
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Bounded Verification for Finite-Field-Blasting
In a Compiler for Zero Knowledge Proofs

Alex Ozdemir1, Riad S. Wahby2, Fraser Brown2, and Clark Barrett1

1 Stanford
2 Carnegie Mellon

Abstract. Zero Knowledge Proofs (ZKPs) are cryptographic protocols
by which a prover convinces a verifier of the truth of a statement with-
out revealing any other information. Typically, statements are expressed
in a high-level language and then compiled to a low-level representation
on which the ZKP operates. Thus, a bug in a ZKP compiler can com-
promise the statement that the ZK proof is supposed to establish. This
paper takes a step towards ZKP compiler correctness by partially veri-
fying a field-blasting compiler pass, a pass that translates Boolean and
bit-vector logic into equivalent operations in a finite field. First, we define
correctness for field-blasters and ZKP compilers more generally. Next, we
describe the specific field-blaster using a set of encoding rules and de-
fine verification conditions for individual rules. Finally, we connect the
rules and the correctness definition by showing that if our verification
conditions hold, the field-blaster is correct. We have implemented our
approach in the CirC ZKP compiler and have proved bounded versions
of the corresponding verification conditions. We show that our partially
verified field-blaster does not hurt the performance of the compiler or its
output; we also report on four bugs uncovered during verification.

1 Introduction

Zero-Knowledge Proofs (ZKPs) are powerful tools for building privacy-preserving
systems. They allow one entity, the prover P, to convince another, the verifier
V, that some secret data satisfies a public property, without revealing anything
else about the data. ZKPs underlie a large (and growing!) set of critical ap-
plications, from billion-dollar private cryptocurrencies, like Zcash [25, 53] and
Monero [2],to research into auditable sealed court orders [21], private gun reg-
istries [27], privacy-preserving middleboxes [24], and zero-knowledge proofs of
exploitability [12]. This breadth of applications is possible because of the gen-
erality of ZKPs. In general, P knows a secret witness w, whereas V knows a
property ϕ and a public instance x. P must show that ϕ(x,w) = ⊤. Typically,
x and w are vectors of variables in a finite field F, and ϕ can be any system of
equations over the variables, using operations + and ×. Because ϕ itself is an
input to P and V, and because of the expressivity of field equations, a single
implementation of P and V can serve many different purposes.

Humans find it difficult to express themselves directly with field equations,
so they use ZKP compilers. A ZKP compiler converts a high-level predicate ϕ′

https://doi.org/10.5281/zenodo.7922914

2 A. Ozdemir et al.

into an equivalent system of field equations ϕ. In other words, a ZKP compiler
generalizes a ZKP: by compiling ϕ′ to ϕ and then using a ZKP for ϕ, one obtains
a ZKP for ϕ′. There are many industrial [3, 5, 6, 15, 22, 46, 55, 66] and academic
[4, 19, 29, 30, 47, 49, 50, 54, 63] ZKP compilers.

The correctness of a ZKP compiler is critical for security—a bug in the
compiler could admit proofs of false statements—but verification is challenging
for three reasons. First, the definition of correctness for a ZKP compiler is non-
trivial; we discuss later in this section. Second, ZKP compilers span multiple
domains. The high-level predicate ϕ′ is typically expressed in a language with
common types such as Booleans and fixed-width integers, while the output ϕ is
over a large, prime-order field. Thus, any compiler correctness definition must
span these domains. Third, ZKP compilers are evolving and performance-critical;
verification must not inhibit future changes or degrade compiler performance.

In this work, we develop tools for automatically verifying the field-blaster of
a ZKP compiler. A ZKP compiler’s field-blaster is the pass that converts from a
formula over Booleans, fixed-width integers, and finite-field elements, to a system
of field equations; as a transformation from bit-like types to field equations, the
field-blaster exemplifies the challenge of cross-domain verification.

Our paper makes three contributions. First, we formulate a precise correct-
ness definition for a ZKP compiler. Our definition ensures that a correct compiler
preserves the completeness and soundness of the underlying ZK proof system.3
More specifically, given a ZK proof system where statements are specified in a
low-level language L, and a compiler from a high-level language H to L, if the
compiler is correct by our definition, it extends the ZK proof system’s soundness
and completeness properties to statements in H. Further, our definition is pre-
served under sequential composition, so proving the correctness of each compiler
pass individually suffices to prove correctness of the compiler itself.

Second, we give an architecture for a verifiable field-blaster. In our architec-
ture, a field-blaster is a set of “encoding rules.” We give verification conditions
(VCs) for these rules, and we show that if the VCs hold, then the field-blaster
is correct. Our approach supports automated verification because (bounded ver-
sions of) the VCs can be checked automatically. This reduces both the up-front
cost of verification and its maintenance cost.

Third, we do a case study. Using our architecture, we implement a new
field-blaster for CirC [47] (“SIR-see”), an infrastructure used by state-of-the-
art ZKP compilers. We verify bounded versions of our field-blaster’s VCs using
SMT-based finite-field reasoning [48], and show that our field blaster does not
compromise CirC’s performance. We also report on four bugs that our verifica-
tion effort uncovered, including a soundness bug that allowed the prover to “lie”
about the results of certain bit-vector comparisons. We note that the utility of
our techniques is not limited to CirC: most ZKP compilers include something
like the field-blaster we describe here.

3Roughly speaking, a ZK proof system is complete if it is possible to prove every
true statement, and is sound if it is infeasible to prove false ones.

Bounded Verification for Finite-Field-Blasting 3

In the next sections, we discuss related work (§1.1), give background on ZKPs
and CirC (§2), present a field-blasting example (§3), describe our architecture
(§4), give our verification conditions (§5), and present the case study (§6).

1.1 Related Work

Verified compilers. There is a rich body of work on verifying the correctness of
traditional compilers. We focus on compilation for ZKPs; this requires different
correctness definitions that relate bit-like types to prime field elements. In the
next paragraphs, we discuss more fine-grained differences.

Compiler verification efforts fall into two broad categories: automated—verif-
ication leveraging automated reasoning solvers—and foundational—manual ver-
ification using proof assistants (e.g., Coq [8] or Isabelle [45]). CompCert [37], for
example, is a Coq-verified C compiler with verified optimization passes (e.g., [41]).
Closest to our work is backend verification, which proves correct the translation
from an intermediate representation to machine code. CompCert’s lowering [38]
is verified, as is CakeML’s [32] lowering to different ISAs [20, 57]. While such
foundational verification offers strong guarantees, it imposes a heavy proof bur-
den; creating CompCert, for example, took an expert team eight years [56], and
any updates to compiler code require updates to proofs.

Automated verification, in contrast, does not require writing and maintaining
manual proofs.4 Cobalt [35], Rhodium [36], and PEC [33] are domain-specific
languages (DSLs) for writing automatically-verified compiler optimizations and
analyses. Most closely related to our work is Alive [40], a DSL for expressing
verified peephole optimizations, local rewrites that transform snippets of LLVM
IR [1] to better-performing ones. Alive addresses transformations over fixed types
(while we address lowering to finite field equations) and formulates correctness
in the presence of undefined behavior (while we formulate correctness for ZKPs).
Beyond Alive, Alive2 [39] provides translation validation [42, 51] for LLVM [34],
and VeRA [11] verifies range analysis in the Firefox JavaScript engine.

There is also work on verified compilation for domains more closely related
to ZKPs. The Porcupine [16] compiler automatically synthesizes representations
for fully-homomorphic encryption [62], and Gillar [58] proves that optimization
passes in the Qiskit [60] quantum compiler are semantics-preserving. While these
works compile from high-level languages to circuit representations, the correct-
ness definitions for their domains do not apply to ZKP compilers.

Verified compilation to cryptographic proofs. Prior works on verified compila-
tion for ZKPs (or similar) take the foundational approach (with attendant proof
maintenance burdens), and they do not formulate a satisfactory definition of
compiler correctness. PinocchioQ [19] builds on CompCert [37]. The authors for-
mulate a correctness definition that preserves the existential soundness of a ZKP

4Automated verification generally leverages solvers. This is a particularly appealing
approach in our setting, since CirC (our compiler infrastructure of interest) already
supports compilation to SMT formulas.

4 A. Ozdemir et al.

but does not consider completeness, knowledge soundness, or zero-knowledge (see
Section 2.2). Leo [15] is a ZKP compiler that produces (partial) ACL2 [28] proofs
of correct compilation; work to emit proofs from its field-blaster is ongoing.

Recent work defines security for reductions of knowledge [31]. These let P
convince V that it knows a witness for an instance of relation R1 by proving it
knows a witness for an instance of an easier-to-prove relation R2. Unlike ZKP
compilers, P and V interact to deriveR2 using V’s randomness (e.g., proving that
two polynomials are nonzero w.h.p. by proving that a random linear combination
of them is), whereas ZKP compilers run ahead of time and non-interactively.

Further afield, Ecne [65] is a tool that attempts to verify that the input to
a ZKP encodes a deterministic computation. It does not consider any notion
of a specification of the intended behavior. A different work [26] attempts to
automatically verify that a “widget” given to a ZKP meets some specification.
They consider widgets that could be constructed manually or with a compiler.
Our focus is on verifying a compiler pass.

2 Background

2.1 Logic

We assume usual terminology for many-sorted first-order logic with equality ([18]
gives a complete presentation). We assume every signature includes the sort Bool,
constants True and False of sort Bool, and symbol family ≈σ (abbreviated ≈)
with sort σ×σ → Bool for each sort σ. We also assume a family of conditionals:
symbols iteσ (“if-then-else”, abbreviated ite) of sort Bool× σ × σ → σ.

A theory is a pair T = (Σ, I), where Σ is a signature and I is a class of Σ-
interpretations. A Σ-formula is a term of sort Bool. A Σ-formula ϕ is satisfiable
(resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation
in I. We focus on two theories. The first is TBV , the SMT-LIB theory of bit-
vectors [52, 61], with signature ΣBV including a bit-vector sort BV[n] for each
n > 0 with bit-vector constants c[n] of sort BV[n] for each c ∈ [0, 2n − 1], and
operators including & and | (bitwise and, or) and +[n] (addition modulo 2n). We
write t[i] to refer to the ith bit of bit-vector t, where t[0] is the least-significant
bit. The other theory is TFp , which is the theory corresponding to the finite field
of order p, for some prime p [48]. This theory has signature ΣFp containing the
sort FFp, constant symbols 0, . . . , p− 1, and operators + and ×.

In this paper, we assume all interpretations interpret sorts and symbols in
the same way. We write dom(v) for the set interpreting the sort of a variable
v. We assume that Bool, True, and False are interpreted as {⊤,⊥}, ⊤, and
⊥, respectively; ΣBV -interpretations follow the SMT-LIB standard; and ΣFp

-
interpretations interpret symbols as the corresponding elements and operations
in Fp, a finite field of order p (for concreteness, this could be the integers modulo
p). Note that only the values of variables can vary between two interpretations.

For a signature Σ, let t be a Σ-term of sort σ, with free variables x1, . . . , xn,
respectively of sort σ1, . . . , σn. We define the function t̂ : dom(x1) × · · · ×

Bounded Verification for Finite-Field-Blasting 5

Setup(ϕ)

P(ϕ, x, w)

Prove(pk, x, w)

V(ϕ, x)

Verify(vk, x, π)

pk vk

π

Fig. 1: The information flow for a zero-knowledge proof.

dom(xn)→ dom(t) as follows. Let x⃗ ∈ dom(x1)×· · ·×dom(xn). LetM be an in-
terpretation that interprets each xi as xi. Then t̂(⃗x) = tM (i.e., the interpretation
of t in M). For example, the term t = a ∧ ¬a defines t̂ : Bool → Bool = λx. ⊥.
In the following, we follow the convention used above in using the standard
font (e.g., x) for logical variables and a sans serif font (e.g., x) to denote meta-
variables standing for values (i.e., elements of σM for some σ and M). Also,
abusing notation, we’ll conflate single variables (of both kinds) with vectors of
variables when the distinction doesn’t matter. Note that a formula ϕ is satisfiable
if there exist values x such that ϕ̂(x) = ⊤. It is valid if for all values x, ϕ̂(x) = ⊤.

For terms s, t and variable x, t[x 7→ s] denotes t with all occurrences of x
replaced with s. For a sequence of variable-term pairs, S = (x1 7→ s1, . . . , xn 7→
sn), t[S] is defined to be t[x1 7→ s1] · · · [xn 7→ sn].

2.2 Zero Knowledge Proofs

As mentioned above, Zero-knowledge proofs (ZKPs) make it possible to prove
that some secret data satisfies a public property—without revealing the data
itself. See [59] for a full presentation; we give a brief overview here, and then
describe how general-purpose ZKPs are used.

Overview and definitions. In a cryptographic proof system, there are two parties:
a verifier V and a prover P. V knows a public instance x and asks P to show that
it has knowledge of a secret witness w satisfying a public predicate ϕ(x,w) from
a predicate class Φ (a set of formulas) (i.e., ϕ̂(x,w) = ⊤). Figure 1 illustrates the
workflow. First, a trusted party runs an efficient (i.e., polytime in an implicit
security parameter λ) algorithm Setup(ϕ) which produces a proving key pk and
a verifying key vk. Then, P runs an efficient algorithm Prove(pk, x,w)→ π and
sends the resulting proof π to V. Finally, V runs an efficient verification algorithm
Verify(vk, x, π) → {⊤,⊥} that accepts or rejects the proof. A zero-knowledge
argument of knowledge for class Φ is a tuple Π = (Setup,Prove,Verify) with
three informal properties for every ϕ ∈ Φ and every x ∈ dom(x),w ∈ dom(w):

– perfect completeness: if ϕ̂(x,w) holds, then Verify(vk, x, π) holds;
– computational knowledge soundness [10]: an efficient adversary that does not

know w cannot produce a π such that Verify(vk, x, π) holds; and
– zero-knowledge [23]: π reveals nothing about w, other than its existence.

Technically, the system is an “argument” rather than a “proof” because sound-
ness only holds against efficient adversaries. Also note that knowledge soundness

6 A. Ozdemir et al.

requires that an entity must “know” a valid w′ to produce a proof; it is not enough
for a valid w′ to simply exist. We give more precise definitions in Appendix A.

Representations for ZKPs. As mentioned above, ZKP applications are manifold
(§1)—from cryptocurrencies to private registries. This breadth of applications is
possible because ZKPs support a broad class of predicates. Most commonly, these
predicates are expressed as rank-1 constraint systems (R1CSs). Recall that Fp is
a prime-order finite field (also called a prime field). We will drop the subscript p
when it is not important. In an R1CS, x and w are vectors of elements in F; let
z ∈ Fm be their concatenation. The function ϕ̂ can be defined by three matrices
A,B,C ∈ Fn×m; ϕ̂(x,w) holds when Az ◦ Bz = Cz, where ◦ is the element-wise
product. Thus, ϕ can be viewed as n conjoined constraints, where each constraint
i is of the form (

∑
j aijzj)× (

∑
j bijzj) ≈ (

∑
j cijzj) (where the aij , bij and cij

are constant symbols from ΣFp
, and the zj are a vector of variables of sort FFp).

That is, each constraint enforces a single non-linear multiplication.

2.3 Compilation targeting zero knowledge proofs

To write a ZKP about a high-level predicate ϕ, that predicate is first compiled to
an R1CS. A ZKP compiler from class Φ (a set of Σ-formulas) to class Φ′ (a set
of Σ′-formulas) is an efficient algorithm Compile(ϕ ∈ Φ)→ (ϕ′ ∈ Φ′,Extx,Extw).
Given a predicate ϕ(x,w), it returns a predicate ϕ′(x′, w′) as well as two efficient
and deterministic algorithms, instance and witness extenders: Extx : dom(x) →
dom(x′) and Extw : dom(x) × dom(w) → dom(w′).5 For example, CirC [47] can
compile a Boolean-returning C function (in a subset of C) to an R1CS.

At a high-level, ϕ and ϕ′ should be “equisatisfiable”, with Extx and Extw map-
ping satisfying values for ϕ to satisfying values for ϕ′. That is, for all x ∈ dom(x)

and w ∈ dom(w) such that ϕ̂(x,w) = ⊤, if x′ = Extx(x) and w′ = Extw(x,w), then
ϕ̂′(x′,w′) = ⊤. Furthermore, for any x, it should be impossible to (efficiently) find
w′ satisfying ϕ̂′(Extx(x),w

′) = ⊤ without knowing a w satisfying ϕ̂(x,w) = ⊤. In
Section 5.1, we precisely define correctness for a predicate compiler.

One can build a ZKP for class Φ from a compiler from Φ to Φ′ and a ZKP for
Φ′. Essentially, one runs the compiler to get a predicate ϕ′ ∈ Φ′, as well as Extx
and Extw. Then, one writes a ZKP to show that ϕ̂′(Extx(x),Extw(x,w)) = ⊤. In
Appendix A, we give this construction in full and prove it is secure.

Optimization. The primary challenge when using ZKPs is cost: typically, Prove
is at least three orders of magnitude slower than checking ϕ directly [64]. Since
Prove’s cost scales with n (the constraint count), it is critical for the compiler
to minimize n. The space of optimizations is large and complex, for two reasons.
First, the compiler can introduce fresh variables. Second, only equisatifiability—
not logical equivalence—is needed. Compilers in this space exploit equisatisfia-
bility heavily to efficiently represent high-level constructs (e.g., Booleans, bit-
vectors, arrays, . . .) as an R1CS.

5For technical reasons, the runtime of Extx and the size of its description must be
poly(λ, |x|)—not just poly(λ) (App. A.3).

Bounded Verification for Finite-Field-Blasting 7

pgm front-end IR . . . IR[ΣBV ∪ΣF] lowering R1CS

(1) (2) (3)

IR[ΣF]field-blasting flattening

Fig. 2: The architecture of CirC

As a (simple!) example, consider the Boolean computation a ≈ c1 ∨ · · · ∨ ck.
Assume that c′1, . . . , c

′
k are variables of sort FF and that we add constraints

c′i(1 − c′i) ≈ 0 to ensure that c′i has to be 0 or 1 for each i. Assume further
that (c′i ≈ 1) encodes ci for each i. How can one additionally ensure that a′

(also of sort FF) is also forced to be equal to 0 or 1 and that (a′ ≈ 1) is a
correct encoding of a? Given that there are k − 1 ORs, natural approaches use
Θ(k) constraints. One clever approach is to introduce variable x′ and enforce
constraints x′(

∑
i c

′
i) ≈ a′ and (1 − a′)(

∑
i c

′
i) ≈ 0. In any interpretation where

any ci is true, the corresponding interpretation for a′ must be 1 to satisfy the
second constraint; setting x′ to the sum’s inverse satisfies the first. If all ci are
false, the first constraint ensures a′ is 0. This technique assumes the sum does
not overflow; since ZKP fields are typically large (e.g., with p on the order of
2255), this is usually a safe assumption.

CirC. CirC [47] is an infrastructure for building compilers from high-level lan-
guages (e.g., a C subset), to R1CSs. It has been used in research projects [4, 13],
and in industrial R&D. Figure 2 shows the structure of an R1CS compiler built
with CirC. First, the front-end of the compiler converts the source program
into CirC-IR. CirC-IR is a term IR based on SMT-LIB that includes: Booleans,
bit-vectors, fixed-size arrays, tuples, and prime fields.6 Second, the compiler op-
timizes and simplifies the IR so that the only remaining sorts are Booleans,
bit-vectors, and the target prime field. Third, the compiler lowers the simplified
IR to an R1CS predicate over the target field. For ZKPs built with CirC, the
completeness, soundness, and zero-knowledge of the end-to-end system depend
on the correctness of CirC itself.

3 Overview and example

To start, we view CirC’s lowering pass as two passes (Fig. 2). The first pass,
“(finite-)field-blasting,” converts a many-sorted IR (representable as a (ΣBV ∪
ΣF)-formula) to a conjunction of field equations (ΣF -equations). The second
pass, “flattening,” converts this conjunction of field equations to an R1CS.

Our focus is on verifying the first pass. We begin with a worked example of
how to field-blast a small snippet of CirC-IR (§3.1). This example will illustrate
four key ideas (§3.2) that inspire our field-blaster’s architecture.

6We list all CirC-IR operators for Booleans, bit-vectors, and prime fields in Ap-
pendix C. Almost all are from SMT-LIB.

8 A. Ozdemir et al.

clause term from ϕ assertions new variables notes

1 x0 x′
0

w0 w′
0(w

′
0 − 1) ≈ 0 w′

0

x0 ⊕ w0 1 ≈ 1− w′
0 − x′

0 + 2w′
0x

′
0

2 x1 x′
1,u

w1 w′
1,i(w

′
1,i − 1) ≈ 0 w′

1,i i ∈ [0, 3]

x1 +[4] w1 s′ ≈ x′
1,u +

∑3
i=0 2

iw′
1,i s′

s′i(s
′
i − 1) ≈ 0 s′i i ∈ [0, 4]

s′ ≈
∑4

i=0 2
is′i

x1 +[4] w1 ≈ w1 s′i ≈ w′
1,i i ∈ [0, 3]

3 x2 x′
2,u

x2 (bits) x′
2,i(x

′
2,i − 1) ≈ 0 x′

2,i i ∈ [0, 3]

x′
2,u ≈

∑3
i=0 2

ix′
2,i

x2 & w1 ≈ x2 x′
2,iw

′
1,i ≈ x′

2,i i ∈ [0, 3]

4 x3, w2 x′
3, w

′
2

x3 ≈ w2 × w2 x′
3 ≈ w′

2 × w′
2

Table 3: New variables and assertions when compiling the example ϕ.

3.1 An example of field-blasting

We start with an example CirC-IR predicate expressed as a (ΣBV ∪ΣF)-formula:

ϕ ≜ (x0 ⊕ w0) ∧ (w1 +[4] x1 ≈ w1) ∧ (x2 & w1 ≈ x2) ∧ (x3 ≈ w2 × w2) (1)

The predicate includes: the XOR of two Booleans (“⊕”), a bit-vector sum, a bit-
vector AND, and a field product. x0 and w0 are of sort Bool, x1, x2, and w1 are
of sort BV[4], and x3 and w2 are of sort FFp. We’ll assume that p≫ 24. Table 3
summarizes the new variables and assertions we create during field-blasting; we
describe the origin of each assertion and new variable in the next paragraphs.

Lowering clause one (Booleans). We begin with the Boolean term (x0⊕w0). We
will use 1 and 0 to represent ⊤ and ⊥. We introduce variables x′

0 and w′
0 of sort

FFp to represent x0 and w0 respectively. To ensure that w′
0 is 0 or 1, we assert:

w′
0(w

′
0−1) ≈ 0.7 x0⊕w0 is then represented by the expression 1−x′

0−w′
0+2x′

0w
′
0.

Setting this equal to 1 enforces that x0⊕w0 must be true. These new assertions
and fresh variables are reflected in the first three rows of the table.

Lowering clause two and three (bit-vectors). Before describing how to bit-blast
the second and third clauses in ϕ, we discuss bit-vector representations in general.
A bit-vector t can be viewed as a sequence of b bits or as a non-negative integer
less than 2b. These two views suggest two natural representations in a prime-
order field: first, as one field element t′u, whose unsigned value agrees with t

7Later (§5), we will see that “well-formedness” constraints like this are unnecessary
for instance variables, such as x0.

Bounded Verification for Finite-Field-Blasting 9

(assuming the field’s size is at least 2b); second, as b elements t′0, . . . , t
′
b−1, that

encode the bits of t as 0 or 1 (in our encoding, t′0 is the least-significant bit and
t′b−1 is the most-significant bit). The first representation is simple, but with it,
some field values (e.g., 2b) don’t corresponding to any possible bit-vector. With
the second approach, by including equations t′i(t

′
i − 1) ≈ 0 in our system, we

ensure that any satisfying assignment corresponds to a valid bit-vector. However,
the extra b equations increase the size of our compiler’s output.

We represent ϕ’s w1 bit-wise: as w′
1,0, . . . , w

′
1,3, and we represent the instance

variable x1 as x′
1,u.8 For the constraint w1 +[4] x1 ≈ w1, we compute the sum

in the field and bit-decompose the result to handle overflow. First, we introduce
new variable s′ and set it equal to x′

1,u +
∑3

i=0 2
iw′

1,i. Then, we bit-decompose
s′, requiring s′ ≈

∑4
i=0 2

is′i, and s′i(s
′
i − 1) ≈ 0 for i ∈ [0, 4]. Finally, we assert

s′i ≈ w′
1,i for i ∈ [0, 3]. This forces the lowest 4 bits of the sum to be equal to w1.

The constraint x2 & w1 ≈ x2 is more challenging. Since x2 is an instance
variable, we initially encode it as x′

2,u. Then, we consider the bit-wise AND.
There is no obvious way to encode a bit-wise operation, other than bit-by-
bit. So, we convert x′

2,u to a bit-wise representation: We introduce witness
variables x′

2,0, . . . , x
′
2,3 and equations x′

2,i(x
′
2,i − 1) ≈ 0 as well as equation

x′
2,u ≈

∑3
i=0 2

ix′
2,i. Then, for each i we require x′

2,iw
′
1,i ≈ x′

2,i.

Lowering the final clause (field elements). Finally, we consider the field equation
x2 ≈ w2 × w2. Our target is also field equations, so lowering this is straightfor-
ward. We simply introduce primed variables and copy the equation.

3.2 Key ideas

This example highlights four ideas that guide the design of our field-blaster:

1. fresh variables and assertions: Field-blasting uses two primitive operations:
creating new variables in ϕ′ (e.g., w′

0 to represent w0) and adding new as-
sertions to ϕ′ (e.g., w′

0(w
′
0 − 1) ≈ 0).

2. encodings: For a term t in ϕ, we construct a field term (or collection of field
terms) in ϕ′ that represent the value of t. For example, the Boolean w0 is
represented as the field element w′

0 that is 0 or 1.
3. operator rules: if t is an operator applied to some arguments, we can encode

t given encodings of the arguments. For example, if t is x0 ⊕ w0, and x0 is
encoded as x′

0 and w0 as w′
0, then t can be encoded as 1− x′

0 −w′
0 +2x′

0w
′
0.

4. conversions: Some sorts can be represented by encodings of different kinds.
If a term has multiple possible encodings, the compiler may need to convert
between them to apply some operator rule. For example, we converted x2

from an unsigned encoding to a bit-wise encoding before handling an AND.
8We represent w1 bit-wise so that we can ensure the representation is well-formed

with constraints w′
1,i(w

′
1,i − 1) ≈ 0. As previously noted, such well-formedness con-

straints are not needed for an instance variable like x1.7

10 A. Ozdemir et al.

Variant Contents Semantics
encoded_term kind terms Validity Condition

t: Bool bit f f ≈ ite(t, 1, 0)
t: BV[b] uint f f ≈

∑
i ite(t[i] ≈ 1[1], 2

i, 0)
t: BV[b] bits f0, . . . , fb−1

∧
i fi ≈ ite(t[i] ≈ 1[1], 1, 0)

t: FF field f t ≈ f

Table 4: Encodings for each term sort. Only bit-vectors have two encoding kinds.

4 Architecture

In this section, we present our field-blaster architecture. To compile a predicate
ϕ to a system of field equations ϕ′, our architecture processes each term t in ϕ
using a post-order traversal. Informally, it represents each t as an “encoding” in
ϕ′: a term (or collection of terms) over variables in ϕ′. Each encoding is produced
by a small algorithm called an “encoding rule”.

Below, we define the type of encodings Enc (§4.1), the five different types
of encoding rules (§4.2), and a calculus that iteratively applies these rules to
compile all of ϕ (§4.3).

4.1 Encodings

Table 4 presents our tagged union type Enc of possible term encodings. Each
variant comprises the term being encoded, its tag (the encoding kind), and a
sequence of field terms. The encoding kinds are bit (a Boolean as 0/1), uint (a
bit-vector as an unsigned integer), bits (a bit-vector as a sequence of bits), and
field (a field term trivially represented as a field term). Each encoding has an
intended semantics: a condition under which the encoding is considered valid.
For instance, a bit encoding of Boolean t is valid if the field term f is equal to
ite(t, 1, 0).

4.2 Encoding rules

An encoding rule is an algorithm that takes and/or returns encodings, in order
to represent some part of the input predicate as field terms and equations.

Primitive operations. A rule can perform two primitive operations: creating
new variables and emitting assertions. In our pseudocode, the primitive func-
tion fresh(name, t, isInst) → x′ creates a fresh variable. Argument isInst is a
Boolean indicating whether x′ is an instance variable (as opposed to a witness).
Argument t is a field term (over variables from ϕ and previously defined primed
variables) that expresses how to compute a value for x′. For example, to cre-
ate a field variable w′ that represents Boolean witness variable w, a rule can
call fresh(w′, ite(w, 1, 0),⊥). The compiler uses t to help create the Extx and

Bounded Verification for Finite-Field-Blasting 11

fn variable(t, isInst)→ Enc :
if isInst:

t′ ← fresh(name(t)∥‘u’,∑
i ite(t[i] ≈ 1[1], 2

i, 0),⊤)
return t, uint, t′

else:
for i in [0, size(sort(t))− 1]:

t′i ← fresh(name(t)∥ i,
ite(t[i] ≈ 1[1], 1, 0),⊥)

assert(t′i(t
′
i − 1) = 0)

return t, bits, t′0, . . . , t
′
size(sort(t))−1

fn const(t)→ Enc :
for i in [0, size(sort(t))− 1]:

t′i ← ite(t[i] ≈ 1[1], 1, 0)
return t, bits, t′0, . . . , t

′
size(sort(t))−1

fn assertEq(e : Enc, e′ : Enc) :
if kind(e) = bits:

for i in [0, size(terms(e))− 1]:
assert(terms(e)[i] ≈ terms(e′)[i])

elif kind(e) = uint:
assert(terms(e)[0] ≈ terms(e′)[0])

fn convert(e : Enc, kind′ : Kind)→ Enc :
t← encoded_term(e)
if kind(e) = bits and kind′ = uint:

return t, uint,
∑

i 2
iterms(e)[i]

elif kind(e) = uint and kind′ = bits:
e′ ← variable(t,⊥)
assert(terms(e)[0] ≈

∑
i 2

iterms(e′)[i])
return e′

Fig. 5: Pseudocode for some bit-vector rules: variable uses a uint encoding for
instances and bit-splits witnesses to ensure they’re well-formed, const bit-splits
the constant it’s given, assertEq asserts unsigned or bit-wise equality, and convert
either does a bit-sum or bit-split.

Extw algorithms. A rule asserts a formula t′ (over primed variables) by calling
assert(t′).

Rule Types. There are five types of rules: (1) Variable rules variable(t, isInst)→
e take a variable t and its instance/witness status and return an encoding of that
variable made up of fresh variables. (2) Constant rules const(t)→ e take a con-
stant term t and produce an encoding of t comprising terms that depend only on
t. Since t is a constant, the terms in e can be evaluated to field constants (see the
calculus in Section 4.3).9 The const rule cannot call fresh or assert. (3) Equality
rules assertEq(e, e′) take two encodings of the same kind and emit assertions that
equate the underlying terms. (4) Conversion rules convert(e, kind′)→ e′ take an
encoding and convert it to an encoding of a different kind. Conversions are only
non-trivial for bit-vectors, which have two encoding kinds: uint and bits. (5)
Operator rules apply to terms t of form o(t1, . . . , tn). Each operator rule takes
t, o, and encodings of the child terms ti and returns an encoding of t. Some
operator rules require specific kinds of encodings; before using such an operator
rule, our calculus (Sec. 4.3) calls the convert rule to ensure the input encodings
are the correct kind. Figure 5 gives pseudocode for the first four rule types, as
applied to bit-vectors. Figure 6 gives pseudocode for two bit-vector operator en-
coding rules. A field blaster uses many operator rules: in our case study (Sec. 6)
there are 46.

9Having const(t) return terms that depend on t (rather than directly returning
constants) is useful for constructing verification conditions for const.

12 A. Ozdemir et al.

fn bvZeroExt(t, o : Op, e : Enc) :
if kind(e) = bits:

w ← size(terms(e))
for i in [0, w − 1]:

t′i ← terms(e)[i]
for i in [0, o.newBits− 1]:

t′w+i ← 0
return t, bits, t′0, . . . , t

′
w+o.newBits−1

else:
return t, kind(e), terms(e)

fn bvMulUint(t, o : Op, e⃗ : [Enc]) :
w ← size(sort(encoded_term(e[0])))
W ← size(e⃗)× w
assume W < ⌊log2 p⌋
s′ ←

∏
i terms(ei)[0]

b← ff2bv(W, s′)
for i in [0,W − 1]:

t′i ← fresh(i, ite(b[i], 1, 0),⊥)
assert(t′i(t

′
i − 1) ≈ 0)

assert(s′ ≈
∑W−1

i=0 2it′i)
return t, bits, t′0, . . . , t

′
w−1

Fig. 6: Pseudocode for some bit-vector operator rules. bvZeroExt zero-extends a
bit-vector; for bit-wise encodings, it adds zero bits, and for unsigned encodings, it
simply copies the original encoding. bvMulUint multiplies bit-vectors, all assumed
to be unsigned encodings. We show only the case where the multiplication cannot
overflow in the field: in this case the rule performs the multiplication in the field,
and bit-splits the result to implement reduction modulo 2b. The rules use ff2bv,
which converts from a field element to a bit-vector (discussed in Section 6.1).

4.3 Calculus

We now give a non-deterministic calculus describing how our field-blaster applies
rules to compile a predicate ϕ(x,w) into a system of field equations.

A calculus state is a tuple of three items: (E,A, F). The encoding store E is
a (multi-)map from terms to sets of encodings. The assertions formula A is a
conjunction of all field equations asserted via assert. The fresh variable definitions
sequence F is a sequence consisting of pairs, where each pair (v, t) matches a
single call to fresh(v, t, . . .).

Figure 7 shows the transitions of our calculus. We denote the result of a rule
as A′, F ′, e′ ← r(. . .), where A′ is a formula capturing any new assertions, F ′ is
a sequence of pairs capturing any new variable definitions, and e′ is the rule’s
return value. We may omit one or more results if they are always absent for a
particular rule. For encoding store E, E∪(t 7→ e) denotes the store with e added
to t’s encoding set.

There are five kinds of transitions. The Const transition adds an encoding
for a constant term. The const rule returns an encoding e whose terms depend
on the constant c; e′ is a new encoding identical to e, except that each of its
terms has been evaluated to obtain a field constant. The Var transition adds an
encoding for a variable term. The Conv transition takes a term that is already
encoded and re-encodes it with a new encoding kind. The kinds operator returns
all legal values of kind for encodings of a given sort. The Opr transition applies
operator rule r. This transition is only possible if r’s operator kind agrees with o,
and if its input encoding kinds agree with e⃗. The Finish transition applies when ϕ
has been encoded. It uses const and assertEq to build assertions that hold when

Bounded Verification for Finite-Field-Blasting 13

constant term c e← const(c) e′ ← map(eval, e)
Const

E := E ∪ (c 7→ e′)

variable term v A′, F ′, e← variable(v, isInst(v))
Var

E := E ∪ (v 7→ e), A := A ∧A′, F := F ∥ F ′

(t 7→ e) ∈ E kind ∈ kinds(sort(t)) A′, F ′, e′ ← convert(e, kind)
Conv

E := E ∪ (t 7→ e′), A := A ∧A′, F := F ∥ F ′

(ti 7→ ei) ∈ E t = o(⃗t) A′, F ′, e′ ← r(t, o, e⃗)
Opr

E := E ∪ (t 7→ e′), A := A ∧A′, F := F ∥ F ′

(ϕ 7→ e) ∈ E e⊤ ← const(⊤) A′, F ′ ← assertEq(e, e⊤)
Finish

return (A ∧A′, F ∥ F ′)

Fig. 7: The transition rules of our rewriting calculus.

ϕ = ⊤. Rather than producing a new calculus state, it returns the outputs of
the calculus: the assertions and the variable definitions.

To meet the requirements of the ZKP compiler, our calculus must return two
extension function: Extx and Extw (Sec. 2.2). Both can be constructed from the
fresh variable definitions F . One subtlety is that Extx(x) (which assigns values
to fresh instance variables) is a function of x only—it cannot depend on the
witness variables of ϕ. We ensure this by allowing fresh instance variables to
only be created by the variable rule, and only when it is called with isInst = ⊤.

Strategy. Our calculus is non-deterministic: multiple transitions are possible in
some situations; for example, some conversion is almost always applicable. The
strategy that decides which transition to apply affects field blaster performance
(App. D) but not correctness.

5 Verification conditions

In this section, we first define correctness for a ZKP compiler (§5.1). Then, we
give verification conditions (VCs) for each type of encoding rule (§5.2). Finally,
we show that if these VCs hold, our calculus is a correct ZKP compiler (§5.3).

5.1 Correctness definition

Definition 1 (Correctness). A ZKP compiler Compile(ϕ) → (ϕ′,Extx,Extw)
is correct if it is demonstrably complete and demonstrably sound.

• demonstrable completeness: For all x ∈ dom(x),w ∈ dom(w) such that
ϕ̂(x,w) = ⊤,

ϕ̂′(Extx(x),Extw(x,w)) = ⊤

14 A. Ozdemir et al.

• demonstrable soundness: There exists an efficient algorithm Inv(x′,w′) → w

such that for all x ∈ dom(x),w′ ∈ dom(w′) such that ϕ̂′(Extx(x),w
′) = ⊤,

ϕ̂(x, Inv(Extx(x),w
′)) = ⊤

Demonstrable completeness (respectively, soundness) requires the existence
of a witness for ϕ′ (resp., ϕ) when a witness exists for ϕ (resp., ϕ′); this existence
is demonstrated by an efficient algorithm Extw (resp., Inv) that computes the
witness.

Correct ZKP compilers are important for two reasons. First, since sequential
composition preserves correctness, one can prove a multi-pass compiler is correct
pass-by-pass. Second, a correct ZKP compiler from Φ to Φ′ can be used to
generalize a ZKP for Φ′ to one for Φ. We prove both properties in Appendix A.

Theorem 1 (Compiler Composition). If Compile′ and Compile′′ are correct,
then the compiler Compose(Compile′,Compile′′) (Fig. 12, App. A.2) is correct.

Theorem 2 (ZKP Generalization). (informal) Given a correct ZKP com-
piler Compile from Φ to Φ′ and a ZKP for Φ′, we can construct a ZKP for Φ.

5.2 Rule VCs

Recall (Sec. 4) that our language manipulates encodings through five types of
encoding rules. We give verification conditions for each type of rule. Intuitively,
these capture the correctness of each rule in isolation. Next, we’ll show that they
imply the correctness of a ZKP compiler that follows our calculus.

Our VCs quantify over valid encodings. That is, they have the form: “for any
valid encoding e of term t, . . . ” We can quantify over an encoding e by making
each ti ∈ terms(e) a fresh variable, and quantifying over the ti. Encoding validity
is captured by a predicate valid(e, t), which is defined to be the validity condition
in Table 4. Each VC containing encoding variables e⃗ implicitly represents a
conjunction of instances of that VC, one for each possible tuple of kinds of
e⃗, which is fixed for each instance. If a VC contains valid(e, t), the sort of t is
constrained to be compatible with kind(e). For a kind and a sort to be compatible,
they must occur in the same row of Table 4. We define the equality predicate
equal(e, e′) as

∧
i terms(e)[i] ≈ terms(e′)[i].

Encoding Uniqueness. First, we require the uniqueness of valid encodings, for
any fixed encoding kind. Table 8 shows the VCs that ensure this. Each row is a
formula that must be valid, for all compatible encodings and terms. The first two
rows ensure that there is a bijection from terms to their valid encodings (in the
first row, we consider only instances for which kind(e) = kind(e′)). The function
fromTerm(t, kind)→ e maps a term and an encoding kind to a valid encoding of
that kind, and the function toTerm(e)→ t maps a valid encoding to its encoded
term. The third and fourth rows ensure that fromTerm and toTerm are correctly

Bounded Verification for Finite-Field-Blasting 15

Property Condition

valid encoding uniqueness (valid(e, t) ∧ valid(e′, t))→ equal(e, e′)
valid encoding uniqueness (valid(e, t) ∧ valid(e, t′))→ t ≈ t′

fromTerm correctness valid(fromTerm(t, kind), t)
toTerm correctness valid(e, toTerm(e))

Table 8: VCs related to encoding uniqueness.

Rule Property Condition

Operator Sound (A ∧
∧

i valid(ei, ti))→ valid(e′, o(⃗t))

e′ ← ro(e⃗) Complete
(
(
∧

i valid(ei, ti))→ (A ∧ valid(e′, o(⃗t)))
)
[F]

Equality Sound (A ∧
∧

i valid(ei, ti))→ (t1 ≈ t2)
r=(e1, e2) Complete

(
((t1 ≈ t2) ∧

∧
i valid(ei, ti))→ A

)
[F]

Conversion Sound (A ∧ valid(e, t))→ valid(e′, t)
e′ ← r→(e) Complete ((valid(e, t))→ (A ∧ valid(e′, t))) [F]

Variable Sound (t ∈ w) A→ ∃t′. valid(e′, t′)
Sound (t ∈ x) (A→ valid(e′, t))[Fx]

e′ ← rv(t) Complete (A ∧ valid(e′, t))[F]

Constant — valid(e, t)
e← rc(t)

Table 9: VCs for encoding rules.

defined. We will use toTerm in our proof of calculus soundness (App. B.1) and
we will use fromTerm to optimize VCs for faster verification (Sec. 6.1).

For an example of the valid , fromTerm, and toTerm functions, consider a
Boolean b encoded as an encoding e with kind bit and whose terms consist
of a single field element f . Validity is defined as valid(e, b) = f ≈ ite(b, 1, 0),
toTerm(f) is defined as f ≈ 1, and fromTerm(b, bit) is (b, bit, ite(b, 1, 0)).

VCs for encoding rules. Table 9 shows our VCs for the rules of Figure 7. For each
rule application, A and F denote, respectively, the assertions and the variable
declarations generated when that rule is applied. We explain some of the VCs
in detail.

First, consider a rule ro for operator o applied to inputs t1, . . . , tk. The rule
takes input encodings e1, . . . , ek and returns an output e′. It is sound if the
validity of its inputs and its assertions imply the validity of its output. It is
complete if the validity of its inputs implies its assertions and the validity of its
output, after substituting fresh variable definitions.

Second, consider a variable rule. Its input is a variable term t, and it returns
e′, a putative encoding thereof. Note that e′ does not actually contain t, though

16 A. Ozdemir et al.

the substitutions in F may bind the fresh variables of e′ to functions of t. For
the rule to be sound when t is a witness variable (t ∈ w), the assertions must
imply that e′ is valid for some term t′. For the rule to be sound when t is an
instance variable (t ∈ x), the assertions must imply that e′ is valid for t, when
the instance variables in e′ are replaced with their definition (Fx denotes F ,
restricted to its declarations of instance variables).10 For the variable rule to be
complete (for an instance or a witness), the assertions and the validity of e′ for
t must follow from F .

Third, consider a constant rule. Its input is a constant term t, and it returns
an encoding e. Recall that the terms of e are always evaluated, yielding e′ which
only contains constant terms. Thus, correctness depends only on the fact that e
is always a valid encoding of the input t. This can be captured with a single VC.

5.3 A correct field-blasting calculus

Given rules that satisfy these verification conditions, we show that the calculus
of Section 4.3 is a correct ZKP compiler. The proof is in Appendix B.

Theorem 3 (Correctness). With rules that satisfy the conditions of Section 5.2,
the calculus of Section 4.3 is demonstrably complete and sound (Def. 1).

6 Case study: a verifiable field-blaster for CirC

We implemented and partially verified a field-blaster for CirC [47]. Our imple-
mentation is based on a refactoring of CirC’s original field blaster to conform
to our encoding rules (§4.2) and consists of ≈850 lines of code (LOC).11 As de-
scribed below, we have (partially) verified our encoding rules, but trust
our calculus (§4.3, ≈150 LOC) and our flattening implementations (Fig. 2, ≈160
LOC).

While porting rules, we found 4 bugs in CirC’s original field-blaster
(see App. G), including a severe soundness bug. Given a ZKP compiled with
CirC, the bug allowed a prover to incorrectly compare bit-vectors. The prover,
for example, could claim that the unsigned value of 0010 is greater than or less
than that of 0001. A patch to fix all 4 bugs (in the original field blaster) has
been upstreamed, and we are in the process of upstreaming our new field blaster
implementation into CirC.

10The different soundness conditions for instance and witness variables play a key
role in the proof of Theorem 3. Essentially: since the condition for instances replaces
variables with their definitions, the validity of the encodings of instance variables need
not be explicitly enforced in A. This is why some constraints could be omitted in our
field-blasting example.7

11Our implementation is in Rust, as is CirC.

Bounded Verification for Finite-Field-Blasting 17

6.1 Verification evaluation

Our implementation constructs the VCs from Section 5.2 and emits them as
SMT-LIB (extended with a theory of finite fields [48]). We verify them with
cvc5, because it can solve formulas over bit-vectors and prime fields [48]. The
verification is partial in that it is bounded in two ways. We set b ∈ N to be the
maximum bit-width of any bit-vector and a ∈ N to be the maximum number of
arguments to any n-ary operator. In our evaluation, we used a = 4 and b = 4.
These bounds are small, but they were sufficient to find the bugs mentioned
above.

Optimizing completeness VCs. Generally, cvc5 verifies soundness VCs more
quickly than completeness VCs. This is surprising at first glance. To see why,
consider the soundness (S) and completeness (C) conditions for a conversion
rule from e to e′ that generates assertions A and definitions F :

S ≜ (A ∧ valid(e, t))→ valid(e′, t) C ≜ (valid(e, t)→ (A ∧ valid(e′, t)))[F]

In both, t is a variable, e contains variables, and there are variables in e′ and
A that are defined by F . In C, though, some variables are replaced by their
definitions in F—which makes the number of variables (and thus the search
space)—seem smaller for C than S. Yet, cvc5 is slower on C.

The problem is that, while the field operations in A are standard (e.g., +, ×,
and =), the definitions in F use a CirC-IR operator that (once embedded into
SMT-LIB) is hard for cvc5 to reason about. That operator, (ff2bv b), takes a
prime field element x and returns a bit-vector v. If x’s integer representative is
less than 2b, then v’s unsigned value is equal to x; otherwise, v is zero.

The ff2bv operator is trivial to evaluate but hard to embed. cvc5’s SMT-
LIB extension for prime fields only supports +, × and =, so no operator can
directly relate x to v. Instead, we encode the relationship through b Booleans
that represent the bits of v. To test whether x < 2b, we use the polynomial
f(x) =

∏2b−1
i=0 (x−i), which is zero only on [0, 2b−1]. The bit-splitting essentially

forces cvc5 to guess v’s value; further, f ’s high degree slows down the Gröbner
basis computations that form the foundation of cvc5’s field solver.

To optimize verification of the completeness VCs, we reason about CirC-IR
directly. First, we use the uniqueness of valid encodings and the fromTerm func-
tion. Since the VC assumes valid(e, t), we know e is equal to fromTerm(t, kind(e)).
We use this equality to eliminate e from the completeness VC, leaving:

(A ∧ valid(e′, t))[F][e 7→ fromTerm(t, kind(e))]

Since F defines all variables in A and e′, the only variable after substitution
is t. So, when t is a Boolean or small bit-vector, an exhaustive search is very
effective;12 we implemented such a solver in 56 LOC, using CirC’s IR as a library.

For soundness VCs, this approach is less effective. The fromTerm substitution
still applies, but if F introduces fresh field variables, they are not eliminated and
thus, the final formula contains field variables, so exhaustion is infeasible.

12So long as the exhaustive solver reasons directly about all CirC-IR operators

18 A. Ozdemir et al.

Type Prop. VCs Verified Unver.
cvc5 exhaust either

const — 6 6 5 6 0
conv C 8 8 8 8 0
conv S 8 8 4 8 0
eq C 10 10 9 10 0
eq S 10 10 9 10 0
op C 259 247 247 259 0
op S 263 259 126 259 4
uniq — 40 40 0 40 0
var C 12 12 10 12 0
var S 6 6 0 6 0

Fig. 10: VCs verified by different solvers.‘uniq’
denotes the VCs of Table 8; others are from Ta-
ble 9. ‘C’ denotes completeness; ‘S’: soundness.

Metric Unverified Verified

Time (s) 27.27 25.05
Mem. (GB) 6.56 6.42
Constraints 559445 559445

Fig. 11: The performance of
CirC with the verified and un-
verified field-blaster. Metrics
are summed over the 61 func-
tions in the Z# standard li-
brary.

Verification results. We ran our VC verification on machines with Intel Xeon
E5-2637 v4 CPUs.13 Each attempt is limited to one physical core, 8GB memory,
and 30 minutes. Table 10 shows the number of VCs verified by cvc5 and our
exhaustive solver. As expected, the exhaustive solver is effective on completeness
VCs for Boolean and bit-vector rules, but ineffective on soundness VCs for rules
that introduce fresh field variables. There are four VCs that neither solver verifies
within 30 minutes: bvadd with (b = 4, a = 4), and bvmul with (b = 3, a = 4)
and (b = 4, a ≥ 3). Most other VCs verify instantly. In Appendix E, we analyze
how VC verification time depends on a and b.

6.2 Performance and output quality evaluation

We compare CirC with our field-baster (“Verified”) against CirC with its original
field-blaster (“Unverified”)14 on three metrics: compiler runtime, memory usage,
and the final R1CS constraint count. Our benchmark set is the standard library
for CirC’s Z# input language (which extends ZoKrates [17, 68] v0.6.2). Our
testbed runs Linux with 32GB memory and an AMD Ryzen 2700.

There is no difference in constraints, but the verified field-blaster slightly
improves compiler performance: -8% time and -2% memory (Table 11). We think
that the small improvement is unrelated to the fact that the new field blaster is
verified. In Appendix E, we discuss compiler performance further.

7 Discussion

In this work, we present the first automatically verifiable field-blaster. We view
the field-blaster as a set of rules; if some (automatically verifiable) conditions

13We omit the completeness VCs for ff2bv. See Appendix C.
14After fixing the bugs we found. See Section 6.

Bounded Verification for Finite-Field-Blasting 19

hold for each rule, then the field-blaster is correct. We implemented a performant
and partially verified field-blaster for CirC, finding 4 bugs along the way.

Our approach has limitations. First, we require the field-blaster to be written
as a set of encoding rules. Second, we only verify our rules for bit-vectors of
bounded size and operators of bounded arity. Third, we assume that each rule
is a pure function: for example, it doesn’t return different results depending on
the time. Future work might avoid the last two limitations through bit-width-
independent reasoning [43, 44, 67] and a DSL (and compiler) for encoding rules.
It would also be interesting to extend our approach to: a ZKP with a non-prime
field [7, 14], a compiler IR with partial or non-deterministic semantics, or a
compiler with correctness that depends on computational assumptions.

Acknowledgements. We appreciate the help and guidance of Andres Nötzli, Dan
Boneh, and Evan Laufer.

This material is in part based upon work supported by the DARPA SIEVE
program and the Simons foundation. Any opinions, findings, and conclusions or
recommendations expressed in this report are those of the author(s) and do not
necessarily reflect the views of DARPA. It is also funded in part by NSF grant
number 2110397 and the Stanford Center for Automated Reasoning.

Bibliography

[1] LLVM language reference manual.
https://llvm.org/docs/LangRef.html

[2] Monero technical specs. https://monerodocs.org/technical-specs/
(2022)

[3] Airscript. https://github.com/0xPolygonMiden/air-script
[4] Angel, S., Blumberg, A.J., Ioannidis, E., Woods, J.: Efficient

representation of numerical optimization problems for SNARKs. In:
USENIX Security (2022)

[5] Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J.L., Rubio, A., Baylina, J.:
Circom: A circuit description language for building zero-knowledge
applications. IEEE Transactions on Dependable and Secure Computing
(2022)

[6] Bellman. https://github.com/zkcrypto/bellman
[7] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero

knowledge with no trusted setup. In: CRYPTO (2019)
[8] Bertot, Y., Castéran, P.: Interactive theorem proving and program

development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media (2013)

[9] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. Journal of Cryptology 30(4),
989–1066 (Oct 2017)

[10] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC (1988)

[11] Brown, F., Renner, J., Nötzli, A., Lerner, S., Shacham, H., Stefan, D.:
Towards a verified range analysis for JavaScript JITs. In: PLDI (2020)

[12] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge
contingent payments revisited: Attacks and payments for services. In: CCS
(2017)

[13] Chen, E., Zhu, J., Ozdemir, A., Wahby, R.S., Brown, F., Zheng, W.: Silph:
A framework for scalable and accurate generation of hybrid mpc protocols
(2023)

[14] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin:
preprocessing zkSNARKs with universal and updatable SRS. In:
EUROCRYPT (2020)

[15] Chin, C., Wu, H., Chu, R., Coglio, A., McCarthy, E., Smith, E.: Leo: A
programming language for formally verified, zero-knowledge applications
(2021), Preprint at https://ia.cr/2021/651

[16] Cowan, M., Dangwal, D., Alaghi, A., Trippel, C., Lee, V.T., Reagen, B.:
Porcupine: A synthesizing compiler for vectorized homomorphic
encryption. In: PLDI (2021)

[17] Eberhardt, J., Tai, S.: ZoKrates—scalable privacy-preserving off-chain
computations. In: IEEE Blockchain (2018)

https://llvm.org/docs/LangRef.html
https://monerodocs.org/technical-specs/
https://github.com/0xPolygonMiden/air-script
https://github.com/zkcrypto/bellman
https://ia.cr/2021/651

Bounded Verification for Finite-Field-Blasting 21

[18] Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
[19] Fournet, C., Keller, C., Laporte, V.: A certified compiler for verifiable

computing. In: CSF (2016)
[20] Fox, A., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of

CakeML to multiple machine-code targets. In: CPP (2017)
[21] Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.: Practical

accountability of secret processes. In: USENIX Security (2018)
[22] Goldberg, L., Papini, S., Riabzev, M.: Cairo – a Turing-complete

STARK-friendly CPU architecture (2021), Preprint at
https://ia.cr/2021/0163

[23] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof-systems. In: STOC (1985)

[24] Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.:
Zero-knowledge middleboxes. In: USENIX Security (2022)

[25] Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol
specification. https://raw.githubusercontent.com/zcash/zips/
master/protocol/protocol.pdf (2016)

[26] Jiang, K., Chait-Roth, D., DeStefano, Z., Walfish, M., Wies, T.: Less is
more: refinement proofs for probabilistic proofs. IEEE S&P (2023)

[27] Kamara, S., Moataz, T., Park, A., Qin, L.: A decentralized and encrypted
national gun registry. In: IEEE S&P (2021)

[28] Kaufmann, M., Manolios, P., Moore, J.S.: Computer-aided reasoning:
ACL2 case studies, vol. 4. Springer Science & Business Media (2013)

[29] Kosba, A., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE:
Succinct arguments for randomized algorithms with applications to
universal zk-SNARKs. In: USENIX Security (2020)

[30] Kosba, A., Papamanthou, C., Shi, E.: xJsnark: A framework for efficient
verifiable computation. In: IEEE S&P (2018)

[31] Kothapalli, A., Parno, B.: Algebraic reductions of knowledge (2022),
Preprint at https://ia.cr/2022/009

[32] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified
implementation of ML. In: POPL (2014)

[33] Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using
parameterized program equivalence. In: PLDI (2009)

[34] Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong
program analysis & transformation. In: CGO (2004)

[35] Lerner, S., Millstein, T., Chambers, C.: Automatically proving the
correctness of compiler optimizations. In: PLDI (2003)

[36] Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness
proofs for dataflow analyses and transformations via local rules. In: POPL
(2005)

[37] Leroy, X.: Formal verification of a realistic compiler. Communications of
the ACM 52(7), 107–115 (2009)

[38] Leroy, X.: A formally verified compiler back-end. Journal of Automated
Reasoning 43(4), 363–446 (2009)

https://ia.cr/2021/0163
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://ia.cr/2022/009

22 A. Ozdemir et al.

[39] Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: bounded
translation validation for LLVM. In: PLDI (2021)

[40] Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct
peephole optimizations with Alive. In: PLDI (2015)

[41] Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole
optimizations for CompCert. In: PLDI (2016)

[42] Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI
(2000)

[43] Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.:
Towards bit-width-independent proofs in SMT solvers. In: CADE (2019)

[44] Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.:
Towards satisfiability modulo parametric bit-vectors. Journal of
Automated Reasoning 65(7), 1001–1025 (2021)

[45] Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant
for higher-order logic. Springer (2002)

[46] Noir. https://noir-lang.github.io/book/index.html
[47] Ozdemir, A., Brown, F., Wahby, R.S.: Circ: Compiler infrastructure for

proof systems, software verification, and more. In: IEEE S&P (2022)
[48] Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo

finite fields (2022), In submission, Preprint at https://ia.cr/2023/091
[49] Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling verifiable

computation using efficient set accumulators. In: USENIX Security (2020)
[50] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly

practical verifiable computation. Communications of the ACM 59(2),
103–112 (2016)

[51] Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS
(1998)

[52] Ranise, S., Tinelli, C., Barrett, C.: SMT fixed size bit-vectors theory.
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
(2017)

[53] Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from Bitcoin. In:
IEEE S&P (2014)

[54] Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.:
Resolving the conflict between generality and plausibility in verified
computation. In: EuroSys (2013)

[55] Snarky. https://github.com/o1-labs/snarky
[56] Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional

CompCert. In: POPL (2015)
[57] Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.:

The verified CakeML compiler backend. Journal of Functional
Programming 29 (2019)

[58] Tao, R., Shi, Y., Yao, J., Li, X., Javadi-Abhari, A., Cross, A.W., Chong,
F.T., Gu, R.: Giallar: push-button verification for the Qiskit quantum
compiler. In: PLDI (2022)

[59] Thaler, J.: Proofs, Arguments, and Zero-Knowledge. Manuscript (2022)

https://noir-lang.github.io/book/index.html
https://ia.cr/2023/091
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://github.com/o1-labs/snarky

Bounded Verification for Finite-Field-Blasting 23

[60] The Qiskit authors and maintainers: Qiskit: An open-source framework for
quantum computing (2021).
https://doi.org/10.5281/zenodo.2573505, The Qiskit maintainers
request that the full list of Qiskit contributers be included in any citation.
Regretfully, we cannot comply, as the list is two pages long.

[61] Tinelli, C.: SMT core theory.
https://smtlib.cs.uiowa.edu/theories-Core.shtml (2015)

[62] Viand, A., Jattke, P., Hithnawi, A.: SoK: Fully homomorphic encryption
compilers. In: IEEE S&P (2021)

[63] Wahby, R.S., Setty, S., Howald, M., Ren, Z., Blumberg, A.J., Walfish, M.:
Efficient RAM and control flow in verifiable outsourced computation.
NDSS (2015)

[64] Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting
them. Commun. ACM 58(2), 74–84 (2015)

[65] Wang, F.: Ecne: Automated verification of zk circuits (2022),
https://0xparc.org/blog/ecne

[66] Zinc. https://zinc.matterlabs.dev/
[67] Zohar, Y., Irfan, A., Mann, M., Niemetz, A., Nötzli, A., Preiner, M.,

Reynolds, A., Barrett, C., Tinelli, C.: Bit-precise reasoning via
int-blasting. In: CADE (2022)

[68] ZoKrates. https://zokrates.github.io/

A Zero-knowledge proofs & compilers

A.1 Definition of a zkSNARK

A zero-knowledge succinct argument of knowledge (zkSNARK) is a triple of
algorithms that is Complete, Succinct, Knowledge Sound, and Zero Knowledge,
as defined below. The below definitions are adapted from Bitansky et al. [9].

Definition 2 (zkSNARK Π ′ for predicate class Φ′).

Setup′(ϕ̂′, 1λ)→ (pk′, vk′) This algorithm generates proving key pk′ and verifi-
cation key vk′ for predicate ϕ′ ∈ Φ′ and security parameter λ ∈ N.15

Prove′(pk′, x′,w′)→ π This algorithm generates a proof π given a proving key
pk′, instance x′, and witness w′.

Verify′(vk′, x′, π)→ {⊥,⊤} This algorithm returns ⊤ if π is a valid proof for
statement x′ under the verification key vk′, and ⊥ otherwise.

In the following definitions, let ϕ′ ∈ Φ′ and λ ∈ N.
Completeness means, informally, that an honest prover can generate an ac-

cepting proof for a true statement.
15The security parameter λ is encoded in unary to allow the setup algorithm to

run in time polynomial in the value of λ rather than polynomial in the size of its
representation (say, in binary), which is exponentially smaller.

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://smtlib.cs.uiowa.edu/theories-Core.shtml
https://0xparc.org/blog/ecne
https://zinc.matterlabs.dev/
https://zokrates.github.io/

24 A. Ozdemir et al.

Definition 3 (Completeness). ∀x′,w′ : ϕ̂′(x′,w′) = ⊤,

Pr
[
Verify′(vk′, x′, π) = ⊤ :

(pk′, vk′)← Setup′(ϕ̂′, 1λ)
π ← Prove′(pk′, x′,w′)

]
= 1

and Prove′ runs in time poly(λ, |x′|, |ϕ̂′|).

Succinctness means, informally, that proofs are very short and easy to check.

Definition 4 (Succinctness). The length of the proof π generated by Prove′

and the running time of Verify′ is bounded by poly(λ+ |x′|+ log |ϕ̂′|).

Knowledge soundness, informally, means that any prover that generates an
accepting proof for predicate ϕ′ on instance x′ must actually know a witness w′

such that ϕ̂′(x′,w′) = ⊤. Here, knowledge is formalized via an algorithm that,
given (exceptional) access to a prover that is able to generate convincing proofs
for an instance, outputs the corresponding witness. (In other words: “if you know
something, I can get you to tell it to me.”) This definition of soundness is strictly
stronger than existential soundness, which ensures only that generating a proof
for a false statement is infeasible. A succinct proof system meeting this weaker
definition is called a succinct non-interactive argument or SNARG. Moreover,
since knowledge soundness and existential soundness both hold only against
polynomially bounded provers, the “proof” π is called an argument.

Definition 5 (Knowledge Soundness). There exists a polynomial-time ex-
tractor E such that, for any polynomially bounded (potentially cheating) prover
P⋆ and any large enough security parameter λ ∈ N,

Pr

 (pk′, vk′)← Setup′(ϕ̂′, 1λ)
(x′, π)← P⋆(pk′)

Verify′(vk′, x′, π) = ⊤
∧ w′ ← EP⋆

(pk′, x′)

ϕ̂′(x′,w′) = ⊥

 ≤ negl(λ)

Here, EP⋆

means that the extractor algorithm is given oracle access to P⋆, in-
cluding the ability to rewind the prover to a previous state and resume execution.

Remark 1. Definition 5 is one widely used notion of knowledge soundness, but
others are known. The differences among these definitions include the implemen-
tation of the extractor (e.g., it is sometimes defined as a circuit of polynomial size
rather than an algorithm with polynomial runtime) and the ordering of quan-
tifiers (e.g., for extractors defined as circuits, the cheating prover is quantified
before the extractor, which allows the extractor circuit to include an implemen-
tation of the prover). While these differences are cryptographically significant,
they are essentially equivalent from this work’s perspective. We believe that the
proof in Appendix A.3 applies to any reasonable definition of knowledge sound-
ness.

Zero knowledge, informally, means that a proof reveals no information about
w′ that is not otherwise revealed by the truth of ϕ̂′ on instance x′. This notion
is formalized via an algorithm that generates simulated proofs that are indistin-
guishable from real proofs—without access to the witness w′.

Bounded Verification for Finite-Field-Blasting 25

def Compose(Compile′,Compile′′)(ϕ ∈ Φ)→ (ϕ′′ ∈ Φ,Extx,Extw):
ϕ′,Ext′x,Ext

′
w ← Compile′(ϕ)

ϕ′′,Ext′′x,Ext
′′
w ← Compile′′(ϕ)

def Extx(x): return Ext′′x(Ext
′
x(x))

def Extw(x,w): return Ext′′w(Ext
′
x(x),Ext

′
w(x,w))

return (ϕ′′,Extx,Extw)

Fig. 12: The composition of compilers Compile′ and Compile′′.

Definition 6 (Zero knowledge). For (pk′, vk′)← Setup′(ϕ̂′, 1λ), there exists
a polynomial-time simulator S such that ∀x′,w′ : ϕ̂′(x′,w′) = ⊤, the following
distributions are indistinguishable:{

Prove′(pk′, x′,w′)
}
≈

{
S(pk′, x′)

}
If these distributions are perfectly (resp., statistically, computationally) indistin-
guishable, we say that the zkSNARK is perfectly (resp., statistically, computa-
tionally) zero knowledge.

A.2 Proof of compiler composition theorem

Restating Theorem 1 of Section 5.1:

Theorem (Compiler Composition). If Compile′ from class Φ to class Φ′

and Compile′′ from class Φ′ to class Φ′′ are correct, there exists a compiler
Compose(Compile′,Compile′′) from class Φ to class Φ′′ that is correct.

Proof. Figure 12 gives the compiler Compose(Compile′,Compile′′). We now argue
demonstrable completeness and demonstrable soundness.
Demonstrable Completeness (Def. 1, Demonstrable Completeness). Fix x,w

such that ϕ̂(x,w) = ⊤. Let x′ = Ext′x(x), w′ = Ext′w(x,w), x′′ = Ext′′x(x
′), and

w′′ = Ext′′w(x
′,w′). We must show that ϕ̂′′(Extx(x),Extw(x,w)) = ⊤; substituting,

we must show that
ϕ̂′′(x′′,w′′) = ⊤ (2)

From the demonstrable correctness of Compile′, ϕ̂(x,w) = ⊤ implies that:

ϕ̂′(x′,w′) = ⊤

From the demonstrable correctness of Compile′′, this implies our goal (2).
Demonstrable Soundness (Def. 1, Demonstrable Soundness). Fix x,w′′ such
that ϕ̂′′(Extx(x),w

′′) = ⊤. Let Inv′ be the algorithm guaranteed to exists by the
demonstrable soundness of Compile′, and let Inv′′ be the algorithm guaranteed
to exists by the demonstrable soundness of Compile′′. Further, let x′ = Ext′x(x),
w′ = Inv′′(x′,w′′) and w = Inv′(x,w′). Define Inv(x,w′′) = w; we must show that
ϕ̂(x, Inv(x,w′′)) = ⊤; substituting, we must show that

ϕ̂(x,w) = ⊤ (3)

26 A. Ozdemir et al.

Setup(ϕ̂, 1λ)→ (pk, vk):
(ϕ̂′,Extx,Extw)← Compile(ϕ̂)
(pk′, vk′)← Setup′(ϕ̂′, 1λ)
pk← (Extx,Extw, pk

′)
vk← (Extx, vk

′)

Prove(pk, x,w)→ π :
(Extx,Extw, pk

′)← pk
x′ ← Extx(x)
w′ ← Extw(x,w)
π ← Prove′(pk′, x′,w′)

Verify(vk, x, π)→ {⊥,⊤} :
(Extx, vk

′)← vk
x′ ← Extx(x)
Verify′(vk′, x′, π)

Fig. 13: A ZKP Π = (Setup,Prove,Verify) for predicate class Φ and security
parameter λ, based on compiler Compile from class Φ to class Φ′ and a ZKP
Π ′ = (Setup′,Prove′,Verify′) for predicate class Φ′.

By the demonstrable soundness of Compile′′, ϕ̂′′(Extx(x),w
′′) = ⊤ implies that

⊤ = ϕ̂′(Extx(w),w
′) = ϕ̂′(x′,w′)

By the demonstrable soundness of Compile′, this implies our goal (3).

A.3 Proof of zkSNARK generalization

Restating Theorem 2 of Section 5.1:

Theorem (zkSNARK Generalization). Given a zkSNARK Π ′ for predicate
class Φ′ and a correct ZKP compiler Compile from class Φ to class Φ′, there
exists a zkSNARK Π for predicate class Φ.

Proof. Figure 13 gives the algorithms (Setup,Prove,Verify) comprising Π. By
inspection, these match the zkSNARK syntax given in Definition 2.
Completeness (Def. 3): By the demonstrable completeness of Compile (Def. 1,
§5.1) and the definitions of ϕ′, x′, and w′ in Figure 13, we have that ϕ̂′(x′,w′) = ⊤
whenever ϕ̂(x,w) = ⊤. Since Π ′ is complete, this implies that the output of
Prove′ is an accepting proof as long as the value of x′ is the same in the Prove
and Verify algorithms; this is true because Extx is deterministic.
Succinctness (Def. 4): Compile and Extx are efficient, so |x′| ∈ poly(|x|) and
|ϕ̂′| ∈ poly(|ϕ̂|). poly(λ + |x′| + log |ϕ̂′|) and poly(λ + |x| + log |ϕ̂|) are thus
equivalent. The output π of Prove is identically the output of Prove′ and Π ′

is succinct, so |π| ∈ poly(λ + |x| + log |ϕ̂|). The succinctness of Π ′ implies that
|vk′| ∈ poly(λ+ |x′|+ log |ϕ̂′|) by the bound on the runtime of Verify′, implying
a corresponding runtime to unpack vk in the first step of Verify. The efficiency
bound on Extx (Note 5) guarantees that the size of Extx’s description and its
runtime are poly(|x|). Verify thus runs in time poly(λ+ |x|+ log |ϕ̂|) as required.
Knowledge soundness (Def. 5): The extractor for Π works as follows. On in-
puts (pk, x), unpack pk, compute x′ ← Extx(x), and invoke the extractor for Π ′

on (pk′, x′) to obtain w′, then output w ← Inv(x′,w′). By the knowledge sound-
ness of Π ′, ϕ̂′(x′,w′) = ⊤ except with negligible probability. By the demonstrable
soundness of Compile, Inv(x′,w′) returns a value w satisfying ϕ̂(x,w) = ⊤. Thus,

Bounded Verification for Finite-Field-Blasting 27

the extractor for Π succeeds except when the extractor for Π ′ fails, which hap-
pens with negligible probability as required.
Zero knowledge (Def. 6): The simulator for Π works as follows. On inputs
(pk, x), unpack pk, compute x′ ← Extx(x), and invoke the simulator for Π ′ on
(pk′, x′) to obtain a simulated proof π⋆. Extx is deterministic and the output
of Prove is π ← Prove′(pk′, x′,w′), so the distribution of π⋆ is indistinguishable
from the distribution of π by the zero-knowledge property of Π ′.

Remark 2. By a similar argument, a correct ZKP compiler generalizes a non–
zero-knowledge SNARK: in this case, neither Π ′ nor Π have a simulator, the
zero-knowledge property does not hold, and the other properties are unchanged.

Likewise, for a (zk or non-zk) SNARG the knowledge soundness property is
replaced by the weaker existential soundness property (see discussion immedi-
ately before Def. 5), meaning that it is infeasible for any efficient prover to gen-
erate an accepting proof for a false statement. The equisatisfiability of Compile
guarantees that ϕ̂′(Extx(x),Extw(x,w)) = ⊥ whenever ϕ̂(x,w) = ⊥. Thus, if Π ′

is existentially sound, Π must also be.

B Compiler correctness proofs

Here, we present proofs of our main theorems.
We begin with a note on notation. We will sometimes denote the function f̂

defined by a term f as f ; this alternate notation is clearer when the term has
syntactic structure, e.g., f1 = f2, whose range is {⊥,⊤}. If ϕ(x) is a formula in
variable x, and x is a value, by ϕ[x 7→ x] we denote ϕ with its variable x replaced
with a constant term of value x. Note that for our theories of interest (bit-vectors
and prime fields), all values have a corresponding constant. When the variable
x and the value being substituted x are denoted with the same letter, we will
abbreviate ϕ[x 7→ x] as ϕ[x]. Finally, for a term ϕ which contains no variables,
we denote the equation ϕ̂ = z by ϕ ⇓ z. Thus, ⇓ denotes the evaluation relation
for variable-free terms and values. Evaluation for variable-free terms is unique
because we allow interpretations to differ only in variables (Sec. 2.1).

B.1 Theorem 3: Demonstrable Soundness

A compiler that implements the calculus of Section 4.3 with rules that
satisfy the conditions of Section 5.2 is demonstrably sound.

Proof. Let the compiler take ϕ(x,w) as input and produce as output: ϕ′(x′, w′),
Extx, and Extw. Fix an instance x for ϕ, and let x′ ← Extx(x). Fix a w′ such
that ϕ̂′(x′,w′) = ⊤, and let z′ = (x′,w′). Let T (the “trace”) be the sequence of
transitions that the compiler takes. For each witness variable wi ∈ w, there is a
transition in T that encodes wi as some ei. We define a function Inv(z′) → w.
For variable wi ∈ w, it outputs the evaluation of toTerm(ei)[z

′]. Let w denote
the output of Inv and let z = (x,w). It suffices to show that ϕ̂(z) = ⊤.

28 A. Ozdemir et al.

By inducting over T , we will show that for each (t 7→ e) ∈ E (where E
is the final encoding store in T), valid(e[z′], t[z]) ⇓ ⊤. Initially, E is empty, so
the property holds. We have one inductive case for each transition rule (except
equality).

Operator rules are our first inductive case. Consider a transition for operator
o applied to arguments t⃗, with operator rule r: A′, F ′, e′ ← r(o, e⃗). By the induc-
tive hypothesis, we have that for all i, valid(ei[z′], ti[z]) ⇓ ⊤. Furthermore, we
have that A′[z′] ⇓ ⊤. Operator soundness requires that (A ∧

∧
i valid(ei, ti)) →

valid(e′, o(⃗t)) is valid. Then, substitutions and evaluations give the desired re-
sult:

(A ∧
∧
i

valid(ei, ti))→ valid(e′, o(⃗t)) is valid (operator soundness)

(A ∧
∧
i

valid(ei, ti))→ valid(e′, o(⃗t))[z, z′] ⇓ ⊤ (sub & eval)

(A[z′] ∧
∧
i

valid(ei[z
′], ti[z]))→ valid(e′[z′], o(⃗t)[z]) ⇓ ⊤ (move subs to vars)

(⊤ ∧
∧
i

⊤)→ valid(e′[z′], o(⃗t)[z]) ⇓ ⊤ (eval)

valid(e′[z′], o(⃗t)[z]) ⇓ ⊤ (eval)

Variables are our second inductive case. For a witness variable wi, encoded
as ei, the value of wi in w is that of toTerm(ei)[z

′]. So, we must show that
valid(ei[z

′], toTerm(ei)[z
′]) ⇓ ⊤. Variable soundness (for witnesses) implies that

there exists a term constant t of value t such that valid(ei[z′], t) is valid. Instanti-
ating the correctness of toTerm, we have that valid(ei[z′], toTerm(ei[z

′])) is valid.
Instantiating the uniqueness of valid encodings, the validity of two different terms
for the same encoding implies that the terms are equal, i.e., t = toTerm(ei[z

′]) is
valid, so toTerm(ei[z

′]) ⇓ t. Using this equality, we eliminate t from our previous
valid term, giving that valid(ei[z

′], toTerm(ei[z
′])) is valid; since in is variable-

free, it also evaluates to ⊤, which is the desired conclusion.

For an instance variable xi, encoded as ei with definitions F ′, z′ 7→ z′ agrees
with F ′ on the instance variables of F ′. Thus, instantiating variable soundness
(for instances) gives valid(ei[z

′], xi[z]), which is what we need.

The recursive cases for constants and conversions hold mutatis mutandis.
These cases complete the induction.

Now, consider the final transition in T . By construction, it is an equality
transition: e⊤ ← const(⊤); A′, F ′ ← assertEq(e⊤, eϕ). By the constant complete-
ness condition, valid(e⊤,⊤) ⇓ ⊤. By induction, we have valid(eϕ[z

′], ϕ[z]) ⇓ ⊤.

Bounded Verification for Finite-Field-Blasting 29

Through instantiating equality soundness, substituting, and evaluating, we find:

(A ∧ valid(eϕ, ϕ) ∧ valid(e⊤,⊤))→ ϕ = ⊤ is valid (eq. sound)
((A ∧ valid(eϕ, ϕ) ∧ valid(e⊤,⊤))→ ϕ = ⊤)[z, z′] ⇓ ⊤ (sub & eval)

((A[z′] ∧ valid(eϕ[z
′], ϕ[z]) ∧ valid(e⊤[z

′],⊤))→ ϕ[z] = ⊤) ⇓ ⊤ (move subs)
((⊤ ∧⊤ ∧⊤)→ ϕ[z] = ⊤) ⇓ ⊤ (eval)

ϕ[z] ⇓ ⊤ (eval)

This is exactly what we sought to show. Thus, our compiler is demonstrably
sound.

B.2 Theorem 3: Demonstrable Completeness

A compiler that implements the calculus of Section 4.3 with rules that
satisfy the conditions of Section 5.2 is demonstrably complete.

Proof. Let the compiler take ϕ(x,w) as input and produce as output: ϕ′(x′, w′),
Extx, and Extw. Fix x and w such that ϕ(x,w) = ⊤. Let z ← (x,w). We must
show that for z′ ← (Extx(x),Extw(z)), ϕ′[z′] ⇓ ⊤. Again, let T be the compiler’s
transition sequence. Let A be the final assertion set and let F be the final
sequence of fresh variable definitions. It suffices to show that A[F][z] = ⊤, since
the substitutions z′ are equivalent to the substitution sequence defined by F and
z, because of z’s definition in terms of the Extx and Extw functions.

We proceed by induction on T . Our inductive hypothesis is that after each
transition, A[F][z] ⇓ ⊤ and for each (t 7→ e) ∈ E, valid(e[F], t)[z] ⇓ ⊤. Initially,
A and E are empty, so this holds. There is one inductive case for each tran-
sition type (except equality). The transition begins with the calculus in state
(E,A, F). It might create new constraints A′, new definitions F ′, and a new
encoding e for some term t. It suffices to show that A′[F][F ′][z] ⇓ ⊤ and that
valid(e[F][F ′], t)[z] ⇓ ⊤.

First, consider a transition for operator o applied to arguments t⃗, with op-
erator rule r: A′, F ′, e′ ← r(o, e⃗). The inductive hypothesis gives that for all i,
valid(ei[F], ti)[z] ⇓ ⊤. We instantiate operator completeness and proceed:

((
∧
i

valid(ei, ti))→ (A′ ∧ valid(e′, t)))[F ′] is valid (op completeness)

((
∧
i

valid(ei, ti))→ (A′ ∧ valid(e′, t)))[F, F ′, z] ⇓ ⊤ (sub & eval)

((
∧
i

valid(ei[F], ti)[z])→ (A′[F][F ′] ∧ valid(e′[F][F ′], t))[z]) ⇓ ⊤ (move subs)

((
∧
i

⊤)→ (A′[F][F ′] ∧ valid(e′[F][F ′], t))[z]) ⇓ ⊤ (eval)

A′[F][F ′][z] ∧ valid(e′[F][F ′], t)[z] ⇓ ⊤ (eval)

30 A. Ozdemir et al.

which is what we sought to show.
Second, consider a transition for variable zi. Variable completeness states

that the conjunction (A′ ∧ valid(e′, zi))[F
′] holds for all values of zi, thus it

evaluates to ⊤ under z, as desired.
The inductive cases for conversion rules, and constant rules also hold, mutatis

mutandis. These cases complete the induction.
Finally, consider the calculus’s final equality transition: e⊤ ← const(⊤);

A′, F ′ ← assertEq(e⊤, eϕ). By constant completeness, e⊤ ⇓ ⊤. Moreover, ϕ[z] ⇓
⊤. By the inductive hypothesis, valid(eϕ[F], ϕ)[z] ⇓ ⊤. We instantiate equality
completeness and proceed:

((ϕ = ⊤ ∧ valid(eϕ, ϕ) ∧ valid(e⊤,⊤))→ A′)[F ′] is valid (eq. complete)
((ϕ = ⊤ ∧ valid(eϕ, ϕ) ∧ valid(e⊤,⊤))→ A′)[F, F ′, z] ⇓ ⊤ (sub & eval)

((ϕ[z] = ⊤ ∧ valid(eϕ[F], ϕ)[z] ∧ valid(e⊤,⊤))→ A′[F][F ′][z]) ⇓ ⊤ (move subs)
((⊤ = ⊤ ∧⊤ ∧⊤)→ A′[F][F ′][z]) ⇓ ⊤ (eval)

A′[F][F ′][z]) ⇓ ⊤ (eval)

That is exactly what we sought to show. Thus, our compiler is demonstrably
complete.

C CirC-IR

In Table 14, we list all CirC-IR operators concerning Booleans, bit-vectors, or
prime-field elements. Most operators are from SMT-LIB and have the same
semantics. For prime-field operators +, × and negation, we follow the semantics
of prior work [48]. For operators that are not in SMT-LIB nor in prior work, we
give any semantic notes under “Semantics”.

One unusual operator is ff2bv which maps a prime field element f ∈ Fp to a
bit-vector v of length b. When the unsigned integer that represents f is less than
2b, v has the same unsigned value. Otherwise, v is zero. The field-blaster for CirC
is intensionally incomplete for ff2bv, when the input is ≥ 2b. It simply bit-splits
a uint encoding of f into b bits. Incompleteness is acceptable because ff2bv
is only included in predicates by internal compiler components that ensure the
input is in-bounds. This, ff2bv’s use in predicates is quite restricted. However, as
discussed in the main text (Sec. 6.1), ff2bv is widely used in variable definitions.

D Optimizations to the CirC Field-Blaster

D.1 Policy

Our calculus is non-deterministic because in some situations, multiple transitions
are applicable. For instance, a conversion can apply at virtually any time. Some
policy is needed to decide which transitions to apply.

Bounded Verification for Finite-Field-Blasting 31

Operators Signature Semantics

¬ Bool→ Bool

→ Bool× Bool→ Bool

∧,⊕,∨ Bool∗ → Bool

maj Bool× Bool× Bool→ Bool majority vote

+,× F∗
p → Fp

ffrecip Fp → Fp zero on input zero
ffneg Fp → Fp

bvsub, bvudiv, bvurem BVb × BVb → BVb
bvshl, bvashr, bvlshr BVb × BVb → BVb

bvadd, bvmul BV∗b → BVb
bvxor, bvand, bvor BV∗b → BVb

bvneg, bvnot BVb → BVb
bv{s,u}{l,g}{e,t} BVb × BVb → BVb
(bvextract h l) BVb → BVh−l+1

(bv{s,u}ext i) BVb → BVb+i

bvconcat BVb1 × · · · × BVbk → BV∑
i bi

bool2bv Bool→ BV1
(bvbit i) BVb → Bool ith bit, i < b

ff2bv Fp → BVb zero on input ≥ 2b

bv2ff Fb → BVp 2b ≤ p

= ?× ?→ Bool

ite Bool× ?× ?→ ?

Table 14: CirC-IR operators

Our implementation’s policy follows three rules. First, prioritize operator
rules for un-encoded terms. Second, if only one rule applies to some term’s op-
erator, then perform the necessary conversions to meet the constraints on that
operator’s input encoding types. Third, if multiple rules might apply to a term’s
operator, call the choose function.

We implement a function choose(t, E) → id that takes the current encoding
store and the term to encode, and returns an identifier for which operator rule to
apply. choose only needs to handle terms that can match multiple operator rules.
In our field-blaster, the only ambiguity is between different rules for encoding
bit-vectors extensions. There is one rule when the input is bit-wise encoded and
another when the input’s unsigned value is encoded. For brevity, Figure 6 shows
pseudocode for both rules in a single function: bvZeroExt.

D.2 Equality Assertions

As an optimization, our implemented field-blaster deviates slightly from our
calculus as described in Section 4.3. Essentially, it “pushes down” equality asser-

32 A. Ozdemir et al.

tions. That is, for an input predicate ϕ =
∧

i(ti = t′i) ∧
∧

i bi, the field-blaster
does not encode ϕ. Instead, the field-blaster encodes all ti, t′i, and bi and then
asserts that the encodings for each ti and t′i are equal, and that each bi = ⊤.
Since asserting equalities is often cheaper (i.e. uses fewer field multiplications)
than encoding their result, this is an optimization.

It is straightforward—but tedious—to modify the calculus and its proof of
correctness to show that this optimization yields a correct field blaster. Thus, in
the main body of the paper, we do not consider it.

E Verified Field-Blaster Performance Details

In this appendix, we give further details on the performance of the verified field-
baster in our case study (Sec. 6).

In Figure 15, we show compiler runtime, memory usage, and final constraint
count for every function in the Z# standard library, with and without the verified
field blaster. We also show the number of encoding rules applied in the verified
field-blaster; this is generally similar to the final number of constraints.

The number of constraints is always exactly equal, but we see a slight im-
provement in compiler runtime and memory usage. The difference appears to
be orthogonal to the verifiability of our field-blaster. The original field blaster
emitted many constraints of form x × x = x, while the new version emits
x × (x − 1) = 0. These are mathematically equivalent, but the latter has one
fewer variable. This appears to slightly improve performance during R1CS opti-
mization (a downstream compiler pass that is out of scope).

F Verifier Performance Details

In this appendix, we give further details on the performance of cvc5 and our
exhaustive verifier in our case study (Sec. 6).

In Figure 16a, we show how VC verification time scales with the bit-width
b of the rule that the VC models. Each data point is the average solve time
at a particular bit-width over all VC operator rules that the solver verifies at
bit-width 4. We see that cvc5’s run time grows substantially with the bit-size.
The exhaustive solver is far faster on average (though it verifies only easy com-
pleteness VCs). Figure 16b shows the same data with a logarithmic time scale.
Both solvers appear to take time exponential in the bit-width.

In Figure 17a, we show how VC verification time grows with the arity a of
the operator that the VC is written for. As before, we include only VCs that the
solver verifies at arity 4. Note that this excludes binary operators and ternary
operators like if-then-else. The trend is similar to that observed with bit-width:
solver runtime grows quickly with the arity. Figure 17b shows the same data
with a logarithmic scale.

Bounded Verification for Finite-Field-Blasting 33

Seconds Memory (kB) Constraint
File Ver. Unver. Ver. Unver. Ver. Unver. Rules

ecc/edwardsAdd.zok 0.00 0.00 7048 6960 17 17 30
ecc/edwardsCompress.zok 0.09 0.09 21604 21636 511 511 772
ecc/edwardsNegate.zok 0.00 0.00 6792 6840 2 2 7
ecc/edwardsOnCurve.zok 0.00 0.00 6848 6884 6 6 16
ecc/edwardsOrderCheck.zok 0.01 0.00 7304 8988 57 57 72
ecc/edwardsScalarMult.zok 0.55 0.62 127064 100748 9206 9206 10496
ecc/proofOfOwnership.zok 0.57 0.49 126428 100832 9392 9392 10419
EMBED.zok 0.00 0.00 6872 7056 1 1 3
field.zok 0.00 0.00 6760 6940 1 1 3
hashes/mimc7/mimc7R20.zok 0.01 0.01 7840 8052 80 80 124
hashes/mimcSponge/mimcFeistel.zok 0.15 0.17 20080 20004 662 662 1325
hashes/pedersen/512bitBool.zok 0.54 1.14 48664 48672 3573 3573 8617
hashes/pedersen/512bit.zok 0.59 0.55 52540 52744 4083 4083 8424
hashes/sha256/1024bitPadded.zok 3.96 4.59 750852 841956 84727 84727 49749
hashes/sha256/1024bit.zok 2.55 2.99 546200 550216 57382 57382 33242
hashes/sha256/1536bit.zok 3.93 4.78 772816 863696 86253 86253 49953
hashes/sha256/256bitPadded.zok 1.20 1.36 276076 273748 27645 27645 16442
hashes/sha256/512bitPacked.zok 2.65 3.03 551276 541852 55897 55897 34692
hashes/sha256/512bitPadded.zok 2.45 2.85 550252 542844 55856 55856 33036
hashes/sha256/512bit.zok 1.25 1.50 281908 277880 28505 28505 16523
hashes/sha256/embed/IVconstants.zok 0.01 0.02 9068 8804 256 256 514
hashes/sha256/shaRound.zok 1.21 1.55 283432 281228 29057 29057 16879
hashes/utils/256bitsDirectionHelper.zok 0.00 0.00 7456 7188 16 16 65
utils/casts/bool_128_to_u32_4.zok 0.03 0.04 21616 21612 4 4 272
utils/casts/bool_256_to_u32_8.zok 0.05 0.07 21620 21632 8 8 544
utils/casts/field_to_u16.zok 0.03 0.02 21604 21604 17 17 38
utils/casts/field_to_u32.zok 0.02 0.03 21604 21548 33 33 70
utils/casts/field_to_u64.zok 0.03 0.03 21604 21628 66 66 134
utils/casts/field_to_u8.zok 0.02 0.02 21600 21600 9 9 22
utils/casts/u16_from_bits.zok 0.00 0.00 7144 6824 1 1 4
utils/casts/u16_to_bits.zok 0.00 0.00 7144 7056 17 17 50
utils/casts/u16_to_field.zok 0.00 0.00 7112 7108 1 1 3
utils/casts/u16_to_u32.zok 0.00 0.00 8720 6632 1 1 4
utils/casts/u16_to_u64.zok 0.00 0.00 8356 6796 1 1 4
utils/casts/u32_4_to_bool_128.zok 0.06 0.05 21572 21572 132 132 392
utils/casts/u32_8_to_bool_256.zok 0.06 0.08 21620 21620 264 264 784
utils/casts/u32_from_bits.zok 0.01 0.00 6988 6960 1 1 4
utils/casts/u32_to_bits.zok 0.00 0.00 7580 6956 33 33 98
utils/casts/u32_to_field.zok 0.00 0.00 6952 6776 1 1 3
utils/casts/u32_to_u64.zok 0.00 0.00 7184 6976 1 1 4
utils/casts/u64_from_bits.zok 0.00 0.00 7152 7208 1 1 4
utils/casts/u64_to_bits.zok 0.01 0.00 8160 7704 65 65 194
utils/casts/u64_to_field.zok 0.00 0.00 6996 8680 1 1 3
utils/casts/u8_from_bits.zok 0.00 0.00 6584 6876 1 1 4
utils/casts/u8_to_bits.zok 0.00 0.00 7080 7064 8 8 17
utils/casts/u8_to_field.zok 0.00 0.00 8796 6932 1 1 3
utils/casts/u8_to_u16.zok 0.00 0.00 6984 8708 1 1 4
utils/casts/u8_to_u32.zok 0.00 0.00 7064 6700 1 1 4
utils/casts/u8_to_u64.zok 0.00 0.00 6796 6704 1 1 4
utils/multiplexer/lookup1bit.zok 0.00 0.00 6708 8416 1 1 6
utils/multiplexer/lookup2bit.zok 0.00 0.00 7044 7080 3 3 20
utils/multiplexer/lookup3bitSigned.zok 0.00 0.00 9100 6788 4 4 26
utils/pack/bool/nonStrictUnpack256.zok 0.06 0.06 21612 21552 257 257 769
utils/pack/bool/pack128.zok 0.06 0.03 21544 21632 1 1 388
utils/pack/bool/pack256.zok 0.06 0.07 21612 21556 1 1 772
utils/pack/bool/unpack128.zok 0.06 0.06 21604 21660 129 129 386
utils/pack/u32/nonStrictUnpack256.zok 0.08 0.11 21616 21604 255 255 543
utils/pack/u32/pack128.zok 0.12 0.10 21620 21628 129 129 396
utils/pack/u32/pack256.zok 0.06 0.07 21640 21604 257 257 788
utils/pack/u32/unpack128.zok 0.10 0.10 21632 21628 129 129 274

Fig. 15: Compile time, memory usage, and constraint count for all standard li-
brary functions.

34 A. Ozdemir et al.

0

10

20

30

1 2 3 4
Bits

M
ea

n
S

ol
ve

 T
im

e
(s

)

Solver

cvc5

exhaust

(a) Linear time scaling.

0.01

0.10

1.00

10.00

1 2 3 4
Bits

M
ea

n
S

ol
ve

 T
im

e
(s

)

Solver

cvc5

exhaust

(b) Logarithmic time scaling.

Fig. 16: How average VC verification time depends on bit-width b. Includes only
VCs that are verified by the pertinent solver at all bit-widths.

0

25

50

75

1 2 3 4
Arity

M
ea

n
S

ol
ve

 T
im

e
(s

)

Solver

cvc5

exhaust

(a) Linear time scaling.

1e−02

1e−01

1e+00

1e+01

1e+02

1 2 3 4
Arity

M
ea

n
S

ol
ve

 T
im

e
(s

)

Solver

cvc5

exhaust

(b) Logarithmic time scaling.

Fig. 17: How average VC verification time depends on operator arity a. Includes
only VCs that are verified by the pertinent solver at arity 4.

G Bugs found in the CirC field blaster

In this appendix, we explain the four bugs we found in CirC’s field-blaster. We
found these bugs by observing VC violations while porting operator rules from
CirC’s field-blaster to our verifiable field blaster.

Incompleteness: finite field division. CirC-IR includes a finite field division oper-
ator: z ← x/y. In the IR evaluator, if y is zero, then z is set to be zero. However,
the field-blaster emits the equation zy = x; this is unsatisfiable for y = 0, x ̸= 0.
This is an incompleteness bug: it makes the whole output predicate unsatisfiable.
The completeness VC for the finite-field division rules catches this bug. Our fix
is to emit the equation zyy = xy.

Incompleteness: bit-shifts. CirC-IR includes bit-vector shifts (left shift, arith-
metic right shift, and logical right shift). Following SMT-LIB, overshifting should
saturate: i.e., shifting a length-b bit-vector by ≥ b bits should be equivalent to
shifting by b− 1 bits. However, the field-blaster required the shift amount to be
less than b. This is an incompleteness bug, and it is caught by the completeness
VCs for the shift rules.

Non-determinism: unsigned bit-vector division. CirC-IR includes unsigned bit-
vector division: z ← x/y. Following SMT-LIB, when y = 0, the value of z should

Bounded Verification for Finite-Field-Blasting 35

fn bvUgeBuggy(tx, ty, x : Enc, y : Enc) :
kind(x) = uint ∧ kind(y) = uint

b← size(sort(tx))
∆← x− y
∆′ ← terms(x)− terms(y)
for i in [0, b− 1]:

∆′
i ← fresh(i, ite(∆[i], 1, 0),⊥)

assert(∆′
i(∆

′
i − 1) ≈ 0)

return ffEq(∆′,
∑b−1

i=0 2i∆′
i)

fn bvUgeCorrect(tx, ty, x : Enc, y : Enc) :
kind(x) = uint ∧ kind(y) = uint

b← size(sort(tx))
∆← bvUext(x, 1)− bvUext(y, 1)
for i in [0, b]:

∆′
i ← fresh(i, ite(∆[i], 1, 0),⊥)

assert(∆′
i(∆

′
i − 1) ≈ 0)

assert(∆′ ≈ −2b∆′
b +

∑b−1
i=0 2i∆′

i)
return (bit, 1−∆′

b)

Fig. 18: Pseudocode for buggy and correct bit-vector unsigned ≥. All sub-
routines have been inlined, except ffEq which produces a boolean bit encoding
of whether the inputs are equal, as field elements.

be 2b− 1. However, when y = 0, the field-blaster emits equations that allow z to
have any value in {0, . . . , 2b− 1}. The soundness VC for the unsigned bit-vector
division rule catches this bug.

Unsoundness: bit-vector comparisons. CirC-IR includes operators for signed and
unsigned bit-vector comparisons: z ← x ▷◁ y. For example, signed ≥ and un-
signed <. For all these operators, the field-blaster uses a utility that computes
∆ = x− y (the difference of signed values) and tested whether ∆ ≥ 0. This test
reduces to testing whether ∆ “fit in b unsigned bits”. To test this, the field-blaster
emits bit-constrained fresh variables ∆0, . . . ,∆b−1 and tests ∆ =

∑
i 2

i∆i. This
approach is unsound: while the ∆i variables are supposed to be set to the bits
of ∆ (if it is non-negative), this is not ensured. By setting the bits to the wrong
decomposition, the equality doesn’t hold, even if 0 ≤ ∆ < 2b. In the context
of a ZKP, this allows a malicious prover to equivocate about whether x ≥ y.
We first caught this bug with the soundness VC for the operator rule for signed
bit-vector ≥. However, the subroutine “fits in bits” is also used in all bit-vector
comparisons, as well as division and remainder.

To fix the bug, observe that ∆ always fits in b+1 signed bits. After enforcing
(not testing!) the signed bit decomposition, the sign bit indicates whether ∆ ≥ 0.
In Figure 18, we show the buggy rule and the correct rule.

Significance. In most applications of ZKPs, safety properties (e.g., the solvency
of an exchange) depend on soundness, while liveness properties (e.g., whether
a specific transaction completes) depend on completeness. Thus, the soundness
bugs are more serious. The bug in unsigned division bug only affects predicates
that assume SMT-LIB semantics for division by zero. The comparison bug is
much more serious: it affects any predicate that compares or divides bit-vectors.

	Bounded Verification for Finite-Field-Blasting
	Introduction
	Related Work

	Background
	Logic
	Zero Knowledge Proofs
	Compilation targeting zero knowledge proofs

	Overview and example
	An example of field-blasting
	Key ideas

	Architecture
	Encodings
	Encoding rules
	Calculus

	Verification conditions
	Correctness definition
	Rule VCs
	A correct field-blasting calculus

	Case study: a verifiable field-blaster for CirC
	Verification evaluation
	Performance and output quality evaluation

	Discussion
	Zero-knowledge proofs & compilers
	Definition of a zkSNARK
	Proof of compiler composition theorem
	Proof of zkSNARK generalization

	Compiler correctness proofs
	Theorem 3: Demonstrable Soundness
	Theorem 3: Demonstrable Completeness

	CirC-IR
	Optimizations to the CirC Field-Blaster
	Policy
	Equality Assertions

	Verified Field-Blaster Performance Details
	Verifier Performance Details
	Bugs found in the CirC field blaster

