entail
the computation of a share corresponding to the query. Finally step 3 would be
the 2PC protocol mentioned before.

C A Trivial Scheme

In this appendix we give a trivial scheme that satisfies simulation security by the
definition in [27] but does not satisfy our definition. This is due to the fact that
the randomness is given out with the functional key. Let F and F̂ be defined as
in Section 3 for some distribution D and FE = (SetUpFE,EncFE,KeyGenFE,DecFE)
be a functional encryption scheme for the family of functions F . We define the
following randomized functional encryption scheme RFE = (SetUpRFE,EncRFE,
KeyGenRFE,DecRFE) for the family of randomized functions F̂ . See Figure 5.

SetUpRFE(1κ) :

(mskFE, paramFE)← SetUpFE(1κ)
Output (mskRFE, paramRFE) = (mskFE, paramFE)

EncRFE(mskRFE, x) :
cx ← EncFE(mskFE, x)
Output cx

KeyGenRFE(mskRFE, f̂) :
ef ← D

skf ← KeyGenFE(mskFE, f)
Output skRFE

f̂
= (ef , skf̂ )

DecRFE(cx, sk
RFE
f̂

) :

f(x)← DecFE(cx, skf )
s← f(x) + ef
Output s

Fig. 5. Trivial RFE scheme
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It is straight-forward to see that as long as FE is 1-SEL-SIM secure, RFE
will also be 1-SEL-SIM under the definition in [27]. The simulators are obtained
by substituting the FE algorithms by their simulators and, since the master
secret key is only used in those algorithms, the simulators will hold for RFE.
Let SimFE = (EncSimFE,KeyGenSimFE) be the simulators for the FE scheme, we
construct the following RFE simulators SimRFE = (EncSimRFE, KeyGenSimRFE).

EncSimRFE(1κ) :

(param, c∗x, st
′)← EncSimFE(1κ)

Output (param, c∗x, st
′)

KeyGenRFE(st′, f̂) :
ef ← D

sk∗f ← KeyGenSimFE(st′, f)

Output sk∗RFE
f̂

=
(
ef , sk

∗
f̂

)

This counter-example is for 1-SEL-SIM security so that the randomized func-
tion f̂ complies with the definition of randomized function. It can be extended
to N -SEL-SIM security by adding noise to the encryption too.

However, this scheme is not 1-SEL-SIM under our definition since the key
generation simulator is unable to “extract” ef from a value vf received from
KeyIdeal given the information it has access to. The only way to obtain ef from
vf would be to know the challenge plaintexts, but from Definition 8 it is clear
that the key generation simulator has no access to the challenges. Therefore,
any scheme which gives out the randomness in the functional key will not satisfy
simulation security under our definition, which is desirable for our use-case. This
means that no randomized functional encryption scheme giving out the noise in
the functional key will be 1-SEL-SIM under our definition as we wanted.

D Privacy and utility of the Geometric mechanism

Proposition 2. Let X be a database space, S = ZQ, F be a family of queries
and let f ∈ FQ. Let D be a random variable, D ∼ Geo(exp(−ε/∆f )). Then the
geometric mechanism defined as

Mf (x; r) := fi(x) + e(ri), for i ∈ [Q]

where x ∈ X and e(ri)← D is (ε, 0)-DP.
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Proof. Let t ∈ ZQ, then

Pr[Mf (x) = t]

Pr[Mf (x′) = t]
=

Q∏
i=1

Pr[fi(x) + e(ri) = ti]

Pr[fi(x′) + e(ri) = ti]

=

Q∏
i=1

exp
(
−ε·|ti−fi(x)|

∆f

)
exp

(
−ε·|ti−fi(x′)|

∆f

)
≤

Q∏
i=1

exp

(
ε

∆f
|fi(x′)− fi(x)|

)
= exp

(
−ε
∆f
‖f(x′)− f(x)‖1

)
≤ exp(ε).

Now adding for all t ∈ S

Pr[Mf (x) ∈ S]
Pr[Mf (x′) ∈ S]

=

∑
t∈S Pr[Mf (x) = t]∑
t∈S Pr[Mf (x′) = t]

≤
∑
t∈S e

ε · Pr[Mf (x
′) = t]∑

t∈S Pr[Mf (x′) = t]

= eε

as we wanted.

Note that ∆f can be changed by any bigger constant, so by using ∆ we
eliminate the dependance on f .

Proposition 3. The Geometric mechanism as described in Proposition 2 is(
O
(
1
ε

)
·∆ · log

(
2
δ

)
, δ
)
-useful.

Proof. We want to find for any given δ, the corresponding minimum α in regards
to utility. As such we need to solve the inequation for an 1−δ, which is the same
as inverting the inequality inside the probability and compare to δ inverting the
equality outside too. Note that substracting f(x) to the mechanism will always
leave us just a sample of the geometric distribution D ∼ Geo(ε/∆).

Pr [|D| ≥ α] = 2 ·
∞∑
k=α

Pr [D = k]

= 2 ·
1− exp

(−ε
∆

)
1 + exp

(
− ε
∆

) ∞∑
k=α

exp

(
−ε
∆

)k
= 2 ·

1− exp
(−ε
∆

)
1 + exp

(−ε
∆

) · exp
(−ε
∆

)α
1− exp

(−ε
∆

)
≤ δ
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Which in turn gives us

α ≥ ∆

ε
·
(
log

(
2

δ

)
− log

(
1 + exp

(
−ε
∆

)))
≈ O

(
1

ε

)
·∆ · log

(
2

δ

)
as we wanted to see.

E Implemented Scheme

We present the DDH-based scheme first proposed in [9] and proven simulation
sound against selective adversaries in [5] and against adaptive adversaries in [8].
This scheme is public-key, but we transform it into secret-key by incorporating
the master public key into the master private key.

Encryption Scheme 1 (Adapted from Section 3, [8])

– SetUp(1κ,F`,X,Y ) : Choose a cyclic group G of prime order q > 2κ and
two generators g, h $←− G. Then for all i ∈ [`] sample si, ti

$←− Zq and compute
hi = gsi · hti . Define

param = (X,Y, `,G, g, h) and msk = {si, ti, hi}i∈[`]

– Enc(msk, x) : To encrypt a vector x ∈ Z`q with ‖x‖∞ < X, sample r $←− Zq
and compute

C = gr, D = hr, {Ei = gxi · hri }i∈[`].

Output cx = (C,D,E1, . . . , E`).
– KeyGen(msk, y) : To compute a functional decryption key for the vector y

with ‖y‖∞ < Y compute sy = 〈s,y〉 and ty = 〈t,y〉. Output sky = (sy, ty).
– Dec(cx, sky) : Given a ciphertext cx = (C,D,E1, . . . , E`) and a functional

decryption key sky = (sy, ty) compute

Ey =

∏`
i=1E

yi
i

Csy ·Dty
.

Finally compute s = logq(Ey) and output s.

This scheme is proven correct and secure in [8] (Section 3, Theorem 1), and
satisfies the two-step decryption property (Property 1). More in particular, the
function E is computing the power of the generator E(γ, noise) = gγ , there-
fore the PPT algorithm Dec2 is the baby-giant steps algorithm to compute the
discrete logarithm and the PPT algorithm Dec1IPFE is computing the value Ey.

However, it is a public key scheme and for our construction only a secret key
scheme is needed. Therefore we can slightly change it to reduce the amount of
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computations needed by using the master secret key in the encryption algorithm.
On top of that, we implemented the fixed-base comb method for fast exponen-
tiation, and we consider the precomputations needed Fg, Fh part of the public
parameters. As such, the randomized encryption scheme we have implemented
is as follows.

Encryption Scheme 2

– SetUp(1κ, F̂
`,X,Y

) : Define Dε as Geo(−ε/∆), and as such α = (κ ·∆)/ε.
Choose a cyclic group G of prime order q > 2κ with operation ◦ and two
generators g, h $←− G and compute Fg, Fh the precomputations for the fixed-

base com method for fast exponentiation. Set L = q and sample u
$←− Z`q.

Then for all i ∈ [`] sample si, ti
$←− Zq. Define

param = (X,Y, `,G, g, h, Fg, Fh) and msk = (u, {si, ti}i∈[`])

– Enc(msk, x) : To encrypt a vector x ∈ Z`q with ‖x‖∞ < X, compute d =

x+ u (mod q) and then sample r $←− Zq and compute,

C = gr, D = hr, {Ei = gdi+si·r · hti·r}i∈[`].

Output cd = (C,D,E1, . . . , E`).
– KeyGen(msk, y) : To compute a functional decryption key for the vector y

with ‖y‖∞ < Y , first sample ey ← Geo(−ε/∆) and u′y
$←− Zq. Then compute

d′y = ey + u′y (mod q) and zky = 〈u,y〉 + u′y (mod q). Finally, compute
sy = 〈s,y〉 and ty = 〈t,y〉 and output sky = (d′y, sy, ty, zky).

– Dec(cd, sky) : Given a ciphertext cd = (C,D,E1, . . . , E`) and a functional
decryption key sky = (sy, ty) compute

Ey =

∏`
i=1E

yi
i

Csy ·Dty
.

Finally compute s = logq(Ey ◦ gd
′
y−zky ) and output s.
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