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Abstract

Compressed oracles (Zhandry, Crypto 2019) are a powerful technique to reason about quantum
random oracles, enabling a sort of lazy sampling in the presence of superposition queries. A long-
standing open question is whether a similar technique can also be used to reason about random
(efficiently invertible) permutations.

In this work, we make a step towards answering this question. We first define the compressed
permutation oracle and illustrate its use. While the soundness of this technique (i.e., the indistin-
guishability from a random permutation) remains a conjecture, we show a curious 2-for-1 theorem:
If we use the compressed permutation oracle methodology to show that some construction (e.g.,
Luby-Rackoff) implements a random permutation (or strong qPRP), then we get the fact that this
methodology is actually sound for free.
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1 Introduction
The random oracle [6] is a powerful heuristic1 for cryptographic security proofs. It allows us to abstract
from the gritty details of the definition of a hash function and to imagine it to be just a random function.
We can then use powerful reasoning techniques such as lazy sampling to make security proofs simpler or,
in many cases, possible in the first place. (Lazy sampling refers to the technique of choosing the outputs
of the random oracle “on demand”, when they are first accessed.) These techniques are useful even if we
are not in the random oracle model. For example, when working with a pseudorandom function, the first
step in a proof is often to replace it by a fictitious random function. Quite similar to the random oracle
are random permutations (to model cryptographically-strong permutations), or ideal ciphers (a heuristic
model for block ciphers, basically a key-indexed family of random permutations). In the standard model,
random permutations occur in security proofs involving pseudorandom permutations (e.g., in protocols
involving block ciphers). In such proofs, we often consider invertible random permutations, i.e., we also
give the adversary access also to the inverse of the permutation. All of this can be handled very nicely
using lazy sampling.

At least, this is the situation in classical cryptography. Once quantum (or post-quantum) cryptography
enters the picture, using the random oracle becomes much harder. This is because the quantum random
oracle gives the adversary superposition-access to the random oracle. That is, the adversary can query

1In general, this heuristic is not sound: There are contrived protocols which are secure in the random oracle model but
insecure when the oracle is instantiated with any hash function [11]. However, in practice the random oracle model has
proven to be a very good heuristic. Readers who reject heuristics in security proofs may still enjoy the results in this work
as a result about generic query complexity, or as a technique for security proofs involving pseudorandom permutations.
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the random oracle on a superposition of many different values. Then lazy sampling as in the classical case
does not work any more: The adversary could query the oracle on a superposition of all inputs already
in the very first query. If we were to sample the oracle at all the sampled positions, this would mean
sampling the whole function in one go. But that goes against the very idea of lazy sampling. Furthermore,
we cannot just measure where the oracle is queried as this would disturb the adversary state, and we
need to make sure that our technique does not influence the way in which the adversary is entangled with
the random oracle (in a way that the adversary can notice).

The above does not mean that the random oracle is unusable in the quantum setting. A number
of techniques have been developed for handling the random oracle (history-free reductions, 2q-wise
independent functions, semi-constant distributions, small-range distributions, one-way to hiding (O2H)
theorems, polynomial method, adversary method, see the related work below). However, none of these
have the general applicability of the lazy sampling method, and they are often much harder to use. Then,
surprisingly, Zhandry [30] discovered that a variant of lazy sampling is actually possible with quantum
random oracles, although it is not as simple (and as general) as in the classical case. We refer to this
technique as Zhandry’s “compressed oracle technique”. (We give more details about it below.)

However, when talking about (invertible) random permutations, the situation is much more limited.
The abovementioned tools are specific to the random function case.2 To the best of our knowledge, no
hardness results are known about invertible random permutations, not even simple query complexity
results such as the hardness of searching an input with certain properties. As a consequence, we do not
know anything about the post-quantum security of cryptosystems built from invertible permutations,
such as the industry-standard SHA3 [22].

The present work attempts a first step towards closing this gap. We present a sufficient condition for
a variant of the compressed oracle technique to work also for random permutations.

The compressed oracle model. Zhandry [30] presented a different way to see the random oracle.
The traditional quantum random oracle is modeled by giving an adversary access to the unitary operation
|x, y⟩ 7→ |x, y ⊕ h(x)⟩ where h is a uniformly randomly chosen function. (I.e., all outputs of h are chosen
independently.) Given such a unitary, the adversary can evaluate h in superposition. Now Zhandry
showed that the random oracle can be replaced (in an indistinguishable way) by a random oracle that
keeps a lazily evaluated function in a separate register H (inaccessible to the adversary). That is, initially
that register H contains |∅⟩ where ∅ represents the empty partial function. Then, upon a query with
input x = x0, the function will be updated to contain a superposition of all |x0 7→ y⟩ (for different y) and
y will be the result of the query. (Here x0 7→ y is the partial function defined only at input x0.) Further
queries can add more entries to this function, and if, say, H contains |h⟩ and h(x) ̸= ⊥, and we query the
oracle at x, we get h(x). When the adversary uncomputes some information that it computed before,
the corresponding output in h can become undefined again. And all of this is possible in superposition
between different inputs. Now all of this is extremely simplified, and hold only up to some error terms
that are annoying but necessary. The advantage of this model is that we can, within limits (due to the
annoying error terms), treat the random oracles as if it did lazy sampling even in the quantum setting.
We give more details in Section 3.

Compressed permutations. In this work, we ask the question whether we can extend the idea above
to random permutations. After all, in the classical case, lazy sampling works for random permutations
is almost as easy as for random functions. However, the compressed oracle has so far withstood all
attempts to be ported to the permutation setting. (See the related work below.) But before we come
to our contribution, let us first make explicit why we are interested in a compressed oracle for random
permutations (compressed permutation oracle, CPO). There are two main ways in which we could use
this technique:

• We are analyzing a cryptographic scheme that uses an invertible permutation. And we wish to
model that permutation in an idealized way (random oracle like). E.g., we might want show that
the Sponge construction [7], where the block function is an invertible permutation (as is the case
with SHA3) implements a pseudorandom random function. We would then replace the invertible
permutation in the proof by a CPO and then use the features of the CPO (such as “lazy sampling”)
to make the proof simpler.

2Except for the O2H theorem. Some variants of the O2H theorem apply to arbitrarily distributed functions [2], in
particular to invertible permutations. (An invertible permutation can be modeled as a function f : {0, 1}×{0, 1}n → {0, 1}n,
uniformly sampled from the set of all functions where f(0, ·) is a permutation and f(1, ·) its inverse.) However, we are not
aware of any work that makes use of this.
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Analogously, we can use the technique for an analysis of a scheme using an ideal cipher. (Since the
ideal cipher is simply a family of invertible permutations.)

• We are analyzing a cryptographic scheme that implements an invertible permutation or a strong
pseudorandom permutation (PRP, i.e., a secure blockcipher). For example, in the classical case, the
four-round Luby-Rackoff construction [21] is known to be a strong PRP if the round function is a
(noninvertible) pseudorandom function [21]; we do not know yet whether an analogous result holds
in the quantum case.3 To show this, it is sufficient to show that Luby-Rackoff, using a random
function as the round function, is indistinguishable from a random permutation (given queries in
both directions).
Now there can be different approaches for the latter, but one promising avenue for this would be:
(a) Show that Luby-Rackoff is indistinguishable from a CPO (using the fact that the CPO gives
us an explicit list of all queries to the random permutation in the proof). (b) Use that a CPO is
indistinguishable from a random invertible permutation.

In this paper, we are specifically interested in the second use case. The problem with that use case
is that, even if we show (a), we still do not know whether a CPO is indistinguishable from a random
permutation (i.e., (b)). We show that this is not a problem. Specifically, we show the following almost
circular seeming result:

Main contribution: If some construction (say based on a random oracle) is indistinguish-
able from a CPO (i.e., we have (a)), then the CPO is indistinguishable from an invertible
permutation (i.e., we get (b)).

So, if we show (a), we get (b) for free!
This has two benefits:
• If we are in the second use case, we do not need to worry whether the CPO is indeed indistinguishable

from an invertible permutation. We simply can focus on the (admittedly still rather hard) problem
of analyzing the construction.

• This gives a new approach towards showing that the CPO technique works – if we can show
(a) for any construction (even some practically irrelevant one), then we know that the CPO is
indistinguishable from an invertible permutation in general. So we can then also use it, e.g., in the
first use case (say, quantum security of SHA3).

This brings us a step closer towards being able to handle invertible permutations in the quantum
setting.

Related work. Quantum random oracles. [26, 19] showed that finding preimages in the random oracle
is hard ([10] showed this in worst-case setting.) [9] introduced “history-free reductions” which basically
amounts to replacing the random oracle by a different function right from the start. [31] showed that
random oracles can be simulated using 2q-wise independent functions. Based on this, [26] introduces a
technique for extracting preimages of the random oracle. [31] introduces the “semi-constant distributions”
technique that allows us to program the random oracle in many random locations with a given challenge
value without the adversary noticing. [29] improves upon this with the “small-range distribution” technique
that allows us to simulate random oracles using random looking functions with a small range. [28] shows
that random oracles are collision resistant (this is generalized by [23, 16, 4] to the case of non-uniformly
distributed functions with independently sampled outputs). Collision-resistance of the random oracle
is generalized to the “collapsing property” which allows us to show that measuring the output of the
random oracle effectively measures the input [25]. More general methods for problems in quantum query
complexity (not limited to random oracles) include the polynomial method [5] and the adversary method
[1]. [3] shows that the difficulties of using the quantum random oracle are not just a matter of missing
proof techniques, but that in certain cases classically secure schemes are not secure in the quantum
random oracle model.

Compressed oracles. Compressed oracles were introduced in [30] and used there to show indifferentia-
bility of the Merkle-Damgård construction, as well as security of the Fujisaki-Okamoto transform. [12]
generalizes [30] to Fourier transforms over abelian groups, thus allowing random functions with a range
different from {0, 1}n. Different from [30], they do not have a compression/decompression algorithm but
instead reason using invariants that are expressed in a basis different from the computational basis. They
also introduce support for parallel queries. [15] generalizes [30] to non-uniformly distributed functions,

3We know that four rounds are not sufficient [20], but nothing excludes that, e.g., five-round Luby-Rackoff could be a
strong qPRP. [18] proves that four-round Luby-Rackoff is a qPRP (but not a strong one) but their result contains a flaw
and the fix is work in progress [17].
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but only for the case where all outputs are independently sampled. (This is similar to what we achieve in
our reformulation of [30] in Section 3, although we additionally get rid of the Fourier transform.)

Random permutations. [28] shows that random functions are indistinguishable from (noninvertible)
random permutations. This allows us to derive results for random permutations from results for random
functions. [27] shows the existence of quantum-secure pseudorandom permutations (qPRP, secure under
superposition-queries of the function and its inverse) from quantum one-way functions. In particular,
this implies that a random invertible permutation can be efficiently simulated.4 However, [27] does not
give us any technique for analyzing schemes that use a qPRP. When analyzing such a scheme we would
replace the qPRP by an invertible random function in the proof, and the techniques from the present
paper could be helpful.

Security of the sponge construction. The sponge construction was proposed by [7]. In the classical
random oracle model, security of the sponge construction was shown by [8], both when the sponge is
based on random functions and on invertible random permutations. They showed indifferentiability,
which implies many other properties such as collision-resistance, pseudorandomness, and more. In the
quantum setting, collision-resistance and the collapsing property from [25] were shown in [13] in the
random function case. Quantum pseudorandomness of the sponge was shown by [14] but only in the
case where the underlying round function is secret (the adversary cannot query it). Indifferentiability
in the quantum setting was shown by [15] in the random function case. All those results immediately
imply the corresponding results in the non-invertible random permutation case since random functions
and permutations are indistinguishable [28]. However, for invertible random permutations, no quantum
results are known.5

Organization. In Section 2 we introduce relevant notational conventions. In Section 3, we present
compressed oracles for random functions. Specifically, we recap and give a new, more streamlined view
on Zhandry’s technique. (We recommend readers familiar with Zhandry’s technique to at least skim it
because it will introduce some of the formalism for later.) We also give a short example how it is used.
In Section 4, we formulate the compressed permutation oracle and give an example how to use it. In
Section 5, we prove our main result: If some construction implements the compressed permutation oracle,
then the compressed permutation oracle is indistinguishable from a random permutation. In the back
matter, we provide a list of theorems, a symbol and a keyword index, as well as the bibliography.

2 Preliminaries
Total and partial functions. Throughout this work, we will extensively deal with total and partial
functions to describe states, queries, and invariants. For sets D,R, let D → R be the total functions
from D to R, and D ↪→ R the total injections (i.e., injective total functions) from D to R. Furthermore,
D l→ R are the partial functions. For a partial function f : D l→ R, dom f ⊆ D is the domain (inputs
on which f is defined) and im f is the image of f .

∅ is the empty partial function (defined nowhere).

Quantum-related notation. Quantum states are elements of a (not necessarily finite-dimensional)
Hilbert space H. We usually represent quantum states with greek letters (e.g., ψ) and use ket-notation
( |x⟩ ) to refer to basis states of the computational basis unless specified otherwise, and ⟨x| is the adjoint
of |x⟩ (⟨x| = |x⟩†). (I.e., |x⟩ for x ∈ X form an orthonormal basis of CX .) ∥ψ∥ is the norm of ψ ∈ H,
and ~A~ is the operator norm of the bounded operator A : H → H′. For S ⊆ H, span S is the (closed)
span of S, i.e., the smallest topologically closed subspace of H containing S. Projector always means
orthogonal projector.

We will often need to consider the distance between a vector and a subspace: For two vectors ψ,ψ′ ∈ H,

we write ψ
ε
≈ ψ′ to denote ∥ψ − ψ′∥ ≤ ε. And if S is a closed subspace of H, then we write ψ

ε
≈ S to

denote ∃ψ′ ∈ S. ψ
ε
≈ ψ′.6

4If we implement the underlying quantum one-way function using a random oracle, and we simulate that random oracle
with the method from [31] or [30], then we even get a simulation without computational assumptions.

5[24] has a proof of collision resistance but it was found to be flawed and withdrawn.
6Or equivalently: ∥(1− P )ψ∥ ≤ ε where P is the projector onto S.
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Quantum oracle queries. Throughout the paper, we will frequently refer to oracle queries. Thus, we
fix some variables once and for all: D always refers to the domain and R to the range of the function.
(I.e., queries are always made to a function h : D → R.) We will also fix once and for all the sizes of D
and R as M := |D| and N := |R|. (In particular, D,R are assumed to be finite.)

We furthermore assume a commutative group operation ⊕ on D and on R with the property x⊕x = 0.
(For example, D = R = {0, 1}n and ⊕ is bit-wise XOR.)

A query to a fixed function f : D → R can then be implemented by the unitary Uf : |x⟩|y⟩ 7→
|x⟩|y ⊕ f(x)⟩. (The fact that this is unitary follows from the fact that ⊕ is a group operation.) However,
we will more often be interested in queries to a function that is also stored in a quantum register: For a
set Func ⊆ D l→ R that will always be clear from the context, define the unitary StO (for “standard
oracle”) on CD ⊗ CR ⊗ CFunc by:

StO|x⟩|y⟩|h⟩ = |x⟩
∣∣y ⊕ h(x)〉 |h⟩

Here y ⊕ h(x) is defined to be y when h(x) = ⊥. (This latter case only arises if Func contains partial
functions.)

3 Compressed function oracles
We will now recapitulate and rephrase Zhandry’s compressed oracle technique [30]. trying to emphasize
more the separation between implementation issues (encoding via “databases” etc.) and the core concepts.
Then we proceed to give a different view on the technique that does not involve Fourier transforms and
which is, in our opinion, conceptually simpler.

We will often refer to the compressed oracle as compressed function oracle or CFO to distinguish it
from the compressed permutation oracle introduced later.

A reader who wishes to skip this part and to directly learn our new technique can skip ahead to the
mini-summary at the end of this section (page 11).

In a nutshell, the compressed oracle technique is a way to simulate/implement a quantum random
oracle (i.e., a uniformly random function h : D → R to which an adversary or quantum algorithm has
superposition query access) in a way that has the following crucial features:

• The adversary cannot distinguish between the original random oracle and the simulation. This allows
us to use the simulation in proofs instead of the original oracle.

• The simulation uses an internal state that has a small representation. This is not the case for trivial
implementations of the random oracle: Those would have to pick and store the value table of the
random function at the beginning. This value table would require |D| · log|R| classical bits which is
infeasible for typical size of the domain D. In contrast, the compressed oracle only requires roughly
q(log|D|+ log|R|) qubits after q queries to the random oracle.

• The simulation keeps track where the random oracle was already queried, and what the result of that
query is. E.g., if the adversary queries h(x) (possibly in superposition between different values x),
and gets y := h(x), then the simulation will keep a record that a query x 7→ y was performed (or a
superposition of such records). While this is trivial in the classical case, it is highly surprising that
this is possible in the quantum case: Naively keeping a record of the queries would entangle the
adversary’s state with the state of the compressed oracle, something the adversary might detect.7
Having this record is the arguably the main advantage of the compressed oracle technique as a
proof technique. For example, it allows us to formulate invariants such as “the adversary has not
yet queried an x with h(x) = 0”.

• The simulation is efficient. That is, its runtime is polynomial in the number of queries performed
by the adversary, and the bitlengths of the inputs and outputs of h. This is closely related to

7For example, the adversary might initialize a register X with
∑

x
1√
M
|x⟩, then perform a superposition query with

input x. The compressed oracle needs to record the query x 7→ y (in superposition between different x). Now the register X
is entangled with the compressed oracle’s record. (Or, if the compressed oracle would measure the query input, the register
X would collapse to a single value.) Now the adversary might wish to distinguish whether the compressed oracle records its
queries or not. For that purpose, the adversary uncomputes the previous query. Now X would be in the original state when
using the original random oracle; the adversary can check whether this is the case. But if the compressed oracle keeps a
record of the query x 7→ y, the state X will not be in its original state but entangled with the compressed oracle. So in order
to be indistinguishable, the compressed oracle needs to forget the query (i.e., erase the record x 7→ y from its state). In other
words, the compressed oracle needs to not only record queries, but also “unrecord” queries in case of uncomputations. Since
the compressed oracle does not know a priori whether a given query is a computation or an uncomputation (or something in
between), it would seem impossible to solve this problem. The surprising fact of the compressed oracle technique is that it
does solve this problem, almost as a side effect.
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the fact that the internal state has a small representation. Previous approaches for efficiently
implementing/simulating the quantum random oracle either required computational assumptions
(simulation via quantum pseudorandom functions [29]) or required the simulator to know the number
of queries that the adversary will perform at the outset of the simulation (simulation via 2q-wise
independent functions [32]).

Through the rest of this section, we present our reformulation of Zhandry’s technique before considering
permutations.

Standard oracle. Consider the original quantum random oracle. This oracle initially classically samples
a random function h

$← (D → R). And then a query to the function h is implemented by a unitary
Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ h(x)⟩ on the adversary’s query registers X,Y .

It is easy to see that this is perfectly indistinguishable from the following construction (called the
standard oracle in [30]):8 An additional quantum register H is initialized with

∑
h∈D→R

1√
|D→R|

|h⟩,
i.e., with the uniform superposition of all possible functions. The adversary does not get access to this
register H, but instead the oracle query is changed to be the unitary StO : |x⟩|y⟩|h⟩ 7→ |x⟩|y ⊕ h(x)⟩|h⟩
on registers X,Y,H.

To better understand the following steps, imagine that the register H consists of many separate
registers Hx (x ∈ D), each Hx storing the output h(x). (That is, h is represented as a value table in H
with Hx being the table entries.) Each Hx has Hilbert space CR.

Compressed oracle. Next, we transform the oracle into yet another representation. First, we extend
the registers Hx to allow for a value |⊥⟩, i.e., the Hilbert space of a single Hx is CR∪{⊥}. This means
that the register H now contains not only total functions h, but can also contain superpositions of partial
functions. (⊥ denoting an undefined output.)

Intuitively, |⊥⟩ in some Hx will mean that the corresponding h-output is not yet determined, i.e., that
any value is still possible. In particular, having |⊥⟩ in all registers Hx (i.e., having the empty partial
function |∅⟩ in H) should correspond to the initial state of the random oracle.

We make this more formal by defining an encoding/decoding operation to map between states that do
not use |⊥⟩ (as in the standard oracle) and states that do use |⊥⟩ (compressed states).

Let Q denote the quantum Fourier transform on CR. We extend it to work on the register Hx by
defining Q|⊥⟩ := |⊥⟩. (In [30], the specific case R = {0, 1}n is considered. In this case the quantum
Fourier transform is simply a Hadamard gate on each qubit in Hx. But in [12], the case for general
abelian groups R is considered and other quantum Fourier transforms are used.) Let U⊥ be the unitary
with U⊥|⊥⟩ = |0⟩, U⊥|0⟩ = |⊥⟩, U⊥|y⟩ = |y⟩ for y ≠ 0. Let Decomp1 := Q · U⊥ ·Q† (the decompression
operation).

In the standard oracle, Hx has initial state
∑
y

1√
|R|
|y⟩. If we apply Decomp†1 to it, we get

∑
y

1√
|R|
|y⟩ Q†

7−→ |0⟩
U†

⊥7−→ |⊥⟩ Q7−→ |⊥⟩.

Thus, by applying Decomp†1 to all registers Hx in the initial state of the standard oracle, we get |⊥⟩ in
every Hx. This leads to the following idea: Initialize all Hx with |⊥⟩. And whenever we want to perform
an oracle query, we decompress all Hx by applying Decomp1 (for the initial state, this gives the initial
state of the standard oracle). Then we apply StO (the standard oracle).9 And then we compress all Hx

again by applying Decomp†1. This will lead to exactly the same behavior as the standard oracle (since
successive Decomp1, Decomp†1 pairs cancel out).

In other words, we define the compressed oracle to be the oracle with the initial state |⊥⟩ ⊗ · · · ⊗ |⊥⟩
8The indistinguishability formally follows from the fact that the query commutes with a computational basis measurement

of the register H, and the fact that if that computational basis measurement is performed at the beginning of the execution,
then it is equivalent to uniformly (classically) sampling h.

9Since we extended the space of the register Hx to be R ∪ {⊥}, StO must be well-defined also on states where one or
many of the Hx are |⊥⟩, i.e., on superpositions of partial functions. See the preliminaries for the precise definition for that
case. Note, however, that since we start from an initial state that is a superposition of total functions, this case never arises
no matter what queries to StO we perform, unless we apply some other operations to the oracle register H directly.
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∣∣x0 = 1
〉

∣∣y0〉
∣∣f(1)

〉
∣∣f(2)

〉
∣∣f(3)

〉

X

Y

H1

H2

H3

Decomp1

Decomp1

Decomp1

U
Decomp

†
1

Decomp
†
1

Decomp
†
1

≡
X

Y

H1

H2

H3

Decomp1

U
Decomp

†
1

Figure 1: Operation of CFO for fixed x0 := 1. U denotes the operation |y0⟩|y⟩ 7→ |y0 ⊕ y⟩|y⟩.

in register H, and that applies the following unitary to X,Y,H on each query:

CFO := (IX ⊗ IY ⊗ Decomp†) · StO · (IX ⊗ IY ⊗ Decomp)

with Decomp :=
⊗
x∈D

Decomp1 . (1)

Now CFO is perfectly indistinguishable from the standard oracle.

The size of the compressed oracle. So far, we have seen that the compressed oracle CFO simulates
the standard oracle. But why is it useful? To see this, we will think of the register H as containing
partial functions: The basis states of H are |yx1

, . . . , yxN
⟩ for yx1

∈ R ∪ {⊥} where x1, . . . , xN are the
elements of D. This is the value table of a partial function f : D l→ R. We will identify |yx1

, . . . , yxN
⟩

with |f⟩. In particular, the initial state of CFO is then |⊥, . . . ,⊥⟩ = |∅⟩. (∅ is the completely undefined
partial function.)

Consider a state |x0⟩|y0⟩|f⟩ before a query to the compressed oracle, with |dom f | ≤ ℓ. (The initial
state has ℓ = 0.)

Applying CFO to this state will decompress all Hx (which does not affect |x⟩) apply StO (which does
not affect Hx for x ̸= x0 for this particular state), and then compress all Hx again. This is illustrated in
the left side of Figure 1 for x0 := 1. On all Hx with x ̸= x0, Decomp1 and Decomp†1 cancel out (see the
right side of Figure 1). Thus, no matter what x0, y0, f are, the resulting state will be a superposition
of f ′ with f ′ = f except on x0. In particular, |dom f ′| ≤ |dom f |+ 1 ≤ ℓ+ 1. Since this holds for any
|x0, y0, f⟩ with |dom f | ≤ ℓ, this also holds for any superposition of such states. Thus we have shown10

that any state of the compressed oracle that is a superposition of |f⟩ of size ≤ ℓ will, after a query, be a
superposition of |f⟩ of size ≤ ℓ+ 1.

In particular, after q queries, the compressed oracle state is a superposition of partial functions of size
≤ q. Such a partial function can be represented in approximately q(log|D|+ log|R|) bits, hence the state
of the compressed oracle indeed has a much smaller representation. This justifies the name “compressed
oracle”.

And we also can see that it indeed “records” queries in some sense: if the state of the oracle contains
|f⟩, then every x ∈ dom f must have been queried. Otherwise we would have f(x) = ⊥ as in the initial
state. The converse does not hold, though, because queries can be uncomputed and thus removed from f .

Efficient implementation. So far, we do not have an efficiently simulatable oracle because we represent
the state of the compressed oracle by giving the complete value table for the partial functions f . (Each
potential output is stored in a different register Hx.) However, an algorithm implementing CFO is free to
store the partial functions in a more efficient way, namely as sorted lists of input/output pairs (called
a database in [30]), leading to a compact state. And an efficient circuit for the unitary CFO can be
constructed by only applying Decomp1 on those entries of the database that are involved in the present
query. This then gives the oracle defined in [30]. We omit the details here as they are not relevant for the
rest of this paper.

The advantage of separating the definition of the efficient encoding of the compressed oracle state
from the conceptual encoding as a partial function is that proofs will not have to consider the concrete
encoding with ordered association lists only when analyzing the runtime of the simulation and can use
the mathematically simpler concept of partial functions everywhere else. In particular, in information-
theoretical proofs, we do not need to consider the efficient encoding at all.

10Actually, we have handwavingly sketched it but a formal proof is easy and follows the same ideas.
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Getting rid of the Fourier transform. So far, we have described the compressed oracle as in
Zhandry’s original work (although with a different presentation). As presented originally, it would seem
that the Fourier transform is an integral part of the idea of the compressed oracle.11 We will now show
that there is a different view which does not involve the Fourier transform at all. Recall the definition of
Decomp1 = Q ·U⊥ ·Q†. Using that definition, we can compute what Decomp1 does to various basis states:

|⊥⟩ Q†

7−→ |⊥⟩ U⊥7−→ |0⟩ Q7−→
∑
z

Qz0|z⟩ =: |∗⟩

|y⟩ Q†

7−→
∑
z

Qyz|z⟩
U⊥7−→

∑
z

Qyz|z⟩︸ ︷︷ ︸
=Q†|y⟩

+ Qy0︸︷︷︸
=⟨∗| y⟩

(
|⊥⟩ − |0⟩

) Q7−→ |y⟩+ ⟨∗| y⟩
(
|⊥⟩ − |∗⟩

)
.

Note that this calculation did not use that Q is the Fourier transform, only the fact that it is unitary.
And the state |∗⟩ is simply the first column of Q. Which, in case of the Fourier transform, is of course the
uniform superposition |∗⟩ =

∑
z

1√
N
|z⟩. However, any other unitary with the same first column would

lead to the same result – the definition of Decomp1 does not actually use the Fourier transform, and it
only depends on the first column of Q! In fact, the above calculation works even if the first column is
not the uniform superposition. For example, if we wish to analyze random oracles that use a random
function h that is not uniformly chosen, but where each h(x) is independently chosen according to some
distribution D, we take a unitary Q whose first column is |∗⟩ :=

∑
z

1√
D(z)
|z⟩, and now Decomp1 still

maps
Decomp1 : |⊥⟩ 7→ |∗⟩
Decomp1 : |y⟩ 7→ |y⟩+ ⟨∗| y⟩

(
|⊥⟩ − |∗⟩

)
.

(2)

In fact, we can just take this as the definition of Decomp1 (relative to a given |∗⟩). The operators Q
and U⊥ are then just a technical tool to show that Decomp1 is indeed unitary, and one possible way of
implementing Decomp1 efficiently, but they are not part of its definition.

We can still define an oracle CFO based on this new Decomp1 in the same way as before via (1).
Except now CFO will be indistinguishable from the standard oracle that has the initial state |∗⟩⊗ · · ·⊗ |∗⟩.
Which is indistinguishable from the original random oracle if |∗⟩ is the uniform superposition. And if
|∗⟩ =

∑
z αz|z⟩, then it is indistinguishable from the a random oracle where each h(x) is sampled to be y

with probability |αy|2.12 Everything discussed so far still applies. In particular, we still have that the
oracle is compressed and records queries: In the compressed state, for any x that has not been queried,
Hx will be in state |⊥⟩ (with the intuitive meaning that the value of h(x) is not sampled yet).

Thus, by removing the Fourier transform from the picture, we have generalized the compressed oracle
technique to nonuniformly distributed oracles “for free”.13 However, we stress that this approach does not
yet allow us to model random permutations because a random permutation h does not have independently
distributed h(x).14

In our opinion, this new view of the compressed oracle has multiple advantages:
11[30] considers the special case of a qubit-wise Hadamard which is the Fourier transform over the abelian group {0, 1}n.

[12] generalizes this to Fourier transforms over arbitrary abelian groups.
12We could go even farther and use a different |∗⟩ for every x. This would allow us to analyze oracles where h(x) is picked

from different distributions for different x.
13[15] also generalizes Zhandry’s technique to non-uniformly distributed functions. (With the condition that the outputs

are independently sampled, i.e., not covering permutations.) However, their presentation still involves Fourier transforms.
14We had one failed approach how to generalize this to random permutations (and possibly other function distributions).

Since we believe that this approach might be natural, we shortly describe it here and why we got stuck trying to use it:
For S ⊆ R, we can define DecompS1 to be the Decomp1 operation for the uniform distribution on S. (I.e., DecompS1 is defined

by (2) where |∗⟩ :=
∑

y∈S
1√
|S|
|y⟩.) Then we can define Decomp@x

1 to apply DecompM1 on register Hx, where M is the set of

all values that are not yet used in other registers. Formally, if D = {x1, . . . , xM}, Decomp@xi
1 |y1, . . . , yM ⟩ := |y1, . . . , yi−1⟩⊗

DecompSi
1 |yi⟩ ⊗ |yi+1, . . . , yM ⟩ where Si := R \ {y1, . . . , yi−1, yi+1, . . . , yM}. (Here all yi ∈ R ∪ {⊥}.) And then we can

define a decompression for permutations as Decompperm1 := Decomp
@xM
1 Decomp

@xM−1
1 · · ·Decomp@x2

1 Decomp@x1
1 .

It is reasonably easy to verify that Decomp1|⊥ . . .⊥⟩ =
∑

h:D↪→R
1√

|D↪→R|
|h⟩. So decompressing the initial state indeed

leads to a uniform superposition of permutations (more precisely, of injections).
And it is also easy to define an oracle query in this model, namely CFOperm := Decompperm †⊗StO⊗ Decompperm .
However, beyond that, things become difficult. First, the definition of Decomp1 depends on the ordering of the domain D.

If we would apply the Decomp@xi
1 in a different order, we would get a different operator Decompperm1 . Second, it becomes

very difficult to understand the behavior of CFOperm . We were unable to give an explicit description of how it operates
on a basis state. And it is not clear that CFOperm maps a state |y1 . . .⟩ where at most ℓ of the yi ̸= ⊥ to a superposition
of states |ỹ1 . . .⟩ where at most ℓ+ 1 of the ỹi ̸= ⊥. But if this does not hold, then we do not have a compressed oracle
because we have no upper bound on the size of the oracle state.
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• It becomes clearer what the essence of the transformation Decomp1 is (see also the discussion below).
To assume that the Fourier transform plays a relevant role in the construction may even hinder
understanding of what is really happening.

• There is no need to find a group structure on the range R of the function so that it matches the
operation ⊕ in the definition of the oracle query unitary |x⟩|y⟩ 7→ |x⟩|y ⊕ h(x)⟩. This may lead to
less requirements in proofs.

• The technique becomes more general as we are not limited to uniformly distributed functions.
For the remainder of this paper, we will not make use of this potential for generalization and assume

that Q is an arbitrary unitary whose first column is the uniform superposition.

Understanding Decomp. In order to better understand what the decompression operation does, let
us have another look at the definition.

Decomp1 : |⊥⟩ 7→ |∗⟩
Decomp1 : |y⟩ 7→ |y⟩+ ⟨∗| y⟩

(
|⊥⟩ − |∗⟩

)︸ ︷︷ ︸
correction term

(3)

And thus Decomp operates as follows:

Decomp : |y1y2y3 . . .⟩ 7→ |ŷ1ŷ2ŷ3 . . .⟩+ correction (4)

where ŷ := y for y ∈ R and ŷ := ∗ for y = ⊥, and where correction is a sum of tensor products of
“correction terms”.

This means that in the compressed oracle state, |⊥⟩ is used to denote the uniform superposition in
Hx, i.e., an output that is completely undetermined so far. On the other hand, |y⟩ in the compressed
oracle state has a somewhat more subtle meaning. Intuitively, we might expect/want that |y⟩ in the
compressed oracle state means that the output is y. I.e., |y⟩ in the compressed state should translate to
|y⟩ in the uncompressed state. In other words, the intuitively natural definition of Decomp1 would be the
definition (4) with the “correction term” removed. Unfortunately, the resulting operation would not be
unitary. So the purpose of the correction terms is to stay as close to mapping |y⟩ to |y⟩ as possible, while
keeping the operation unitary. Note that the correction terms are small because ⟨∗| y⟩ = 1/

√
N .15

This leads to a different view of how Decomp1 could be derived: Instead of constructing it bottom-up
from Q and U⊥, we could use the ansatz that Decomp is an operator defined as:

Decomp : |⊥ . . .⊥⟩ 7→ |∗⟩ . . . |∗⟩
Decomp : |y1y2y3 . . .⟩ 7→ |ŷ1ŷ2ŷ3 . . .⟩+ correction (5)

where correction must be chosen in such a way that Decomp becomes unitary, such that correction is as
small as possible, and – most importantly – that the correction terms do not make the compressed oracle
state bigger (i.e., when starting with |y1y2 . . .⟩ where there are at most ℓ non-⊥ entries, decompressing
with Decomp, applying the oracle query operation StO, and then recompressing with Decomp†, we should
get a superposition of states |y′1y′2 . . .⟩ with at most ℓ+1 non-⊥ entries). The definitions of Decomp given
above are then just one (although very natural) solution to this ansatz.

Mainly, we presented this approach in (5) to give a different view on the compressed oracle technique
(that hopefully gives some intuition about what is going on). But maybe this approach is also one way to
extend the compressed oracle technique to more complex cases such as oracles with non-independently
chosen outputs or similar. We did not manage to use it for the random permutation case, but maybe
future work will.

The sanitized CFO. There is a subtle variation of the CFO that we described above. We call it the
sanitized CFO . Recall that we use Decomp1 to switch between two representations of the oracle state, the
compressed representation (where the initial state is |∅⟩), and the uncompressed representation (where
the initial state would be the superposition of all total functions). In the compressed representation,

However, we do not exclude that these problems could be solved and the approach made viable. For example, it might be
possible to find some operator that approximately implements CFOperm and that has an easy description and that does not
grow the state too much during a query. But we were unable to find such an operator.

15However, the fact that they are small does not, unfortunately, mean that we can ignore them in calculations. They do,
in many situations, add up to very relevant errors. In fact, Decomp1 without the correction terms has operator norm

√
2

which means that the errors can be almost as big as the state itself.
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we make strong use of the fact that the oracle register H can contain partial functions. But in the
uncompressed representation, partial functions make little sense, so the initial state in that representation
is the superposition of only total functions. And it follows directly from the definition (1) of the CFO
that throughout an execution, the uncompressed state will never contain a partial function (see also
footnote 9). We arbitrarily specified the behavior of StO when it encounters h(x) = ⊥ to do nothing.
Since this case never occurs, we can also define StO differently, for example:

StOs |x⟩|y⟩|h⟩ =

{
|x⟩

∣∣y ⊕ h(x)〉 |h⟩ if h(x) ̸= ⊥,
0 if h(x) = ⊥.

That is, this oracle effectively measures whether h(x) = ⊥ before computing the query and, if so, diverges.
(We call this the sanitized standard oracle since it removes the case where h(x) is undefined in the
uncompressed representation.) Based on this, we can define the sanitized CFO :

CFOs := Decomp† ·StOs · Decomp . (6)

It is straightforward to verify that CFOs and CFO are perfectly indistinguishable (by adversaries that do
not touch H, and given initial state |∅⟩). In particular, CFOs is also indistinguishable from a random
function. Everything said above about CFO also applies to CFOs. (Only difference: CFOs is not unitary
because it represents a potentially diverging computation.)

If there is no difference between the CFO and the sanitized CFO, why consider the latter? This is
because CFOs behaves more nicely when it comes to invariant preservation. (The concept of invariant
preservation will be explored in the “usage example” below.)

For example, if the state of the X,Y,H registers lies in the subspace span
{
|xyh⟩ : x = 0, y = 0

}
, then

after a query to CFOs, the state is O(1/
√
N)-close to the subspace span

{
|xyh⟩ : x = 0, y = h(0)

}
. This is

very natural because it says that after a evaluating the oracle at 0, the Y -register contains the result of
that evaluation. Surprisingly, we cannot show a corresponding invariant preservation for CFO.16

CFO still performs well with invariants that do not talk about the Y register. If the CFO is invoked
by the adversary, there is little to be said about the content of Y , anyway. But when the CFO is queried
by an honest party or the challenger, for example, the oracle response in Y may be very relevant. So in
some proofs, we might get further using CFOs, while in others it may not matter.

The difference between CFOs and CFO will also matter in the compressed permutation case in Section 4.

Usage example. We will now give an example how the compressed oracle is used. We do not work
out all the details (in particular, we skip some calculations) but instead focus on a high level overview
required for understanding the methodology. The example works both with CFO and CFOs in the same
way.

Consider the following problem:

Given quantum (i.e., superposition) access to a random oracle H, find x such that H(x) = 0.

We want to show that this problem is hard. We will use the compressed oracle to do so.17
Fix an adversary ACFO making polynomially many queries. Recall that H is the register of the CFO

that contains the superposition of the partial functions h, and that those partial functions intuitively
represent the knowledge what has been been queried and what the responses were.

Consider the following invariant I := span{|h⟩ : 0 /∈ imh}. This invariant contains all superpositions
of partial functions h where 0 is not in the outputs, i.e., where A never got 0 as a result to its queries.

In an execution of ACFO, the initial state of the system has |∅⟩ in H. Since 0 /∈ im∅, we have |∅⟩ ∈ I.
Thus the initial state of the overall system (containing X, Y , and A’s registers) is in I as well.18

Now, when A performs a (w.l.o.g. unitary) operation on its registers, this operation does not touch H.
(Recall that H is inaccessible to A.) So if the state ψ before that operation is ψ ∈ I, then the state ψ′

after the operation is also ψ′ ∈ I. In fact, if ψ
ε
≈ I, then ψ′ ε

≈ I as well. (This follows immediately from
the previous fact because the unitary performed by A has operator norm 1.)

16For example, |0⟩|∗⟩ is in the first subspace, but CFO|0⟩|∗⟩ = |0⟩|∗⟩ is not in the second subspace.
17Of course, there are many results that show that this specific problem is hard, predating the compressed oracle technique,

and considerably simpler mathematically (e.g., [3, 19]). This just happens to be the simplest example to demonstrate the
technique.

18Strictly speaking, the initial state is in I⊗HXY ... where HXY ... is the Hilbert space of all registers besides H. We
omit the ⊗HXY ... for simplicity.

10



More interesting is the case when A queries the CFO. In that case, it is less obvious, but we can show:

ψ ∈ I =⇒ ψ′
O
(√

1
N

)
≈ I.

(Here ψ,ψ′ are the state before and after the query.) We will not do the math here, see for example
Zhandry’s original paper [30] for a calculation, or [12] for some generic rules for bounding such invariant
preservations in the CFO.

And again using that CFO has operator norm 1 and the triangle inequality for the norm, we get

ψ
ε
≈ I =⇒ ψ′

ε+O
(√

1
N

)
≈ I.

So by induction, we have that if the adversary does q queries, the final state is ψfinal

O
(
q
√

1
N

)
≈ I. This

is negligible if q ≪
√
N , meaning that the adversary needs around

√
N queries to find a zero-preimage.19

This concludes the analysis of zero-preimage finding in the CFO.

The advantage of the CFO is that it can be very easily adapted to a variety of different problems
by changing the invariant I. For example, if we want to show that finding a collision (x ≠ x′ with
H(x) = H(x′)) is hard, we use the invariant

I := span
{
|h⟩ : h injective

}
instead. This represents the fact that the oracle as queried so far is injective, i.e., no two outputs are the
same, i.e., the adversary has not found a collision. Obviously the initial state |∅⟩ ∈ I again, and we can
show (see, e.g., [30] again):

ψ ∈ I =⇒ ψ′
O
(√

i
N

)
≈ I in the i-th query.

Then the proof proceeds as above by induction, giving us ψfinal

O
(√

q3

N

)
≈ I. So finding a collision takes

3
√
N queries.

Technical summary. The standard oracle StO operates on registers X,Y,H with Hilbert spaces CD,
CR, CD l→R. It is defined as the unitary StO : |x, y, h⟩ 7→ |x, y ⊕ h(x), h⟩ if h(x) ̸= ⊥ and StO : |x, y, h⟩ 7→
|x, y, h⟩ otherwise. The sanitized StOs is defined the same, except StO : |x, y, h⟩ 7→ 0 when h(x) = ⊥.
The initial state of H is

∑
h∈D→R|R|−|D|/2|h⟩ (uniform superposition of all total functions).

The compressed function oracle CFO operates the same registers X,Y,H. H can be seen equivalently
as a collection of registers Hx with x ∈ D, each having Hilbert space CR∪{⊥}. Q is an arbitrary unitary
with Q|0⟩ =

∑
x

1√
N
|x⟩ (e.g., the quantum Fourier transform). U⊥ is the unitary mapping |⊥⟩ 7→ |0⟩,

|0⟩ 7→ |⊥⟩, |z⟩ 7→ |z⟩ otherwise. Decomp1 := Q ·U⊥ ·Q† is the decompression unitary (for a single register
Hx). Decomp is Decomp1 applied to each Hx (making it an operation on H). Then the CFO is defined as
Decomp ·StO ·Decomp†. The sanitized CFOs is defined as Decomp ·StOs ·Decomp†. The initial state of H
is |∅⟩ (the empty partial function) for both CFO and CFOs.

4 Compressed permutation oracles
In the preceding section, we considered compressed function oracles. These models the “normal” random
oracle in which the adversary gets access to a uniformly random function. However, in many cases, we
may be interested in uniformly random permutations, instead. For example, an ideal cipher is nothing
but a family of random permutations (indexed by the key). Abstractly, random permutations are not a
much more complicated concept than random functions (we simply pick the function from a smaller set)

19There is a technicality we gloss over here: We only have shown that the oracle state does not contain a zero-preimage.
To fully finish the proof, we additionally need to show that this implies that the adversary cannot guess a zero-preimage. For
example, the adversary could just output something random that was not queried before and hope that it is a zero-preimage.
The probability of the latter succeeding is, of course, tiny. But in a complete analysis, this all needs to be taken into account.
This is important but not relevant for illustrating the compressed oracle technique, nor for the purposes of our paper. We
refer to existing works on the compressed oracle (e.g., [30]) for details on this.
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but they can be considerably harder to analyze. The reason for this is that in a random function, all
outputs are sampled independently, while in a random permutation, this is not the case. Because of this,
even simple questions relating to (superposition access to) random permutations are to the best of our
knowledge not in the scope of existing techniques, such as the following conjecture:

Conjecture 1 (Double-sided zero-search) Let H be a uniformly random permutation on {0, 1}2n.
The following problem is hard for any adversary making polynomially many superposition queries to H
and H−1:

Find x ∈ {0, 1}n such that H(x∥0n) = y∥0n for some y.

Note that in this example, we explicitly allowed the adversary to query not only H (what we call a
“forward query”), but also H−1 (“backward query”). If we model a non-invertible permutation (adversary
can only make forward queries), random permutations are easy to handle, even in the quantum setting.
Namely, we know that a random permutation is indistinguishable from a random function, even in the
quantum setting [28]. So when analyzing a situation where the adversary has quantum access to a
non-invertible function, we can simply replace it by a random function as the first step, and analyze from
there using established techniques for random oracles (such as, for example, the CFO).

What we are interested in are, therefore, invertible random permutations (forward and backward
queries).

In the classical setting, even invertible random permutations are quite easy to handle: The same
way as we can model a random oracle via lazy sampling (i.e., pick all outputs of the oracle only when
first accessed), we can also model a random permutation via lazy sampling: We pick the output to a
forward query x at random, unless that query was already made, or some backward query returned x.
And mutatis mutandis for backward queries. This does not give us exactly the distribution of answers
that a random permutation would give, but is negligibly close. And now we have all the nice benefits of
the lazy sampling of the random oracle, in particular the fact that any fresh queries give (near) uniformly
random independent outputs.

Since the compressed oracle technique, roughly speaking, is a quantum analogue of lazy sampling, we
might wonder whether the same is possible in the quantum setting. That is, is the following possible?

Define an oracle CPO (for “compressed permutation oracle”) that keeps a superposition of
partial functions as its internal state, that responds to forward and backward queries in some
way that increases the length of those partial function only by 1 (or at least something small),
and that is indistinguishable from having access to a permutation that is chosen uniformly at
random.

It turns out that defining such a CPO is not too hard. What is hard (and what we will only make a
step towards in this paper) is to prove that the CPO is indeed indistinguishable from a truly random
permutation.

To define CPO, we need to define its behavior on forward and backwards queries. Forward queries
are easy: The internal state is, like in the CFO case, a superposition of partial functions. That is, a
register H with Hilbert space CD→D. (Since we are in the permutation case, we have D = R and thus
D → R becomes D → D.) A forward query to CPO is then just handled by the oracle CFOs defined in
the previous section.

(We could use the non-sanitized CFO here as well, but we use the sanitized CFO for two reasons: It
tends to behave better with some invariants as explained in the previous section, and more importantly,
we do not know how to prove the results in the next section with the non-sanitized one.)

Backward queries are more interesting. We could define an oracle that, given an input |x⟩, searches
through the partial function |h⟩ in H, and tries to find x in the output of h. (All of this in superposition
between different |x⟩ and |h⟩, of course.) But there is a simple trick that makes the definition (and also
the use of CPO in the end) much simpler without changing its substance: Instead of searching through
|h⟩, we simply invert h in place, then evaluate it, and then invert it again.

More precisely: Let Flip be a linear operator such that Flip|h⟩ = |h−1⟩ for all injective h. We do
not specify what Flip does on any |h⟩ that is not injective.20 We only require that ~Flip~ ≤ 1, that is,
∥Flipψ∥ ≤ ∥ψ∥ for all ψ. (This is to avoid strange cases where the state of the system ends up having
norm greater than 1.)

20For example, Flip|h⟩ might return an h′ that so that h′(x) is the lexicographically smallest preimage of x under h if
there are several. Or Flip|h⟩ = 0 for non-injective h. Since a non-injective h should not happen anyway when simulating a
permutation, it should not matter how Flip is defined on these, so we make sure that our results hold independent of the
design choices for that case.
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Then a backward query to CPO is handled by invoking the operator Flip ·CFOs ·Flip. (Inverting,
evaluating, inverting back.)

To summarize:

Definition 1 (Compressed permutation oracle) CPO is a pair of oracles CFOs and Flip ·CFOs ·Flip
where CFOs is as defined in (6) in the previous section, and Flip|h⟩ = |h−1⟩ for injective h (and ~Flip~ ≤ 1),
both operating on the same registers X,Y,H where H is private to CPO (not accessible to the querying
algorithm) and initialized in the beginning with |∅⟩.

We conjecture:

Conjecture 2 For any polynomial-query algorithm A,∣∣∣Pr[ACPO ⇒ 1]− Pr[Aπ,π
−1

⇒ 1 : π
$← (D ↪→ D)]

∣∣∣ is negligible. (7)

(Negligible in log|D|.)

Usage example. We now illustrate how the CPO can be used by showing Conjecture 1 (double-sided
zero-search) using the CPO. Of course, the validity of this example rests on Conjecture 2.

The reasoning is very similar to that done for the zero-preimage search in Section 3. We urge the
reader to recap that reasoning first.

Specifically, we first come up with some invariant that describes that the adversary has not found x, y
with H(x∥0n) = y∥0n.

I := span
{
|h⟩ : ∄xy. h(x∥0n) = y∥0n

}
.

Obviously, the initial state of the CPO (namely |∅⟩ in H) satisfies I, and unitaries evaluated by the
adversary on non-H registers preserve I.

Given a forward-query to CPO (i.e., an application of the operator CFOs), we have

ψ ∈ I =⇒ ψ′ O(2−n/2)
≈ I (8)

where ψ,ψ′ are the state before/after that query. Again, we omit the details of this computation and
refer the reader to existing work.21 We only stress that intuitively, this is what we expect, since when
querying the oracle on any fresh input, the output will be of the form y∥0n only with small probability.

The only conceptually new thing in this example is when the adversary performs a backward-query:
This will execute Flip ·CFOs ·Flip. Note that if h satisfies h(x∥0n) = y∥0n, then h−1 satisfies it, too. So
any |h⟩ ∈ I is mapped by Flip to |h−1⟩ ∈ I. Thus Flip preserves I. (Meaning, if ψ ∈ I, then Flipψ ∈ I.)
Furthermore, we already know from (8) that an invocation of CFOs only introduces an O(2−n/2) distance
from I. So together with the fact that Flip preserves I, we have that (8) also holds for backward-queries.

All in all, we then have by induction that for a q-query adversary, at the end it holds:

ψfinal

O
(
q2−n/2

)
≈ I.

So to find a “doubled-sided zero”, the adversary needs Θ(2n/2) queries.

5 Towards compressed permutations
As discussed in the introduction, page 3, the main contribution of our work is the following claim:

Main contribution (informal): If some construction (say based on a random oracle) is
indistinguishable from a CPO, then the CPO is indistinguishable from a random invertible
permutation.

To make this formal, we first need to say what exactly we mean by a construction. Specifically, we
focus on constructions that implement permutations. Roughly speaking, such a construction is some
deterministic algorithm C that uses one or several oracles H1, . . . ,Hn and implements two functions π
and τ that are inverses of each other.

21Existing work on compressed oracles applies here since (8) refers specifically to the preservation of I under a query to
CFOs and thus is not specific to the permutation case.
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For example, in the case of three-round Luby-Rackoff,22 the algorithm C would take three oracles and
implement π(xLxR) as: t1 := H1(xL), t2 := H2(xR⊕ t1), t3 := H3(xL⊕ t2), return (xL⊕ t2, xR⊕ t1⊕ t3),
and τ(xLxR) as: t1 := H3(xL), t2 := H2(xR ⊕ t1), t3 := H1(xL ⊕ t2), return (xL ⊕ t2, xR ⊕ t1 ⊕ t3). It is
easy to see that π and τ are permutations with τ = π−1 for any choice of H1, H2, H3.

More abstractly, a construction is some function C that takes (fixed) functions H1, . . . ,Hn, and
returns functions π, τ . (Deterministically. That is, for fixed H1, . . . ,Hn, π, τ are fixed, too.) We do not
care about the algorithmic details of how C transforms the oracles H1, . . . ,Hn into functions π, τ . While
it would be typical that C does this by doing a few queries to H1, . . . ,Hn, this is formally not required
for our result.

In addition to the algorithm/function C that specified how π, τ are implemented given the oracles,
the specification of the construction also needs to tell us what kinds of oracles H1, . . . ,Hn are. E.g., in
the Luby-Rackoff case, they are random functions. In other constructions, they might be functions with
some other distribution (e.g., uniformly random permutations). To be as general as possible, we simply
include the desired distribution D of the oracles in the specification of the construction.

The following definition summarizes all this:

Definition 2 A permutation-construction (C,D) (implicitly parametrized by a security parameter λ)
consists of a function C that takes a tuple of functions H = (H1, . . . ,Hn) and returns a pair of functions
π, τ : D → D, and of a distribution D (for the functions H1, . . . ,Hn), and satisfies the following:

For H distributed according to D, with overwhelming probability, π is a permutation and τ = π−1.

Remark. We do not require that π, τ can be efficiently computed given oracle access to H. In
practice, one would of course require efficient constructions, but our result holds without this additional
condition, so we do not include it in our definition.

Remark. Note that the definition requires that the construction produces an invertible permutation
(and not, e.g., a pair of non-invertible functions) with overwhelming probability, i.e., it includes a
correctness requirement. But it does not require that π and τ look random in any way.

Notation. Given H, C(H) is a pair of functions π, τ . If we write AC(H), we mean that A gets
superposition access to π, τ . I.e., AC(H) can be read as (π, τ) := C(H), Aπ,τ .

We are ready to state the main result formally:

Theorem 1 Let C be a permutation-construction. Assume that for any polynomial-query adversary A,∣∣∣Pr[AC(H) ⇒ 1 : H
$← D]− Pr[ACPO ⇒ 1]

∣∣∣ is negligible. (9)

Then for any polynomial-query adversary A,∣∣∣Pr[ACPO ⇒ 1]− Pr[Aπ,π
−1

⇒ 1 : π
$← (D ↪→ D)]

∣∣∣ is negligible. (10)

(Recall that D ↪→ D is the set of permutations on D.)

In particular, the existence of such a construction shows Conjecture 2.23
We present a similar result where the construction may use computational assumptions in Corollary 1

below.

The (very rough) idea of the proof is simple: For a random permutation f , let f ◦ CPO denote the
CPO, but where we apply f to its outputs. (Or its inputs when doing a backward query.) Then CPO and
f ◦CPO are indistinguishable. (This follows from symmetries in the definition of CPO and does not require
that CPO is actually indistinguishable from a permutation.) By assumption, CPO and the construction
C are indistinguishable, so f ◦ CPO and f ◦C are indistinguishable, too. (Since a distinguisher could just
simulate f itself.) And since C implements a permutation (not necessarily random), f ◦ C is a random
permutation composed with permutation, thus a random permutation. So f ◦C is indistinguishable from
f . Taking this all together, we have that CPO is indistinguishable from f which shows the theorem.

22We use three-round Luby-Rackoff for this example just to keep the formulas short and readable. We are aware that
three-round Luby-Rackoff is not even indistinguishable from an invertible random permutation in the classical setting, let
alone the quantum setting.

23For those domains D that the construction C actually operates on. (E.g., if C only implements permutations on domains
D = {0, 1}n2

, then this would only prove Conjecture 2 for such domains.)
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π
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Û†
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Ûf

(a) (b)

Figure 2: Circuits implemented by B. (a) shows π′, (b) shows τ ′. The ⟨0| gate denotes a multiplication
with ⟨0|. Equivalently, this can be thought of as applying a projector onto |0⟩ on Y ′ and then removing
the register Y ′. Uf is the unitary Uf : |x, y⟩ 7→ |x, y ⊕ f(x)⟩. Ûf is the unitary Ûf : |x⟩ 7→ |f(x)⟩.
(Recall that f is bijective, so Ûf is a unitary.)

Proof. Fix a polynomial-query adversary Aπ,τ (taking two oracles π, τ). We need to show that (10)
holds for this adversary.

Consider the following adversary Bπ,τ :
• It takes two oracles π, τ .
• It picks a permutation f : D ↪→ D uniformly at random
• It runs Aπ

′,τ ′
where π′, τ ′ are implemented by the circuits in Figure 2.

• It returns what A returns.
For the intuition: if π and τ are simply oracles providing superposition access to some functions

π, τ , then π′ = f ◦ π and τ ′ = τ ◦ f−1. And if moreover τ = π−1, then τ ′ = π′−1. However, B may be
invoked with stateful oracles π, τ , so we cannot simply define π′, τ ′ that way but instead need to give
concrete circuits. (We also take care to ensure that B does not make more queries than A. Otherwise
the proof of (11) below would become much harder.)

We have:
Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1]. (11)

Here ≈ means a negligible difference. Intuitively, this follows because the definition of the CPO is
symmetric, i.e., all inputs and outputs are treated the same, so permuting them should not make a
difference. In reality, we need to be more careful because with small probability we can end up with
oracle states on which Flip is defined arbitrarily (and possibly non-symmetrically.) We defer the proof of
(11) to the auxiliary Lemma 1 below.

Since B makes the same number of queries as A, it is a polynomial-query adversary. So by assumption
(9) of the lemma, we have:

Pr[BCPO ⇒ 1] ≈ Pr[BC(H) ⇒ 1 : H
$← D]. (12)

Since C is a permutation-construction by assumption, for any fixed H, C(H) = (πH , τH) for some
functions πH , τH that depend only on H (see Definition 2). We call H good if πH is a permutation and
τH = π−1

H . Still by definition of permutation-constructions, H is good with overwhelming probability.
For a fixed good H, we thus have:

Pr[BC(H) ⇒ 1] = Pr[BπH ,π
−1
H ⇒ 1]

(∗)
= Pr[Af◦πH ,π

−1
H ◦f−1

⇒ 1 : f
$← (D ↪→ D)]

= Pr[Af◦πH ,(f◦πH)−1

⇒ 1 : f
$← (D ↪→ D)]

(∗∗)
= Pr[Af,f

−1

⇒ 1 : f
$← (D ↪→ D)] = Pr[Aπ,π

−1

⇒ 1 : π
$← (D ↪→ D)]

Here (∗) follows since the circuits that B computes f ◦ π, τ ◦ f−1 given oracles that implement fixed
functions π, τ . And (∗∗) follows because for fixed permutation πH and uniformly random permutation
f , we have that f ◦ πH has the same distribution as f .

Since this holds for any good H, and H is good with overwhelming probability, by averaging we
have:

Pr[BC(H) ⇒ 1 : H
$← D] ≈ Pr[Aπ,π

−1

⇒ 1 : π
$← (D ↪→ D)]. (13)

Equation (10) follows by (11)–(13). □

Lemma 1 For B as defined in the proof of Theorem 1, we have

Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1].
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Figure 3: Circuits in invariant preservation proof.
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Figure 4: Circuits in invariant preservation proof, first case.

Here ≈ means negligible difference.

Proof. The basic idea in this proof is that B essentially just permutes the different possible outputs of the
permutation implemented by the CPO, and since the definition of the CPO does not treat any possible
output differently from any other, this permutation of outputs has no observable effect. However, this
is not fully true: For example, if the oracle register H contains |h⟩ where h is a non-injective partial
function, the behavior of Flip is unspecified and might be asymmetric. (E.g., Flip might always pick
the lexigraphically smallest string in case of ambiguities.) To work around this, we first sanitize our
CPO somewhat. Let P be the projection onto span{|h⟩ : h injective} on register H. We then insert P
before every call to Flip. Specifically, let CPO′ denote the two oracles CFOs and Flip ·P · CFOs ·Flip ·P .
(Instead of CFOs and Flip ·CFOs ·Flip as per definition of CPO.) That is, CPO′ adds extra invocations of
the projection P before each Flip.a The oracles making up CPO′ are also depicted in the top row of
Figure 3. Then we have

Pr[ACPO ⇒ 1] ≈ Pr[ACPO′
⇒ 1] and Pr[BCPO ⇒ 1] ≈ Pr[BCPO′

⇒ 1] (14)

We see this as follows: Consider the invariant I := span{|h⟩ : h injective}. This invariant is preserved
by adversary operations on registers other than H. Queries to CFOs introduce an O(i/N) error in the
i-th query which is negligible. And since with h, h−1 is also injective, we have that Flip preserves I.
Finally, the difference between ACPO and ACPO′

is that the latter has additional applications of the
projector P . Since P projects onto I by definition, and the state is negligibly close to I, this will change
the state by a negligible amount. Therefore the final state of A differs only by a negligible amount (in
the norm). Thus A’s output probability also differs only by a negligible amount. Analogously for B.
This shows (14).

Because of (14), to prove our lemma, it is sufficient to show:

Pr[ACPO ⇒ 1] = Pr[BCPO ⇒ 1]. (15)
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Figure 5: Circuits in invariant preservation proof, second case.

And by averaging, it is sufficient to show this for a fixed permutation f . (Then it will also hold when B
chooses f at random.) Thus, for the remainder of this proof, f will be an arbitrary but fixed permutation
on D.

Let V denote the unitary on H mapping |h⟩ to |f ◦ h⟩. To show (15), we will show that the states
of ACPO′

and BCPO′
are always related by V . More precisely, when ψ is the state of A before or after

the invocation of the n-th query to CPO′ (or the initial or final state), and ϕ is the state of B before or
after the n-th invocation of the corresponding circuits from Figure 2 (or the initial or final state), then:

ψ = V ϕ. (16)

For the initial state, (16) is immediate. (Recall that in the initial state, H contains |∅⟩, and
V |∅⟩ = |f ◦∅⟩ = |∅⟩.) We then proceed inductively through the execution of A and B.

Without loss of generality, A or B, respectively, interleave oracle queries and applications of some
unitary operation on the adversaries state. This unitary is the same for A and B, and it trivially
commutes with V (since V operates on H and H is not part of A’s or B’s state). Thus (16) is preserved
under application of this unitary.

It remains to show that (16) is preserved under invocations of the oracle by A and B, respectively.
(In the case of B, this is meant to include the wrapper circuits from Figure 2.) Let ψ, ϕ denote the state
of A or B before that invocation, and ψ′, π′ the one after the invocation. We then need to show

ψ = V ϕ =⇒ ψ′ = V ϕ′ (17)

for ψ′ and ϕ′ being computed as in Figure 3 (a) or (b). (Depending whether the current query of A/B
is one to its first or second oracle.)

We first show (17) for ψ′, ϕ′ as computed in Figure 3 (a). Denote the operation computed by the
circuit for ϕ′ by Cϕ. Then we need to show that ψ′ = CFOs ψ = CFOs V ϕ

!
= V ϕ′ = V Cϕϕ. So it is

sufficient to prove CFOs V = V Cϕ. Since Decomp is unitary, this is equivalent to showing

Decomp ·CFOs ·V · Decomp† = Decomp ·V · Cϕ · Decomp† . (18)

Note that V and Decomp1 commute: Both V and Decomp operate on each Hx individually, namely as
Ûf and Decomp1 where Ûf is the unitary mapping |z⟩ 7→ |f(z)⟩, |⊥⟩ 7→ |⊥⟩. So we only need to check that
Ûf and Decomp1 commute. Using the formula for Decomp1 from (2), we compute that Decomp1 Ûf |⊥⟩ =
|∗⟩, Ûf Decomp1|⊥⟩ = Uf |∗⟩ = |∗⟩, Decomp1 Ûf |z⟩ = Decomp1|f(z)⟩ = |f(z)⟩ + 1√

N
|⊥⟩ − 1√

N
|∗⟩,

Ûf Decomp1|z⟩ = Ûf |z⟩+ 1√
N
Ûf |⊥⟩ − 1√

N
Ûf |∗⟩ = |f(z)⟩+ 1√

N
|⊥⟩ − 1√

N
|∗⟩. So Ûf , Decomp1 commute

on all basis states, hence they commute everywhere, hence V and Decomp commute.
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Therefore the lhs of (18) equals Decomp ·CFOs ·Decomp† ·V which is by definition StOs · V . And
the rhs equals what is drawn in Figure 4 (a). (Besides commuting Decomp and V , we also inserted
Decomp, Decomp† in the middle. These cancel out because they are unitary.) And since StOs =
Decomp ·CFOs ·Decomp†, Figure 4 (a) further simplifies to what is shown in Figure 4 (b).

Finally, both StOs · V and the circuit from Figure 4 (b), upon input |x, y, h⟩, return the state
|x, y ⊕ f(h(x)), f ◦ h⟩ when h(x) ̸= ⊥ and 0 when h(x) = ⊥.b (By elementary computation using the
definitions of StOs, Uf , V .) Since they return the same state on every basis state, they are equal (by
linearity). Thus the lhs and the rhs of (18) are equal; (18) holds. Hence (17) holds for ψ′, ϕ′ as computed
in Figure 3 (a).

We now show (17) for ψ′, ϕ′ as computed in Figure 3 (b). Denote the circuit defining ψ′ by Dψ and
the circuit defining ϕ′ by Dϕ. Then we need to show that ψ′ = Dψψ = DψV ϕ

!
= V ϕ′ = V Dϕϕ. So it is

sufficient to prove DψV = V Dϕ, or equivalently Dψ = V DϕV
† (since V is unitary).

Define the unitary W : |h⟩ 7→ |h ◦ f⟩ on H. (Note: compared to V , here we have h ◦ f , not f ◦ h.)
Note that FlipPV † = W FlipP : For non-injective h, FlipPV †|h⟩ and W FlipP |h⟩ are both 0. (P

projects such |h⟩ to 0, and V † preserves non-injectivity.) For injective h, FlipPV †|h⟩ =
∣∣(f−1 ◦ h)−1

〉
=∣∣h−1 ◦ f

〉
and W FlipP |h⟩ = |h−1 ◦ f⟩. So FlipPV † and W FlipP coincide on all basis states, hence

FlipPV † =W FlipP .
Analogously, V FlipP = FlipPW †.
This means that V DϕV

† can be rewritten to the circuit in Figure 5 (a). To show that that circuit is
equal to Dψ, all we need to prove is that the dashed part in Figure 5 (a) (henceforth called Eϕ) is equal
to CFOs. And since Decomp is unitary, this in turn is equivalent to

Decomp ·CFOs ·Decomp† = Decomp ·Eϕ · Decomp† . (19)

Note further that W and Decomp† commute: W is just a reordering of the registers Hx (it moves Hx

into Hf−1(x)), and Decomp† applies the same unitary to each of those registers. So it makes no difference
whether we apply Decomp† before or after reordering. Analogously W † and Decomp commute.

So DecompEϕ Decomp† is equal to what is depicted in Figure 5 (b). And, since
DecompCFOs Decomp† = StOs, that in turn simplifies to Figure 5 (c). (Denoted Fϕ.) So our goal (19)
becomes StOs = Fϕ. And by elementary calculation, we get that Fϕ|x, y, h⟩ = |x, y ⊕ h(x), h⟩, same as
StOs. So they coincide on basis states, so we have StOs = Fϕ, hence (19) holds. So (17) holds for ψ′, ϕ′

as computed in Figure 3 (b).

So (17) holds in all cases. This implies that (16) holds for the final states of A and B. The output bit
of the adversary A and B is produced by the same measurement on A’s and B’s final state, respectively,
and that measurement measures only registers belonging to the adversary (i.e., not H). So applying V
on H does not change the distribution of that output bit. Hence (15) holds. By (14) the lemma follows.
□

aWe should clarify what we mean by invoking a projection P in a quantum circuit. Mathematically, this simply means
that the current state is multiplied with P (analogous to applying a unitary). Of course, this means that a normalized
state could become a non-normalized state. An operational interpretation of this is the following: We measure with the
binary measurement P , 1− P , and if the measurement fails (second outcome), we abort. The state after applying P then
describes the state in the non-aborting computation path, scaled with the square-root of the probability of reaching that
path.

bThis is where we need to use the sanitized CFO. StOs · V and the circuit from Figure 4 (b) (with StO instead of StOs)
return different states.

Computational case. Theorem 1 assumes that the construction C is indistinguishable from CPO for
all polynomial-query adversaries, not just polynomial-time adversaries. If we have a construction C that
is only secure under computational assumptions, Theorem 1 cannot be applied. However, the following
variant of Theorem 1 applies. That is, we can at least show that CPO is computationally indistinguishable
from a random invertible permutation.

Corollary 1 Let C be a permutation-construction. Assume that C is efficiently implementable.24
Assume that a strong qPRP with domain D exists.25 Assume that for any polynomial-time

24That is, we assume that there is a (potentially stateful) polynomial-time algorithm Ĉ such that Ĉ is indistinguishable
from C(H) with H $← D by all polynomial-query (not only polynomial-time) algorithms.

25See, e.g., [27] for constructions.
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adversary A, ∣∣∣Pr[AC(H) ⇒ 1 : H
$← D]− Pr[ACPO ⇒ 1]

∣∣∣ is negligible. (20)

Then for any polynomial-time adversary A,∣∣∣Pr[ACPO ⇒ 1]− Pr[Aπ,π
−1

⇒ 1 : π
$← (D ↪→ D)]

∣∣∣ is negligible. (21)

(The differences from Theorem 1 are highlighted in boldface.)

Proof. The proof closely follows the lines of the one of Theorem 1. Fix a polynomial-time adversary
Aπ,τ . Define Bπ,τ as in the proof of Theorem 1. We assume that the unitaries Ûf and Û†

f in B are
implemented by the following respective subcircuits:

• Initialize an extra register Z with |0⟩, apply Uf to XZ, swap X,Z, apply Uf−1 to XZ, and discard
Z.

• Initialize an extra register Z with |0⟩, apply Uf−1 to XZ, swap X,Z, apply Uf to XZ, and discard
Z.

These subcircuits exactly implement Ûf and Û†
f , so this replacement does not change the behavior of B.

Since A is polynomial-time it is also polynomial-query, and thus we have by Lemma 1:

Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1].

By assumption of the lemma, a strong qPRP fk : D ↪→ D exists. Let B̂ be defined like B, with the
following differences: It initially picks a key k for the strong qPRP fk. And invocations to Uf and Uf−1

are replaced by Ufk and Uf−1
k

.
Since CFOs and Flip can be implemented efficiently (using a compact representation of the partial

functions in H), and A is polynomial-time, and fk is a strong qPRP, it follows that

Pr[BCPO ⇒ 1] ≈ Pr[B̂CPO ⇒ 1].

Also note that B̂ is the polynomial-time. (B was not because it picks a random permutation f .
There might not be a polynomial-time implementation for that.) Then by assumption (20), we have:

Pr[B̂CPO ⇒ 1] ≈ Pr[B̂C(H) ⇒ 1 : H
$← D].

By assumption, C is efficiently implementable, so there is a polynomial-time Ĉ that is indistinguishable
from C(H) by polynomial-query adversaries, so:

Pr[B̂C(H) ⇒ 1 : H
$← D] ≈ Pr[B̂Ĉ ⇒ 1].

Since Ĉ is polynomial-time, we can use the strong qPRP property of fk again and get:

Pr[B̂Ĉ ⇒ 1] ≈ Pr[BĈ ⇒ 1].

And since B is polynomial-query (though not polynomial-time because it picks a random permutation
f),

Pr[BĈ ⇒ 1] ≈ Pr[BC(H) ⇒ 1 : H
$← D].

Finally, exactly as in the proof of Theorem 1, we show:

Pr[BC(H) ⇒ 1 : H
$← D] ≈ Pr[Aπ,π

−1

⇒ 1 : π
$← (D ↪→ D)].

Taking all the equations together, we get (21). □
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Symbol index
|x| Absolute value/cardinality
∥ψ∥ Norm of ψ 4
~A~ Operator norm of A 4
|x⟩ Computational basis state 4
⟨x| Adjoint of computational basis state 4
spanX Span of vectors X 4
StO Standard oracle 5, 6
StOs Sanitized standard oracle 10
im f Image of (partial) function f 4
dom f Domain of (partial) function f 4
D l→ R Partial functions from D to R 4
D → R Functions from D to R 4
D ↪→ R Injective functions from D to R 4
C Complex numbers
D A distribution
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H A Hilbert space
Func Set of valid uncompressed functions in oracle 5
⊕ “Group operation” used to implement quantum queries 5
D Domain of the random oracle 5
R Range of the random oracle 5
N Size of the random oracle range (N := |R|) 5
M Size of the random oracle domain (M := |D|) 5
Decomp1 Decompression operation in Zhandry’s compressed oracle,

one register
6

Decomp Decompression operation in Zhandry’s compressed oracle,
all registers

7

|∗⟩ Uniform superposition,
∑
x

1√
N
|x⟩ 8

CFO Compressed function oracle 7
CFOs Compressed function oracle 10
CPO Compressed function oracle, consisting of two oracles CFO

and Flip
13

Flip Permutation flipping oracle 12
U⊥ Part of Decomp1, swaps |⊥⟩ and |0⟩ 6
Q Part of Decomp1, quantum Fourier transform (or not) 6
ε
≈ ε-close with respect to ∥·∥ 4, 4
∅ Empty set / empty partial function 4

Index

CFO, see compressed function oracle
sanitized, 9

closed span, 4
compressed function oracle, 5
compressed oracle

Zhandry’s, 5

database, 7
decompression operation, 6

empty partial function, 4

partial function, 4
empty, 4

projector, 4

sanitized CFO, 9
span

(closed), 4
standard oracle, 6

total function, 4
total injection, 4
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