
History-Free Sequential Aggregate Signatures
from Generic Trapdoor Functions

Alessio Meneghetti1[0000−0002−5159−7252] and Edoardo
Signorini2[0000−0002−1224−6732]

1 University of Trento, Trento, Italy
alessio.meneghetti@unitn.it

2 Telsy, Turin, Italy
edoardo.signorini@telsy.it

Abstract. A sequential aggregate signature (SAS) scheme allows mul-
tiple users to sequentially combine their respective signatures in order
to reduce communication costs. Historically, early proposals required the
use of trapdoor permutation (e.g., RSA). In recent years, a number of
attempts have been made to extend SAS schemes to post-quantum as-
sumptions. Many post-quantum signatures have been proposed in the
hash-and-sign paradigm, which requires the use of trapdoor functions
and appears to be an ideal candidate for sequential aggregation attempts.
However, the hardness in achieving post-quantum one-way permutations
makes it difficult to obtain similarly general constructions. Direct at-
tempts at generalizing permutation-based schemes have been proposed,
but they either lack formal security or require additional properties on
the trapdoor function, which are typically not available for multivari-
ate or code-based functions. In this paper, we propose a history-free
sequential aggregate signature based on generic trapdoor functions, gen-
eralizing existing techniques. We prove the security of our scheme in the
random oracle model by adopting the probabilistic hash-and-sign with
retry paradigm, and we instantiate our construction with three post-
quantum schemes, comparing their compression capabilities. Finally, we
discuss how direct extensions of permutation-based SAS schemes are not
possible without additional properties, showing the insecurity of two ex-
isting multivariate schemes when instantiated with Unbalanced Oil and
Vinegar.

Keywords: sequential aggregate signature · post-quantum cryptogra-
phy · hash-and-sign

1 Introduction

An Aggregate Signature (AS) scheme allows n users to combine their individual
signatures on separate messages to produce a single, directly verifiable aggregate
signature. This approach aims to achieve shorter signature lengths compared to
trivial concatenation of individual signatures. Aggregate signatures have inter-
esting applications in various network scenarios with high communication costs,

2 A. Meneghetti, E. Signorini

such as PKI certificate chains or secure routing protocols authentication. The
concept of aggregate signatures was initially introduced in a seminal paper by
Boneh, Gentry, Lynn, and Shacham [8]. They proposed a method that allows
any participant to aggregate signatures from distinct users using a public ag-
gregation algorithm. Although this general aggregation approach is efficient and
valuable, it is limited to the use of bilinear pairings. Another variant of aggregate
signatures, known as Sequential Aggregated Signature (SAS), was introduced by
Lysyanskaya, Micali, Reyzin, and Shacham [24]. In SAS schemes, signatures are
aggregated in a specific sequence, starting from the so-far aggregated signature
and possibly from the public key and message information of previous users. The
sequential structure is still beneficial in many applications, and numerous works
have been pursued in this direction, proposing constructions based on trapdoor
permutations [24,25,10,19] or the use of bilinear pairings [23,2,18].

Aggregate Signatures from Post-Quantum Assumptions In recent years,
there has been a growing interest in post-quantum signatures, leading researchers
to explore AS schemes in this field. Lattice-based assumptions have proven quite
successful in this direction, with generic solutions based on non-interactive argu-
ments [15,1] and sequential aggregations both in the Fiat-Shamir [9] and Hash-
and-Sign paradigms [16,28]. Focusing on the latter, both [16,28] have extended
previous trapdoor permutation-based approaches [25,19], but their security re-
lies on the collision-resistance property of lattice trapdoor Preimage Sampleable
Functions (PSF) [20]. These additional properties are not available for generic
trapdoor functions employed for instance in multivariate-quadratic-based (MQ-
based) or code-based signature schemes. Currently, SAS schemes based on these
assumptions are very limited, with only two existing MQ-based schemes [17,12],
which follow the construction of [24]. Unfortunately, both [17,12] lack formal
security and there are instances of the underlying function for which they are
insecure, as outlined below.

Our Contribution In this work, we address the extension of permutation-
based SAS schemes to generic trapdoor functions, making them applicable to a
wider range of post-quantum signatures. In Section 3, we present a history-free
sequential aggregate signature scheme based on generic trapdoor functions. In a
history-free SAS, signers receive only the so-far aggregated signature without re-
quiring previous users’ public keys and messages. Our approach builds upon the
work of Brogle, Goldberg, and Reyzin [10] for trapdoor permutations, adapting
the encoding technique of [25,16] to include trapdoor functions beyond permu-
tations. We adopt the probabilistic hash-and-sign with retry paradigm, which is
common in post-quantum signature constructions and crucial for security proofs.

The security of our scheme is analyzed within the partial-signature history-
free security model [13], reducing to the one-wayness of the trapdoor function
and to an additional notion of Preimage Sampling (PS) indistinguishability in-
troduced in [22]. We acknowledge that our construction is not fully black-box,
as it requires proving or assuming the PS notion for each specific trapdoor func-

HF-SAS from Generic Trapdoor Functions 3

tion. Nevertheless, this requirement is reasonable for post-quantum trapdoor
functions due to existing results related to their use in signature schemes.

In Section 4, we demonstrate the applicability of our scheme to MQ-based
signature schemes, specifically UOV [21] and MAYO [5], and the code-based
scheme Wave [14]. For each scheme, we evaluate its compression capabilities and
review its PS security so that it can be covered in our security proof. Lattice-
based schemes, such as the NIST PQC finalist Falcon [26], can also benefit from
history-free aggregation. However, we already noted how different design choices
become feasible due to the additional properties of trapdoor PSF.

Finally, in Section 5, we argue that the simpler approaches of [24,25] are not
viable for generic trapdoor functions. As evidence, we show how two existing
MQ-based aggregate signature schemes [17,12] are universally forgeable when
instantiated with UOV and discuss their lack of provable security.

2 Notation and Preliminaries

For n ∈ N, we denote by [n] the set { 1, . . . , n }. For a finite set X, we write |X| for
the cardinality of X and len(X) for the bit size of an element in X. By x←$ X
we denote the sample of the element x from U(X), the uniform distribution
over X. For an algorithm A, we write x ← A(y) to denote the assignment of x
to the output of A on input y. For an adversary A and a function F, we write
x ← AOF the assignment of x of the output of A with oracle access to F. For
two bit strings x, y ∈ {0, 1}∗, we denote by x ∥ y the bit string obtained by their
concatenation. We write Fq for a finite field of q elements. We denote by Fm×n

q

the set of matrices over Fq with m rows and n columns. In×n is the identity
matrix of size n. 0m×n is the m×n zero matrix and 0n is the zero vector in Fn

q .
In the remainder of this section, we introduce standard definitions and notions
related to digital signature schemes based on trapdoor functions.

2.1 Trapdoor Functions

Definition 1. A trapdoor function (TDF) T is a tuple of four algorithms
(TrapGen,F, I,SampDom):

– TrapGen(1λ): takes as input a security parameter 1λ and generates an effi-
ciently computable function F : X → Y and a trapdoor I that allow to invert
F.

– F(x): takes as input x ∈ X and outputs F(x) ∈ Y.
– I(y): takes as input y ∈ Y and outputs x ∈ X such that F(x) = y or it fails

by returning ⊥.
– SampDom(F) takes as input a function F : X → Y and outputs x ∈ X .

We define the standard notion of one-wayness (OW) for a trapdoor function.

4 A. Meneghetti, E. Signorini

Algorithm 1: Hash-and-sign with retry

KGen(1λ):
1: (F, I)← TrapGen(1λ)
2: return (F, I)

Vrfy(F, m, (r, x)):
1: return F(x) = H(r,m)

Sign(I, m):
1: repeat
2: r ←$ {0, 1}λ
3: x← I(H(r,m))
4: until x ̸= ⊥
5: return (r, x)

Definition 2. Let T = (TrapGen,F, I,SampDom) be a TDF and let A be an
adversary. We define the advantage of A playing the OW game against T as

AdvOW
T (A) = Pr

F(x) = y

∣∣∣∣∣∣
(F, I)← TrapGen(1λ)

y ←$ Y
x← A(F, y)

Definition 3 (Trapdoor Permutation (TDP)). A TDF T = (TrapGen,F, I,
SampDom) is said to be a TDP if F and I are permutations.

2.2 Digital Signatures

A digital signature scheme Sig is a tuple of three algorithms (KGen,Sign,Vrfy):

– KGen(1λ): takes as input a security parameter 1λ and generates a key pair
(pk, sk).

– Sign(sk,m): takes as input a signing key sk and a message m and returns a
signature σ.

– Vrfy(pk,m, σ): takes as input a verification key pk, a message m and a sig-
nature σ and returns ⊤ for acceptance or ⊥ for rejection.

We define the standard notion of existential unforgeability against chosen-
message attack (EUF-CMA).

Definition 4 (EUF-CMA security). Let O be a random oracle, let Sig =
(KGen,OSign,OVrfy) be a signature scheme, let A be an adversary. We define the
advantage of A playing the EUF-CMA game against Sig in the random oracle
model as:

AdvEUF-CMA
Sig (A) = Pr

[
OVrfy(pk,m, σ) = ⊤

OSign(sk, ·) not queried on m

∣∣∣∣ (pk, sk)← KGen(1λ)
(m,σ)← AO,OSign(sk,·)(pk)

]

2.3 Hash-and-Sign Schemes

The (probabilistic) hash-and-sign (HaS) paradigm is a standard approach to
build digital signature schemes in the random oracle model from a trapdoor
function T and a hash function H : {0, 1}∗ → Y. To sign a message m, a signer
with secret key sk = I applies the hash function, modeled as a random oracle,

HF-SAS from Generic Trapdoor Functions 5

Game 1: PSb

1: (F, I)← TrapGen(1λ)
2: b⋆ ← ASampleb(F)
3: return b⋆ ∈ {0, 1}

Sample1:
1: ri ←$ {0, 1}λ
2: xi ← SampDom(F)
3: return (ri, xi)

Sample0:
1: repeat
2: ri ←$ {0, 1}λ
3: yi ←$ Y
4: xi ← I(yi)
5: until xi ̸= ⊥
6: return (ri, xi)

to the message y ← H(m) and computes its inverse x← I(y) through the secret
trapdoor. In some scenarios, the HaS paradigm requires the use of a random
string r, which acts as a salt for the hash function, i.e. y ← H(m ∥ r). The
resulting signature is the couple σ = (x, r). A verifier uses the corresponding
public key pk = F to verify whether F(x) = H(m ∥ r).

When T is a trapdoor permutation, this construction is known as Full Domain
Hash and the EUF-CMA security of the signature scheme can be proved from
the one-wayness assumption of T [3]. For generic TDF a black-box security proof
is not known and custom reductions are needed for different constructions. This
becomes particularly significant in the post-quantum era where no constructions
of one-way permutations are known. In order to achieve a secure signature, it is
possible to consider trapdoor functions with additional properties. For instance,
Preimage Sampleable Functions (PSF) [20], which can be constructed from lat-
tices [26], or Average Trapdoor PSF (ATPSF) [11], which can be constructed
from code-based assumptions [14]. More generally, a slightly different paradigm
known as probabilistic hash-and-sign with retry (Algorithm 1), is used to prove
the EUF-CMA security. With this approach, a random string r is sampled until
a preimage for H(m∥r) is found. The security is based on the one-wayness of the
trapdoor function and on the additional condition that the output of the signing
algorithm (r, x) is indistinguishable from a couple (r′, x′) with r′ ←$ {0, 1}λ and
x′ ←$ SampDom(F). Ad-hoc versions of this paradigm are commonly employed
for MQ-based signatures, and have been utilized to prove the security of Unbal-
anced Oil and Vinegar (UOV), Hidden-Field Equation (HFE) [27], and MAYO
[5] signature schemes.

In this work, we build a history-free sequential aggregate signature HaS-HF-SAS
from generic trapdoor functions and the probabilistic hash-and-sign with retry
approach. The security of HaS-HF-SAS requires the indistinguishability condition
on preimages, that we formalize adopting the following notion from [22].

Definition 5 (Preimage Sampling [22]). Let T = (TrapGen,F, I,SampDom)
be a TDF, let A be an adversary. We define the advantage of A playing the PS
game (Game 1) against T as:

AdvPS
T (A) = |Pr[PS0(A) = 1]− Pr[PS1(A) = 1]|

6 A. Meneghetti, E. Signorini

H

pk1, . . . , pki

m1, . . . ,mi

π−1
i Σi

Σi−1. . .

...

Fig. 1. High level description of SAS scheme from [24]

2.4 History-Free Sequential Aggregate Signature

History-Free Sequential Aggregate Signatures (HF-SAS) were first introduced
in [10,18] as a variant of the original construction of [24] that does not require
knowledge of previous messages and public keys in the aggregation step.

Definition 6 (HF-SAS). A History-Free Sequential Aggregate Signatures is a
tuple of three algorithms (KGen,AggSign,AggVrfy):

– KGen(1λ): takes as input a security parameter 1λ and generates a key pair
(pk, sk).

– AggSign(ski,mi, Σi−1): takes as input the secret key ski and the message
mi of the ith user and the previous aggregate signature Σi−1. Returns an
aggregate signature Σi.

– AggVrfy(Ln, Σn): takes as input the full history Ln = (pk1,m1), . . . , (pkn,mn)
of public key, message pairs and an aggregate signature Σn. Returns ⊤ if Σn

is a valid aggregate signature and ⊥ otherwise.

Every signer has a key pair (pki, ski)← KGen(1λ). The signature aggregation
process is done iteratively: the first signer with keys (pk1, sk1) generates a signa-
ture Σ1 for message m1 with Σ1 ← AggSign(sk1,m1, ε), where ε represents the
empty string to indicate that this is the first signature in the sequence. The ith
signer with keys (pki, ski) receives an aggregate signature Σi−1 from the (i−1)th
signer and aggregate his signature on message mi to obtain the aggregate signa-
ture Σi ← AggSign(ski,mi, Σi−1). Note that the aggregate signature algorithm
AggSign does not require the public keys and messages from the previous signers.
Finally, the verifier can check the validity of the aggregate signature by running
AggVrfy(Ln, Σn).

SAS schemes were originally introduced by [24] for generic trapdoor per-
mutation with the FDH approach. The history-free variant of [10] still requires
trapdoor permutation, while [18] relies on bilinear pairing. The main intuition
behind the aggregation process in TDP schemes is to “embed” the previous
aggregate signature into the new message to be signed. This ensures that the
aggregate signature can be retrieved during the verification process, as depicted
in Figure 1.

HF-SAS from Generic Trapdoor Functions 7

Game 2: PS-HF-UF-CMAS

1: (pk⋆, sk⋆)← KGen(1λ)
2: Q ← ∅
3: (Ln, Σ̄n)← AO,OAggSign(pk⋆)
4: (pk1,m1), . . . , (pkn,mn)← Ln

5: if ∄i⋆ : (pki⋆ = pk⋆ ∧ mi⋆ ̸∈ Q)
then

6: return ⊥
7: return AggVrfy(Ln, Σ̄n)

OAggSign(m, Part(Σ)):
1: Q ← Q∪ {m }
2: (Part(Σ′),Comp(Σ′))←

AggSign(sk⋆,m,Part(Σ))
3: return Part(Σ′),Comp(Σ′)

The main challenge in extending previous schemes to trapdoor functions that
are not permutations lies in their lack of injectivity. This issue was addressed
in [16] within the context of lattice-based signatures by employing an encoding
technique derived from [25]. The proposed solution is to use a suitable encoding
function, which splits the signature into two components. The first component
can be injected into the codomain of the trapdoor function and subsequently
made part of the computation of the aggregate signature, similar to the ap-
proach used in [24]. The second component is transmitted to the next signer and
becomes part of the final aggregate signature. During the verification phase, this
component is used to recover the partial aggregate signature through a corre-
sponding decoding function. Subsequently, this idea was applied to MQ-based
schemes instantiated with HFEv- [17] and UOV [12].

In the following, we define a slight modification of HF-SAS, as formalized in
[9]. In this variant, the aggregation step requires only partial knowledge about
the so-far aggregated signature. This description better captures the intuition
behind the use of the encoding function and is better suited to our proposed
scheme. During each aggregation step, the signer produces a partial signature
information, which will be sent to the next signer, along with a complementary
component. At the end of the aggregation sequence, an additional Combine step
is performed, potentially by a third party. This step combines all the comple-
mentary information and the last signature of the sequence, resulting in the
complete aggregated signature.

Definition 7 (PS-HF-SAS). A Partial-Signature History-Free Sequential Ag-
gregate Signature is a tuple of four algorithms (KGen,AggSign,AggVrfy,Combine):

– KGen and AggVrfy as described in Definition 6.
– AggSign(ski,mi,Part(Σi−1)): takes as input the secret key ski and the mes-

sage mi of the ith user and a partial description Part(Σi−1) of the previous
aggregate signature Σi−1. Computes an updated aggregate signature Σi and
returns a partial description Part(Σi) and some complementary information
Comp(Σi).

– Combine(Comp(Σ1), . . . ,Comp(Σn),Part(Σn)): takes as input the complemen-
tary information Comp(Σi) of the first n − 1 signatures and the full de-
scription of the last signature Σn. Returns the complete description of the
aggregate signature Σ̄n.

8 A. Meneghetti, E. Signorini

H

xi−1

Fi

mi

ri

G Ii xi

xi−1hi−1

enc βi−1

β1, . . . , βi−2r1, . . . , ri−1

ηi hi gi yi

αi−1

hi

AggSign

Fig. 2. High level description of our HaS-HF-SAS scheme

Below we show the definition of partial-signature history-free unforgeability
under adaptive chosen message (PS-HF-UF-CMA). In this model, the forger
controls all signers’ private keys except for at least one honest signer. The forger
can choose the keys of the rogue signers and adaptively query an aggregate
signature oracle. Finally, to win the experiment, the forger must produce a valid,
non-trivial aggregate signature involving the public key of the honest signer.

Definition 8 (PS-HF-UF-CMA Security). Let O be a random oracle, let S =
(KGen,OAggSign,OAggVrfy,OCombine) be a PS-HF-SAS scheme, let A be an
adversary. We define the advantage of A playing the PS-HF-UF-CMA game
(Game 2) against S as follows:

AdvPS-HF-UF-CMA
S (A) = Pr[PS-HF-UF-CMAS(A) = 1].

3 Sequential Aggregation of Generic Trapdoor Signatures

We present a history-free sequential aggregate signature HaS-HF-SAS from generic
trapdoor functions. The scheme is obtained by combining the construction of [10]
and the probabilistic hash-and-sign with retry approach of Algorithm 1 with the
encoding technique from [25].

A high-level description of the scheme is shown in Figure 2 while a detailed
description is given in Algorithm 2. The scheme uses a generic trapdoor function
as described in Section 2.1.

3.1 Security Proof

In the following, we prove the PS-HF-UF-CMA security of Algorithm 2.

Theorem 1 (PS-HF-UF-CMA Security). Let T be a multivariate trapdoor
function. Let A be a PS-HF-UF-CMA adversary against the HaS-HF-SAS scheme
on T in the random oracle model, which runs in time t and makes qS sign-
ing queries, qH queries to the random oracle H and qG queries to the random

HF-SAS from Generic Trapdoor Functions 9

Algorithm 2: HaS-HF-SAS
Let h0 = ε, x0 = ε. The random oracles are H : {0, 1}∗ → {0, 1}2λ and
G : {0, 1}2λ → Y. The encoding function is enc : X → Y × X ′ and the cor-
responding decoding function is dec : Y × X ′ → X such that dec(enc(x)) = x.

KGen(1λ):
1: (F, I)← TrapGen(1λ)
2: return pk← F, sk← (F, I)

AggSign((Fi, Ii), mi, Part(Σi−1)):
1: (hi−1, xi−1)← Part(Σi−1)
2: (αi−1, βi−1)← enc(xi−1)
3: repeat
4: ri ←$ {0, 1}λ
5: ηi ← H(Fi,mi, ri, xi−1)
6: hi ← hi−1 ⊕ ηi
7: gi ← G(hi)
8: yi ← gi ⊕ αi−1

9: xi ← Ii(yi)
10: until xi ̸= ⊥
11: Part(Σi)← (hi, xi)
12: Comp(Σi)← (ri, βi−1)
13: return Part(Σi),Comp(Σi)

AggVrfy(Ln, Σ̄n):
1: (F1,m1), . . . , (Fn,mn)← Ln

2: (#«r n,
#«

βn−1, hn, xn)← Σ̄n

3: for i← n, . . . 2 do
4: yi ← Fi(xi)
5: gi ← G(hi)
6: αi−1 ← gi ⊕ yi
7: xi−1 ← dec(αi−1, βi−1)
8: ηi ← H(Fi,mi, ri, xi−1)
9: hi−1 ← hi ⊕ ηi

10: return h1 = H(F1, r1,m1, ε) ∧
F1(x1) = G(h1)

Combine(Comp(Σ1), . . ., Comp(Σn−1),
Σn):

1: (ri, βi−1)← Comp(Σi)
2: (rn, βn−1, hn, xn)← Part(Σn)
3: #«r n ← (r1, . . . , rn)
4:

#«

βn−1 ← (β1, . . . , βn−1)
5: return Σ̄n ← (#«r n,

#«

βn−1, hn, xn)

oracle G. Then, there exist a OW adversary B against T that runs in time
t+O((qH + qS + 1) · poly(len(X), len(Y))), and a PS adversary D against T is-
suing qS sampling queries that runs in time t+O(qS · poly(len(X), len(Y))), such
that

AdvPS-HF-UF-CMA
HaS-HF-SAS (A) ≤(τqH) · AdvOW

T (B) + AdvPS
T (D) + (qS + qH)(qS + qH + qG)

22λ

+
qS(qS + qH)

2λ
+

τq2H
2|Y|

+
(τqH)

τ+1|X |
(τ + 1)! · |Y|τ+1 ,

where τ ≥ ⌈len(X)/ len(Y)⌉.

Proof. We prove the reduction by showing that the PS-HF-UF-CMA game can
be simulated by the OW adversary B. The high level idea is to modify the
PS-HF-UF-CMA game such that in OAggSign the salt r is chosen uniformly at
random in {0, 1}λ and the preimage is generated by x← SampDom(F⋆) instead
of iterating until I⋆(y) ̸= ⊥. The PS adversary D can simulate the two games
by either playing PS0 or PS1 and the advantage in distinguishing the two games
can therefore be estimated with AdvPS

T (D). Once the preimages are produced
by x← SampDom(F⋆) without retry, we can apply the techniques adapted from

10 A. Meneghetti, E. Signorini

[10] to complete the reduction. In particular, we will use a labeled tree HTree
whose nodes will be populated by some of the queries to the random oracle
H. The HTree is initialized with a root node with a single value h0 = ε. Each
subsequent node Ni is added following a query to the random oracle H with
input Qi = (Fi,mi, ri, xi−1) and will store the following values:

– a reference to its parent node Ni−1;
– the query Qi to the random oracle H;
– the hash response to the query ηi ← H(Q);
– the hash state hi ← hi−1 ⊕ ηi, where hi−1 is the hash state stored in the

parent node Ni−1;
– an additional value yi ← G(hi)⊕αi−1 (where αi−1 is computed from enc(xi−1))

that will be used to establish if future nodes can be added as children of Ni.

A node Ni can be added as child of a node Ni−1 if it satisfies the relation
Fi−1(xi−1) = yi−1, where Fi−1 and yi−1 are stored in Ni−1 while xi−1 is stored
in Ni. This relationship establishes that the query Qi can be properly used by
the signer with key Fi to aggregate its signature on message mi with previous
signature xi−1, produced by key Fi−1 and hash state hi−1, which are stored
in Ni−1. Whenever a query Qi = (Fi,mi, ri, xi−1), with xi−1 ̸= ε satisfies this
relation with a node Ni−1 of the HTree we say that Qi can be tethered to Ni−1.
If xi−1 = ε, then Qi can always be tethered to the root of the HTree.

We now prove the reduction by presenting a sequence of hybrid games, mod-
ifying the PS-HF-UF-CMA game (Game 2) until it can be simulated by the
OW adversary B. In the following use the notation Pr[Gamen(A) = 1] to denote
the probability that A returns 1 by playing Gamen. The game sequence Game0-
Game3 for OAggSign is detailed in Game 3. The game sequence Game3-Game5
for H is detailed in Game 4.

Game0 This is the original PS-HF-UF-CMA game against the HaS-HF-SAS scheme
except that it uses programmable random oracles. At the start of the game,
the challenger initializes two tables, HT for H and GT for G. When a query
Q for H is received, if HT[Q] = ⊥ it uniformly samples η ←$ {0, 1}2λ and
stores HT[Q] ← η, finally it returns HT[Q] (similarly for G). It follows that
Pr[Game0(A) = 1] = AdvPS-HF-UF-CMA

HaS-HF-SAS (A).
Game1 This game is identical to Game0 except that OAggSign aborts by raising

badhcol if on query (m,Part(Σ) = (h, x)) it samples a salt r such that the
random oracle H was already queried at input Q = (F⋆,m, r, x), i.e. HT[Q] ̸=
⊥. Otherwise it samples η ←$ {0, 1}2λ and programs HT[Q] ← η. It follows
that |Pr[Game0(A) = 1]− Pr[Game1(A) = 1]| ≤ Pr[badhcol].

Game2 This game is identical to Game1 except that OAggSign aborts by raising
badgcol1 if on query (m,Part(Σ) = (h, x)), after sampling η ←$ {0, 1}2λ it
computes h′ ← h ⊕ η such that the random oracle G was already queried
at input h′, i.e. GT[h′] ̸= ⊥. Otherwise it samples y′ ←$ Y and programs
GT[h′] ← y′ ⊕ α. It follows that |Pr[Game1(A) = 1] − Pr[Game2(A) = 1]| ≤
Pr[badgcol1].

HF-SAS from Generic Trapdoor Functions 11

Game 3: Games for OAggSign(m,Part(Σ) = (h, x))

Game0:
1: (α, β)← enc(x)
2: repeat
3: r ←$ {0, 1}λ
4: η ← H(F⋆,m, r, x)
5: h′ ← h⊕ η
6: g′ ← G(h′)
7: y′ ← g′ ⊕ α
8: x′ ← I⋆(y′)
9: until x′ ̸= ⊥

10: return (r, β), (h′, x′)

Game1-Game2:
1: (α, β)← enc(x)
2: repeat
3: r ←$ {0, 1}λ
4: if HT[F⋆,m, r, x] ̸= ⊥

then
5: raise badhcol
6: η ←$ {0, 1}2λ
7: HT[F⋆,m, r, x]← η
8: h′ ← h⊕ η
9: if GT[h′] ̸= ⊥

then
10: raise badgcol1

11: y′ ←$ Y
12: GT[h′]← y′ ⊕ α
13: x′ ← I⋆(y′)
14: until x′ ̸= ⊥
15: return (r, β), (h′, x′)

Game3-Game5:
1: (α, β)← enc(x)
2: r ←$ {0, 1}λ
3: if HT[F⋆,m, r, x] ̸=
⊥ then

4: raise badhcol
5: η ←$ {0, 1}2λ
6: HT[F⋆,m, r, x]← η
7: h′ ← h⊕ η
8: if GT[h′] ̸= ⊥ then
9: raise badgcol1

10: x′ ← SampDom(F⋆)
11: y′ ← F⋆(x′)
12: GT[h′]← y′ ⊕ α
13: return (r, β), (h′, x′)

Game3 This game is identical to Game2 except that OAggSign directly samples
r ←$ {0, 1}λ, x′ ← SampDom(F⋆) and computes y′ ← F⋆(x′) instead of
computing x′ ← I⋆(y′) after sampling y′ ←$ Y. The PS adversary D can
simulate both Game2 and Game3, noticing that y′ = F⋆(x′) and programming
G accordingly. More precisely, on receiving a query Q = (m,Part(Σ) =
(h, x)) for OAggSign, D computes (r, x′)← Sampleb and programs GT[h′]←
F⋆(x′)⊕α. Both Game2 and Game3 are equivalently modified by moving the
programming step of H and G to the end of the OAggSign. It now follows that
when D is playing PS0 its simulation coincides with Game2, while when it is
playing PS1 it coincides with Game3. Either way, D simulates the games with
at most the same running time of A plus the time required for answering
the queries to the sampling oracle. The latter takes O(poly(len(X), len(Y)))
and is repeated at most qS times. Finally, we have that |Pr[Game2(A) = 1]−
Pr[Game3(A) = 1]| ≤ AdvPS

T (D).
Game4 This game is identical to Game3 except that the random oracle H is

simulated as follows. At the start of the game, the challenger initializes a
labeled tree HTree, as described at the beginning of the proof. When H
receives a query Q = (F,m, r, x), if HT[Q] ̸= ⊥ it returns it. Otherwise,
it samples a uniformly random η ←$ {0, 1}2λ and programs HT[Q] ← η.
Then, it checks if Q can be added as a child node of existing nodes in
HTree. To determine whether this is the case, it uses the Lookup function
(see Algorithm 3) on input x that checks if it can be tethered to existing
nodes, i.e. there exists a node Ni ∈ HTree such that Fi(x) = yi. If Q can be
tethered to more than τ nodes, the game aborts by raising badtcol. Otherwise,
H add a new node N ′i with parent Ni for each node Ni ∈ HTree returned

12 A. Meneghetti, E. Signorini

by Lookup(x). N ′i contains the original query Q, the hash response η, the
hash state h′i ← hi ⊕ η (where hi is stored in Ni) and an additional value
y′i ← G(h′i) ⊕ α (where α is computed from enc(x)) that will be used to
check if a future node can be tethered via Lookup queries. It holds that
|Pr[Game3(A) = 1]− Pr[Game4(A) = 1]| ≤ Pr[badtcol].

Game5 This game is identical to Game4 except that the random oracle H is
simulated as follows. At the beginning of the game, the challenger uniformly
chooses an index c⋆ ←$ [qH] among the queries to the random oracle H,
initializes a counter c← 0 and uniformly samples y⋆ ←$ Y. When H receives
a query Q = (F,m, r, x) it increments c← c+ 1. Then, if F = F⋆ and c = c⋆

it samples a random index i⋆ from the number of nodes in NList. If, for any
of the new nodes to be added, it computes h′i ← hi⊕η such that the random
oracle G was already queried at input h′i, i.e. GT[h′i] ̸= ⊥, it aborts by raising
badgcol2. Otherwise, if F = F⋆, c = c⋆ and i = i⋆, it sets y′i ← y⋆ and programs
GT[h′i] ← y′i ⊕ α. It holds that |Pr[Game4(A) = 1] − Pr[Game5(A) = 1]| ≤
Pr[badgcol2].

We now show that the OW adversary B can simulate Game5 as described in
Algorithm 3. After the adversary A outputs a valid aggregate signature Σ̄n for
the history Ln = (pk1,m1), . . . , (pkn,mn) the simulator takes i⋆ ∈ [n] such that
pki⋆ = pk⋆ and mi⋆ ̸∈ Q (the index i⋆ is guaranteed to exist when A is winning
Game5). It then recovers xi⋆ by iterating the procedure of Lines 3 to 9 in AggVrfy
for n − i⋆ steps. Then, the simulator checks if xi⋆ is a preimage of a yi⋆ in the
HTree as a child of the node Ni⋆−1 storing Qi⋆−1 = (pki⋆−1,mi⋆−1, ri⋆−1, xi⋆−2),
which is itself a child of the node Ni⋆−2, and so on until the node N1. If this
is not the case, the simulator aborts by raising badteth. Otherwise, the value xi⋆

produced by the forgery will satisfy F⋆(xi⋆) = yi⋆ for some yi⋆ produced either
on Line 19 or on Line 21 of H and stored in Ni⋆ . With probability 1/(τqH), we
have that yi⋆ was produced on Line 21 of H and it is equal to y⋆. Therefore
F⋆(xi⋆) = y⋆ and B wins his OW game by returning xi⋆ . Moreover, if none of
the bad events happen, B perfectly simulate Game5 and we have that

AdvOW
T (B) = 1

τqH
Pr[Game5(A) = 1]

≥ 1

τqH
(AdvPS-HF-UF-CMA

HaS-HF-SAS (A)− Pr[badhcol]− Pr[badgcol1]

− AdvPS
T (D)− Pr[badtcol]− Pr[badgcol2]− Pr[badteth]).

B can simulate Game5 with at most the same running time of A plus the time
required for running AggVrfy and answering the queries to the random oracles
H,G, and to the signing oracle OAggSign. These operations takesO(poly(len(X), len(Y)))
and are repeated at most qH + qS + 1 times.

In the following we bound the probability of each bad event happening.

Probability of badhcol The event badhcol occurs on Line 5 of OAggSign on input
(m,Part(Σ) = (h, x)) when it samples r ←$ {0, 1}λ such that a value for

HF-SAS from Generic Trapdoor Functions 13

Game 4: Games for H(F,m, r, x)

Game0-Game3:
1: Q← (F,m, r, x)
2: if HT[Q] = ⊥ then
3: η ←$ {0, 1}2λ
4: HT[Q]← η

5: return HT[Q]

Game4:
1: Q← (F,m, r, x)
2: if HT[Q] = ⊥ then
3: η ←$ {0, 1}2λ
4: HT[Q]← η
5: NList← Lookup(x)
6: for i ∈ [|NList|] do
7: Ni ← NList[i]
8: N ′

i ← new node with parent Ni

9: Retrieve hi from Ni

10: h′
i ← hi ⊕ η

11: (α, β)← enc(x)
12: g′i ← G(h′

i)
13: y′

i ← g′i ⊕ α
14: N ′

i ← (Q, η, h′
i, y

′
i)

15: return HT[Q]

Game5:
1: Q← (F,m, r, x)
2: c← c+ 1
3: if HT[Q] = ⊥ then
4: η ←$ {0, 1}2λ
5: HT[Q]← η
6: NList← Lookup(x)
7: if F = F⋆ ∧ c = c⋆ then
8: i⋆ ←$ [|NList|]
9: for i ∈ [|NList|] do

10: Ni ← NList[i]
11: N ′

i ← new node with parent
Ni

12: Retrieve hi from Ni

13: h′
i ← hi ⊕ η

14: (α, β)← enc(x)
15: if GT[h′

i] ̸= ⊥ then
16: raise badgcol2

17: if F ̸= F⋆ ∨ c ̸= c⋆ ∨ i ̸= i⋆

then
18: g′i ← G(h′

i)
19: y′

i ← g′i ⊕ α
20: else
21: y′

i ← y⋆

22: GT[h′
i]← y′

i ⊕ α

23: N ′
i ← (Q, η, h′

i, y
′
i)

24: return HT[Q]

Q = (F⋆,m, r, x) was already assigned in the HT. The table HT is populated
by either OAggSign or H, so its entries are at most qS + qH. The probability
that a uniformly random r produces a collision with one of the entries is
then at most (qS + qH)2

−λ. Since at most qS are made to OAggSign, then
Pr[badhcol] ≤ qS(qS + qH)2

−λ.
Probability of badgcol1 The event badgcol1 occurs on Line 10 of OAggSign on

input (m,Part(Σ) = (h, x)) when, after sampling η ←$ {0, 1}2λ, it computes
h′ ← h ⊕ η such that a value for h′ was already assigned in the GT. The
table GT is populated by either OAggSign, H or G so its entries are at most
qS+qH+qG. The probability that a uniformly random η produces a collision
with one of the entries is then at most (qS + qH + qG)2

−2λ. Since at most qS
are made to OAggSign, then Pr[badgcol1] ≤ qS(qS + qH + qG)2

−2λ.
Probability of badtcol The event badtcol occurs on Line 5 of Lookup on input

x when the HTree contains k > τ nodes N1, . . . , Nk such that Fi(x) = yi for
i = 1, . . . , k, where Fi, yi are stored in their respective nodes Ni. The HTree
is populated by the simulation of the random oracle H. There are at most

14 A. Meneghetti, E. Signorini

Algorithm 3: OW =⇒ PS-HF-UF-CMA

B(F⋆, y⋆):
1: Q ← ∅; c⋆ ←$ [qH]; c← 0
2: (Ln, Σ̄n)← AH,G,OAggSign(F⋆)
3: (F1,m1), . . . , (Fn,mn)← Ln

4: if AggVrfy(Ln, Σn) ∧ ∃i⋆ : (Fi⋆ =
F⋆ ∧mi⋆ ̸∈ Q) then

5: Recover xi⋆ as in AggVrfy
6: NList← Lookup(xi⋆)
7: if NList = ⊥ then
8: raise badteth
9: for Ni⋆ ∈ NList do

10: Retrieve yi⋆ from Ni⋆

11: if yi⋆ = y⋆ then
12: return xi⋆

13: raise badinv

OAggSign(m, Part(Σ) = (h, x)):
1: Q ← Q∪ {m}
2: (α, β)← enc(x)
3: r ←$ {0, 1}λ
4: if HT[F⋆,m, r, x] ̸= ⊥ then
5: raise badhcol
6: η ←$ {0, 1}2λ
7: HT[F⋆,m, r, x]← η
8: h′ ← h⊕ η
9: if GT[h′] ̸= ⊥ then

10: raise badgcol1

11: x′ ←$ X
12: y′ ← F⋆(x′)
13: GT[h′]← y′ ⊕ α
14: return (r, β), (h′, x′)

G(h):
1: if GT[h] = ⊥ then
2: g ←$ Y
3: GT[h]← g

4: return GT[h]

H(F, m, r, x):
1: Q← (F,m, r, x)
2: c← c+ 1
3: if HT[Q] = ⊥ then
4: η ←$ {0, 1}2λ
5: HT[Q]← η
6: NList← Lookup(x)
7: if F = F⋆ ∧ c = c⋆ then
8: i⋆ ←$ [|NList|]
9: for i ∈ [|NList|] do

10: Ni ← NList[i]
11: N ′

i ← new node with parent
Ni

12: Retrieve hi from Ni

13: h′
i ← hi ⊕ η

14: (α, β)← enc(x)
15: if GT[h′

i] ̸= ⊥ then
16: raise badgcol2

17: if F ̸= F⋆ ∨ c ̸= c⋆ ∨ i ̸= i⋆

then
18: g′i ← G(h′

i)
19: y′

i ← g′i ⊕ α
20: else
21: y′

i ← y⋆
i

22: GT[h′
i]← y′

i ⊕ α

23: Populate node N ′
i with

Q, η, h′
i, y

′
i

24: return HT[Q]

Lookup(x):
1: if x = ε then
2: return Root of HTree
3: NList ← {N ∈ HTree : (F, y) ∈

N ∧ F(x) = y}
4: if |NList| > τ then
5: raise badtcol
6: else if |NList| = 0 then
7: return ⊥
8: else
9: return NList

HF-SAS from Generic Trapdoor Functions 15

qH queries to H and each query contributes a maximum of τ nodes to the
tree. Consequently, the total number of nodes in HTree does not exceed τqH.
Therefore, we need to bound the probability that any (τ +1)-tuple of nodes
produce a collision on x.
First, observe that when a new node is added to the HTree on Line 23 of
H, the value y′i is chosen uniformly at random from Y and is independent of
the view of A. In fact, whenever the query to H is not the random guess c⋆

chosen by the simulator, we have y′i ← G(h′i)⊕ α. Here, G(h′i) is guaranteed
to be a fresh uniformly random value since, otherwise, H would abort on
Line 16 and the node would not be added to the HTree. If, on the other
hand, the query c⋆ was made to H, then we set y′i ← y⋆ for one of the new
nodes to be added. Since c⋆ was chosen randomly among all queries to H,
the assignment of y⋆ is made independently of the view of A and previous
interactions with H.
To conclude, we prove that for any (τ + 1)-tuple (possibly adversarially
chosen) of functions Fi : X → Y and uniformly random yi ∈ Y, there exists
x ∈ X such that Fi(x) = yi, for any i = 1, . . . , τ+1, with probability at most
|X |/|Y|τ+1 (Lemma 2). Indeed, the adversary can issue τ + 1 queries to H
with inputs any functions Fi to be stored in τ +1 nodes Ni in the HTree, but
from the previous observation, it would receive τ + 1 random, independent
values yi.
Since the number of (τ+1)-tuple of nodes in the HTree are at most (τqH)τ+1/(τ+
1)!, by the union bound, we obtain Pr[badtcol] ≤ (τqH)

τ+1|X |/((τ + 1)! ·
|Y|τ+1).

Probability of badgcol2 The event badgcol2 occurs on Line 16 of H on input
(F,m, r, x) when, after sampling η ←$ {0, 1}2λ and retrieving hi−1 from the
parent node Ni−1, it computes hi ← hi−1 ⊕ η such that a value for hi was
already assigned in the GT. The same argument from the bound of Pr[badgcol]
can be used to prove that Pr[badgcol2] ≤ qH(qS + qH + qG)2

−2λ.
Probability of badteth The event badteth occurs on Line 8 of the simulation of
B when, after the adversary A outputs a valid aggregate signature Σn for
the history Ln = (pk1,m1), . . . , (pkn,mn) the simulator recovers xi⋆ , with
i⋆ ∈ [n] such that pki⋆ = pk⋆ and mi⋆ ̸∈ Q, but xi⋆ cannot be tethered to
any node in the HTree.
When badteth happens, the aggregate signature Σ̄n must be valid on Ln. In
particular, the inputs Q1 = (F1,m1, r1, ε), Q2 = (F2,m2, r2, x1), . . . , Qi⋆ =
(Fi⋆ ,mi⋆ , ri⋆ , xi⋆−1) have been queried to H in OAggVrfy. Let η1, . . . , ηi⋆ be
the outputs of these queries, so that HT[Qj] = ηj . Each of these entries has
been populated by H since we already verified that mi⋆ has not been queried
to OAggSign. Each step of OAggVrfy also recovers a value hj ← hj+1 ⊕ ηj
which is the input of the G query. Since the aggregate signature is correct,
we obtain that h1 = η1. Observe that since Q1 was queried to H, it must be
tethered to the root of HTree and was therefore inserted as a node of HTree
with additional values η1, h1 = η1, y1 = G(h1). Then, since F(x1) = y1, the
query Q2 is tethered to N1. Now we prove that either all Q1, . . . , Qi⋆ are part
of a path of nodes in HTree, or there exists an input Qj that was queried

16 A. Meneghetti, E. Signorini

to H, is tethered to a node in HTree and is not itself in a node of HTree.
We proceed by induction on j ≤ i⋆: we have already shown that Q1 is in
HTree; suppose that Qj is in the HTree, then, since Fj(xj) = yj , the query
Qj+1 is tethered to Qj and it may or may not be part of HTree. To conclude,
we prove that if an input Q has not been entered in the HTree after being
queried to H, the probability that it will ever become tethered to a node in
HTree is at most τq′/|Y|, where q′ is the number of queries made to H after
Q (Lemma 3). Since there are at most qH queries that add new nodes to
HTree, we obtain, by the union bound, that Pr[badteth] ≤ τq2H/(2|Y|).

Combining the previous bound on bad events, we obtain the claimed estimate
of AdvPS-HF-UF-CMA

HaS-HF-SAS (A).

4 Instantiation and Evaluation

In this section, we will provide some concrete applications of the HaS-HF-SAS of
Section 3 to MQ-based and code-based HaS signature schemes. In particular, we
analyze the compression capabilities of the scheme when instantiated with UOV,
MAYO, and Wave. More details on the trapdoor functions and PS security of
these schemes are given in Appendix B.

The main measure of efficiency of an aggregate signature scheme is the com-
pression rate, i.e. the reduction in the length of the aggregate signature Σ̄N

of N users compared to the trivial concatenation of N individual signatures
σ. The compression rate of N signatures is defined as τ(N) = 1 − |Σ̄N |

N ·|σ| . An
HaS-HF-SAS signature of N users is the output of the Combine algorithm on
Comp(Σ1), . . . ,Comp(ΣN−1), ΣN and is given by Σ̄N = (#«rN ,

#«

βN−1, hN , x). An
individual signature of a generic HaS scheme as described in Section 2.3 is given
by σ = (r, x). In the following, we assume that the aggregation scheme is applied
on the signature scheme without further possible optimization, so that we have
the same size for salts |r| = λ and preimages |x| = len(X), where len(X) denotes
the bit size of an element in X. The compression rate is thus given by

τ(N) = 1− N · λ+ (N − 1) · len(X ′) + 2λ+ len(X)
N · (λ+ len(X))

= 1− N · (λ+ len(X)− len(Y)) + 2λ+ len(Y)
N · (λ+ len(X))

=
len(Y)

λ+ len(X)
− 2λ+ len(Y)

N · (λ+ len(X))
.

(1)

Notice that the aggregate signature is smaller than the trivial concatenation
whenever N > 2λ

len(Y) + 1, which for typical parameters is as soon as N > 2.

UOV (Appendix B.2) We consider the parameters proposed in [7] with re-
spect to NIST security levels I, III and V. For UOV, the domain X is given

HF-SAS from Generic Trapdoor Functions 17

by Fn
q with elements of length len(X) = n⌈log2 q⌉. The codomain Y is Fm

q with
elements of length len(Y) = m⌈log2 q⌉. Regardless of the security level, [7] use
128-bit salts. In our comparison we consider salts of length λ = 128, 192 and 256
bits, respectively.

The size of a sequential aggregate signature instantiated with UOV is given
by |Σ̄N | = N · (λ + (n −m)⌈log2 q⌉) + 2λ + m⌈log2 q⌉ and the size of a single
signature is given by |σ| = n⌈log2 q⌉+ λ.

Concrete numbers for different security parameters and the number of signers
are given in Table 1.

MAYO (Appendix B.3) We consider the parameters proposed in [6] with
respect to NIST security levels I, III and V. For MAYO, the domain X is given
by Fkn

q with elements of length len(X) = kn⌈log2 q⌉. The codomain Y is Fm
q

with elements of length len(Y) = m⌈log2 q⌉. In [6] the salt length |r| is slightly
longer than the security parameter for consistency with the security proof. In our
comparison we maintain this choice, adjusting the compression rate computation
of Equation (1).

The size of a sequential aggregate signature instantiated with MAYO is given
by |Σ̄N | = N · (|r|+ (kn−m)⌈log2 q⌉) + 2λ+m⌈log2 q⌉ and the size of a single
signature is given by |σ| = kn⌈log2 q⌉+ |r|.

Concrete numbers for different security parameters and the number of signers
are given in Table 2.

Wave (Appendix B.4) We consider the parameters proposed in [14] with
respect to NIST security level I. For Wave, the domain X is given by Sw,n,
the subset of Fn

q with vectors of hamming weight w, with elements of length
len(X) = ⌈n log2 q⌉. The codomain Y is Fn−k

q with elements of length len(Y) =
⌈(n− k) log2 q⌉.

The size of a sequential aggregate signature instantiated with Wave is given
by |Σ̄N | = N · (λ + ⌈k log2 q⌉) + 2λ + ⌈(n − k) log2 q⌉ and the size of a single
signature is given by |σ| = ⌈n log2 q⌉+ λ.

Concrete numbers for different security parameters and the number of signers
are given in Table 3.

5 Security of Existing Multivariate SAS Schemes

In this section, we show a universal forgery for the sequential aggregate signa-
ture schemes of [17,12] when instantiated with the UOV signature scheme. Both
schemes are based on the variant with encoding of [24] and require an alternative
definition of SAS with the notion of full-history : at each aggregation step, the
signer needs the so-far aggregated signature and the complete list of messages
and public keys of previous signers. Moreover, knowledge of the full description
of the aggregate signature is required, as the signer needs to check its validity
before adding its own.

18 A. Meneghetti, E. Signorini

Table 1. Aggregate signature sizes and compression rates of HaS-HF-SAS scheme on
UOV parameters from [7].

Parameter ov-Ip ov-Is ov-III ov-V

NIST SL I I III V

(n,m, q) (112,44,256) (160,64,16) (184,72,256) (244,96,256)

N · |σ| (bytes) 128 ·N 96 ·N 208 ·N 276 ·N
|Σ̄N | (bytes) 84 ·N + 76 64 ·N + 64 136 ·N + 120 180 ·N + 160

τ(5) 0.23 0.20 0.23 0.23

τ(20) 0.31 0.30 0.32 0.32

τ(100) 0.34 0.33 0.34 0.34

Asym. τ(N) 0.34 0.33 0.35 0.35

Table 2. Aggregate signature sizes and compression rates of HaS-HF-SAS scheme on
MAYO parameters from [6].

Parameter MAYO1 MAYO2 MAYO3 MAYO5

NIST SL I I III V

(n,m, o, k, q) (66,64,8,9,16) (78,64,18,4,16) (99,96,10,11,16) (133,128,12,12,16)

|r| (bytes) 24 24 32 40

N · |σ| (bytes) 321 ·N 180 ·N 577 ·N 838 ·N
|Σ̄N | (bytes) 289 ·N + 64 148 ·N + 64 529 ·N + 96 774 ·N + 128

τ(5) 0.06 0.11 0.05 0.05

τ(20) 0.09 0.16 0.07 0.07

τ(100) 0.10 0.17 0.08 0.07

Asym. τ(N) 0.10 0.18 0.08 0.08

Table 3. Aggregate signature sizes and compression rates of HaS-HF-SAS scheme on
Wave parameters from [14].

Parameter 128g

NIST SL I

(n, k, w, q) (8492,5605,7980,3)

N · |σ| (bytes) 1699 ·N
|Σ̄N | (bytes) 1127 ·N + 604

τ(5) 0.27

τ(20) 0.32

τ(100) 0.33

Asym. τ(N) 0.34

HF-SAS from Generic Trapdoor Functions 19

Game 5: FH-UF-CMAS′

1: (pk⋆, sk⋆)← KGen(1λ)
2: Q ← ∅
3: (Ln, Σn)← AO,OAggSign(pk⋆)
4: (pk1,m1), . . . , (pkn,mn)← Ln

5: if ∄i⋆ : (pki⋆ = pk⋆ ∧ (mi⋆ , Li⋆) ̸∈
Q) then

6: return ⊥
7: return AggVrfy(Ln, Σn)

OAggSign(mi, Li−1, Σi−1):
1: if AggVrfy(Li−1, Σi−1) = 0 then
2: return ⊥
3: Q ← Q∪ {(Li−1,mi)}
4: Σi ← AggSign(sk⋆,mi, Li−1, Σi−1)
5: return Σi

Definition 9 (FH-SAS). A Full-History Sequential Aggregate Signature is a
tuple of three algorithms (KGen,AggSign,AggVrfy):

– KGen(1λ) as described in Definition 6.
– AggSign(ski,mi, Li−1, Σi−1): takes as input the secret key ski and the mes-

sage mi of the ith user, a list Li−1 = (pk1,m1), . . . , (pki−1,mi−1) of public
keys, message pairs, and the previous aggregate signature Σi−1. If AggVrfy(Li−1,
Σi−1) = 1, it returns an updated aggregate signature Σi.

– AggVrfy(Ln, Σn): takes as input the full history Ln = (pk1,m1), . . . , (pkn,mn)
of public key, message pairs, and an aggregate signature Σn. Returns 1 if Σn

is a valid aggregate signature and 0 otherwise.

Below we show the definition of full-history unforgeability under adaptive
chosen message (FH-UF-CMA). Compared to the notion of PS-HF-UF-CMA
(Definition 8), the signing oracle OAggSign requires sending the list Li−1 of
public keys and messages along with the aggregate signature Σi−1 and returns
the updated signature if and only if Σi−1 is valid.

Definition 10 (FH-UF-CMA Security). Let O be a random oracle, let S′ =
(KGen,OAggSign,OAggVrfy) be a FH-SAS scheme, let A be an adversary. We
define the advantage of A playing the FH-UF-CMA game (Game 5) against S′

as follows:
AdvFH-UF-CMA

S′ (A) = Pr[FH-UF-CMAS′(A) = 1].

5.1 Multivariate FH-SAS

The FH-SAS schemes of [17,12] are instantiated with HFEv- and UOV, respec-
tively, but no explicit use is made of unique features of these trapdoor functions.
The description of Algorithm 4 refers to a generic multivariate trapdoor function
T (as in Section 2.1) and is based on the construction of [17], which is slightly
more general.

In Algorithm 4, the random oracle is H : {0, 1}∗ → Y. The encoding function
is enc : X → Y × X ′ that splits an element xi as enc(xi) = (αi, βi) and the
corresponding decoding function is dec : Y ×X ′ → X such that dec(enc(x)) = x.
To simplify the description we will also use the notation α(xi) = αi and β(xi) =
βi, where α(·), β(·) are implicitly defined by enc.

20 A. Meneghetti, E. Signorini

Algorithm 4: Multivariate FH-SAST

Let Σ0 = (∅, ε).

KGen(1λ):
1: (F, I)← TrapGen(1λ)
2: return pk← F, sk← (F, I)

AggVrfy(Ln, Σn):
1: (F1,m1), . . . , (Fn,mn)← Ln

2: (
#«

βn−1, xn)← Σn

3: for i← n, . . . 2 do
4: Li ← (F1,m1), . . . , (Fi,mi)
5: hi ← H(Li)
6: αi−1 ← Fi(xi)⊕ hi

7: xi−1 ← dec(αi−1, βi−1)

8: return F1(x1) = H(F1,m1)

AggSign((Fi, Ii), mi, Li−1, Σi−1):
1: (

#«

β i−2, xi−1)← Σi−1

2: if AggVrfy(Li−1, Σi−1) = 0 then
3: return ⊥
4: Li ← Li−1 ∪ {(Fi,mi)}
5: (αi−1, βi−1)← enc(xi)
6: hi ← H(Li)
7: xi ← Ii(αi−1 ⊕ hi)
8:

#«

β i−1 ←
#«

β i−2 ∪ {βi−1}
9: return Σi ← (

#«

β i−1, xi)

Both [17] and [12] provide a similar claim on the formal security of their
sequential aggregate signature scheme. In the following we are considering a
generic multivariate trapdoor function, since their choice does not influence the
security claim.

Theorem 2 ([17]). Let T be a multivariate trapdoor function. Let A be a
FH-UF-CMA adversary against the FH-SAS scheme on T in the random oracle
model, which makes qS signing queries and qH queries to the random oracle.
Then, there exist a OW adversary B against T such that

AdvFH-UF-CMA
FH-SAST

(A) ≤ (qSqH + 1) · AdvOW
T (B)

and the running time of B is about that of A.

In [12] the authors omit the proof for their security claim, while in [17] the
authors provide a sketch of the proof in which they state that almost all the
steps of the security proof follow [24] with only some slight modifications taking
into account the use of the encoding function.

In the next section we show an explicit universal forgery on FH-SAS when
instantiated with the UOV signature scheme. Then, in Section 5.3, we provide
some insight into why the security proof of [24] cannot be applied to multivariate
schemes, and more generally to signature schemes based on trapdoor functions
that are not permutations.

5.2 Description of the Forgery

We recall that in UOV, the trapdoor function is a multivariate quadratic map
P : Fn

q → Fm
q that vanishes on a secret linear subspace O ⊂ Fn

q of dimension m.
A more in-depth description can be found in Appendix B.1.

HF-SAS from Generic Trapdoor Functions 21

In the following we are assuming that the encoding function enc(x) can be
expressed via an appropriate affine map and, accordingly, α(x) = R(x) = Ax+b,
where A ∈ Fm×n

q , b ∈ Fm
q . In [17,12], enc(x) is always the projection in the first

m and the last n − m components3 of x. This is a slight generalization that
captures the intuition that there must be a corresponding efficient decoding
function.

Lemma 1. The multivariate FH-SAS scheme of Section 5.1, instantiated with
UOV, is not FH-UF-CMA.

Proof. Let pki = Pi be the target public key and assume that the forger F
knows a valid aggregate signature Σi = (β1, . . . ,βi−1,xi) for a honest history
Li = (pk1,m1), . . . , (pki,mi). This is a typical attack environment, much weaker
than the notion of FH-UF-CMA that we introduced in Definition 10. Then, F
select a message m⋆

i on which it will produce a forged signature for the target
user.

The forger F computes a forged signature by replacing the (i− 1)th honest
signer, as follows:

1. First, F appropriately generates a UOV key pair (pkF , skF) = (PF , OF) by
randomly choosing an m-dimensional linear subspace OF ⊂ kerA and use
the same procedure of TrapGenuov (Algorithm 5) to sample PF that vanishes
on OF .

2. Then, F arbitrarily chooses a message mF , computes a corresponding forged
history L⋆ = Li−2 ∪ {(pkF ,mF), (pki,mi)} and computes α⋆ ← Pi(xi) ⊕
H(L⋆).

3. Finally, F finds a preimage xF under PF for LF = Li−2∪{(pkF ,mF)} such
that

PF (xF) = αi−2 ⊕ H(LF) and α(xF) = α⋆. (2)

Then Σ⋆ = (β1, . . . ,βi−2, β(xF),xi) is a valid aggregate signature for the
forged history L⋆.

Finding a preimage xF that satisfies Equation (2) is equivalent to finding
partially fixed preimage for PF under the map R. In particular, the forger can use
the appropriately generated secret key OF to restrict the preimage search to an
appropriate affine subspace and guarantee the condition R(xF) = α⋆. The forger
searches for a preimage of t = αi−2⊕H(LF) by using a procedure similar to the
Sign procedure described in Algorithm 5: on Line 1, instead of randomly sampling
the vectors v from Fn

q , samples v from kerR′, with R′(x) = Ax+(b−α⋆). Then
when a preimage xF ∈ Fn

q of t is found, the forger would have xF ∈ kerR′, since
xF = v + o with v ∈ kerR′ and o ∈ kerA. Therefore α(xF) = R(xF) = α⋆.

We then show that Σ⋆ passes the verification correctly for the forged history
L⋆:
3 In this case we would have that α(x) = Ax with A = [Im | 0m,n−m].

22 A. Meneghetti, E. Signorini

1. The verifier applies the first iteration of AggVrfy (Algorithm 4) to recover
the previous signature xF from xi as follows:

α(xF)← Pi(xi)⊕ H(L⋆) = α⋆, xF ← dec(α(xF), β(xF))

2. Since xF is a preimage of αi−2 ⊕H(LF), the verifier correctly obtains xi−2
proceeding in the iterations of AggVrfy:

αi−2 ← PF (xF)⊕ H(LF), xi−2 ← dec(αi−2,βi−2).

3. The (i−2)th signer was not tampered and, hence, the intermediate signature
Σi−2 = (β1, . . . ,βi−3,xi−2) can be correctly verified with AggVrfy on honest
history Li−2.

Therefore, the verifier determines the forged signature Σ⋆ as valid.

5.3 Discussion

The previous forging procedure can be directly applied to constructions derived
from [24] and instantiated via UOV, such as [17,12]. In particular, we have
shown how the existential unforgeability claims of [17,12] are incorrect when the
schemes are instantiated with UOV. The attack essentially involves finding a
partially fixed preimage, following an adversarial key generation based on the
public parameters of the aggregate signature scheme, specifically the encoding
function. Although this attack may have applicability beyond UOV, it is not
a universal forgery for generic trapdoor functions. However, this result aligns
with the analysis of critical issues encountered when attempting to extend the
security proof of [24] to generic trapdoor functions, as outlined in the following.

Programming the Random Oracle In [24], the random oracle can be simu-
lated to determine preimages for any permutation π : X → X . This is typically
achieved by sampling a uniformly random x←$ X and returning π(x), which is
uniformly distributed in Y = X . However, in the case of a generic trapdoor func-
tion, we cannot assume that the image of F is uniform. Consequently, to provide
an accurate simulation, we must sample and return a value that is uniformly
random in Y.

Uniqueness of the Aggregate Signature If we relax the previous condition
and assume a uniformity property of the trapdoor functions4 we may attempt
to replicate the process described in [24] to answer the signing oracle. Indeed, on
input Q = (m⋆, Ln−1, Σn−1) the simulator can use the knowledge of appropriate
preimages for Fi to craft a valid aggregate signature on Ln−1∪{ (F⋆,m⋆) }. How-
ever, we argue that this property alone is not sufficient for a correct simulation,
which is instead based on the following fact of TDP-based constructions: for a
4 For instance, this is the case for Trapdoor Preimage Sampleable Function [20].

HF-SAS from Generic Trapdoor Functions 23

fixed input Ln = (F1,m1), . . . , (Fn,mn) there exists a unique aggregate signature
on Ln. Otherwise, if the aggregate signature is not unique, the simulator would
be unable to provide a valid response to the aggregate signature query. In fact,
on input Q, the simulator would take the preimage x⋆ for F⋆ on α(xn−1)⊕H(Ln)
associated to the random oracle query on input Ln = Ln−1 ∪ { (F⋆,m⋆) }. But,
without the knowledge that xn−1 is equal to the preimage computed by the ad-
versary on input Ln−1, the aggregate signature produced by the simulator may
not be properly verified, resulting in an invalid response.

Reduction to OW Eventually, the adversary will produce a valid non-trivial
aggregate signature Σn on input Ln = (F1,m1), . . . , (Fn,mn), where we assume,
for simplicity, that Fn = F⋆ is the target public key. Since the aggregate signature
is correct, it follows that F⋆(xn) = α(xn−1)⊕H(Ln) = y. In the context of TDPs,
[24] shows that y is equal to the target y⋆ of the OW game, with probability
(qH + qS + 1).

When we consider generic TDFs, the previously mentioned approach is not
valid, and it is necessary to modify the simulation of H by returning a fresh
random value for each query. Moreover, we claim that in this setting it is not
possible to correctly simulate the response to the oracles in order to obtain a
preimage of y⋆. In fact, to obtain a valid preimage, the simulator would require
F⋆(xn) = α(xn−1)⊕H(Ln) = y⋆ and therefore H(Ln) = y⋆ ⊕ α(xn−1). It should
then have been able to simulate the random oracle to return y⋆⊕α(xn−1) when
given the input Ln. However, it is not possible to provide this answer, as xn−1
is not part of the query input and is not uniquely determined.

Fixing the Forging Vulnerability The main vulnerability of FH-SAS con-
cerns the overall malleability of the aggregate signature. In the original scheme
for TPDs, once the input Ln = (F1,m1), . . . , (Fn,mn) is fixed, it was observed
that there is a unique aggregate signature on messages m1, . . . ,mn under public
keys F1, . . . ,Fn. Instead, in the extended version, uniqueness is lost due to the
probabilistic nature of the inversion process. Consequently, it is always possible
to construct two aggregate signatures on the same input, Σ = (β1, . . . , βi−1, xn)
and Σ′ = (β1, . . . , βi−1, x

′
i), which differ only in the aggregation of the last sig-

nature. Furthermore, as shown in the forgery presented in Section 5.2, it is pos-
sible to have two aggregate signatures on the same input Σ = (β1, . . . , βi−1, xi)
and Σ′ = (β1, . . . , β

′
i−1, xi) which differ only in the intermediate partial encod-

ings. While the loss of uniqueness is unavoidable, it is possible to modify the
scheme to prevent this additional form of malleability by making partial β en-
codings part of the random oracle input. We modify the aggregation step of
AggSign((Fi, Ii),mi, Li−1, Σi−1) (Algorithm 4): let Σi−1 = (β1, . . . , βi−2, xi−1)
and compute

(αi−1, βi−1)← enc(xi−1), xi ← Ii(αi−1 ⊕ H(Li,
#«

β i−1)),

where Li = Li−1 ∪ { (Fi,mi) } and
#«

β i−1 = (β1, . . . , βi−1).

24 A. Meneghetti, E. Signorini

Observe that now, once a new signature has been aggregated, it is no longer
possible to modify the previous partial encodings while maintaining the valid-
ity of the aggregated signature. That is, if Σ = (β1, . . . , βi−1, xi) and Σ′ =
(β1, . . . , β

′
i−1, x

′
i) are valid aggregate signatures on the same input with βi−1 ̸=

β′i−1, then xi ̸= x′i. As a result, the forging procedure described in Section 5.2
is no longer applicable, as the adversary now needs to guess the partial encod-
ing β(xF) of its own signature. However, in doing so β(xF) becomes fixed and
α⋆ is not under the adversary’s direct control. Once α⋆ is computed, the entire
signature xF is fixed, and with high probability, it is not a valid signature.

This minor modification addresses the vulnerability exploited by our attack.
However, from a provable security perspective, this construction presents similar
problems to the original attempt to generalize [24]. As a result, we are unable
to provide a formal proof of security.

6 Conclusions

We proposed a history-free sequential aggregate signature based on generic trap-
door functions and the probabilistic hash-and-sign with retry paradigm. We
proved the security of our scheme in the random oracle model, assuming only
the one-wayness of the underlying TDF and an additional notion of indistin-
guishability on preimages. This additional property has been demonstrated for
numerous post-quantum TDFs to achieve the security of the related signature
schemes. This allowed us to easily instantiate our construction in Section 4 with
the UOV, MAYO, and Wave schemes, for which we obtained a compression rate
between 5% and 34%. We also pointed out in Section 5 how existing aggrega-
tion schemes for multivariate TDFs lack formal security and are insecure for
some choices of the underlying function. Therefore, within our knowledge, ours
is the first scheme that allows the aggregation of multivariate and code-based
HaS signature schemes.

Acknowledgements This publication was created with the co-financing of the
European Union FSE-REACT-EU, PON Research and Innovation 2014-2020
DM1062/2021. The first author is a member of the INdAM Research Group
GNSAGA. The second author is a member of CrypTO, the group of Cryptogra-
phy and Number Theory of Politecnico di Torino.

References

1. Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.K.:
Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively com-
posable - (extended abstract). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 102–132. Springer, Heidelberg (Aug 2022). https:
//doi.org/10.1007/978-3-031-15979-4_4

https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4

HF-SAS from Generic Trapdoor Functions 25

2. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (Jul 2007). https://doi.org/10.1007/
978-3-540-73420-8_37

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

4. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A.,
Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348–373.
Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_13

5. Beullens, W.: MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203,
pp. 355–376. Springer, Heidelberg (Sep / Oct 2022). https://doi.org/10.1007/
978-3-030-99277-4_17

6. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO - algorithm
specifications. MAYO team, latest update: 28/02/2023 (2023), https://pqmayo.
org/assets/specs/mayo.pdf, last accessed on 14/04/2023

7. Beullens, W., Chen, M.S., Hung, S.H., Kannwischer, M.J., Peng, B.Y., Shih, C.J.,
Yang, B.Y.: Oil and vinegar: Modern parameters and implementations. Cryptology
ePrint Archive, Report 2023/059 (2023), https://eprint.iacr.org/2023/059

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003). https://doi.org/10.1007/
3-540-39200-9_26

9. Boudgoust, K., Takahashi, A.: Sequential half-aggregation of lattice-based signa-
tures. Cryptology ePrint Archive, Report 2023/159 (2023), https://eprint.iacr.org/
2023/159

10. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification from trapdoor permutations - (extended abstract). In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg
(Dec 2012). https://doi.org/10.1007/978-3-642-34961-4_39

11. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures
based on average trapdoor preimage sampleable functions and applications to
code-based signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020, Part II. LNCS, vol. 12111, pp. 453–479. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45388-6_16

12. Chen, J., Ling, J., Ning, J., Peng, Z., Tan, Y.: MQ aggregate signature schemes
with exact security based on UOV signature. In: Liu, Z., Yung, M. (eds.) Infor-
mation Security and Cryptology - 15th International Conference, Inscrypt 2019,
Nanjing, China, December 6-8, 2019, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 12020, pp. 443–451. Springer (2019). https://doi.org/10.
1007/978-3-030-42921-8_26

13. Chen, Y., Zhao, Y.: Half-aggregation of schnorr signatures with tight reductions.
In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022, Part II.
LNCS, vol. 13555, pp. 385–404. Springer, Heidelberg (Sep 2022). https://doi.org/
10.1007/978-3-031-17146-8_19

14. Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new family of trapdoor one-
way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 21–51. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_2

https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://eprint.iacr.org/2023/059
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://eprint.iacr.org/2023/159
https://eprint.iacr.org/2023/159
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-030-42921-8_26
https://doi.org/10.1007/978-3-030-42921-8_26
https://doi.org/10.1007/978-3-030-42921-8_26
https://doi.org/10.1007/978-3-030-42921-8_26
https://doi.org/10.1007/978-3-031-17146-8_19
https://doi.org/10.1007/978-3-031-17146-8_19
https://doi.org/10.1007/978-3-031-17146-8_19
https://doi.org/10.1007/978-3-031-17146-8_19
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-34578-5_2

26 A. Meneghetti, E. Signorini

15. Devadas, L., Goyal, R., Kalai, Y., Vaikuntanathan, V.: Rate-1 non-interactive ar-
guments for batch-NP and applications. In: 63rd FOCS. pp. 1057–1068. IEEE
Computer Society Press (Oct / Nov 2022). https://doi.org/10.1109/FOCS54457.
2022.00103

16. El Bansarkhani, R., Buchmann, J.: Towards lattice based aggregate signa-
tures. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 14. LNCS,
vol. 8469, pp. 336–355. Springer, Heidelberg (May 2014). https://doi.org/10.1007/
978-3-319-06734-6_21

17. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - A multivariate
sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Heidelberg (Sep 2016). https:
//doi.org/10.1007/978-3-319-45871-7_25

18. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., Prisco, R.D. (eds.) SCN 12. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (Sep 2012). https://doi.org/10.1007/978-3-642-32928-9_7

19. Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 34–57. Springer, Heidelberg (Mar 2018). https:
//doi.org/10.1007/978-3-319-76581-5_2

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

21. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer, Hei-
delberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15

22. Kosuge, H., Xagawa, K.: Probabilistic hash-and-sign with retry in the quantum
random oracle model. Cryptology ePrint Archive, Report 2022/1359 (2022), https:
//eprint.iacr.org/2022/1359

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (May / Jun
2006). https://doi.org/10.1007/11761679_28

24. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate sig-
natures from trapdoor permutations. In: Cachin, C., Camenisch, J. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3_5

25. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-78967-3_4

26. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022

27. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE sig-
nature schemes against chosen-message attack. In: Yang, B.Y. (ed.) Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011. pp. 68–82. Springer,
Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_5

28. Wang, Z., Wu, Q.: A practical lattice-based sequential aggregate signature. In: Ste-
infeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS, vol. 11821, pp. 94–109. Springer,
Heidelberg (Oct 2019). https://doi.org/10.1007/978-3-030-31919-9_6

https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15
https://eprint.iacr.org/2022/1359
https://eprint.iacr.org/2022/1359
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-030-31919-9_6
https://doi.org/10.1007/978-3-030-31919-9_6

HF-SAS from Generic Trapdoor Functions 27

A Missing Proofs

Lemma 2. For any k > τ functions F1, . . . ,Fk : X → Y and uniformly random
y1, . . . , yk ∈ Y, there exists x ∈ X such that Fi(x) = yi, for every i = 1, . . . , k,
with probability at most |X |/|Y|k.

Proof. Let SF
y = {x ∈ X : F(x) = y} be the set of preimages of y under F.

For a random choice of y1 it holds that |SF1
y1
| = α for some 0 ≤ α ≤ |X |.

Then, there are at most α possible values for the tuple (y2, . . . , yk), correspond-
ing to { (F2(x), . . . ,Fk(x)) : x ∈ SF1

y1
}, such that

⋂
SFi
yi
̸= ∅. Since y2, . . . , yk are

uniformly chosen in Y, the probability of a non-empty intersection is at most
α|Y|1−k. Therefore, the desired probability is bounded by varying over the pos-
sible values of α:

|X |∑
α=0

α

|Y|k−1
Pry1←$Y

[
|SF1

y1
| = α

]
=

1

|Y|k−1

|X |∑
α=0

α ·
|{ y1 ∈ Y : |SF1

y1
| = α }|

|Y|
=
|X |
|Y|k

.

Lemma 3. If an input Q has not been entered in the HTree after being queried
to H, the probability that it will ever become tethered to a node in HTree is at
most τq′/|Y|, where q′ is the number of queries made to H after Q.

Proof. Suppose that Q = (F,m, r, x) was queried to H and was not added to
the HTree, i.e. Lookup(x) = ⊥. Now suppose that a query Q′ = (F′,m′, r′, x′)
was subsequently sent to H and was added to HTree as part of a node N ′ with
additional value y′. For Q to be tethered to N ′ it must hold that F′(x) = y′. As
noted in the proof of Theorem 1 for the bound on Pr[badtcol], when a new node
is added to the HTree as a result to a call to H, the additional value y is chosen
uniformly at random from Y. In particular, y′ in random and independent of F′
and x. Therefore, the probability of having F′(x) = y′ is |Y|−1. Since there are
at most q′ queries to H after Q and each query can add at most τ nodes to the
HTree, the desired probability follows by the union bound.

B Trapdoor Functions in Hash-and-Sign Signature
Schemes

B.1 UOV Trapdoor Function

MQ-based trapdoor function consists of a multivariate quadratic map P : Fn
q −→

Fm
q together with a secret information that allows to efficiently find a preimage.

For a random map P, the problem of finding a preimage is called Multivari-
ate Quadratic (MQ) problem. The MQ problem is NP-hard over a finite field.
Moreover, it is believed to be hard on average if n ∼ m, both classically and
quantumly.

Both UOV and MAYO are based on the same trapdoor function. For the
description of the trapdoor function we mainly use the formalism introduced by
Beullens in [4].

28 A. Meneghetti, E. Signorini

Algorithm 5: UOV Signature Scheme

TrapGenuov(1λ):
1: O ←$ m-dimensional subspace of

Fn
q

2: P ←$ quadratic map Fn
q → Fm

q

that vanishes on O
3: return Fuov ← P, Iuov ← (P, O)

I2uov(v, t):
1: if {o ∈ O : P ′(v,o) = t−P(v)} ̸=
∅ then

2: return ⊥
3: o←$ {P ′(v,o) = t− P(v)}
4: σ ← v + o
5: return σ

I1uov():
1: v ←$ Fn

q

2: return v

Sign(Iuov, m):
1: v ← I1uov()
2: repeat
3: r ←$ {0, 1}λ
4: σ ← I2uov(v,H(m, r))
5: until σ ̸= ⊥
6: return (r,σ)

The trapdoor secret information is a linear subspace O ⊂ Fn
q of dimen-

sion dim(O) = m. The trapdoor public function is a homogeneous multivariate
quadratic map P : Fn

q −→ Fm
q that vanishes on O. For key generation, an m-

dimensional subspace O ⊂ Fn
q is randomly chosen, then a multivariate quadratic

map P : Fn
q −→ Fm

q is randomly chosen such that it vanishes on O. Given a
target t ∈ Fm

q , the secret information O can be used to find a preimage s ∈ Fn
q ,

reducing the MQ problem to a linear system. For a map P, we can define its
polar form as P ′(x,y) = P(x + y) − P(x) − P(y). It can be shown that the
polar form of a multivariate quadratic map is a symmetric and bilinear map.
Now, to find a preimage for t, one randomly choose a vector v ∈ Fn

q and solves
P(v + o) = t for o ∈ O. Since

t = P(v + o) = P(v)︸ ︷︷ ︸
fixed

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear in o

,

the system reduce to the linear system P ′(v,o) = t − P(v) of m equation and
m variables o. Notice that whenever the linear map P ′(v, ·) is non-singular5, the
system has a unique solution o ∈ O and the preimage is s = v + o.

B.2 Unbalanced Oil and Vinegar

Let Tuov = (TrapGenuov,Fuov, Iuov) be the TDF based on the description of the
previous section. Unbalanced Oil and Vinegar (UOV) [21] is a HaS signature
scheme based on Tuov. The key generation and the signing procedure with the
modified trapdoor functions are shown in Algorithm 5.

By adopting the probabilistic HaS with retry paradigm, UOV is proven
EUF-CMA secure in the random oracle model [27]. To obtain uniform preimages

5 This happens with probability approximately 1− 1/q

HF-SAS from Generic Trapdoor Functions 29

Algorithm 6: MAYO Signature Scheme

TrapGenmayo(1λ):
1: O←$ Fo×(n−o)

q

2: O ← RowSpace(OIo)
3: P ←$ quadratic map Fn

q → Fm
q

that vanishes on O
4: return Fmayo ← P, Imayo ←

(P,O)

Imayo(t):
1: P∗(x1, . . . ,xk)←

∑k
i=1 Ei,i P(xi)+∑

1≤i<j≤k Ei,j P ′(xi,xj)

2: v1, . . . ,vk ←$ (Fn
q × 0m)k

3: if P∗(v1 + o1, . . . ,vk + ok) does
not have full rank then

4: return ⊥
5: o1, . . . ,ok ←$ {o1, . . . ,ok ∈ O :
P∗(v1 + o1, . . . ,vk + ok) = t}

6: σ ← (v1 + o1, . . . ,vk + ok)
7: return σ

over Fn
q , the UOV signing procedure is slightly different from the generic one de-

scribed in Algorithm 1. The signer starts by fixing a random v ←$ Fn
q , then it

repeatedly samples r ←$ {0, 1}λ until there is a solution to the linear system
P ′(v,o) = H(m, r) − P(v) Equivalently, the trapdoor Iuov can be split in two
distinct functions I1uov and I2uov. The former is invoked only once and randomly
chooses v ←$ Fn

q . The latter is part of the repeat loop and tries to find a preimage
s of the corresponding linear system. With this procedure, the authors of [27]
proved that the preimages produced from Sign(Iuov, ·) are indistinguishable from
the output of SampDom(Fuov), so that in Theorem 1 we have AdvPS

Tuov
(D) = 0.

B.3 MAYO

MAYO [5] is a HaS signature scheme based on the UOV trapdoor function and
employs a so-called whipping technique to use a smaller secret subspace O of
dimension dim(O) = o < m. Let Tmayo = (TrapGenmayo,Fmayo, Imayo) be the
TDF of the MAYO. The key generation process is the same as for UOV and
produces a multivariate quadratic map P : Fn

q → Fm
q that vanishes on O. In the

signing procedure, P is deterministically transformed into a larger (whipped)
map P∗ : Fkn

q → Fm
q , for some k > 1, which vanishes on Ok ⊂ Fkn

q of dimension
ko ≥ m. In [5], the whipping transformation is obtained by choosing k(k + 1)/2
random invertible matrices {Ei,j ∈ GLm(Fq) }1≤i≤j≤k and defining

P∗(x1, . . . ,xk) =

k∑
i=1

Ei,i P(xi) +
∑

1≤i<j≤k

Ei,j P ′(xi,xj).

Similarly to UOV, to find a preimage for t ∈ Fm
q , we randomly choose v1, . . . ,vk ∈

Fn−m
q × 0m. Then, P∗(v1 + o1, . . . ,vk + ok) = t is a system of m linear equa-

tion in ko ≥ m variables, so it will be solvable with high probability. The key
generation and the preimage computation via Imayo are shown in Algorithm 6.

Instead of computing AdvPS
Tmayo

(D), we can use the result of [5, Lemma 2] that
bounds the probability B that P∗(v1 + o1, . . . ,vk + ok) does not have full rank.

30 A. Meneghetti, E. Signorini

Algorithm 7: Wave Signature Scheme

TrapGenwave(1λ):
1: Hsk ∈ F(n−k)×n

q ←$ generalized
(U,U + V)-code

2: S←$ GLn−k(Fq)
3: P←$ n× n permutation matrix
4: Hpk ← SHskP
5: return Fmayo ← Hpk, Imayo ←

(Hsk,S,P)

Iwave(y):
1: e← DHsk(y(S

−1)
⊺
)

2: x← eP
3: return x

It can be shown that if Imayo has never output ⊥, then the preimages produced
by Sign(Imayo, ·) are indistinguishable from SampDom(Fmayo). Therefore, we can
modify the proof of Theorem 1 by introducing a new intermediate game Game2b.
This game is identical to Game2 except that OAggSign aborts if Imayo outputs ⊥.
Since there are at most qS queries are made to OAggSign, the probability that
Game2b does not abort is at least 1 − qSB. It follows that Pr[Game2(A) = 1] ≤

1
1−qSB Pr[Game2b(A) = 1]. Now, when Game2b does not abort, the game is indis-
tinguishable from Game3, so that Pr[Game3(A) = 1] = Pr[Game2b(A) = 1]. The
remainder of the proof proceeds as the original.

B.4 Wave

Wave [14] is a HaS signature scheme based on the family of the generalized
(U,U + V)-codes. Let Twave = (TrapGenwave,Fwave, Iwave) be the TDF of the
Wave. The OW security of Fwave is based on the indistinguishability of (U,U+V)-
codes from random codes and the Syndrome Decoding (SD) problem. The in-
distinguishability problem is NP-complete for large finite fields Fq, while the
SD problem is NP-hard for arbitrary finite fields. The trapdoor secret infor-
mation is a random generalized (U,U + V)-code over Fq of length n and di-
mension k = kU + kV , described by its parity check matrix Hsk ∈ F(n−k)×n

q ,
an invertible matrix S ∈ F(n−k)×(n−k)

q and a permutation matrix P ∈ Fn×n
q .

Using the underlying structure of the (U,U + V)-code, an efficient decoding
algorithm DHsk

is produced. The public function Fwave is obtained from the
parity check matrix Hpk = SHskP. Let Sw,n be the subset of vectors in Fn

q

with Hamming weight w. The weight w is chosen such that the public function
Fwave : e ∈ Sw,n 7→ eH⊺

pk ∈ Fn−k
q is a surjection. To find a preimage for y ∈ Fn−k

q ,
the signer uses the decoding algorithm DHsk

on y(S−1)
⊺ to find e ∈ Sw,n, and

finally returns eP. The key generation and the preimage computation via Imayo

are shown in Algorithm 7.
Wave can be described in the HaS without retry paradigm. In [11], Twave

is described in the context of ATPSF, a weaker notion of PSF where the uni-
formity property on preimages is required to hold only on average. In partic-
ular, for any (F, I) ← TrapGenwave(1

λ), consider the statistical distance εF,I =

HF-SAS from Generic Trapdoor Functions 31

∆(SampDom(F), I(U(Y))). Then, it holds that E(F,I)[εF,I] ≤ ε, where ε is negli-
gible in the security parameter λ. In Theorem 1 we can use this condition and
[11, Prop. 1] to bound the distinguishing advantage on PS with ε, obtaining
AdvPS

Tmayo
(D) ≤ qSε.

	History-Free Sequential Aggregate Signatures from Generic Trapdoor Functions

