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      Abstract— The issue of data and information 

security on the internet and social network has become 

more serious and pervasive in recent years. 

Cryptography is used to solve security problems. 

However, message encryption cannot merely meet the 

intended goals because access control over the 

encrypted messages is required in some applications. 

To achieve these requirements, attribute-based 

encryption (ABE) is used. This type of encryption 

provides both security and access structure for the 

network users simultaneously. Fuzzy Identity-Based 

Encryption (FIBE) is a special mode of ABE that 

provides a threshold access structure for the users. 

This threshold value is set by the authority for users, 

which is always fixed and cannot be changed. So, the 

sender (encryptor) will not play a role in determining 

the threshold value. The mentioned issue exists also in 

Key Policy Attribute Based Encryption (KP-ABE) 

schemes. In this paper, we present a FIBE scheme in 

addition to the authority, the sender also plays a role 

in determining the threshold value. Thus, the policy 

will be more flexible than previous FIBE schemes in 

that the threshold value is selected only by the 

authority. We can call the proposed scheme a dual-

policy ABE. The proposed technique for flexibility of 

threshold value can be applied in most of the existing 

KP-ABE schemes. We use the (indistinguishable) 

selective security model for security proof. The 

hardness assumption that we use is the modified 

bilinear decision Diffie-Hellman problem. 

    Keywords— Attribute-based encryption (ABE), 

Secret Sharing multiplication, Fuzzy Identity-Based 

Encryption (FIBE), fine-grained access policy, Access 

structure, Dual-policy ABE, Threshold value flexibility 

I.  INTRODUCTION  

 The simultaneous provision of information 
security, as well as the application of access control 
on the messages of different networks, is one of the 

most widely used topics in cryptography. We declare 
the importance of this topic by an instance. Suppose 
that a patient wants to send his/her health information 
to a doctor who works at a special hospital H. In the 
classic encryption methods, the patient has to be 
familiar with a doctor and has his public key. Then 
he/she should encrypt the health information with 
this key and send it to the doctor. This method has 
some problems in big networks. Because the network 
users have to be familiar with all of the other users. 
Also, the users have to learn a lot of keys from other 
users. So, applying access control to the encrypted 
data based on users' attributes can be solved this 
problem. In this approach, called Attribute-Based 
Encryption (ABE), knowing the user's ID and the 
related key is not required for encryption. Because 
the users are described with a set of attributes. 
Therefore, the sender only should encrypt the 
message by these attributes. This approach can be 
very effective. For instance, in the mentioned 
example, this is enough that the sender encrypts his 
message by attributes doctor and hospital H. While 
this approach is really useful, it has some challenges 
in the real world. The first and most obvious one is 
creating a strong fine-grained access structure. This 
means that we can choose any set of users to select 
and send messages to. In some schemes, this has not 
been completely solved. This issue is evident in [1] 
which uses a single Threshold gate as an access 
structure. This special type of ABE is called Fuzzy 
Identity Based Encryption (FIBE). We want to 
improve this scheme to reach a stronger fine-grained 
access structure than the original scheme. 
Computational complexity is another challenge in 
ABE area. We improve the [1] scheme without 
forcing extra computational or communication 
overhead. Recently, some papers like [2], [3], and [4] 
tried to reduce the complexity of ABE schemes. The 
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concept of Fuzzy IBE is presented in the next for 
better discussion. 

In Fuzzy IBE schemes like [1] users’ private keys are 
generated related to their attributes, i.e., a user as a 
receiver has a set of attributes like 𝜔. Now suppose 
that a sender encrypts a message with a number of 
attributes shown as  𝜔′ set. Now, if a receiver’s 
attribute set 𝜔 is close enough to the set of attributes 
𝜔′, the receiver is able to decrypt the message. This 
means that the number of attribute 
intersections(subscriptions) of receiver and 
ciphertext is greater than a threshold. To this end, a 
threshold value 𝑑 is defined by the authority and if 
the condition |𝜔 ∩ 𝜔′| ≥ d holds, the user as a 
receiver will be able to decrypt. 

In the following, we want to express the weakness of 
fine-grained access structure in Fuzzy IBE schemes 
especially in [1]. 

Fuzzy IBE scheme problems: In a fuzzy IBE scheme 
like [1], the access structure is not fully fine-grained. 
Suppose that data user 𝑢 has an attribute set 𝜔, the 
threshold value  is 𝑑 and the sender has selected 
attribute set 𝜔′. The data user 𝑢 receives the encrypted 
data. If the condition |𝜔 ∩ 𝜔′| ≥ 𝑑 holds, the user 𝑢 
can decrypt. Now suppose that the sender’s goal is to 
prevent this user from decrypting. In scheme [1], the 
sender just can reduce the attribute set 𝜔′ which can 
cause the sender’s target attributes not to be 
completely selected and other legible users may not 
be able to decrypt as well. For instance, suppose that 
there is a user his/her access policy is a threshold gate, 
as shown in figure 1. The sender encrypts a message 
by applying attribute set {𝐴, 𝐵, 𝐶, 𝐸}. Regarding 
figure 1, this is clear that this user can decrypt the 
sender’s message. Because his/her access policy is the 
threshold gate. The threshold value is 2 from 4 input 
attributes. Inputs of this gate is {𝐴, 𝐵, 𝐷, 𝐹} attributes.  
According to ciphertext attributes, this is clear that the 
attributes of 𝐴 and 𝐵 are the intersections. Therefore, 
this user is legal to decryption. In this example, the 
sender wants to ban this user’s access. In previous 
schemes like [1], [5], [6] and [7] sender should 
remove some attributes in ciphertext to decrease the 

number of intersections. Generally, a sender cannot 
modify the access policy in KP-ABE schemes (e.g., 
[8]). In this scenario, our purpose is that sender can 
ban this user 's access without removing any attribute 
in the ciphertext. The previous schemes cannot act 
like this. Therefore, in these schemes, the sender 
cannot make a fine-grained access structure. If the 
sender can increase the threshold value to 3, can ban 
this user 's access. This is the contribution of our 
paper. This means that if the authority has selected the 
threshold as 2 and the sender chooses 1 then the total 
threshold value will be 3. In fact, in previous Fuzzy 
IBE schemes, the threshold value (for one user) is 
selected once and for all and remains constant. Lack 
of flexibility in selecting threshold will cause the 
above problem. Thus, we are going to solve these 
problems in our scheme by using the Secret sharing 
polynomials multiplication technique adapted from 
[9], and [10]. Our scheme also can be dual-policy 
ABE. Because authority and sender select the 
threshold value together. As we claimed before, the 
proposed technique can use in most KP-ABE schemes 
like [5] and [11]. In fact, if our technique is used in 
KP-ABE schemes, the sender can increase all 
threshold values at the gates in start of the circuit (leaf 
nodes of the access tree). 
In our scheme, the threshold value is divided into two 
parts. One part is placed on the key by the authority 
and the other part is selected by the sender and placed 
in the ciphertext. In the end, the total threshold will 
be the sum of two initial thresholds. Therefore, the 
threshold value will no longer be fixed and it may 
increase during encryption. Thus, the threshold value 
will be flexible. For this purpose, we used a method 
called the multiplication of shares in Shamir’s secret 
sharing. This technique can be used in KP-ABE 
designs such as [5] and [11]. 

The paper structure: The paper structure is as 
follows: In the following, the literature review and 
related works are presented in section II. We will 
introduce mathematical prerequisites and ABE basic 
requirements as preliminary in section III. Then we 
will present our intended scheme in section IV. The 
scheme’s security proof and efficiency comparison 
with [1] are also included in section V. Finally, we 
proposed a conclusion in section VI. Note that you 
can find the published version of this work at [12]. 

II. RELATED WORKS 

Sahai and Waters first introduced fuzzy IBE in 
[1]which led to the emergence of ABE. This scheme 
used only one threshold gate. As mentioned before, Figure 1: user's access policy (Threshold gate) 



  

 

 

in this scheme sender selects a set of attributes and 
encrypts the message. The receivers can decrypt the 
message if they have enough of the sender’s intended 
attributes, i.e., the number of the sender's desired 
attributes and receiver's attributes is more than a 
predefined threshold. That is why it is also called 
threshold encryption. This scheme supports only one 
threshold gate while by applying the access 
structures that combine logical gates or in general 
multiple threshold gates, we can achieve a stronger 
fine-grained access structure. Therefore, the goal is 
to apply the more complex access structure (like 
Boolean functions) to the schemes.   To this end, 
Goyal et al. [5] proposed a scheme to apply a 
monotone access structure and also introduced the 
concept of Attribute Based Encryption (ABE). In this 
scheme, policy (the access structure) is applied to the 
users’ key. This means that an access structure is 
selected and applied by the authority in the key 
generation phase. This scheme is known as key 
policy attribute-based encryption (KP-ABE). After 
that, Bethencourt et al. [13] presented a scheme in 
which the access policy was applied in the ciphertext. 
Unlike KP-ABE, in the scheme [13], the access 
structure is selected and applied by the sender in the 
encryption phase. These schemes are called 
Ciphertext policy attribute-based encryption (CP-
ABE). Scheme [14] proposed a CP-ABE scheme that 
solved some of the problems and limitations in [13]. 
Recently, [15] proposed a CP-ABE scheme that 
supports the hierarchical architecture. This scheme is 
fully distributed which affords a high level of 
scalability. With increasing the number of users in a 
system, communication networks may encounter 
scalability challenges. Additionally, another type of 
ABE proposed in [16] is called dual-policy ABE 
(DP-ABE). In DP-ABE, policy-making is placed 
both in the users’ private keys and also in the 
ciphertext. In fact, in this type of ABE, both the 
authority and the sender will be involved in policy-
making. 
As mentioned previously, access structure is usually 
defined as a Boolean function, regardless of where it 
is applied either in the key or the ciphertext. If AND, 
OR, and threshold gates are used in this function, it 
is called a monotone access structure. The exact 
definition of monotone access structure can be found 
in [5] and [13]. Meanwhile, if, in addition to the 
mentioned gates, the NOT gate is used in the access 
structure, it is called a non-monotone access 
structure. Ostrovsky et al. proposed the first ABE 
scheme in [17] that supports a non-monotone access 
structure. There are also some schemes such as [18], 
[19], and [20] that use mathematical functions as 
access structures.  

As we mentioned before one of the most important 
problems in ABE schemes is computational 
complexity. One of the techniques to solve this 
problem is outsourcing. Green presented the 
outsourced Attribute-Based Encryption in [21] for 
the first time. This technique reduces the 
computational overhead on the part of users and the 
third party performs the calculations instead. Cloud 
is usually used as a third party. To reduce the 
complexity of decryption, [22] introduced a 
precomputation technique. Also, [23] used a trade-
off between granularity and complexity. There are 
some other problems in ABE areas like key-escrow, 
communication overhead, revocation, and efficiency 
problems. Key-escrow problem is a common issue in 
networks. [24] presented a first multi–Authority 
ABE scheme. Recently the schemes in [25], [26] and 
[27] tried to solve the key escrow problem. The 
schemes in [28] and [29] tried to solve the 
communication overhead problem by presenting a 
scheme that the size of ciphertext is constant. In other 
schemes, the size of ciphertext is increased by 
increasing the number of used attributes or the depth 
of the circuit as an access structure. Revocation of 
user or attribute is the other problem that [30] 
presented a scheme to solve this problem. In this 
regard, [31] proposed a Revocable Storage ABE 
scheme. In addition, [32] proposed a Puncturable 
ABE scheme that can provide decryption revocation. 
There are some new papers like [33] and [34] that 
focused on solving this problem. The schemes in [35] 
and [36] focused on efficiency and presented an ABE 
scheme for practical uses. 

III. PRELIMINARY 

In this section, some definitions and preliminaries, 
which we will use in our scheme, are proposed. This 
section includes the definition of Flexible Fuzzy IBE 
(as an ABE scheme), selective security model for KP-
ABE, secret sharing schemes, bilinear pairing map 
and, hard problem assumption. 

A. Flexible Threshold Fuzzy Identity-Based 

Encryption 

Each Fuzzy IBE and ABE scheme has four 
algorithms: Setup, Key Generation, Encryption, and 
Decryption algorithms. We show these algorithms as 
Setup, KeyGen, Enc and Dec respectively. Setup 
and key generation algorithms are run by the 
authority. The encryption algorithm is run by the 
sender (data owner) and the decryption algorithm is 



  

 

 

run by the receiver (data user). Now, we define these 
algorithms for our schemes. 

Setup (𝝀, 𝑼): This algorithm receives the security 

parameter λ and the set of all attributes U, then 

generates a master secret key (MSK) and public keys 

(PK). MSK has to be kept safe and PK announce for 

all network members. The number of all attributes is 

𝑛 = |𝑈|. 
KeyGen (MSK,𝒅𝟏,𝝎): This algorithm gets the 

master secret key MSK, first-threshold value 𝒅𝟏 and 

the attribute set 𝜔 ⊆ 𝑈  as the inputs and generates 

the user’s secret key (SK).  

Enc (M, PK, 𝒅𝟐, 𝝎′): This algorithm gets the public 

key PK, the second threshold value 𝑑2, the intended 

message (M), and the attribute set 𝜔′ ⊆ 𝑈 as the 

inputs and generates the  ciphertext E corresponding 

to 𝜔′ and the message M.  
Dec (𝑬, 𝑺𝑲): This algorithm gets the secret key SK 
that is related to the attribute set ω as well as the 
ciphertext E that is related to the attribute set  𝜔′. If 
|𝜔 ∩ 𝜔′| < d1 + 𝑑2 holds, the algorithm outputs ⊥, 
otherwise, this algorithm recovers message M and 
declares it as output. 

B. Selective Security model 

Considering that we will prove our scheme security 

in the selective security model, we will describe this 

model in this section. This model includes several 

phases and steps that are executed between adversary 

and challenger as a game. This game will be 

explained in the following.  

Initialization: The adversary first identifies a 

challenging attribute set 𝛼 and the value of 𝑑2 and 

sends them to the challenger. 

Setup: The challenger runs the setup algorithm and 

sends the public keys to the adversary. 

Phase 1: The adversary is allowed to select attribute 

set 𝛾𝑗 and send a query for private keys of 𝛾𝑗  as long 

as |𝛼 ∩ 𝛾𝑗| < 𝑑1 + 𝑑2 holds for all j.  

Challenge: The adversary selects two messages 

𝑀0and  𝑀1  and submits them to the challenger. Then 

the challenger selects a random bit 𝑏 and encrypts 

𝑀𝑏 with challenge attribute set 𝛼. 

Phase 2: Phase 1 is repeated.  

Guess: The adversary guesses which message is 

encrypted. We show the adversary guess by 𝑏′.  

If the adversary detects the intended bit with a 

probability of more than 
1

2
 , it can win this game. 

C. Secret sharing  

Assume that we want to share a secret among several 

entities. Each entity is given a secret share none of 

them cannot compute the secret value. This is 

possible if a number enough entities cooperate with 

each other. The most important secret sharing 

scheme is Shamir’s scheme which operates like a 

threshold gate. In this scheme, if a secret is shared 

among 𝑛 entities and if there are 𝑡 or more of these 

entities, the secret can be recovered. The scheme can 

be generalized to any access structure. In this 

scheme, we must have at least 𝑡 points of a 

polynomial of 𝑡 − 1 degree to recover it. To share 

secret 𝑠 among 𝑛 entities with 𝑡 threshold (it is called 

𝑡 of 𝑛 scheme and 𝑡 ≤ 𝑛) first a random polynomial 

𝑞(𝑥) of 𝑡 − 1 degree is selected which  𝑞(0) = 𝑠. 

Each entity 𝑖, that 1 ≤ 𝑖 ≤ 𝑛, is given (𝑖, 𝑞(𝑖)). 

Lagrange coefficients are used to recover the value 

of s secret. The Lagrange coefficient function can be 

calculated as follows. 

∆𝑖.𝑆(𝑥) = ∏
𝑥 − 𝑗

𝑖 − 𝑗
𝑗∈𝑆 .𝑗≠𝑖

              , ∀ 𝑖 ∈ 𝑆                         (1) 

𝐿𝑖 = ∆𝑖.𝑆(0) = ∏
−𝑗

𝑖 − 𝑗
𝑗∈𝑆 .𝑗≠𝑖

                                             (2) 

where 𝑆 is the desired set of shares of different 𝑡 

entities. The following formula is used to recover the 

share value 𝑞(0) = 𝑠.  

𝑞(0) = ∑ 𝑞(𝑖) ∙

𝑖∈𝑆

𝐿𝑖                    (3) 

This is a threshold function. Note that AND and OR 

gates can be generated using this function. 

 
1) Secret sharing polynomials multiplication  

In this subsection, we will discuss the relations of the 

multiplication of the shares related to two Shamir 

secret sharing schemes adapted from [9], and [10] 

i.e., we have two different polynomials for two 

different secrets. We conclude that multiplying these 

shares is equivalent to multiplying these two 

polynomials. In the following, we will examine this 

method. Suppose we have n entities 𝑃1, … , 𝑃𝑛. We 

have the polynomial 𝑞(𝑥) of degree 𝑑1 − 1  that 



  

 

 

𝑑1 < 𝑛 and the secret of this polynomial is 𝑞(0) =
𝑠1. Some of the secret shares are allocated to the 

above entities as 𝑃𝑖 ← (𝑖, 𝑞(𝑖))  ; 1 ≤ 𝑖 ≤ 𝑛. This 

relation indicates that the entity 𝑃𝑖 receives (𝑖, 𝑞(𝑖)). 

Thus, with 𝑑1 participants from n available 

entities, the secret 𝑠1 can be recovered. Now 

suppose we have a polynomial 𝑝(𝑥) of the degree 𝑑2 

that its secret is 𝑝(0) = 𝑠2. Some secret shares are 

allocated to the above entities as 𝑃𝑖 ← (𝑖, 𝑝(𝑖))  ; 1 ≤

𝑖 ≤ 𝑛. Now if we multiply the previous shares (i.e., 

𝑃𝑖 ← (𝑖, 𝑞(𝑖). 𝑝(𝑖))  ; 1 ≤ 𝑖 ≤ 𝑛) then interpolate, it 

equals to the polynomial product of ℎ(𝑥) =
𝑞(𝑥). 𝑝(𝑥)  with the secret  ℎ(0) = 𝑞(0)𝑝(0) =
𝑠1𝑠2. The degree of the obtained polynomial is 𝑑1 +
𝑑2 − 1. If the condition 𝑑1 + 𝑑2 < 𝑛 holds, it can be 

considered that the secret sharing is performed for 

ℎ(𝑥). So, the secret of the polynomial product will 

be recovered with at least 𝑑1 + 𝑑2 participants.  

It should be noted that the degree of the first 

polynomial is 𝑑1 − 1, the second one is 𝑑2 and the 

threshold value for their product is 𝑑1 + 𝑑2. 

D. Bilinear pairing map  

A symmetric bilinear pairing map is a mapping from 

two elements of one group to an element from a 

second group. So bilinear pairing map, which is 

shown by 𝑒, can be defined as 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇 . 
Discreet logarithm problems must be hard in each 

group, to ensure security in the encryption 

applications. The main feature of this mapping is its 

bilinear form. So, if 𝑔  is the generator of the group 

𝐺1and the size of group q is a large prime number 

and also 𝑎, 𝑏 ∈ ℤ𝑞 then we have: 

𝑒(𝑔𝑎, 𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑎𝑏 

By this definition, the element 𝑒(𝑔, 𝑔) will be the 

generator of group 𝐺𝑇. Therefore, the relation 

𝑒(𝑔, 𝑔) ≠ 1  must hold for the function to work 

properly. Note that the complexity of a pairing 

operation is heavier than the exponentiation [37]. 

 

E. Modified decisional bilinear Diffie-Hellman 

problem 

Suppose that there exists the bilinear pairing map 

𝑒: 𝐺1 × 𝐺1 → 𝐺2.  If the vector (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐, 𝑒(𝑔, 𝑔)𝑧) 

is given, distinguishing whether 𝑧 is equal to 𝑎𝑏/𝑐 or 

not, is known as the Modified decisional bilinear 

Diffie-Hellman (MDBDH) problem. We assume that 

this problem is hard and the adversary normally with 
1

2
+ 𝑛𝑒𝑔𝑙 probability is able to solve this problem. 

Here, 𝑛𝑒𝑔𝑙 means negligible. The list of some hard 

problems related to pairing can be found in [38]. 

IV. OUR SCHEME 

As aforementioned, we will provide a scheme in this 

section that is used for the threshold access structure. 

This threshold value is jointly selected by the 

authority in the key generation algorithm and the 

sender in the encryption algorithm. The threshold 

defined by the authority is called the first threshold 

𝑑1 and the threshold defined by the sender is called 

the second threshold 𝑑2. The first threshold is fixed 

and will not change but the second threshold will be 

selected for each encryption. This allows the 

threshold to be flexible. Regarding ABE, it is 

interpreted that each user is defined by a set of 

attributes ω and has the private keys corresponding 

to these attributes. The sender encrypts the message 

using a number of attributes represented as 𝜔′. Now 

if the message receiver is close enough to the 

attribute set of the ciphertext, it is able to decrypt. 

The criterion for being close to the ciphertext 

attributes is the threshold value. In other words, if the 

condition |𝜔 ∩ 𝜔′| ≥ d1 + 𝑑2 holds, the recipient 

user will be able to decrypt. Our proposed technique 

to increase the threshold value can execute in many 

KP-ABE schemes like [5] and [11] as well. We 

explain the algorithms of this scheme in the 

following. 

Setup (𝝀, U): The group 𝐺1 that is of 𝑝 order is 

selected where 𝑔 is the group generator. Also, a 

bilinear pairing map 𝑒 is selected as 𝐺1 × 𝐺1 → 𝐺𝑇. 

The set {𝐺1, 𝐺𝑇 , 𝑔, 𝑒} is known as pp public 

parameters. It is assumed that these parameters are 

available in the public key PK. The security 

parameter 𝜆 is the input of this algorithm. This 

algorithm randomly selects the values  

𝑡1, … , 𝑡|𝑈|from the set ℤ𝑝. Then it randomly selects 

the value 𝑦 from the set ℤ𝑝
∗ . The master secret key is 

as follows.  

𝑀𝑆𝐾: 𝑡1, … , 𝑡|𝑈|, 𝑦                                   



  

 

 

Moreover, the public keys are published as follows.  

PK: T1 = gt1 , … , T|U| = gt|U| , Y = e(g, g)y 

KeyGen (MSK,𝒅𝟏,𝝎): This algorithm selects a 

polynomial function 𝑞(𝑥) with one degree less than 

the threshold value  𝑑1. So, this polynomial is of 

𝑑1 − 1  degree and this polynomial is selected 

randomly so that 𝑞(0) = 𝑦 . The user’s secret key 

will be as follows.  

𝑆𝐾: 𝐷𝑖 = 𝑔
𝑞(𝑖)

𝑡𝑖  ; 𝑖 ∈ 𝜔 

Enc (M, PK, 𝒅𝟐و 𝝎′): This algorithm chooses a 

random value 𝑠 from the set ℤ𝑝
∗ . Then a polynomial 

𝑝(𝑥) of 𝑑2 degree is selected so that the relation 

𝑝(0)=s holds. The ciphertext will be as follows.  

𝐸 = {𝑑2, 𝜔′, 𝐸′ = 𝑀. 𝑌𝑠, {𝐸𝑖 = 𝑇𝑖
𝑝(𝑖)

}
𝑖∈𝜔′

}         (4) 

Dec (E, SK): Suppose that the receiver user has the 

secret key SK associated with the set of attributes 𝜔. 

This receiver can decrypt E if the condition 
|𝜔 ∩ 𝜔′| ≥ 𝑑1 + 𝑑2 holds. If it does not hold, the 

algorithm output ⊥ . For decrypting, the receiver 

selects the set 𝑆 including 𝑑1 + 𝑑2 members from 
|𝜔 ∩ 𝜔′|. The decryption will be as follows.  

𝑀 =
𝐸′

∏ (𝑒(𝐷𝑖 , 𝐸𝑖))
∆𝑖,𝑆(0)

𝑖∈𝑆

                    (5) 

In equation 5, ∆𝑖,𝑆(0)  is the Lagrange coefficient.  
The correctness of relation 5 to recover the message 

M can be proved as follows.  

 
𝐸′

∏ (𝑒(𝐷𝑖, 𝐸𝑖))
∆𝑖,𝑆(0)

𝑖∈𝑆

=
𝑀. 𝑒(𝑔, 𝑔)𝑦𝑠

∏ (𝑒 (𝑔
𝑞(𝑖)

𝑡𝑖 , 𝑔𝑝(𝑖).𝑡𝑖))

∆𝑖,𝑆(0)

𝑖∈𝑆

 

 

=
𝑀. 𝑒(𝑔, 𝑔)𝑦𝑠

∏ (𝑒(𝑔, 𝑔)𝑞(𝑖).𝑝(𝑖))∆𝑖,𝑆(0)
𝑖∈𝑆

=
𝑀. 𝑒(𝑔, 𝑔)𝑦𝑠

𝑒(𝑔, 𝑔)∑ 𝑞(𝑖).𝑝(𝑖)∆𝑖,𝑆(0)𝑖∈𝑆
 

 

   =
𝑀. 𝑒(𝑔, 𝑔)𝑦𝑠

𝑒(𝑔, 𝑔)𝑦𝑠
= 𝑀           

As you can see, if the condition |𝜔 ∩ 𝜔′| ≤ d1 + 𝑑2 

does not hold, the set 𝑆 cannot be defined. Therefore, 

it is not possible to recover the message using 

relation 5.  

V. SECURITY AND EFFICIENCY EVALUTION   

In this section, we will prove our scheme security by 

using the selective security model and assuming the 

hardness of the modified bilinear decision Diffie-

Hellman problem. Also, we will compare our scheme 

with the [1] scheme and conclude that our scheme’s 

computational complexity and communication 

overhead are almost the same as [1]. 

A. Security proof 

We assume that the challenger wants to answer the 

modified bilinear decision Diffie-Hellman problem 

by having the parameters of (𝐴, 𝐵, 𝐶, 𝑍) =
(𝑔𝑎, 𝑔𝑏 , 𝑔𝑐, 𝑒(𝑔, 𝑔)𝑧). We also assume that there is 

an adversary 𝒜 that can break our scheme with 
1

2
+ 𝜀 

probability where 𝜀 is non-negligible. The challenger 

must use the adversary response to solve the 

modified bilinear decision Diffie-Hellman problem. 

If this is possible, considering that it is a difficult 

problem and cannot be solved, we will conclude that 

there is not an adversary like 𝒜 to break our scheme. 

To this end, we run the phases of the selective 

security model.  

Initialization: Adversary 𝒜 first identifies the 

attribute set of challenge 𝛼  and the value of 𝑑2. 

Setup: the challenger simulates the setup algorithm 

for the adversary and sets 𝑌 = 𝑒(𝑔, 𝐴) =
𝑒(𝑔, 𝑔)𝑎. Additionally, it selects the random value 

𝛽𝑖 ∈ ℤ𝑝 for each 𝑖 ∈ 𝛼 and  sets 𝑇𝑖 = 𝐶𝛽𝑖 = 𝑔𝑐𝛽𝑖 . It 

selects the random value 𝜔𝑖 ∈ ℤ𝑝 for each 𝑖 ∈ 𝑈 − 𝛼 

and sets 𝑇𝑖 = 𝑔𝜔𝑖. So, the public parameters are 

selected and given to the adversary.  

Phase 1: The adversary selects attribute set 𝛾  that 

|𝛼 ∩ 𝛾| < 𝑑1 + 𝑑2 and sends it to the challenger. The 

challenger should generate secret keys related to 𝛾. 

We will first define the sets Γ, Γ′ and S for each 

attribute set 𝛾  that |𝛼 ∩ 𝛾| < 𝑑1 + 𝑑2 as follows: 

𝑆 = Γ′ ∪ {0} and Γ ⊆ Γ′ ⊆ 𝛾;  |Γ′| = 𝑑1 − 1 and Γ
= 𝛾 ∩ 𝛼  

Challenger generates private keys 𝐷𝑖 for all 𝑖 ∈ Γ′ as 

follows: 

• If 𝑖 ∈ Γ: the random value 𝑠𝑖 ∈ ℤ𝑝 is selected 

and 𝐷𝑖 = 𝑔𝑠𝑖 is set.  

• If  𝑖 ∈ Γ′ − Γ: the random value 𝜆𝑖 ∈ ℤ𝑝 is 

selected and 𝐷𝑖 = 𝑔
𝜆𝑖
𝜔𝑖 is set.  



  

 

 

In order to select a polynomial q(x) of degree 𝑑1 −
1, we can randomly select 𝑑1 − 1 points and 𝑞(0) =
𝑎 is set as well. According to our scheme and the 

above, we have 𝑞(𝑖) = 𝑐𝛽𝑖𝑠𝑖  for 𝑖 ∈ Γ and 𝑞(𝑖) = 𝜆𝑖 

for 𝑖 ∈ Γ − Γ′. 
The challenger, regarding that it knows the discreet 

logarithm associated with   𝑇𝑖 ; 𝑖 ∉ 𝛼 (i. e. , ωi), can 

do the following to calculate the key 𝐷𝑖; 𝑖 ∉ Γ′. 
 

𝑖 ∉ Γ′: 𝐷𝑖 = (∏ 𝐶
𝛽𝑖𝑠𝑖Δ𝑗,𝑆(𝑖)

𝜔𝑖

𝑗∈Γ

) ( ∏ 𝑔
𝜆𝑖.Δ𝑗,𝑆(𝑖)

𝜔𝑖

𝑗∈Γ′−Γ

) 𝐴
Δ0,𝑆(𝑖)

𝜔𝑖  

The challenger by using interpolation was able to 

calculate 𝐷𝑖 = 𝑔
𝑞(𝑖)

𝑡𝑖 : 𝑖 ∉ Γ′
𝑖
where 𝑞(𝑥) was created 

using 𝑑1 − 1 value of 𝐷𝑖; 𝑖 ∉ Γ′ and one value of 𝐴 =
𝑔𝑎. So, the private keys corresponding to 𝛾 were 

generated.  

Challenge: The adversary selects the two messages 

𝑀0 and 𝑀1 and sends them to the challenger. The 

challenger selects the random bit 𝑣 and encrypts the 

message 𝑀𝑣 with the challenge attributes 𝛼 as 

follows.  

To encrypt, it first selects the polynomial 

𝑝′(𝑥) of degree 𝑑2 that 𝑝′(0) = 1 holds. The 

ciphertext is generated as follows.  

𝐸 = {𝑑2, 𝜔′, 𝐸′ = 𝑀𝑣. 𝑍, {𝐸𝑖 = 𝐵𝑝′(𝑖)𝛽𝑖}
𝑖∈𝜔′} 

If 𝑧 =
𝑎𝑏

𝑐
  we assume that 𝑟′ =

𝑏

𝑐
 and we have 𝐸′ =

𝑀𝑣. 𝑒(𝑔, 𝑔)
𝑎𝑏

𝑐 = 𝑀𝑣. 𝑒(𝑔, 𝑔)𝑎𝑟′ = 𝑀𝑣. 𝑌𝑟′ and 𝐸𝑖 =

𝐵𝑝′(𝑖)𝛽𝑖 = 𝑔𝑝′(𝑖)𝑏𝛽𝑖 = 𝑔𝑝′(𝑖)
𝑏

𝑐
𝑐𝛽𝑖 = 𝑔𝑝(𝑖)𝑐𝛽𝑖 = 𝑇𝑖

𝑝(𝑖)
. 

In the above relation, 𝑝(𝑥) =
𝑏

𝑐
𝑝′(x)=r'p'(𝑥) holds 

where 𝑝(𝑥) is a polynomial of 𝑑2 degree and 𝑝(0) =
𝑟′. So, the challenger has been able to simulate the 

ciphertext for 𝑀𝑣.  

Now if 𝑧 is a random value, 𝐸′ will be completely 

random. 

Phase 2: Phase 1 is repeated. 

Guess: in this phase, the adversary guesses bit 𝑣′. If 

𝑧 =
𝑎𝑏

𝑐
, the adversary’s success probability 

(i.e., 𝑣′ = 𝑣) will be 
1

2
 + 𝜖 because we assumed that 

the adversary with 
1

2
 + 𝜖 probability and non-

negligible 𝜖 can identify the encrypted bit v for our 

scheme. If z is random, the adversary’s success 

probability (i.e.,𝑣′ = 𝑣)) will be 
1

2
.  

Considering that the challenger receives the value 𝑣′, 

if 𝑣′ = 𝑣, it is assumed that 𝑧 =
𝑎𝑏

𝑐
 holds and if 𝑣′ ≠

𝑣, it is assumed that z is random. Thus, the challenger 

can solve the BDMDH problem. Now we calculate 

the success probability of the challenger (𝑃(𝐶ℎ)).  

P(𝐶ℎ) =
1

2
P (𝑣′ = 𝑣|𝑧 =

𝑎𝑏
𝑐

) +
1

2
Pr(𝑣′ = 𝑣|𝑧 ∈𝑟 ℤ𝑝) 

            =
1

2
(

1

2
+ 𝜖) +

1

2
(

1

2
) =

1

2
+

𝜖

2
                    

Since we assume that 𝜖 is non-negligible, 
𝜖

2
 will be 

non-negligible as well. Then the challenger can solve 
the BDMDH problem. But this contradicts our 
assumption since we assume that no algorithm can 
break this problem. So, there is also no adversary like 
𝒜 to be able to break our scheme. 

B. Comparison with previous scheme 

In the proposed scheme, the sender can interfere with 

the threshold value or access policy unlike  previous 

ones (e.g., [1], [5], and [11]).  The proposed scheme 

captures this feature without applying more 

complexity compared to previous schemes. In this 

subsection, we show that using of secret sharing 

polynomials multiplication technique does not force 

any extra computation and communication overhead 

compared to the original version. 

We compare our scheme with [1] (and also [5] and 

[11] by supposing that our technique is applied to 

them) in four algorithms, i.e., setup, key generation, 

encryption, and decryption. We consider the 

computational complexity and the ciphertext size, 

which is directly related to communication overhead, 

in our comparison.  

Setup: The algorithm of setup in our scheme is 

exactly the same as the algorithm of setup in [1] and 

[5] (and very similar to [11]). So, the computation 

complexity and the size of the public key are the 

same. The public key in [11] also includes extra two 

Hash functions 𝐻1 and 𝐻2. 
KeyGen: The algorithm of key generation in our 

scheme is exactly the same as the algorithm of setup 

in [1] (and [5], and [11] with some minor 



  

 

 

differences). So, the computation complexity and the 

size of the secret key are the same. 

Enc: The differences between encryption algorithm 

in our scheme and the schemes of [1],  [5], and  [11] 

are that there is extra 𝑑2 in equation (4) and also is 

computed {Ei = Ti
p(i)

}
i∈ω′

 instead of {Ei = Ti
𝑠}i∈ω′. 

This means that the communication overhead (size 

of ciphertext) of our scheme has an extra element 

named 𝑑2. This can be managed by adding at most 8 

bits in the ciphertext. Because this element represents 

the second threshold value which is a small number. 

So, we can ignore it. Also, the computational 

complexity of the encryption algorithm in our 

scheme is the same as mentioned schemes. Note that 

in our scheme Enc algorithm should select a 

polynomial 𝑝(𝑥) and also computes {p(i)}i∈ω′ which 

these computations are negligible. So, we can claim 

that the computational complexity and 

communication overhead are almost the same as 

mentioned schemes. While in [11] the sender 

computes 𝐸′ = 𝐻2(𝑌𝑠.𝐻1(𝑚)) instead of 𝐸′ = 𝑀. 𝑌𝑠, 

but the computation complexity and the size of 

ciphertext are the same as the proposed scheme. 

Dec: The decryption algorithm of our scheme is 

exactly the same as the decryption algorithm of [1] 

and the decryption node algorithm in [5], and  [11] 

supposing that 𝑑 = 𝑑1 + 𝑑2. This affects choosing of 

the intersection set 𝑆. However, the decryption 

operations are the same. 

Therefore, we can conclude that using the secret 

sharing polynomials multiplication technique does 

not force extra computation complexity, size of keys, 

and ciphertext. 

VI. CONCLUSION 

In this paper, we have proposed the idea of 
multiplication of the shares associated with Shamir’s 
secret sharing scheme to make the threshold value 
flexible in FIBE and KP-ABE schemes. In this 
regard, we presented a new FIBE scheme with a 
flexible threshold. Considering that in our scheme the 
access structure (Threshold gate) is applied to both 
the key and the ciphertext. In fact, one threshold value 
is applied in keys and another one is applied in the 
ciphertext. In the other words, part of the threshold 
value is determined by the authority in the key 
generation algorithm and the other part is determined 
by the sender in the encryption algorithm. The 

threshold selected by the authority is always fixed but 
the threshold associated with the sender is changeable 
for each encryption. Therefore, our scheme is more 
flexible than Sahai and Waters’s scheme [1]. The 
total threshold value is the sum of them. To this end, 
we have used the idea of multiplication of the shares 
associated with Shamir’s secret sharing scheme. This 
flexibility does not lead to any additional 
computational and communication overhead (other 
than the value 𝑑2 in the ciphertext) compared to the 
scheme [1]. In other words, our scheme, while 
providing a flexible scheme, has the same 
computational and communication overhead as the 
previous one [1]. We also look at the drawbacks of 
the scheme [1] that may occur in a network. Our 
scheme solved these problems. These flexibility 
techniques and dual-policy can also be applied to 
improve the existing KP-ABE scheme e.g., [5], [11], 
or others. Furthermore, we compared the 
computation complexity, size of keys, and the size of 
ciphertext of our scheme with [1] and also with [5] 
and [11] by this assumption that the idea of 
multiplication of the shares is applied to them.  
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