
On Efficient and Secure Compression Modes for
Arithmetization-Oriented Hashing

Elena Andreeva1, Rishiraj Bhattacharyya3, Arnab Roy2, and
Stefano Trevisani1

1 TU Wien, Austria
2 University of Innsbruck, Austria
3 University of Birmingham, UK

Abstract. ZK-SNARKs, a fundamental component of privacy-oriented payment systems,
identity protocols, or anonymous voting systems, are advanced cryptographic protocols for
verifiable computation: modern SNARKs allow to encode the invariants of a program, ex-
pressed as an arithmetic circuit, in an appropriate constraint language from which short,
zero-knowledge proofs for correct computations can be constructed.
One of the most important computations that is run through SNARK systems is the ver-
ification of Merkle tree (MT) opening proofs, which relies on the evaluation of a fixed-
input-length (FIL) cryptographic compression function over binary MTs. As classical, bit-
oriented hash functions like SHA-2 are not compactly representable in SNARK frameworks,
Arithmetization-Oriented (AO) cryptographic designs have emerged as an alternative, effi-
cient solution.
Today, the majority of AO compression functions are constructed from permutation-based
hashing modes, such as Sponge. While this approach allows cost savings, compared to modes
based on blockciphers, as it does not require key-scheduling, AO blockcipher schedulers are
often cheap to compute. Furthermore, classical bit-oriented cryptography has long studied
how to construct provably secure compression functions from blockciphers, following the
Preneel-Govaerts-Vandewalle (PGV) framework. The potential efficiency gains together with
the strong provable security foundations in the classic setting, motivate the study of AO
blockcipher-based compression functions.
In this work, we propose AO PGV-LC and PGV-ELC, two AO blockcipher-based FIL com-
pression modes inspired by and extending the classical PGV approach, offering parametrizable
input and output sizes and coming with provable security guarantees in the AO setting. We
prove the collision and preimage resistance in the ideal cipher model, and give bounds for
collision and opening resistance over MTs of arbitrary arity.
We compare experimentally the AO PGV-ELC mode over the Hades blockcipher with its
popular and widely adopted Sponge instantation, Poseidon, and its improved variant Po-
seidon2. Our resulting constructions are up to 3× faster than Poseidon and 2× faster than
Poseidon2 in native x86 execution, and up to 50% faster in the Groth16 SNARK framework.
Finally, we study the benefits of using MTs of arity wider than two, proposing a new strategy
to obtain a compact R1CS constraint system in such case. In fact, by combining an efficient
parametrization of the Hades blockcipher over the PGV-ELC mode, together with an optimal
choice of the MT arity, we measuerd an improvement of up to 9× in native MT construction
time, and up to 2.5× in proof generation time, compared to Poseidon over binary MTs.

Keywords: Hash function · Block cipher · Arithmetization-Oriented · Merkle tree · Zero-
Knowledge · SNARK · Poseidon

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 2

1 Introduction

Zero-Knowledge Frameworks and Hash Functions. Zero-Knowledge Proofs (ZKP) [37,36] are
advanced cryptographic protocols which allow a prover to convince a verifier about the solvability of
some problem instance, yet without having to reveal the solution. Nowadays, general-purpose, zero-
knowledge Succinct Non-interactive ARgument of Knowledge (ZK-SNARK) [46,66,13,47,34,77], al-
low the prover to build short proofs for the computational integrity of some bounded algorithm,
which can be efficiently checked by any number of verifiers in a non-interactive way. This process
involves an arithmetization step, where the invariants of the algorithm are encoded in a set of
algebraic constraints [35,10,34]. ZK-SNARKs are extensively used for privacy-preserving payment
systems [11,75,21], anonymous distributed storage systems [69], authenticated machine learning and
image processing [55,65], anonymous voting [45], to name a few [81].

Cryptographic hash functions are fundamental building blocks for SNARKs and their security
and efficiency. Hash functions compress either fixed-input-lengths (FIL, a.k.a. compression func-
tions) or variable-input-lengths (VIL) and where necessary we make this distinction. In SNARK
systems hash functions are used for a variety of tasks ranging from data integrity checks, com-
mitment schemes to setting up non-interactive proofs with the Fiat-Shamir transform [22]. More
specifically, two the most prominent use cases of hash functions in ZK-SNARKs are:

– Efficient and secure zero-knowledge set membership proofs based on the Merkle Tree (MT)
hash accumulator, a fundamental part of privacy-preserving blockchains like Zcash and Filecoin
[11,69]. In this setting, users U1, . . . ,Um insert their values v1, . . . ,vn (e.g. unspent transaction
in ZCash) in the MT accumulator T . The MT root value is published. To claim ownership of
vj , the user must prove knowledge of the value. The ZK proof is a proof of computation for the
opening proof (Def.2.10) for the MT. The latter is a sequence of preimages of FIL compression
functions for values along the MT path that are combined to obtain the MT root. In these proof
systems, the size of the hash function arithmetic circuits, i.e. its multiplicative complexity over
a prime field Fp, is the dominant cost metric, rather than its plain or “native” performance.

– In recursive SNARK frameworks, such as Fractal [23] or Halo Infinite [17], the entire compu-
tation can be viewed as consecutive applications of a chain of functions f1, . . . , fm on some state
x0, where each fi leads to an intermediate result xi, and a proof of correctness must be handed
to the next prover (who computes fi+1). Hence, the prover Pi observes of its own computation
fi(xi−1) and a proof of correctness from the previous prover. The verifier Vi checks the correct-
ness of fi−1 from the corresponding proof πi−1. In proof systems where the (inner) commitment
for πi−1 consists in an MT opening, the verifier Vi executes again the FIL compression function
underlying the MT. The efficiency of such applications critically depends on the minimization
of both the hash function circuits size and native running time.

In both settings, standard or classical choices of hash functions (e.g. SHA-2 or SHA-3 [27]) are
the bottleneck of the computation since their arithmetization requires a huge number of algebraic
constraints, slowing down significantly the proof generation process. The efficiency of SNARK
systems depend on the size, and particularly on the multiplicative complexity, of the arithmetic
circuit of the hash function and that over a large prime field Fp. Hence, to optimize performance
in the SNARK setting, a hash function design should optimize both its arithmetic circuit size and
its multiplicative complexity. Additionally, when the hash function is used in the Merkle tree, it
accepts FIL inputs, meaning that taking into account excessive design requirements (e.g. padding
or iterating for VIL hash functions) incurs further complexity.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 3

Arithmetization-Oriented Hash Functions. Driven by the efficiency requirements of modern
ZK proof systems, a number of so-called Arithmetization-Oriented (AO) hash and compression
functions were proposed in the literature. The AO hash function main features can be summarized
as follows:

– They are defined over large prime fields Fp, where usually p ≈ 2256, and Fp is the scalar fields
of some elliptic curve (Table 2).

– They are constructed in a modular way, by applying a permutation-based mode of operation to
either a keyless permutation [39,19,38] or a fixed-key blockcipher [1,3,41,79,42,74] (realizing also
a permutation). The underlying permutation is parameterized by the size of the input (∈ Fn

p),

while the hash function is parameterized by the size of the output (∈ Fl
p, with l < n).

– They aim at reducing the arithmetization cost over ZK-SNARK frameworks. Hash functions
that are devised for arbitrary choices of field and proof system include MiMChash [1], GMiM-
CHash [2], Rescue Prime [3], Poseidon [41], Poseidon2 [42], Anemoi [19], Griffin [38], and
Arion [73,74]. Hash functions that are devised for only specific proof systems and choices of p in-
clude Reinforced Concrete [39], Tip5 [80], and Monolith [40]: these designs aim at improving
the native performance by using lookup tables, but require a SNARK system which supports
lookup constraints [33,23].

Implementation Considerations. In the landscape of ZK-SNARK systems, different constraint
languages are used in order to represent the invariants of arithmetic circuits. One of the most popu-
lar arithmetization techniques are R1CS constraint systems, where the computation is constrained
via a system of bilinear equations of the kind ax× by = cz. The size of the constraint system, and
hence the cost of arithmetization, mainly depends on the multiplicative complexity, i.e. the number
of multiplication gates, of the arithmetic circuit [13]. R1CS arithmetization is adopted by all imple-
mentations of the famous Groth16 [47] SNARK framework, such as libsnark [12], bellman [20],
arkworks [25], and Circom [63,52], among others. Given that one of the most important appli-
cations of AO hash functions are the computation of Merkle tree commitments and openings, the
focus should not only be on the cost of the underlying FIL compression function. Though the binary
Merkle tree is undoubtedly a very widely adopted structure, it might not necessarily be used in
an optimal way in this setting. To the best of our knowledge, the direction that has been largely
unexplored is establishing the trade-offs and potential improvements in both native and SNARK
performance by combining a larger and possibly more expensive FIL hash function with a MT tree
of wider arity and hence lower height (for the same number of leaves).

Modular hash function design. The modular approach is paramount in cryptography. It allows
for: 1. Provable security arguments up to the soundness of the building blocks; 2. Reduces complexity
by shifting the focus of the analysis to the usually simpler and smaller scale building blocks; 3. Allows
for off-the-shelf replacements of the building blocks. We outline the most common modular design
strategy used thus far for FIL compression functions for ZK proof systems. To compress inputs
from Fr

p to Fl
p, for some l < r, a secure permutation π : Fn

p → Fn
p in a Sponge mode [14] is called in

the so-called absorbe step, where the permutation size is n > r. Then, vectors of field elements are
compressed via:

Sponge(x) = Trl
(
π
(
x ∥ 0n−r

))

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 4

Here ∥ denotes vector concatenation, Trl the vector truncation up to the lth component, and 0n−r

the zero vector over Fn−r
p . A number of AO hash functions [1,2,41,3,74] rely on the Sponge mode

of hashing to achieve fixed-input-length (FIL) compression. Although the Sponge mode [14] is well-
defined for inputs over any arbitrary group, its formal random-oracle indifferentiability [58] proof
was only carried out for the special case of F2 [15]. This fact leaves a gap in the formal security
argument of AO hash functions relying on the Sponge mode for inputs over Fp.
Two alternative FIL compression modes, Trunc and Jive, were proposed respectively in [38]
and [19]: in both cases, the permutation size is n = r, and vectors are compressed through:

Trunc(x) = Trl(y) Jive(x) =
∑n

i=1
yi

where y = π(x) + x. Compared to the Sponge mode, both Trunc and Jive require a smaller
permutation, improving efficiency. Although the underlying instantiations were proposed as a keyless
permutation for both both Trunc and Jive modes, in [38], the security of both modes was linked
to the Davies-Meyer construction [85], by viewing the (keyeless) permutation π(x) as a fixed-key
blockcipher Ev(x). And no formal security proof was provided. However, the Davies-Meyer proof
argument [86,16] does not apply to permutations and applies only for the boolean field F2.
Although all major AO hash functions employ internally a permutation, these permutations happen
to be most commonly obtained from a readily designed AO blockcipher E : Fκ

p × Fn
p → Fl

p. The key
of the blockchipher is set to a fixed constant to get a permutation. This is for example the case of for
some of the most popular hash functions, Poseidon, and its newer version Poseidon2: the former
has been deployed in many real-world systems, including Filecoin [69], Loopring [83], ZCash [51],
and it has been proposed to be added in the Ethereum VM [5]. Both constructions are based on the
Hades cipher [43] by fixing the key in the cipher and applying the Sponge mode. While in classical
bit-oriented cryptography key-scheduling for the blockcipher is often an expensive operation (e.g. in
AES [26,48]), for AO blockciphers like MiMC, GMiMC and Hades, the key scheduling algorithm is
an affine function whose computational cost is cheap both in native execution and in the SNARK
circuit.

AO cryptography and design goals. The field of AO-based cryptography is less than a decade
old and still its naissance. At present, novel designs approaches for AO hashing are emerging, typi-
cally coming with contemporary evidence of lack of cryptanalytic flaws, and efficiency benchmarks.
Cryptanalysis techniques for such constructions are constantly evolving [53,32,50], often exposing
important weaknesses in the design approaches [18,72,7,4].
A cryptographic design however stands the test of time upon evidence of sound, simple and verifiable
security arguments (cryptanalysis and proofs of security), significant efficiency advantages and
flexible design features. A flexibility design feature of AO hashing is for example the ability to
handle different hash function input and output sizes, or internal building block sizes, a feature
currently not present in existing permutation-based designs.

The most popular classical approach to designing a provably secure FIL compression function
over binary inputs is the Preneel-Govaerts-Vandewalle (PGV) framework [68]. Its compositional
simplicity has established it as a foundational design approach for a number of classical hash
functions, including RIPEMD-160 and SHA-2 [28,27]. PGV designs have been provably investigated
by Black et.al. [16] in the ideal cipher model. In PGV, the inputs are compressed via a secure
blockcipher E : Fn

2 × Fn
2 → Fn

2 as follows:

PGV(x ∥ y) = Ea(b) + c

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 5

where a, b, c ∈ {x,y,x+ y,v}, for some constant value v (for example, if a = y, and b = c = x,
one obtains the previously mentioned Davies-Meyer mode). While the PGV framework has been
integral to a number of classical hash function design, its security does not apply in the AO setting
over large prime fields Fp.

Taking in consideration the largely unexplored area of AO blockcipher modular compositionaility
towards FIL compression function designs and their performance, in this work we aim to answer
the following main questions:

1. Can we design provably secure and simple AO and FIL compression functions for ZK proof
systems over arbitrary prime fields Fp based on AO blockciphers?

2. Can such FIL compression functions have flexiblity with respect to input, output and internal
primitive sizes?

3. Can we show experimentally that a sound and simple AO and FIL compression function design
offers significant improvements with respect to comparable existing (for the same AO blockci-
pher with a fixed key) permutation-based designs?

4. Can we exploit the relation between the cost of the FIL compression function over its state size
and of the Merkle tree opening proof over its arity to further optimize the performance?

Our Contributions

In this work we make the following contributions:

1. AO Syntax and security definitions. Towards sound security analysis, in Section 2, we
adapt the classical syntax for blockcipher and permutation-based VIL/FIL hash functions to the
AO setting over arbitrary prime fields Fp. Additionally, we tailor the formal security definitions
of collision and preimage resistance for VIL/FIL hash functions to the AO context, and similarly
capture the notion of opening resistance notion over Merkle trees of arbitrary arity over Fp.

2. New AO FIL compression functions strategies. In Section 3, we propose the AO block-
cipher based AO FIL compression function strategy PGV-LC. PGV-LC is flexible as it is defined
to work on inputs of dimension κ′ = κ and n′ = n, a blockcipher E : Fκ

p × Fn
p → Fn

p , and an
n× l post-processing matrix R, where l is some desired (flexible) output size, the compression
is carried out as (also see Figure 1):

PGV-LC(x ∥ y) = R · (Ex(y) + y)

The PGV-LC mode generalizes to the AO setting the compression functions in the PGV frame-
work, and also encompasses the Trunc and Jive modes, if interpreted as in [38], by giving a
fully linear-algebraic characterization.
From PGV-LC, we derive the next FIL compression function instantiation strategy PGV-ELC.
PGV-ELC offers further flexibility by allowing the input dimensions to be smaller than the
blockcipher dimensions by applying additional pre-processing matrices P , K, and F (see Fig-
ure 2).

3. Security proofs for PGV-LC and PGV-ELC. In Section 4, we prove the security of PGV-
LC and PGV-ELC in the ideal cipher model. We show that there are natural classes of the linear
transformations involved in the compression for which both modes are collision resistant up to
(q2 + q)/(pl − q) queries to the underlying blockcipher, and preimage resistant up to q/(pl − q)
queries.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 6

For the target ZK proof systems applications, we come with a proof that reduces the collision
and opening proof forgery resistance of t-ary AO Merkle trees to the collision and preimage
resistance of the underlying compression function. Our proofs are generic in nature and enable
secure instantiations with sound AO blockciphers, namely, they allow the bulk of cryptanalysis
to be shifted to the underlying blockcipher.

4. Optimizations and Experiments. In Section 5, we consider the widely adopted hash func-
tion Poseidon [41,69,83,5], and its newer variant, Poseidon2 [42], which are both based on a
fixed-key instantiation of theHades [43] blockcipher. We compare (Sponge) Poseidon and Po-
seidon2-Trunc with similar PGV-ELC instantiations of Hades, which we call Poseidon-DM
and Poseidon2-DM, respectively.
First, we present an optimized way to synthesize R1CS constraint systems for arbitrary-arity
MT opening proofs, which, when applied to Poseidon-DM, already offers a 5–15% improvement
in the number of constraints compared to alternative techniques (Table 3).
In R1CS-based ZK-SNARK systems, Poseidon-DM and Poseidon2-DM require up to 50%
less R1CS constraints than Poseidon and Poseidon2 (Table 4); additionally, by exploiting our
optimized Merkle tree constraint system, optimal arity choices for Poseidon and Poseidon2-
DM are ≈ 2.5× faster than Poseidon and Poseidon2 over binary trees in the Groth16 [47]
framework (Table 5 and fig. 4).
For native computations, Poseidon-DM is up to 3× faster than Poseidon, while Poseidon2-
DM is up to 2× faster than Poseidon2. For the optimal arity choice, when constructing Merkle
trees, Poseidon2-DM is 2.5× faster than Poseidon2 over binary trees, and almost 9× faster
than Poseidon over binary trees, which is the most popular instance used in real-world ap-
plications (Table 7 and fig. 3). When parallelizing the MT construction, we noticed that all
compression functions scale similarly, with the size of the underlying prime field being the most
relevant bound (Figure 6).

2 Preliminaries

2.1 Notations and Definitions

Arithmetization-Oriented cryptography is concerned with the design of cryptographic algorithms
that manipulate elements of finite algebraic structures (e.g. fields and vector spaces), rather than
strings of bits.

Given a set S of cardinality |S|, let S∗ =
⋃

i∈N Si denote the Kleene’s closure of S, and let Sω

denote the set of infinite-length tuples made from elements of S. Given a prime number p, let Fp

the finite prime field of order |Fp| = p and characteristic char(Fp) = p, with canonical addition
and multiplication modulo p. We will consider p to be odd, and typically ‘large’ (say, p > 264). We
denote with Fn

p the standard n-dimensional vector space of column vectors over Fp, with standard
addition and scalar product. Similarly, Fn×m

p is the standard (n×m)-dimensional matrix space
over Fp. Scalars are denoted with lowercase letters a, b, c, . . ., vectors with bold lowercase letters
a, b, c, . . ., and matrices with bold uppercase letters A,B,C, We denote with In×m the pseudo-
identity matrix whose entries in the main diagonal have value 1 while all other entries have value
0. The transpose of a vector a (resp. a matrix A) is denoted with a⊺ (resp. A⊺).

Most of the following definitions are well-known in classical symmetric cryptography over F2n .
We lift them over Fp to facilitate the discussion on AO modes.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 7

Definition 2.1 (AO blockcipher). Given some κ, n ∈ N, and a prime field Fp, a κ-n-elements
AO blockcipher over Fp is a function:

E(k,x) : Fκ
p × Fn

p → Fn
p

which is a permutation on x for every possible choice of k. An AO blockcipher family {Ek} is
the collection of all permutations Ek(x) obtained by partial application of k, and

{
E−1

k

}
is the

collection of all their inverses.

When κ is left unspecified, we implicitly assume κ = n. Following a standard abuse of notation, we
will often write E to mean {Ek} and E−1 to mean

{
E−1

k

}
.

Definition 2.2 (AO compression function). Given some m,n ∈ N, with m > n, and a prime
field Fp, an m-n-elements AO compression function over Fp is any function with signature:

C(x) : Fm
p → Fn

p

For ease of discussion, we may describe an ml-n-elements compression function in terms of multiple
arguments x1, . . . ,xm ∈ Fl

p rather than in terms of one single argument x ∈ Fml
p , and we equiv-

alently write m:n to denote m-n-elements compression. Compression functions are also known as
Fixed-Input-Length (FIL) hash functions.

Definition 2.3 (AO hash function). Given some n ∈ N, and a prime field Fp, an n-elements
AO hash function over Fp is any function with signature:

H(M) : (Fp)
∗ → Fn

p

Variable-Input-Length (VIL) n-elements hash functions are generally built on top of some m-n FIL
compression function together with an l-elements padding function of the kind:

Pad(M) : (Fp)
∗ →

(
Fl
p

)∗
where l is an appropriate multiple of m which depends on the structure of the hash function itself.
It is extremely important to use well-behaved padding functions, even more so in AO cryptography
where there does not exist a bijective mapping between elements of Fp and bit-strings of a certain
length (except when p = 2); however, as this work is mostly concerned with FIL compression, we
assume that such a padding function is available.

2.2 AO Modes of Operation

Directly devising secure cryptographic algorithms is not an easy task; the standard approach is to
directly design relatively simple primitives, such as (unkeyed) permutations or blockciphers, and
then compose them in a black-box manner through a mode of operation to obtain more advanced
functionalities.

A famous family of modes to build secure compression and hash functions from blockciphers
are the PGV modes [68]. The PGV modes are tightly related to the Merkle-Damg̊ard (MD) mode
of hashing [61], in that they generalize well-known modes like Davies-Meyer [85], Matyas-Meyer-
Oseas [57], or Miyaguchi-Preneel [62,67], and are hence defined with respect to MD inputs: a message
block, a chaining variable and an initialization value (IV). While classical PGV modes are defined
over bit-strings, it is easy to adapt their definition to the AO context: we will refer to these modes
explicitly as AO PGV-MD modes.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 8

Definition 2.4 (AO PGV-MD modes). Given an n-elements blockcipher E over some prime
field Fp, an initialization value v ∈ Fn

p , a chaining value hi−1 such that h0 = v, the AO PGV-MD
modes of E are all the compression functions of the kind:

hi = CE,v(hi−1,xi) = Ea(b) + c

where a, b, c ∈ {xi,hi−1,v,xi + hi−1}.

A more recent approach to build secure FIL/VIL hash functions is the Sponge mode [14]. Rather
than using a blockcipher as the underlying primitive, the Sponge mode operates over an unkeyed
permutation.

Definition 2.5 (AO Sponge mode). Given an n-elements permutation π over some prime field
Fp, a rate r < n, and a padding function Pad: (Fp)

∗ →
(
Fr
p

)∗
, let the Sponge iteration function

with rate r of π be:

si(M) :
(
Fr
p

)∗ → Fn
p =

0 i = 0

π(si−1(M) +mi) 1 ≤ i ≤ |M |
π(si−1(M)) i > |M |

where the vectors mi ∈ Fr
p are implicitly naturally embedded in Fn

p . Then, the Sponge mode of π
with rate r is the function:

S̃π(M) :
(
Fr
p

)∗ → (
Fr
p

)ω
= s|M |(M) ∥ s|M |+1(M) ∥ . . .

and the Sponge mode of π with rate r and padding function Pad is the function:

SPad,π(M) : (Fp)
∗ →

(
Fr
p

)ω
= S̃π(Pad(M))

The quantity c = n− r is called the capacity of the Sponge. A Sponge construction is an extendable
output function (XOF) [29]: we can truncate its output to obtain a hash function, and fix the input
length to obtain a compression function.

An alternative to sequential modes like MD and Sponge is Merkle tree (MT) hashing [59,60],
a way of compressing message blocks in a parallel fashion. Differently from both Sponge and MD,
the MT hashing uses a FIL compression function as the underlying primitive.

Definition 2.6 (AO Merkle tree mode). Given some l, t ∈ N, a tl-l-elements compression
function C over some prime field Fp, and a message M ∈

(
Fl
p

)∗
such that ∃h ∈ N : |M | = th, let

the Merkle tree over C and M be the t-ary tree TC,M of height h, containing n = |TC,M | = th+1−1
t−1

nodes ν0, . . . ,νn−1 ∈ Fl
p ordered in a top-down left-to-right manner, and rooted in ν0, such that

∀i < n:

νi =

{
C(νti+1, . . . ,νti+t) 0 ≤ i < n− th

mi+1−(n−th) n− th ≤ i < n

Given a function Pad: (Fp)
∗ →

(
Fl
p

)∗
such that |Pad(M)| = th for some h ≥ 1, the Merkle tree

mode of C with padding function Pad is the hash function:

HC,Pad(M) : (Fp)
∗ → Fl

p = ν0

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 9

Merkle trees are a fundamental component of version control systems [49], P2P networks [24,6],
and database systems [54,78]. In particular, they play a crucial role in blockchains [64,82] to create
proofs of membership.

The most common approach to instantiate the Merkle tree’s underlying compression function is
with a Sponge-mode permutation. Recently, new FIL permutation-based compression modes have
been proposed to replace the Sponge in this scenario [19,38,42]. In particular, we are interested in
the Trunc mode used by Poseidon2.

Definition 2.7 (Trunc mode). Given an n-elements permutation π over some prime field Fp, and
some l < n, the Truncl mode of π is the compression function:

C(x) : Fn
p → Fl

p = I l×n · π(x)

2.3 Security Notions

Algorithm 1 The q-queries ideal blockcipher oracle: for every choice of k ∈ Fκ
p , Ek is a random

permutation over Fn
p with inverse E−1

k . After being queried q times, the oracle ‘shuts-down’.

function EE,q(k, m, b)
static i← 0
if i ≥ q then return ⊥
i← i+ 1
if b = 0 then return Ek(m)
return E−1

k (m)

In order to study the cryptographic constructions of interest, we must first formalize the relevant

security notions that we target. We denote with x
$←S the experiment of sampling x independently

and uniformly at random from some finite set S; additionally, we let Block(p, κ, n) be the set of all
κ-n-elements blockciphers over Fp.

Remark 2.1. Our results will be given for the ideal AO blockcipher model, where we assume that the

blockcipher used by blockcipher-based modes is instantiated by E
$← Block(p, κ, n). The adversary

is an information theoretical (computationally unbounded) randomized algorithm A with query
access to the oracle EE,q, denoted AEE,q , which answers to at most q queries to before ‘shutting
down‘. A description of the oracle’s behaviour is given in Algorithm 1. When E and q are clear
from the context, we may omit them from the subscript.

Definition 2.8 (comp-col advantage). Given an m-n-elements blockcipher-based compression
function CE over some prime field Fp, the collision advantage of an adversary A with q queries
against CE, denoted Advcomp-col

CE
(A, q), is equal to:

Pr
[
(y,y′)

$←AEE,q () : y ̸= y′ ∧ CE(y) = CE(y
′)
]

Definition 2.9 (comp-pre advantage). Given an m-n-elements blockcipher-based compression
function CE over some prime field Fp, the preimage advantage of an adversary A with q queries
against CE, denoted Advcomp-pre

CE
(A, q), is equal to:

Pr
[
y

$← Fn
p ,x

$←AEE,q (y) : CE(x) = y
]

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 10

Similar collision and preimage advantage functions Advhash-col and Advhash-pre can be defined for
hash functions. A more comprehensive treatment of advantage functions and the security properties
of hash functions can be found in [71].

Now suppose that we are given a hash function H together with some digest h = H(M), for
some unknown message M , and we wish to check whether a given message M ′ = M . We can do so
by comparing H(M ′) with h: if the range of H is large enough, and H is both collision and preimage
resistant, the check should succeed for some message M ′ ̸= M only with negligible probability, even
if a potential forger has knowledge of both H and M . More generally, we can have so-called opening
proof systems, where one party, called the proof generator G, is given a message M together with an
index i, and has to synthesize what essentially is a proof of membership π for mi. Then, a second
party, the proof verifier V, given only π and the hash of the original message, has to establish
whether mi did actually belong to M . More formally:

Definition 2.10 (Opening proof system). Given an n-element hash function H over some
prime field Fp, an opening proof system over H is a pair of algorithms (G,V)H such that, for any
message M ∈ (Fp)

∗
, it holds that:

∀i ≤ |M | : V(G(M, i), H(M)) = ⊤

In order to guarantee statistical soundness of an opening proof system, it must be hard for an
attacker to forge an invalid proof, i.e. a proof of membership for some message block m̃ /∈M that
can fool the verifier:

Definition 2.11 (opening advantage). Given an opening proof system (G,V) over some n-

element blockcipher-based AO hash function HE with underlying field Fp, and given M
$← (Fp)

∗
, the

opening proof advantage of an adversary A with q queries against (G,V), denoted Advopening
(G,V) (A, q),

is equal to:

Pr
[
π̃

$←AEE,q (M) : ∀i : π̃ ̸= G(M, i) ∧ V(π̃, HE(M)) = ⊤
]

Given some advantage function Adv(A, q), we let Adv(q) be the maximum advantage achievable
by any adversary A: Adv(q) = maxA{Adv(A, q)}.

3 Two new modes of compression

Using the PGV modes design as a starting point, we extract the underlying FIL compression
function, detaching it from the MD paradigm. In order to have more flexibility on the output size,
we introduce an additional linear combination at the end of the construction, obtaining the AO
PGV-LC compression mode:

Definition 3.1 (AO PGV-LC mode). Given a κ-n-elements blockcipher E over some prime field
Fp, an output size l ≤ n, and a right invertible reduction matrix R ∈ Fl×n

p , the AO PGV-LC mode
of E is the compression function:

CE,R(x,y) : Fκ
p × Fn

p → Fl
p = R(Ex(y) + y)

The right-invertibility property of the matrix R, as we will see in Section 4, is required in
order to have a secure compression. Note that when l = n and R = In×n, then our construction

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 11

Ey

x

...

. . .

...

...

R

..
.

h ∈ Fl
p

Fig. 1: Pictorial representation of the AO PGV-LC mode as by Definition 3.1.

collapses precisely in the compression mode underlying the Davies-Meyer and the Matyas-Meyer-
Oseas iterated compression functions. A visual representation of the new mode is given in Figure 1.

Based on the proposed mode, we devise an additional extended mode which allows for even
more flexibility, by also including linear combinations of the input parameters; we call this mode
AO PGV-ELC, and formally define it as follows:

Definition 3.2 (AO PGV-ELC mode). Given a κ-n-elements blockcipher E over some prime
field Fp, the input sizes κ′ ≤ κ and n′ ≤ n, the output size l ≤ n′, a left invertible key matrix K ∈
Fκ×κ′

p , a left invertible plaintext matrix P ∈ Fn×n′

p , a right invertible feedback matrix F ∈ Fl×n′

p ,

and a right invertible reduction matrix R ∈ Fl×n
p , the AO PGV-ELC mode of E is the compression

function:
CE,V (x,y) : Fκ′

p × Fn′

p → Fl
p = RE(Kx)(Py) + Fy

where V = (K,P ,F ,R).

Again, the invertibility properties of the various matrices are required to guarantee the security
of this construction, as we will show in Section 4. A pictorial representation of the AO PGV-ELC
mode is given in Figure 2.

4 Security Proofs

In [16], it was shown that among the 64 bit-oriented PGV-MD iterated compression modes, each
denoted with C(ι)(x, y), the first twelve of them, called Group-1 modes and shown in Table 1, are
collision and preimage resistant both when used for MD hashing and when used for 2-1 compression
by replacing the role of the chaining value with a second message block.

In the design phase of the AO PGV-LC and the PGV-ELC mode, we followed the patterns that
emerge from the structure of the classical Group-1 construction: first, notice how the 12 modes
are pairwise symmetric, and only modes 1 and 5 are minimal w.r.t. the number of extra additions
required. As we will see, an argument similar to the one given in [16] is enough to guarantee the
security of the PGV-LC mode.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 12

EP

K

y

F

...

...

R

..
.

h ∈ Fl
p

...

...

...

. . .

. . .

x

Fig. 2: Pictorial representation of the AO PGV-ELC mode as by Definition 3.2.

Table 1: The AO equivalent of the 12 Group-1 PGV compression modes of [16]. Note that modes
5–8 are completely symmetric to modes 1–4. Similarly, mode 9 is symmetric to mode 10, and mode
11 is symmetric to mode 12.

ι C(ι)(x,y)

1 Ex(y) + y
2 Ex(x+ y) + x+ y
3 Ex(y) + x+ y
4 Ex(x+ y) + y
5 Ey(x) + x
6 Ey(x+ y) + x+ y

ι C(ι)(x,y)

7 Ey(x) + x+ y
8 Ey(x+ y) + x
9 Ex+y(y) + y
10 Ex+y(x) + x
11 Ex+y(y) + x
12 Ex+y(x) + y

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 13

4.1 Security of AO PGV-LC mode

Theorem 4.1 (comp-col resistance of AO PGV-LC mode). Given the κ-n-elements ideal
AO blockcipher E over some prime field Fp, some l < n, a number of queries q < pl, a right
invertible matrix R ∈ Fl×n

p , and the (κ+ n)-l-elements AO PGV-LC compression function CE,R,
it holds that:

Advcomp-col
CE,R

(q) ≤ q2 + q

pl − q

Proof. Let Eq be the oracle implementing E and responding to at most q queries, as depicted in
Algorithm 1. Let AEq be any adversary with oracle access to Eq. Let Col be the event that AEq

finds x,x′ ∈ Fκ
p and y,y′ ∈ Fn

p such that (x,y) ̸= (x′,y′) and h = h′, with h = CE,R(x,y) and
h′ = CE,R(x′,y′). Clearly, Pr[Col] = Advcomp-col

CE,R
(A). Without loss of generality, we can make the

following assumptions:

1. A makes exactly q queries to Eq.
2. A keeps track of the query list Q = (Qi)i∈{1,...,q}, where in each Qi = (xi,yi, ci, bi), xi ∈ Fκ

p is

the queried key, bi ∈ {0, 1} is the queried selection bit, and if bi = 0, then yi ∈ Fn
p is the queried

plaintext, while ci ∈ Fn
p is the returned ciphertext; otherwise, ci is the queried ciphertext and

yi the returned plaintext.
3. If A finds a collision, there are Qi, Qj ∈ Q such that hi = R(ci + yi) = hj = R(cj + yj).

Since R is right invertible, it induces a partition of Fn
p into pl equivalence classes [v]R, one for each

v ∈ Fl
p. We will now drop R from the subscript for ease of presentation. Clearly, |[v]| = pn−l. Given

any u,w ∈ Fn
p , and any v ∈ Fl

p, if u+w ∈ [v] we say that u is w-v-linking (via R). Note that then
it is also true that w is u-v-linking. Let Lw,v be the set of all w-v-linking values of u: since u and
w come from the same vector space, and that addition is a permutation over one its arguments, we
have that |Lw,v| = pn−l.

Given any queries Qi, Qj ∈ Q, let Linki,j be the event that yi is ci-hj-linking Observe that
Linki,j = Linkj,i. Then:

Pr[Col] = Pr[∃i < j ≤ q : Linki,j] = Pr[Link0,1 ∨ · · · ∨ Linkq−1,q]

Let’s consider each combination of b and b′:

– bi = bj = 0: xi and xj are freely chosen among at least pκ − q possible values, while yi and yj

are freely chosen among at least pn − q possible values. ci and cj are then random values from
sets of cardinality at least pn − q. Then, independently of how yi and yj were chosen, hi and
hj are also random. There are at most pn−l values of yi which are ci-hj-linking, hence:

Pr[Col] ≤
q∑

j=1

j∑
i=1

pn−l

pn − q
≤

q∑
j=1

j∑
i=1

1

pl − q
≤ q2 + q

pl − q

– bi = bj = 1: xi, xj , ci and cj are all freely chosen by A, with ci and cj coming from sets of
size at least pn− q. This time, yi and yj are random, and the same reasoning as before applies:
once again, Pr[Col] ≤

(
q2 + q

)
/
(
pl − q

)
.

– bi = 0 = 1 − bj : in this case, xi, xj , yi and cj are freely chosen by A. ci and yj are random,
independently of which among hi and hj was found earlier, the probability that yi is ci-hj

linking is at most Pr[Col] ≤
(
q2 + q

)
/
(
pl − q

)
.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 14

– bj = 0 = 1− bi: similar as before.

Since all the probabilities given above depend only on the number of queries made by A, and not
on its behaviour, the claim follows.

Theorem 4.2 (comp-pre resistance of AO PGV-LC mode). Given the κ-n-elements ideal AO
blockcipher E over some prime field Fp, some l < n, a number of queries q < pl, a right-invertible
matrix R, and the (κ+ n)-l-elements AO PGV-LC compression function CE,R, it holds that:

Advcomp-pre
CE,R

(q) ≤ q

pl − q

Proof. We start from the setup that we developed in the proof of Theorem 4.1. Given some random
h ∈ Fl

p, let Pre be the event that AEq finds some (x,y) ∈ Fκ
p × Fn

p such that CE,R(x,y) =
h. Clearly, Pr[Pre] = Advcomp-pre

CE,R
(A). Now let Linki be the event that yi is ci-h-linking, then

Pr[Pre] = Pr[∃i ≤ q : Linki]. We have two cases to consider:

– bi = 0: xi and yi are chosen arbitrarily, and ci is a random element from a set of size at
least pn − q, and there are at most pn−l values of yi that are ci-h-linking. Hence, Pr[Pre] ≤∑q

i=1
1

pl−q
≤ q

pl−q
.

– bi = 1: xi and ci are chosen arbitrarily, and yi is random, as before we can then conclude that
Pr[Pre] ≤ q/

(
pl − q

)
.

Since the probability of finding a preimage does not depend on the behaviour of A, the claim follows.

4.2 Security of AO PGV-ELC mode

The main difference between the AO PGV-LC and PGV-ELC modes is that the latter allows for
input sizes to the compression function which do not necessarily match the plaintext or key sizes
of the underlying blockcipher. Intuitively, this additional flexibility should not impact the security,
but one must be careful when considering that the input entropy pool is reduced, as now part of
the plaintext/ciphertext and key space might be left unused.

Theorem 4.3 (comp-col resistance of AO PGV-ELC mode). Given the κ-n-elements ideal
AO blockcipher E over some prime field Fp, the (κ′ + n′)-l-elements AO PGV-ELC compression
function CE,V , where κ

′, n′ and V = (K,P ,F ,R) are as in Definition 3.2, and a number of queries
q < pl, it holds that:

Advcomp-col
CE,V

(q) ≤ q2 + q

pl − q

Proof. We build on the arguments made in the proof of Theorem 4.1, with the following adjustments:

1. The two colliding inputs (x,y) and (x′,y′) are now over Fκ′

p × Fn′

p rather than Fκ
p × Fn

p .
2. The queries in Q are now of the kind Qi = (ki,mi, ci, bi), where ki ∈ Fκ

p and mi ∈ Fn
p .

3. If A finds a collision, there are Qi, Qj ∈ Q such that hi = hj and:

ki = Kxi

mi = Pyi

zi = Fyi

ti = Rci

hi = ti + zi

kj = Kxj

mj = Pyj

zj = Fyj

tj = Rcj

hj = tj + zj

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 15

4. We extend the notion of linking : given v ∈ Fl
p, w ∈ Fn

p and u ∈ Fn′

p , we now have two kinds

of equivalence classes over Fl
p, the ones of the kind [v]R with cardinality pn−l, and the ones

of the kind [v]F with cardinality pn
′−l. We now say that u is w-v-linking (via F and R) if

Rw + Fu = v.

When either of the first two equations in Item 3 are satisfied, we say respectively that ki and mi

are meaningful. Additionally, ci is meaningful if both ki and mi are meaningful, and if all three of
them are meaningful then the query Qi is meaningful, and we call this event Meani. Since K is a
left invertible matrix, it is a bijection between Fκ′

p and Fκ
p , hence there are exactly pκ

′
meaningful

keys. Analogously, there are pn
′
meaningful plaintexts mi for every choice of ki. Note that A is

free to make ‘meaningless’ queries and exploit them however it likes; nevertheless, at least the two
colliding queries must be meaningful. We can conclude that:

Pr[Col] = Pr[∃i, j ≤ q : (i < j) ∧Meani ∧Meanj ∧ Linki,j]

where Linki,j is again the event that yi is ci-hj-linking via R and F . We have four cases to consider:

– bi = bj = 0: the adversary chooses xi, xj and yi, yj among at least pκ
′ − q and pn

′ − q possible
values respectively, ensuring that Qi and Qj are meaningful. This choice univocally entails the
values of ki, kj , mi, mj , zi and zj . From the right-invertibility of F , there are exactly pn−l

values of either yi and yj which map to any specific value of zi and zj . Since i < j, the value
of hi is known to A when collecting the query Qj . However, cj is a random value from a set

of cardinality at least pn − q: note that although there are at least ‘only’ pn
′ − q meaningful

values left, there is no way to know which these are without having already queried them, so
the sample space is effectively the whole Fn

p . Since R is right-invertible, the probability that

cj ∈ [tj] is at most pn−l

pn−q ≤
1

pl−q
, since l ≤ n. This probability is then precisely the probability

of yj being cj-hi-linking, hence:

Pr[Col] ≤ 1 · 1 ·
q∑

j=1

j∑
i=1

pn−l

pn − q
≤ q2 + q

pl − q

– bi = bj = 1: the adversary chooses xi and xj , which entails the values of ki and kj , and also

chooses ci and cj , which are meaningful each with probability at most pn
′
/(pn − q). If this is

the case, then both yi and yj are random values from sets of size at least pn
′ − q. Since i < j,

we can assume hi to be known by A: the probability that yj ∈ [zj] is at most pn′−l

pn′−q
≤ 1

pl−q

since l ≤ n′, and this is again the probability of it being cj-hi-linking. Therefore:

Pr[Col] ≤ pn
′

pn − q
· pn

′

pn − q
·

q∑
j=1

j∑
i=1

pn
′−l

pn′ − q
≤ q2 + q

pl − q

– (bi = 0) ∧ (bj = 1): Same as the previous case, but this time Qi is always meaningful.
– (bi = 1)∧(bj = 0): Same as the first case, but this time Qi is meaningful at most with probability

pn
′
/(pn − q).

Since the probability of A finding a collision is independent of its behaviour, the claim is hence
proven.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 16

Now that we have proven collision resistance of our construction, we turn to preimage resistance:

Theorem 4.4 (comp-pre resistance of AO PGV-ELC mode). Given the κ-n-elements ideal
AO blockcipher E over some prime field Fp, some l < n, a number of queries q < pl, and the
(κ′ + n′)-l-elements AO PGV-ELC compression function CE,V , where κ

′, n′ and V = (K,P ,F ,R)
are as in Definition 3.2, it holds that:

Advcomp-pre
CE,V

(q) ≤ q

pl − q

Proof. The probability of finding a preimage is given by:

Pr[Pre] = Pr[∃i ≤ q : Meani ∧ Linki]

where Linki is the event that yi is ci-hj-linking.

– bi = 0: the adversary chooses xi and yi so that Qi is meaningful. ci is then a random element

from a set of size at least pn − q, and the probability that yi is ci-h-linking is at most pn−l

pn−q ≤
1

pl−q
, hence: Pr[Pre] ≤ 1 ·

∑q
i=1

pn−l

pn−q ≤
q

pl−q
.

– bi = 1: xi and ci are chosen arbitrarily, and there is a pn
′
/(pn − q) probability that Qi is

meaningful. Even if this is the case, yi is a random value from a set of size pn
′ − q, and the

probability of it being ci-h-linking is at most pn′−l

pn′−q
≤ 1

pl−q
, therefore:

Pr[Pre] ≤ pn
′

pn − q
·

q∑
i=1

pn
′−l

pn′ − q
≤ q

pl − q

4.3 Security of AO t-ary Merkle Tree

We can now turn to consider collision resistance for the Merkle tree hashing: the classical result
over bit-strings generalizes trivially to AO constructions.

Theorem 4.5 (hash-col resistance of AO Merkle tree). Given a tn-n elements compression
function family C over a prime field Fp, and a number of queries q < pn, it holds that:

Advhash-col
HC

(q) ≤ Advcomp-col
C (q) +Advcomp-pre

C (q)

where HC is the Merkle tree mode of hashing family over C.

Proof. Suppose that we have an adversary A with access to C, the oracle implementing a random
instance of C. After making q queries to C, interleaved with arbitrary computations, A outputs two
messages M,M ′ ∈

(
Fn
p

)∗
, with M ̸= M ′, such that HC(M) = HC(M

′). Let the collision advantage
of A against HC be Advhash-col

HC
(A). For any such A, we can build a new adversary B, which

achieves the same advantage against C directly, using the same number of queries as A. B works
as follows: first, it runs A as a sub-routine, obtaining the two messages M and M ′. Then, it builds
the Merkle trees T over M and T ′ over M ′. We can assume w.l.o.g. that the communication tape
of A already contains a record of all the queries to C that were necessary to build the two trees. If
ν0 ̸= ν′

0, then A did not actually find a collision, so B halts rejecting. Otherwise, B starts matching

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 17

tuples of the kind (νi,νti+1, . . . ,νti+t) from T with tuples of the kind
(
ν′
i,ν

′
ti+1, . . . ,ν

′
ti+t

)
from T ′.

If, at any point in the matching process, it happens that νi = ν′
i but, for any j ≤ t, νti+j ̸= ν′

ti+j ,

then B outputs
(
νti+1, . . . ,νti+t,ν

′
ti+1, . . . ,ν

′
ti+t

)
, which is a collision for C, and it halts accepting.

If the search ends without finding any match, and |M | = |M |′, it must be the case that M = M ′,
which is not a valid collision, so B halts rejecting. Finally, if all children of νi match the children
of ν′

i, assuming w.l.o.g. that |M | < |M |′, then, for each leaf node νi ∈ T , it must be the case that
ν′
i = νi = mi. But since ν′

i = C
(
ν′
ti+1, . . . ,ν

′
ti+t

)
, this means that

(
ν′
ti+1, . . . ,ν

′
ti+t

)
is actually

a preimage for mi. Let Col be the event of B finding a collision for C and Pre be the event of it
finding a preimage instead. From our previous analysis, we have that:

Advhash-col
HC

(A, q) = Pr[Col ∨ Pre] ≤
Advcomp-col

C (B, q) +Advcomp-pre
C (B, q)

Since this result does not depend on the behaviour of A, the claim follows.

The last thing we need to prove, which again is a relatively straightforward adaptation of a
classical result, is opening resistance of the AO Merkle tree. In this setting, we are given a t-ary

Merkle tree TC,M over some tn-n elements compression function C and some message M ∈
(
Fn
p

)th
(i.e. we assume M to fit exactly in the tree). Only C and the root of the node, ν0 = H(M), are
known to the verifier V. Let t′ = t− 1; in order to check membership of some leaf νi in TC,M , the
generator G sends to V the opening proof π = (i,x0,x1, . . . ,xht′), where we expect x0 to be νi and
x1, . . . ,xht′ to be the nodes in the co-path from νi to ν0. Then, V takes the base-t digit expansion
(dh−1, . . . , d0) of the index i and collects consecutive elements of the co-path in groups of t′ units:
each digit will fix the position of the chaining value cj , so that c0 = 0 and ∀j < h:

cj+1 = C
(
xt′j+1, . . . ,xt′j+dj−1, cj ,xt′j+dj

, . . . ,xt′j+t′
)

Finally, V compares ch with ν0: if they are equal, it accepts, otherwise it rejects.

Theorem 4.6 (opening resistance of AO Merkle tree). Given a tn-n elements compression
function family C over some prime field Fp, and a number of queries q < pn, it holds that:

Advopening
HC

(q) ≤ Advcomp-col
C (2q)

where HC is the Merkle tree mode of hashing family over C.

Proof. Consider the t-ary Merkle tree TC,M over a message M ∈
(
Fn
p

)th
, and let t′ = t − 1. Now,

let C be the oracle implementing C, and let A be an adversary making q queries to C that can forge
a proof π̃ = (i, x̃0, x̃1, . . . , x̃ht′) with advantage Advopening

HC
(A). We will now build an adversary

B which finds a collision in C(ι) as follows: first, B runs π = G(M, i) and π̃ = A(M, i). Then, it
computes the correct chaining values c0 through ch, and the forged chaining values c̃0 through c̃h:
by completeness of (G,V), we have that ch = ν0. Now B compares ch with c̃h: if the two of them
are different, it halts rejecting as A did not actually find a collision. Otherwise, it computes the
base-t digit expansion (dh−1, . . . , d0) of i and starts matching, for j ∈ {h− 1, . . . , 0}, cj with c̃j
and xjt′+1, . . . ,xjt′+t′ with x̃jt′+1, . . . , x̃jt′+t′ : if the match is only partial, then the two vectors:

mj =
(
xt′j+1 . . . xt′j+dj−1 cj xt′j+dj

. . . xt′j+t′
)⊺

m̃j =
(
x̃t′j+1 . . . x̃t′j+dj−1 c̃j x̃t′j+dj . . . x̃t′j+t′

)⊺

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 18

form a collision, since cj+1 = C(mj) = c̃j+1 = C(m̃j), hence B will return the pair (m, m̃), and it
will halt accepting. Finally, if all the matches up to j = 0 are exact, then it must be the case that
π = π̃, therefore the forged proof is actually a valid proof, so B will halt rejecting. We can then
conclude that B finds a valid collision for C whenever A finds a valid opening proof forgery for HC :
assuming w.l.o.g. that A had to perform at least the h oracle queries required to compute the root
of the tree (i.e. h < q), and that B needs to call G in order to compute π, the claim follows.

5 Implementations and Experiments

In order to assess the efficiency of the PGV-ELC mode, among the many available arithmetization-
oriented constructions, we decided to select the Hades-MiMC design [43]: firstly, it is a blockcipher
design, so it can be instantied over the PGV-ELC mode; secondly, it has undergone (and resisted
to) a good amount of cryptanalysis; thirdly, the Sponge hash function derived from Hades-MiMC,
i.e. Poseidon [41], is quite popular in the industry and it is deployed in several real-world sys-
tems [12,69], where even small improvements requiring relatively minor changes can be meaningful;
finally, it is well-defined for any arbitrary block size, allowing us a good level of flexibility when for
our experiments (however, see Remark 5.1).

An optimized version of Poseidon, dubbed Poseidon2, was recently proposed [42]: the two
main differences with Poseidon are the usage of an efficiently computable MDS matrix for the
linear layer, and support of the Trunc compression mode. In our experiments, we will compare both
the Sponge-based Poseidon and the Trunc-based Poseidon2 with the corresponding PGV-ELC
instantiation of Hades-MiMC.

Definition 5.1 (Poseidon-DM). Let E : Fn
p × Fn

p → Fn
p be the Hades-MiMC blockcipher as de-

fined in [43], with the scheduling function and the linear layer both instantiated by the n×n Hilbert
matrix. Additionally, given some l,m < n, let K = P = In×m, F = I l×m, and R = I l×n. Then,
Poseidon-DM is the compression function:

C(x,y) : Fm
p × Fm

p → Fl
p = R · EKy(Px) + Fy

Definition 5.2 (Poseidon2-DM). Poseidon2-DM is the compression function Poseidon-DM,
where the full-rounds and partial-rounds linear layers are instantiated respectively by the matrices
ME and MI described in [42], and the key scheduling function is instantiated by the matrices:

MK,2 =

[
1 2
2 1

]
MK,4 =

2 3 1 1
1 2 3 1
3 1 2 1
1 1 1 2

when n = 2 or n = 4, and by the matrix ME in all other cases.

The matrices MK,2 and MK,4 that we use for the key scheduling in Poseidon2-DM are both
Maximum Distance Separable (MDS) [70,56] matrices resistant to subspace trails attacks as defined
in [44], and are hence suitable to be used for scheduling.

Remark 5.1. When the block size is of just one element, the SPN structure of the Hades-MiMC
design disappears, degenerating into the MiMC construction [1]. For this reason, in our experiments
the 2:1 compression function is instantiated over the 2-elements Hades-MiMC cipher, so that the

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 19

matrices K and P are rectangular. Furthermore, n:m compression functions are not restricted to
be used over n-ary Merkle trees: indeed, over relatively smaller prime fields, in order to achieve a
target security level for collision resistance, say 128-bits, one might have to use a 4:2 (p ≈ 2128)
or an 8:4 (p ≈ 264) compression function within a binary tree: in these two cases respectively, for
either FIL Sponge, Trunc or PGV-ELC, the complexity is basically equivalent to performing 4:1 or
8:1 compression.

Experimental Setup. All of our benchmarks were run on a system with an Intel® Core� i9–
13900KF @6.0GHz CPU equipped with 32 GB of DDR5–5200 RAM, running a Clear Linux OS
40630 instance. We wish to point out that the tested CPU is equipped with 8 ‘performance’ cores,
with hyper-threading, plus 16 ‘efficiency’ cores: this results in an unsteady behaviour when running
parallel experiments due to the different types of threads. Experiments in the native settings were
run with our own C++ implementation of the various primitives and Merkle trees, using either the
NTL4 library, the libff5 library, or our own custom library (dubbed libarith) as backends for the
finite field arithmetic. For the ZK-SNARK comparisons, we implemented the arithmetic circuits
of the target primitives in the libsnark6 library, which is based on the Groth16 [47] ZK-SNARK
framework, and uses R1CS arithmetization. All code was compiled with the Intel® oneAPI DPC++
Compiler 2024.0.2 with compiler flags -std=c++17 -O2 -march=native for serial code, and all
previous flags plus the -qopenmp flag for parallel code. As our main objective is to compare the

Table 2: Order of the prime fields used in the experiments.

Curve p ⌈log2(p)⌉

BLS12-381 73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001 255
BN-254 30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 254
Ed-180 10357f274a8e56c4e2e493b92e12cc1de5532780000001 181

Sponge and Trunc modes with our new modes, in order to obtain more meaningful results we ran
our experiments over three different prime fields: respectively the scalar fields of the elliptic curves
BLS12-381 [8,30], BN-254 [9,84], and Edwards-180 [31], as reported in Table 2.

5.1 Optimized R1CS for t-ary Merkle Tree

R1CS systems constrain the computation by means of a system of bilinear equations of the kind
(Ax)⊙ (Bx) = Cx, where ⊙ denotes the Hadamard (i.e. element-wise) product. It is well known
how to build a R1CS system for binary Merkle trees7; however, the only public implementation that
we found which also offers wider arities [76] only offers hardcoded circuits for arity t ∈ {2, 4, 8}.
While writing our own R1CS for an arbitrary t, we found that a small change in the classical
opening proof protocol (described in Section 4.3) allows for a more compact R1CS system.

4 https://libntl.org
5 https://github.com/scipr-lab/libff
6 https://github.com/scipr-lab/libsnark
7 See for example: https://github.com/arkworks-rs/r1cs-tutorial.

https://libntl.org
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libsnark
https://github.com/arkworks-rs/r1cs-tutorial

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 20

For a binary tree, given the opening proof π = (i,x0,x1, . . . ,xh), where all vectors are over
Fn
p , the prover itself will compute the chaining values (c0, . . . , ch): in order to guarantee that the

order of the inputs is preserved and that the output values are correct, we introduce fresh variables
y0, . . . ,yh−1, and use the binary expansion (dh−1, . . . , d0) of i as selector bits. We then enforce, for
0 ≤ j < h:

dj · (1− dj) = 0

dj · (cj − xj+1) = cj − yj

cj+1 = C(yj , cj + xj+1 − yj)

This system requires h(1 + n+RC) constraints, where RC is the number of constraints required to
instantiate C.

One possible way to generalize to any arity t ≥ 2, similar to the one used in [76], is to consider
the authentication path π = (i,x0,x0,1, . . . ,xh−1,t′), where t′ = t − 1, together with the base-t
expansion (dh−1, . . . , d0) of the index i. Now, cj+1 = C(yj,1, . . . ,yj,t) where, depending on dj , yj,1

could be either cj or xj,1, yj,t could be either cj or xj,t−1, and any other yj,k could be either cj ,
xj,k−1 or xj,k. Let b = ⌈log2(t)⌉, and consider the binary expansion (dj,b, . . . , dj,1) of dj : we can
compute all possible combinations of these binary values and store them in the selector variables
sj,1, . . . , sj,t: if we do it in a tree-like fashion, we need 2b+1 − 4 = 2t− 4 multiplications to do so.
Hence, we can set up a constraint system equivalent to the following, for 0 ≤ j < h:

∀1 ≤ k ≤ b : dj,k · (1− dj,k) = 0∏b
k=1 (1− dj,k) = sj,1

. . .∏b
k=1 dj,k = sj,t

∀k : (sj,k · cj) + (sj,k−1 · xjt′+k−1) + (s̃j,k · xjt′+k) = yj,k

cj+1 = C(yj,1, . . . ,yj,t)

Where s̃i,j is a shorthand for (1− si,j). The number of constraints of this system is then:

h(b+ 2t− 4 + n(4 + 3(t− 2)) +RC)

Now, consider the modified opening proof where the prover sends, together with all the others,
also the node that the verifier is able to compute by itself. With this slight modification, we can
then introduce as before the selector variables s0,1, . . . , sh−1,t, and enforce, for each 0 ≤ j < h:

∀1 ≤ k ≤ t : sj,k · (1− sj,k) = 0

1 ·
∑t

k=1 sj,k = 1

∀1 ≤ k ≤ t : sj,k · (cj − xj,k) = cj − yj,k

cj+1 = C(yj,1, . . . ,yj,t)

The optimized constraint system then requires h(t+ 1 + tn+RC) constraints. The relative im-
provement we can get by using the optimized circuit is therefore:

⌈log2(t)⌉+ 2t− 4 + n(4 + 3(t− 2)) +RC

t+ 1 + tn+RC

which is independent of the tree height, and results in higher improvements the smaller the com-
pression primitive constraint system is. In Table 3, we show the concrete improvement over Merkle

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 21

Table 3: Number of R1CS constraints in the baseline and optimized MT circuits over Poseidon-
DM, for trees with 224 leaves, each containing n field elements.

MT Arity

n 4 8 16

Baseline

1 3000 2552 2754
2 3696 3520 4182
4 5124 5408 7056
8 7908 9208 12768

Optimized

1 2916 2392 2484
2 3540 3248 3732
4 4824 4912 6246
8 7320 8264 11238

Improvement

1 2.88% 6.69% 10.9%
2 4.41% 8.37% 12.1%
4 6.22% 10.1% 13.0%
8 8.03% 11.4% 13.6%

Trees of different arities and node sizes when C is instantiated by either Poseidon-DM or Posei-
don2-DM.

5.2 ZK-SNARK Performance

The main bottleneck of ZK-SNARK frameworks usually lies in the time needed to generate the
proof, hence we target proof generation time as our efficiency metric. In turn, the complexity of
building a proof varies on the framework: for ZK-SNARK systems based on QAPs and R1CS
systems, it primarily depends on the multiplicate complexity (i.e. number of equations) in the
constraint system itself, and secondarily on its sparsity: a lower number of constraints is normally
directly related to an improvement in the resulting proof generation time.

Table 4: Number of R1CS constraints required to represent the target compression functions.

Compression Rate

Primitive 2:1 4:1 8:1

Poseidon 237 288 384
Poseidon-DM 213 213 261

Poseidon2-Trunc 213 264 360
Poseidon2-DM 213 213 261

Constraint Reduction

Poseidon-DM −11% −35% −47%
Poseidon2-DM 0% −24% −38%

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 22

Table 5: Time to generate a Merkle tree opening proof in the Groth16 framework (libsnark,
|M | = 230).

MT Arity

Primitive Field 2 4 8

Poseidon
BLS-381 1.35 s 0.846 s 0.761 s
BN-254 0.837 s 0.525 s 0.470 s
Ed-180 0.440 s 0.281 s 0.253 s

Poseidon-DM
BLS-381 1.24 s 0.671 s 0.538 s
BN-254 0.767 s 0.413 s 0.333 s
Ed-180 0.398 s 0.215 s 0.178 s

Poseidon2
BLS-381 1.29 s 0.807 s 0.756 s
BN-254 0.779 s 0.488 s 0.453 s
Ed-180 0.403 s 0.257 s 0.240 s

Poseidon2-DM
BLS-381 1.30 s 0.692 s 0.554 s
BN-254 0.779 s 0.413 s 0.333 s
Ed-180 0.403 s 0.216 s 0.177 s

Average speedup

Poseidon-DM +10% +28% +42%
Poseidon2-DM 0% +18% +36%

Since the only difference between the Poseidon and Poseidon2 constructions is the affine
layer, they both require an equal number of R1CS constraints for the same state size, and the same
holds for Poseidon-DM and Poseidon2-DM, as can be seen in Table 4. However, as the Trunc
mode allows Poseidon2 to save one state element compared to Sponge, similarly the PGV-ELC
mode allows us to halven the number of state elements, resulting in a significant reduction of R1CS
constraints. Once again, in Table 5 and Figure 4 we can see how increasing the arity improves proof
generation time across the board: for example, generating a proof with Poseidon over an octonary
tree is approximately 70% faster than over a binary tree (for the same input message length).
In particular, there is but negligible difference between Poseidon-DM and Poseidon2-DM, and
generating proofs over octonary trees with either of them is about 2.3× faster than over binary
trees with Poseidon2-Trunc, and about 2.5× faster than over binary trees with Poseidon.

5.3 Native Performance

When comparing native execution times of different modes of operation, one has to be mindful of
several ‘implementation details’: in order to try and alleviate implementation-specific differences
as much as possible, in addition to using different prime fields, we also tested different arithmetic
backends: In Table 6, we report the time necessary to perform common arithmetic operations over
the target backends. In particular, we noticed that NTL greatly benefits from in-place operations,
due to its use of dynamic allocation, while for libff this is less of a concern, as it uses automatic
(stack) storage, and for libarith the cost is relevant only for addition.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 23

Table 6: Time to compute common field operations for target libraries over target fields.

Library Field x+y x+=y x+=x x*y x*=y x*=x

NTL

BLS-381 50.9 ns 33.2 ns 11.2 ns 152 ns 62.8 ns 45.3 ns
BN-254 50.8 ns 33.1 ns 11.5 ns 153 ns 59.9 ns 45.2 ns
Ed-180 78.07 ns 28.5 ns 11.3 ns 75.7 ns 38.6 ns 33.2 ns

libff

BLS-381 8.12 ns 7.12 ns 7.28 ns 22.4 ns 21.6 ns 21.8 ns
BN-254 8.35 ns 7.46 ns 7.38 ns 19.4 ns 17.7 ns 17.8 ns
Ed-180 7.93 ns 7.05 ns 7.22 ns 14.0 ns 13.9 ns 13.6 ns

libarith

BLS-381 3.48 ns 2.78 ns 1.80 ns 18.3 ns 18.5 ns 17.8 ns
BN-254 3.73 ns 2.96 ns 1.76 ns 19.9 ns 20.3 ns 19.7 ns
Ed-180 2.66 ns 2.19 ns 3.87 ns 12.1 ns 11.5 ns 10.9 ns

Table 7: Time, in microseconds, to compute a single primitive call. Note that 2:1 compression is a
special case, see Remark 5.1.

NTL libff libarith

Primitive Field 2:1∗ 4:1 8:1 2:1∗ 4:1 8:1 2:1∗ 4:1 8:1

Poseidon
BLS-381 47.4 112 337 18.0 47.2 157 11.6 26.3 74.1
BN-254 48.2 114 344 18.1 45.0 142 11.8 26.4 76.2
Ed-180 39.9 95.9 299 17.0 41.8 122 8.48 19.2 55.1

Poseidon-DM
BLS-381 40.4 40.8 133 14.9 15.7 59.4 9.89 10.0 32.7
BN-254 41.5 41.5 135 15.2 15.6 56.2 10.4 10.4 33.0
Ed-180 35.4 35.1 118 14.4 14.2 49.0 7.46 7.55 24.7

Poseidon2-Trunc
BLS-381 13.5 26.6 46.5 5.44 13.9 23.8 3.30 7.32 12.6
BN-254 13.5 26.4 45.3 5.47 13.9 23.6 3.24 7.11 12.1
Ed-180 11.5 30.6 43.3 5.35 12.7 21.8 2.51 5.48 8.97

Poseidon2-DM
BLS-381 15.0 15.0 28.2 6.39 6.44 15.4 3.51 3.50 7.88
BN-254 15.5 15.3 28.3 6.44 6.56 15.6 3.47 3.48 7.75
Ed-180 13.3 13.1 26.0 6.51 6.51 15.1 2.67 2.69 5.85

Average speedup

Poseidon-DM 1.17× 2.80× 2.51× 1.17× 2.87× 2.57× 1.15× 2.27× 2.27×
Poseidon2-DM 0.86× 1.82× 1.56× 0.85× 2.20× 1.57× 0.94× 2.06× 1.57×

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 24

In Table 7 we can see the performance of a single execution of the target primitives: observe
how, due to the need of input-expansion to exploit the benefits of the partial-SPN structure, there
is basically no difference between the 2:1 and the 4:1 variants of Poseidon-DM, and similarly for
Poseidon2-DM. As a result, in the case of 2:1 compression, Poseidon-DM is about 15% faster
than (Sponge-based) Poseidon8, while Poseidon2-DM is between 5–15% slower than Poseidon2-
Trunc. On the other hand, for all other cases, using PGV-ELC brings great efficiency improvements,
with Poseidon-DM being up to three times faster than Sponge Poseidon, and Poseidon2-DM
being up to two times faster than Poseidon2-Trunc.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

|M | [Fp elements]

T
im

e
[m

s]

Poseidon (2:1)

Poseidon (4:1)

Poseidon (8:1)

Poseidon-DM (2:1)

Poseidon-DM (4:1)

Poseidon-DM (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

T
im

e
[m

s]

Poseidon2-Trunc (2:1)

Poseidon2-Trunc (4:1)

Poseidon2-Trunc (8:1)

Poseidon2-DM (2:1)

Poseidon2-DM (4:1)

Poseidon2-DM (8:1)

Fig. 3: Time to build a Merkle tree of different arities over the BLS-381 field with the target
primitives (libff).

0 0.5 1 1.5 2 2.5

·105

0

200

400

600

800

|M | [Fp elements]

T
im

e
[m

s]

Poseidon (2:1) Poseidon-DM (2:1)

Poseidon (4:1) Poseidon-DM (4:1)

Poseidon (8:1) Poseidon-DM (8:1)

0 0.5 1 1.5 2 2.5

·105

0

200

400

600

800

|M | [Fp elements]

T
im

e
[m

s]

Poseidon2-Trunc (2:1) Poseidon2-DM (2:1)

Poseidon2-Trunc (4:1) Poseidon2-DM (4:1)

Poseidon2-Trunc (8:1) Poseidon2-DM (8:1)

Fig. 4: Time to generate a Merkle tree opening proof over the BLS-381 field with the target primitives
and arities (libsnark).

8 We could have obtained a much higher speed-up by using the efficient key-scheduling matrix of Posei-
don2-DM also in Poseidon-DM: however, we considered that such comparison would not have been fair,
as matrix optimization is the whole point of Poseidon2 in the first place.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 25

0 5 10 15 20 25 30
27

28

29

210

211

212

213

214

Threads
T
im

e
[m

s]

Poseidon

Poseidon-DM

Poseidon2-Trunc

Poseidon2-DM

Fig. 5: Multithread scaling of target primitives when building an arity-4 tree (libff, BLS-381,
|M | = 220).

BLS-381 BN-254 Ed-180

8×

9×

10×

S
p
ee
d
u
p
ov
er

b
a
se
li
n
e

Poseidon

Poseidon-DM

Poseidon2-Trunc

Poseidon2-DM

Fig. 6: 16-threads speed-up over serial construction of an arity-4 Merkle tree (libff, BLS-381,
|M | = 220).

We also tested the behaviour of modes with respect to parallelization: as can be seen in Figures 5
and 6, the larger BN-254 and BLS-381 fields are more memory-bound than the smaller Ed-180 field,
and similarly the heavier Poseidon benefits slightly more from parallelization when processing large
volumes of data.

Acknowledgements

Stefano Trevisani was supported in full and Elena Andreeva was supported in part by the Austrian
Science Fund (FWF) SpyCoDe grant with number 10.55776/F8507-N.

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 26

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient encryption and crypto-
graphic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology – ASIACRYPT 2016. pp. 191–219. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D., Roy, A., Schofnegger,
M.: Feistel structures for mpc, and more. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) Computer
Security – ESORICS 2019. pp. 151–171. Springer International Publishing, Cham (2019)

3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key prim-
itives for advanced cryptographic protocols. Cryptology ePrint Archive, Paper 2019/426 (2019).
https://doi.org/10.13154/tosc.v2020.i3.1-45, https://eprint.iacr.org/2019/426, https://eprint.

iacr.org/2019/426

4. Ashur, T., Buschman, T., Mahzoun, M.: Algebraic cryptanalysis of hades design strategy: Application
to poseidon and poseidon2. Cryptology ePrint Archive, Paper 2023/537 (2023), https://eprint.iacr.
org/2023/537, https://eprint.iacr.org/2023/537

5. Bakhta, A., Sasson, E.B., Levy, A., Gurevich, D.L.: Eip-5988: Add poseidon hash function precompile.
https://eips.ethereum.org/EIPS/eip-5988 (2022), https://eips.ethereum.org/EIPS/eip-5988

6. Bakker, A.: Merkle hash torrent extension (2009), http://bittorrent.org/beps/bep_0030.html,
http://bittorrent.org/beps/bep_0030.html

7. Bariant, A., Bouvier, C., Leurent, G., Perrin, L.: Practical Algebraic Attacks against some
Arithmetization-oriented Hash Functions. Research report, Inria (Jan 2022), https://hal.science/
hal-03518757

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees.
Cryptology ePrint Archive, Paper 2002/088 (2002), https://eprint.iacr.org/2002/088, https://
eprint.iacr.org/2002/088

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. Cryptology ePrint
Archive, Paper 2005/133 (2005), https://eprint.iacr.org/2005/133, https://eprint.iacr.org/

2005/133

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, Paper 2018/046 (2018), https://eprint.iacr.
org/2018/046, https://eprint.iacr.org/2018/046

11. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decen-
tralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy. pp.
459–474 (2014). https://doi.org/10.1109/SP.2014.36

12. Ben-Sasson, E., Chiesa, A., Genkin, D., Kfir, S., Tromer, E., Virza, M., Wu, H., Backes, M., Barbosa,
M., Chernyakhovsky, A., Fiore, D., Groth, J., Kroll, J.A., MITSUNARI, S., Popovs, A., Reischuk, R.,
TERUYA, T.: libsnark: a c++ library for zksnark proofs. https://github.com/scipr-lab/libsnark
(2012), SCIPR Lab

13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von
neumann architecture. Cryptology ePrint Archive, Paper 2013/879 (2013), https://eprint.iacr.org/
2013/879, https://eprint.iacr.org/2013/879

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT hash workshop.
vol. 2007 (2007)

15. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construc-
tion. In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. pp. 181–197. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

16. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function
constructions from pgv. Cryptology ePrint Archive, Paper 2002/066 (2002), https://eprint.iacr.
org/2002/066, https://eprint.iacr.org/2002/066

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2023/537
https://eprint.iacr.org/2023/537
https://eprint.iacr.org/2023/537
https://eips.ethereum.org/EIPS/eip-5988
https://eips.ethereum.org/EIPS/eip-5988
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
https://hal.science/hal-03518757
https://hal.science/hal-03518757
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://github.com/scipr-lab/libsnark
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2002/066

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 27

17. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data from additive polyno-
mial commitments. In: Advances in Cryptology - CRYPTO 2021: 41st Annual International Cryp-
tology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I. pp.
649–680. Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-030-84242-0 23,
https://doi.org/10.1007/978-3-030-84242-0{_}23

18. Bonnetain, X.: Collisions on feistel-mimc and univariate gmimc. Cryptology ePrint Archive, Paper
2019/951 (2019), https://eprint.iacr.org/2019/951, https://eprint.iacr.org/2019/951

19. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems, D.: New design tech-
niques for efficient arithmetization-oriented hash functions: Anemoi permutations and jive compres-
sion mode. Cryptology ePrint Archive, Paper 2022/840 (2022), https://eprint.iacr.org/2022/840,
https://eprint.iacr.org/2022/840

20. Bowe, S., Grigg, J.: bellman: zk-snark library. https://github.com/zkcrypto/bellman (2015), zero-
knowledge Cryptography in Rust

21. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for
confidential transactions and more. Cryptology ePrint Archive, Paper 2017/1066 (2017), https://

eprint.iacr.org/2017/1066, https://eprint.iacr.org/2017/1066
22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Preprocessing zksnarks with

universal and updatable srs. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT
2020. pp. 738–768. Springer International Publishing, Cham (2020)

23. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from holog-
raphy. Cryptology ePrint Archive, Paper 2019/1076 (2019), https://eprint.iacr.org/2019/1076,
https://eprint.iacr.org/2019/1076

24. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics of Peer-to-Peer sys-
tems. vol. 6, pp. 68–72. Berkeley, CA, USA (2003)

25. contributors, A.: arkworks zksnark ecosystem (2022), https://arkworks.rs, https://arkworks.rs
26. Daemen, J., Rijmen, V.: Aes proposal: Rijndael (1999)
27. Dang, Q.H.: Secure Hash Standard. National Institute of Standards and Technology (Jul 2015).

https://doi.org/10.6028/nist.fips.180-4, http://dx.doi.org/10.6028/NIST.FIPS.180-4
28. Dobbertin, H., Bosselaers, A., Preneel, B.: Ripemd-160: A strengthened version of ripemd. In: Gollmann,

D. (ed.) Fast Software Encryption. pp. 71–82. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)
29. Dworkin, M.: Sha-3 standard: Permutation-based hash and extendable-output functions (2015-08-04

2015). https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
30. Edgington, B.: Bls12-381 for the rest of us. https://hackmd.io/@benjaminion/bls12-381#

Resources-and-further-reading (Jun 2023), https://hackmd.io/@benjaminion/bls12-381#

Resources-and-further-reading
31. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathemati-

cal Society 44, 393–422 (2007). https://doi.org/10.1090/S0273-0979-07-01153-6, https://www.ams.

org/journals/bull/2007-44-03/S0273-0979-07-01153-6/, https://www.ams.org/journals/bull/

2007-44-03/S0273-0979-07-01153-6/
32. Faugère, J.C., Gaudry, P., Huot, L., Renault, G.: Sub-cubic change of ordering for gröbner basis: A

probabilistic approach. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation. pp. 170–177. ISSAC ’14, Association for Computing Machinery, New York, NY, USA
(2014). https://doi.org/10.1145/2608628.2608669, https://doi.org/10.1145/2608628.2608669

33. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for lookup tables. Cryptology
ePrint Archive, Paper 2020/315 (2020), https://eprint.iacr.org/2020/315, https://eprint.iacr.
org/2020/315

34. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper 2019/953 (2019), https:
//eprint.iacr.org/2019/953, https://eprint.iacr.org/2019/953

35. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks without
pcps. Cryptology ePrint Archive, Paper 2012/215 (2012), https://eprint.iacr.org/2012/215, https:
//eprint.iacr.org/2012/215

https://doi.org/10.1007/978-3-030-84242-0{_}23
https://doi.org/10.1007/978-3-030-84242-0{_}23
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1076
https://arkworks.rs
https://arkworks.rs
https://doi.org/10.6028/nist.fips.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://doi.org/10.1090/S0273-0979-07-01153-6
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2012/215

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 28

36. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. J. ACM 38(3), 690–728 (jul 1991).
https://doi.org/10.1145/116825.116852, https://doi.org/10.1145/116825.116852

37. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM
Journal on Computing 18(1), 186–208 (1989). https://doi.org/10.1137/0218012, https://doi.org/10.
1137/0218012

38. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst meets fluid-spn:
Griffin for zero-knowledge applications. Cryptology ePrint Archive, Paper 2022/403 (2022), https:
//eprint.iacr.org/2022/403, https://eprint.iacr.org/2022/403

39. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M., Walch, R.: Rein-
forced concrete: A fast hash function for verifiable computation. Cryptology ePrint Archive, Paper
2021/1038 (2021). https://doi.org/10.1145/3548606.3560686, https://eprint.iacr.org/2021/1038,
https://eprint.iacr.org/2021/1038

40. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M., Walch, R.: Hash func-
tions monolith for zk applications: May the speed of sha-3 be with you. Cryptology ePrint Archive, Paper
2023/1025 (2023), https://eprint.iacr.org/2023/1025, https://eprint.iacr.org/2023/1025

41. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A new hash function
for zero-knowledge proof systems. Cryptology ePrint Archive, Paper 2019/458 (2019), https://eprint.
iacr.org/2019/458, https://eprint.iacr.org/2019/458

42. Grassi, L., Khovratovich, D., Schofnegger, M.: Poseidon2: A faster version of the poseidon hash function.
Cryptology ePrint Archive, Paper 2023/323 (2023), https://eprint.iacr.org/2023/323, https://
eprint.iacr.org/2023/323

43. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a generalization of
substitution-permutation networks: The hades design strategy. Cryptology ePrint Archive, Paper
2019/1107 (2019), https://eprint.iacr.org/2019/1107, https://eprint.iacr.org/2019/1107

44. Grassi, L., Rechberger, C., Schofnegger, M.: Proving resistance against infinitely long subspace
trails: How to choose the linear layer. IACR Transactions on Symmetric Cryptology 2021(2), 314–
352 (Jun 2021). https://doi.org/10.46586/tosc.v2021.i2.314-352, https://tosc.iacr.org/index.php/
ToSC/article/view/8913

45. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung,
M. (eds.) Applied Cryptography and Network Security. pp. 467–482. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

46. Groth, J.: Short non-interactive zero-knowledge proofs. In: Advances in Cryptology - ASI-
ACRYPT 2010 - 16th International Conference on the Theory and Application of Cryp-
tology and Information Security. Lecture Notes in Computer Science, vol. 6477, pp. 341–
358. Springer (2010). https://doi.org/10.1007/978-3-642-17373-8 20, https://www.iacr.org/archive/
asiacrypt2010/6477343/6477343.pdf

47. Groth, J.: On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Paper
2016/260 (2016), https://eprint.iacr.org/2016/260, https://eprint.iacr.org/2016/260

48. Gueron, S.: Intel advanced encryption standard (aes) new instructions set (2012)
49. Hamano, J.C.: Git–a stupid content tracker. Proceedings of the Ottawa Linux Symposium 2006 1,

385–394 (2006)
50. Hoeven, J., Larrieu, R.: Fast gröbner basis computation and polynomial reduction for generic bivariate

ideals. Applicable Algebra in Engineering, Communication and Computing 30(6), 509–539 (Dec 2019).
https://doi.org/10.1007/s00200-019-00389-9, https://doi.org/10.1007/s00200-019-00389-9

51. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. ZCash Improvement
Proposals Website (Sep 2022), https://zips.z.cash, https://zips.z.cash

52. Iden3: Circom circuit compiler. GitHub Repository, ‘circom’ (2022), https://github.com/iden3/

circom, https://github.com/iden3/circom
53. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham, E. (ed.) Fast

Software Encryption. pp. 28–40. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://doi.org/10.1145/3548606.3560686
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2023/323
https://eprint.iacr.org/2023/323
https://eprint.iacr.org/2023/323
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://doi.org/10.46586/tosc.v2021.i2.314-352
https://tosc.iacr.org/index.php/ToSC/article/view/8913
https://tosc.iacr.org/index.php/ToSC/article/view/8913
https://doi.org/10.1007/978-3-642-17373-8{_}20
https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf
https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://doi.org/10.1007/s00200-019-00389-9
https://doi.org/10.1007/s00200-019-00389-9
https://zips.z.cash
https://zips.z.cash
https://github.com/iden3/circom
https://github.com/iden3/circom
https://github.com/iden3/circom

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 29

54. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst.
Rev. 44(2), 35–40 (apr 2010). https://doi.org/10.1145/1773912.1773922, https://doi.org/10.1145/
1773912.1773922

55. Liu, T., Xie, X., Zhang, Y.: zkcnn: Zero knowledge proofs for convolutional neural network predictions
and accuracy. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2968–2985. CCS ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3485379, https://doi.org/10.1145/3460120.3485379

56. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16, pp. 294–306. Elsevier
(1977)

57. Matyas, S.M.: Generating strong one-way functions with cryptographic algorithm. IBM Technical Dis-
closure Bulletin 27, 5658–5659 (1985)

58. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. Cryptology ePrint Archive, Paper 2003/161 (2003),
https://eprint.iacr.org/2003/161, https://eprint.iacr.org/2003/161

59. Merkle, R.C.: Method of providing digital signatures (jan 1982), https://patents.google.com/

patent/US4309569A/en
60. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.)

Advances in Cryptology — CRYPTO ’87. pp. 369–378. Springer Berlin Heidelberg, Berlin, Heidelberg
(1988)

61. Merkle, R.C.: One way hash functions and des. In: Brassard, G. (ed.) Advances in Cryptology —
CRYPTO’ 89 Proceedings. pp. 428–446. Springer New York, New York, NY (1990)

62. Miyaguchi, S., Ohta, K., Iwata, M.: 128-bit hash function (n-hash). NTT review (1990)
63. Muñoz-Tapia, J.L., Belles, M., Isabel, M., Rubio, A., Baylina, J.: CIRCOM: A Robust

and Scalable Language for Building Complex Zero-Knowledge Circuits. TechRxiv (3 2022).
https://doi.org/10.36227/techrxiv.19374986.v1, https://techrxiv.figshare.com/articles/

preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_

Circuits/19374986
64. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at

https://metzdowd.com (03 2009)
65. Naveh, A., Tromer, E.: Photoproof: Cryptographic image authentication for any set of permissi-

ble transformations. In: 2016 IEEE Symposium on Security and Privacy (SP). pp. 255–271 (2016).
https://doi.org/10.1109/SP.2016.23

66. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifiable computation.
Cryptology ePrint Archive, Paper 2013/279 (2013), https://eprint.iacr.org/2013/279, https://
eprint.iacr.org/2013/279

67. Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis, Katholieke Universiteit
te Leuven Leuven (1993)

68. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic ap-
proach. In: Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings. Lecture Notes in Computer Science,
vol. 773, pp. 368–378. Springer (1993). https://doi.org/10.1007/3-540-48329-2 31

69. Psaras, Y., Dias, D.: The interplanetary file system and the filecoin network. In: 2020 50th Annual IEEE-
IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S).
pp. 80–80 (2020). https://doi.org/10.1109/DSN-S50200.2020.00043

70. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher shark. In: Gollmann, D.
(ed.) Fast Software Encryption. pp. 99–111. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

71. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and sepa-
rations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier,
W. (eds.) Fast Software Encryption. pp. 371–388. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

72. Roy, A., Andreeva, E., Sauer, J.F.: Interpolation cryptanalysis of unbalanced feistel networks with low
degree round functions. Cryptology ePrint Archive, Paper 2021/367 (2021), https://eprint.iacr.
org/2021/367, https://eprint.iacr.org/2021/367

https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://eprint.iacr.org/2003/161
https://eprint.iacr.org/2003/161
https://patents.google.com/patent/US4309569A/en
https://patents.google.com/patent/US4309569A/en
https://doi.org/10.36227/techrxiv.19374986.v1
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://doi.org/10.1109/SP.2016.23
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://doi.org/10.1007/3-540-48329-2{_}31
https://doi.org/10.1109/DSN-S50200.2020.00043
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367

On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing 30

73. Roy, A., Steiner, M.: Generalized triangular dynamical system: An algebraic system for construct-
ing cryptographic permutations over finite fields (2022). https://doi.org/10.48550/ARXIV.2204.01802,
https://arxiv.org/abs/2204.01802, https://arxiv.org/abs/2204.01802

74. Roy, A., Steiner, M.J., Trevisani, S.: Arion: Arithmetization-oriented permutation and hashing from
generalized triangular dynamical systems (2023)

75. van Saberhagen, N.: Cryptonote v 2.0 (2013), https://api.semanticscholar.org/CorpusID:2711472
76. Schofnegger, M., Walch, R.: Hash functions for zero-knowledge applications zoo. https://extgit.

iaik.tugraz.at/krypto/zkfriendlyhashzoo (August 2021), IAIK, Graz University of Technology
77. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup. Cryptology ePrint

Archive, Paper 2019/550 (2019), https://eprint.iacr.org/2019/550, https://eprint.iacr.org/

2019/550

78. Sivasubramanian, S.: Amazon dynamodb: A seamlessly scalable non-relational database service.
In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data.
pp. 729–730. SIGMOD ’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2213836.2213945, https://doi.org/10.1145/2213836.2213945

79. Szepieniec, A.: On the use of the legendre symbol in symmetric cipher design. Cryptology ePrint Archive,
Paper 2021/984 (2021), https://eprint.iacr.org/2021/984, https://eprint.iacr.org/2021/984

80. Szepieniec, A., Lemmens, A., Sauer, J.F., Threadbare, B., Al-Kindi: The tip5 hash function for recur-
sive starks. Cryptology ePrint Archive, Paper 2023/107 (2023), https://eprint.iacr.org/2023/107,
https://eprint.iacr.org/2023/107

81. Ventali, T.: Awesome zero knowledge: A curated list of awesome zk resources, libraries, tools and
more. GitHub Repository (2024), https://github.com/ventali/awesome-zk, https://github.com/
ventali/awesome-zk

82. Vujičić, D., Jagodić, D., Randić, S.: Blockchain technology, bitcoin, and ethereum: A brief overview.
In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH). pp. 1–6 (2018).
https://doi.org/10.1109/INFOTEH.2018.8345547

83. Wang, D.: Loopring. https://loopring.org/ (2020), loopring Project Ltd.
84. Wang, J.: Bn254 for the rest of us. https://hackmd.io/@jpw/bn254 (Aug 2022), https://hackmd.io/

@jpw/bn254

85. Winternitz, R.S.: Producing a one-way hash function from des. In: Chaum, D. (ed.) Ad-
vances in Cryptology: Proceedings of Crypto 83. pp. 203–207. Springer US, Boston, MA (1984).
https://doi.org/10.1007/978-1-4684-4730-9 17, https://doi.org/10.1007/978-1-4684-4730-9{_}17

86. Winternitz, R.S.: A secure one-way hash function built from des. In: 1984 IEEE Symposium on Security
and Privacy. pp. 88–88 (1984). https://doi.org/10.1109/SP.1984.10027

https://doi.org/10.48550/ARXIV.2204.01802
https://arxiv.org/abs/2204.01802
https://arxiv.org/abs/2204.01802
https://api.semanticscholar.org/CorpusID:2711472
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2213836.2213945
https://eprint.iacr.org/2021/984
https://eprint.iacr.org/2021/984
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://github.com/ventali/awesome-zk
https://github.com/ventali/awesome-zk
https://github.com/ventali/awesome-zk
https://doi.org/10.1109/INFOTEH.2018.8345547
https://loopring.org/
https://hackmd.io/@jpw/bn254
https://hackmd.io/@jpw/bn254
https://hackmd.io/@jpw/bn254
https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://doi.org/10.1109/SP.1984.10027

	On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing

