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Abstract. A Distributed Key Generation (DKG) protocol is an essen-
tial component of threshold cryptography. DKGs enable a group of par-
ties to generate a secret and public key pair in a distributed manner so
that the secret key is protected from being exposed, even if a certain
number of parties are compromised. Robustness further guarantees that
the construction of the key pair is always successful, even if malicious
parties try to sabotage the computation. In this paper, we construct two
efficient robust DKG protocols in the CSIDH setting that work with
Shamir secret sharing. Both the proposed protocols are proven to be
actively secure in the quantum random oracle model and use an Infor-
mation Theoretically (IT) secure Verifiable Secret Sharing (VSS) scheme
that is built using bivariate polynomials. As a tool, we construct a new
piecewise verifiable proof system for structured public keys, that could
be of independent interest. In terms of isogeny computations, our pro-
tocols outperform the previously proposed DKG protocols CSI-RAShi
and Structured CSI-RAShi. As an instance, using our DKG protocols,
4 parties can sample a PK of size 4kB, for CSI-FiSh and CSI-SharK,
respectively, 3.4 and 1.7 times faster than the current alternatives. On
the other hand, since we use an IT-secure VSS, the fraction of corrupted
parties is limited to less than a third and the communication cost of our
schemes scales slightly worse with an increasing number of parties. For
a low number of parties, our scheme still outperforms the alternatives in
terms of communication.
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1 Introduction

Key management is an important aspect of cryptography, as the security of cryp-
tographic algorithms crucially relies on the safety of secret keys. If an attacker
obtains the secret key, the security of the system is generally compromised.
Threshold cryptography addresses this issue by dividing the secret key among a
group of devices, in such a way that only subsets of these devices above a specific
threshold size t can reconstruct the secret key. An attacker would then need to
obtain shares from t + 1 parties to reconstruct the secret key. This effectively
eliminates the single point of failure of cryptographic algorithms. At the basis



of threshold schemes are Distributed Key Generation (DKG) protocols, that are
run by the parties to produce a correct sharing of the secret key along with the
associated public key.

Threshold protocols based on classical assumptions have been extensively
studied and an initiative to standardize them has been taken by NIST.3 However,
due to the vulnerability of classical assumptions, like the Discrete Logarithm
(DL) and factoring problems, against quantum computers [30], the cryptographic
community has begun to work on a general migration of public key cryptography
to algorithms that are based on post-quantum problems. Threshold cryptography
will also need to adapt to these new problems.

One active research direction for designing post-quantum secure protocols is
isogeny-based cryptography, which relies on the hard problem of finding a se-
cret isogeny between two public elliptic curves. Isogeny-based cryptography was
initially based on ordinary elliptic curves [13, 14, 28], but in the last decade, fo-
cus has almost entirely switched to supersingular elliptic curves due to security
and/or efficiency reasons. One of the first protocols to propose using supersingu-
lar elliptic curves was SIDH (supersingular isogeny-based Diffie-Hellman) [17].
However, protocols based on SIDH need parties to reveal extra information along
with their public key, which recently has been proven to be enough to recover
the secret isogeny [10, 24, 27], thus effectively breaking the SIDH-based family
of protocols. Fortunately, newer schemes such as SQISign [18] and CSIDH [11]
(commutative SIDH) are unaffected by these attacks, as they do not need to
reveal this extra information. The intrinsic commutativity of CSIDH has shown
to provide a lot of flexibility when designing cryptographic protocols. As such,
CSIDH provides a versatile toolbox, which allows to build more complex cryp-
tographic protocols, such as threshold schemes [2, 6, 9, 15,19].

Previous DKGs in the CSIDH Setting. The first CSIDH-based actively
secure DKG was proposed as part of the distributed signature scheme called
Sashimi [15]. However, their original DKG protocol is quite inefficient in practice.
In follow-up work, Beullens, Disson, Pedersen and Vercauteren [6] proposed the
first robust DKG protocol for CSIDH, which works with Shamir secret sharing
and allows a set of parties to sample a single public key in a fully distributed
manner. The robustness ensures that the parties are able to carry on the DKG
even if the adversary tries to sabotage the protocol. Their construction, dubbed
CSI-RAShi, consists of two phases. A Verifiable Secret Sharing (VSS) phase,
where the parties create their shares of the secret key, and the Public Key (PK)
computation phase, where the parties use their shares to compute the target
PK. While in traditional Pedersen VSS [26], the verification of shares was easily
done by exploiting the homomorphic properties of modular exponentiation, this
is not possible with elliptic curves. To deal with this concern, [6] introduces
Piecewise Verifiable Proofs (PVPs), a sort of Zero-Knowledge (ZK) proof that
allows parties to verify that the share they got is consistent with respect to some
public commitment. In the PK computation step, a different ZK proof is used.

3 See https://csrc.nist.gov/projects/threshold-cryptography.
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Both these proofs use a binary challenge space and as a result, the protocol is still
computationally expensive, albeit faster than the Sashimi proposal. Moreover,
as a result of the ZK proofs used in the PK computation step, the security of the
DKG protocol needs to rely on a decisional assumption. As a result, the authors
can only argue security when the target public key is uniformly random, rather
than arbitrary.

CSI-RAShi is constructed to sample a single public key [x]E0 in a distributed
manner, and by repeating it k times, one can sample extended public keys of the
form ([x1]E0, . . . , [xk]E0) as they are used in the signature scheme CSI-FiSh [7].
Repeating CSI-RAShi k times is very inefficient, even if optimized [2]. To deal
with that concern, the authors of [2] proposed CSI-SharK, as a variant of CSI-
FiSh with Sharing-friendly Key, as well as Structured CSI-RAShi, as a variant of
CSI-RAShi for Structured Public Keys (SPKs). Structured CSI-RAShi allows a
set of parties to sample an SPK (introduced in [3]), i.e. a public key of the type
([c1x]E0, . . . , [ckx]E0), where c1, . . . , ck define an exceptional set. For an SPK
of the same size k, Structured CSI-RAShi is 4 times faster than generating an
extended public key using the original CSI-RAShi.

Our Contribution. In this paper, we construct two efficient robust DKG pro-
tocols for CSIDH-based cryptographic primitives that work with Shamir secret
sharing. Both protocols are proven to be actively secure in the Quantum Random
Oracle Model (QROM). Our DKG protocols can be considered as an alternative
to the DKG protocols CSI-RAShi [6] and its Structured variant [2]. We show
that both our proposed DKG protocols outperform these previous proposals in
terms of computational cost. Moreover, the VSS step of our DKG protocols does
not rely on any decisional (or computational) assumption and does not use ZK
proofs, but instead uses an efficient Information Theoretically (IT) secure VSS
scheme. However, the latter comes at the cost of increased communication com-
plexity and a higher number of needed honest parties, in comparison with the
alternatives. Specifically, in the VSS step, more than two thirds of the parties
must be honest rather than just the majority of them. But, as we are in the
static corruption setting, for the PK computation phase still our protocols work
in the majority honest setting, as in the original CSI-RAShi and its structured
variant.

Technical Overview. To design our proposed DKG protocols, we have modified
the construction of CSI-RAShi to minimize the number of isogeny computations
required for each party, as they are the most computationally expensive parts in
these protocols. Our first key modification is to change the secret sharing step
of CSI-RAShi to an efficient VSS scheme based on bivariate polynomials, that
was first proposed in [4, 33], but for a different purpose. The idea is that each
party Pi can distribute a value x(i) by sampling a random polynomial q(i)(Z) of
degree t subject to q(i)(0) = x(i), then hiding q(i)(Z) in the bivariate polynomial
S(i)(X,Y ), also of degree t in both variables, in a way that S(i)(0, Z) = q(i)(Z).
Now, instead of sending evaluations of a univariate polynomial, the verification
shares are two polynomials defined by S(i)(j, Y ) = gj(Y ) and S(i)(X, j) = fj(X),
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which are then sent to each other party Pj . Parties can now do pairwise checks
to verify that the polynomials they got from Pi are correct by testing whether

f
(i)
j (k) = g

(i)
k (j) and f

(i)
k (j) = g

(i)
j (k). The key point is that if there are at

least t of these relations that are satisfied, then there exists a unique bivariate
polynomial S(i)(X,Y ) as above and Pi acted honestly.

After the VSS step, to compute the PK, parties use their secret shares and
engage in a round-robin MPC protocol and prove that they did their computation
correctly. As opposed to CSI-RAShi, parties can no longer use the ZK proof
from [15] to prove correct execution, since they did not commit to their shares
x(i) in the VSS step. Instead, we observe that as a result of our modifications, we
can use the VSS as a distributed commitment scheme and prove the correctness
of computations using a PVP scheme. With PVPs, parties are able to prove that
they are updating the PK using q(i)(0) = x(i), which was shared in the VSS step.

Using the bivariate polynomial-based VSS and our new modifications im-
proves the efficiency of the final DKG protocol, when compared to previous
results in the literature. The first source of improvement is that, instead of per-
forming expensive PVPs and isogeny computations to verify the shares, as done
in the VSS step of CSI-RAShi, now the parties just need to perform fast polyno-
mial evaluations and pairwise comparisons. The second source of improvement is
that we replace the ZK proofs in the PK computation step with a PVP scheme,
which is more efficient. Moreover, we remove the need for a decisional assump-
tion and also achieve IT security in the VSS step. Conveniently, removing the
need for a decisional assumption, allows us to use the twist technique from [7], to
extend the challenge space of the PVP scheme, and further improve the commu-
nication and computational costs in some cases. A downside resulting from our
modifications is that the communication complexity increases, but outperforms
previous designs for a low number of parties (e.g. below 26 for k = 26), and the
fraction of corrupted parties allowed in the VSS reduces to less than a third,
rather than half, which seems to be unavoidable for IT security. We also show
how to build extended public keys with this protocol and discuss optimizations
to reduce the overall runtime.

The second DKG protocol we propose allows a set of parties to sample an
SPK. Note that since SPKs only have a single secret key, the VSS step is inde-
pendent of the length of the SPK. In order to adapt the PK computation step
to SPKs, we also construct a new PVP scheme, which is specific to SPKs, called
Structured PVPs (SPVP), which we believe to be of independent interest. The
SPVP scheme allows parties to prove that they are computing/updating the tar-
get SPK using different factors of the x(i) shared in the VSS step. By replacing
the ZK proofs in the SPK computation with our new SPVPs, we also manage
to improve the efficiency of the Structured CSI-RAShi scheme, proposed in [2].

At the end, it is worth mentioning that the idea of using an IT secure VSS
based on bivariate polynomials within a DKG was already exploited by [37],
in the DL setting. In that work, the authors plug the VSS scheme of [4, 33]
into the threshold scheme by Gennaro, Jarecki, Krawczyk and Rabin [22] for
distributing the key generation of the Schnorr signature. After the VSS, the
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PK is then constructed by having the players aggregate all partial public keys
as specified in [22]. However in the DL setting using the bivariate polynomial-
based VSS [4,33] does not provide a big gain in terms of efficiency, in comparison
with [22]. On the other hand, for isogenies, as we show the advantage of using a
bivariate polynomial based VSS scheme in CSI-RAShi [6] and Structured CSI-
RAShi [2] is significant. As we can save on expensive ZK proofs and on the
number of isogeny computations (each taking around 35-40ms).

Efficiency. Our base protocol (for a single public key) is naturally about twice
as fast as CSI-RAShi, currently the state-of-the-art. On the downside, commu-
nication cost scales quadratically in the number of parties n, instead of linearly,
which leads to a noticeable increase when many parties are present but manage-
able for low to medium n. For low n, we get further reduction of these costs due
to the higher impact of using the twist trick with fewer parties.

For larger public keys, we can use optimizations similar to the ones proposed
in [2]. The gains depend on the number of parties n and public key sizes k, but we
show that in terms of the number of isogeny computations, our protocols always
outperform the results from [2]. Due to the twist trick, the most important gains
are visible for low n. But even for n→∞, we outperform extended CSI-RAShi
by a factor of 3 and structured CSI-RAShi with approximately a factor 1+k−1/2.
The gain against the latter thus becomes negligible only for large k and large n.

As a numerical example, consider PKs with k = 26 elements (which have a
size of about 4kB). For n = 4, we get a gain of 3.4 and 1.7 against extended
and structured CSI-RAShi from [2], while for n = 100, this gain reduces to 3.0
and 1.5, respectively. Comparing the communications of our structured scheme
and structured CSI-RAShi for k = 26, our scheme has about a third of the
communication cost when n = 4, while for n = 100, we have about 4 times more
communication, the break-even point being at n = 25 for this public key size.
This break-even point increases with the number of parties, and is e.g. n = 98
for k = 215.

Outline. In Sec. 2, we review some preliminary concepts. In Sec. 3, we first
discuss the VSS based on bivariate polynomials, then use it to construct a DKG
protocol for a PK with a single curve and finally discuss its extension for gener-
ating multiple independent curves. Then, in Sec. 4, we present the second DKG
protocol for sampling an SPK. We discuss and compare the efficiency of our
DKG protocols in Sec. 5. Finally, we conclude the paper in Sec. 6.

2 Preliminaries

Notation. We use the assignment operator← to denote random sampling from
a probability distribution D, e.g. x← D, or uniform sampling from a set X, e.g.
x← X. We write λ to denote a security parameter. We call a function f negligible
in X, if for any constant c, there exists some X0, such that f(X) < X−c for
X > X0. We denote this as negl(X). We call a function simply negligible if it is
negligible in λ. We write ZN := Z/NZ and log(x) := log2(x).
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2.1 Isogeny-based Cryptography

Isogenies are rational maps between elliptic curves, that are also surjective ho-
momorphisms with respect to the natural group structure between these curves.
In this work, we will only consider supersingular elliptic curves and separable
isogenies defined over prime fields Fp. We denote the set of such elliptic curves
as E . The endomorphisms of elliptic curves over Fp define a ring structure that
is isomorphic to orders O in the quadratic imaginary field Q(

√
−p). Separable

isogenies are uniquely defined by their kernels, which in turn can be identified
with the kernels of ideal classes in the class group cl(O). For efficiency reasons,
the prime p is chosen, so that p − 1 = 4

∏
i ℓi consists of the multiplication of

small primes. By this choice, ideals of the type ℓiO split into a prime ideal li and
its conjugate li, uniquely defining an isogeny and its dual, both of small prime
(and thus efficiently computable) prime degree ℓi.

4 Throughout this work, we
assume the class group for the relevant order cl(O) to be known, so that ar-
bitrary ideals can be transformed into efficient isogeny computations using the
relation lattice, by translating them to a small number of consecutive degree-ℓi
isogeny computations.5

We note that in general, class groups are of composite order. For any cyclic
subgroup of the class group, of size N | #cl(O) with generator g, we can then
define isogenies through the action of elements in ZN ⊆ Z#cl(O) as [ ] : ZN×E →
E , where the action [a]E 7→ E′ defines an isogeny with kernel isomorphic to
ker ga, reduced modulo the relation lattice. In this way, the map [ ] defines a free
and transitive group action [14] by ZN (as a proxy for the subgroup of cl(O))
on the set E . We refer the reader to [5, 7, 12, 36] for more details on the explicit
computations of isogenies. For a more thorough introduction to isogenies and
isogeny-based cryptography, the authors recommend [12,16,32].

The fact that N can be composite implies that in general ZN constitutes a
ring (and not a field). This has to be handled with care, as in some applications,
inverse elements are needed. Assuming that N has the prime decomposition∏n

i=1 Ni, where, for later reference, we assume N1 < · · · < Nn, we can easily
work in a subgroup of size N ′ =

∏
i∈S Ni for S ⊂ {1, . . . , N} by using the

generator gN/N ′
.

2.2 DKG Protocols and Piecewise Verifiable Proofs

A DKG protocol mainly consists of secret sharing and PK computation. Secret
sharing-based protocols are interactive schemes between n parties P1, . . . , Pn,

4 The extra factor 4 is chosen so that p ≡ 3 mod 4, which makes the particular curve
E0 : y2 = x3+x supersingular, and allows to work in the more efficient Montgomery
coordinates, see [12] for more details.

5 We note that this is not a trivial assumption, since computing large class groups is
generally difficult using classical computers, cf. [8], which computed a 257-bit class
group and associated lattice of relations for the CSIDH-512 parameter set from [11].
An alternative approach is discussed in [20], which strongly speeds up the class group
computations, but unfortunately leads to much slower group action computations.
We note however that there exist efficient quantum algorithms [23] for this purpose.
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such that at the end of the protocol, each party holds a share of a common
secret s in a way, that only specifically allowed sets (qualified sets) can join
forces in order to efficiently reconstruct s (or equivalently act with the isogeny
[s]), while this is unfeasible for any non-qualified set.

Throughout this work, we realize this sharing using Shamir Secret Sharing
(SSS) [29] and variants thereof. In SSS, the secret is defined as the evaluation of
some secret polynomial q(X) ∈ ZN [X] at zero, i.e. s = q(0) ∈ ZN . The shares
that the parties hold are then just evaluations of q(X) at other positions than
at (typically) zero. For simplicity we fix the share of party Pi to be si = q(i)
for i ∈ {1, . . . , n}. The degree of the secret polynomial, t = deg q, is then the
determining factor of qualified sets, i.e. any set Q of size |Q| > t can use Lagrange
interpolation in order to reconstruct the secret as follows

s = q(0) =
∑

i∈Q q(i)LQ
i =

∑
i∈Q q(i)

∏
j∈Q\{i}

j
j−i mod N ,

where LQ
i are the Lagrange coefficients for the set Q. For a set of size ≤ t, the

value s cannot be reconstructed, and in fact is information-theoretically hidden.
We note that since N might be a composite number in our case, we have to
ensure that n < N1 [19], where N1 is the smallest (non-trivial) divisor of N so
that any difference j − i is guaranteed to be invertible mod N . In case we want
to allow more than N1 parties, we can work in the subgroup generated by gN1 ,
as explained in Sec. 2.1. Throughout the rest of this work, for simplicity, we
always assume N to be the size of the subgroup that we are working with, i.e.
the largest subgroup ZN ⊆ Z#cl(O), for which N1 > n, where N1 is the smallest
non-trivial divisor of N .

In the easiest case, the shares si are produced by a trusted third party, called
a dealer. However, a Verifiable Secret Sharing (VSS) can easily be turned into
a DKG protocol, where the secret polynomial is generated by the parties them-
selves. A direct way to achieve this is outlined in [25], where each party Pi takes
the role of a dealer and generates a polynomial q(i)(X) ∈ ZN [X]t of the correct
degree and privately sends the share q(i)(j) to the party Pj for j ∈ {1, . . . , n}\{i}.
Then, every party can locally compute their own share by summing all the shares.
This implicitly defines the polynomial q(X) =

∑n
i=1 q

(i)(X) and each player’s
share q(j) =

∑n
i=1 q

(i)(j) as the sum of their shares. The implicitly defined se-
cret is s = q(0), unknown to all players, assuming the honest-majority setting
and that the protocol has been executed properly.

Since some (up to t) parties might behave maliciously, parties need a way to
verify that the shares they get are correct, i.e. that these really are the shares
of a polynomial of degree at most t. It is clear, that if a malicious adversary
chooses a polynomial of a degree larger than t, the reconstruction will fail. We
therefore define the functionality of a Shamir-based VSS as follows.

Definition 2.1 ( [1, Functionality 5.5]). We define the VSS-functionality

FV SS(q(X), n) =

{
q(1), . . . , q(n) , if deg q ≤ t,

⊥, . . . ,⊥ , otherwise,
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taking as input a q(X) ∈ ZN [X]t of degree t, and each party i ∈ {1, . . . , n}
receiving a Shamir share q(i). If deg q > t, the parties output ⊥ instead.

As mentioned before, the next step in a DKG is the PK computation. In
isogeny-based protocols, this means generating one or several elliptic curves, e.g.
E = [s]E0, by jointly computing the action [s] in a distributed manner. Since
different elliptic curves cannot be combined, the distributed computation of [s]
has to be done in a round-robin fashion [19].

Security Requirements of DKG Protocols. Next, we recall the security
requirements of DKG protocols based on SSS. We stick to the definitions outlined
in [21], using the notation introduced in [6].6 We denote by A,B ← ⟨AO1(X) |
BO2(Y )⟩ the joint execution of the DKG protocol by (sets of) parties A with
input X and oracle access to O1 and B with input Y and oracle access to O2,
and yielding the output distributions A for A and B for B, respectively. We
define the output distributions of the DKG protocol as follows

Dout(AO1(X),BO2(Y )) =
{
(A,B)

∣∣A,B ← ⟨AO1(X)|BO2(Y )⟩
}
,

and drop the inputs, whenever the input string is empty.

Definition 2.2 (Robust correctness). A DKG protocol based on SSS between
n parties P1, . . . , Pn is called correct, if for any PPT adversary A and any subset
I ⊆ {1, . . . , n} of size |I| > t and n− |I| ≤ t for any t < n, we have that

Pr

 ∄f ∈ ZN [x]t :
E1 = · · · = En = [f(0)]E0 ,

and ∀i ∈ I : f(i) = si

∣∣∣∣∣∣A, {(Ei, si)}i∈I ← ⟨AO | {PO
i }i∈I⟩

 ≤ negl(λ) .

Definition 2.3 (Secrecy). Let O be a random oracle. A DKG protocol based
on SSS between n parties P1, . . . , Pn satisfies secrecy, if for any PPT adversary
A, and any subset I ⊆ {1, . . . , n} with |I| > t and n − |I| ≤ t, there exists a
simulator S = (S1,S2) such that the following distributions are indistinguishable7

Dout(AO|{PO
i }i∈I) ≈ Dout(AS2 |S1(E)) .

Basically, robust correctness implies, that in the honest-majority setting,
the protocol will end in a way that each honest party Pi for i ∈ I will hold
a tuple (Ei, si), for which there exists a polynomial f(X) ∈ ZN [X]t, such that
Ei = [f(0)]E0 and si = f(i), up to negligible probability. Note that the definition
is for the case of a single PK, and it is straightforward to generalize it to the
case of an extended (structured) PK. Secrecy on the other hand implies, that the
adversary A, controlling up to t malicious parties, cannot learn anything about
s, other than what it can learn from the public key E = [s]E0.

6 We emphasize however, that our definition of secrecy is the same as the original one
introduced in [21] and thus differs from the “weaker” version presented in [6].

7 Dout(AO|{PO
i }i∈I) =

{
(A,Ei∗)

∣∣A, {(Ei, si)}i∈I ← ⟨AO|{PO
i }i∈I⟩

}
for any i∗ ∈ I.
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Piecewise Verifiable Proofs. Next, we revisit Piecewise Verifiable Proofs
(PVPs), introduced in [6] to make the secret sharing step in CSI-RAShi ver-
ifiable. PVPs are ZK proofs for a list of relations R0, . . . , Rn with the same
witness space, where individual statements can be verified independently. For
a list of statements x0, . . . , xn, a PVP allows one to prove the existence of a
witness w such that (xi, w) ∈ Ri for any i ∈ {0, . . . , n}. The proof is of the
form (π̃, {πi}i∈{0,...,n}), where (π̃, π0) allows verification of x0 w.r.t. R0 (called
the main proof) and πi for i ∈ {1, . . . , n} further allows verification of xi w.r.t.
Ri. In particular, in [6], the witnesses constitute elements f(X) ∈ ZN [X]t, i.e.
polynomials in the variable X with coefficients defined over ZN and of degree at
most t. The relations are given as

R0 = {((E0, E1), f(x)) | E1 = [f(0)]E0 } ∧ Ri = {(xi, f(x))|f(i) = xi}, (1)

for i = 1, . . . , n, and E0, E1 ∈ E , i.e. supersingular elliptic curves defined over a
prime field Fp. Note that the witness is the same for all the relations.

CSI-RAShi [6] is an n-party honest-majority DKG protocol, that uses PVPs
in its VSS step. The idea is that a party, called the dealer, is in possession of
some polynomial f(X) ∈ ZN [X]t, where t ≤ ⌊n−1

2 ⌋. The dealer publishes E1 =
[f(0)]E0 and distributes the shares f(i) to parties P1, . . . , Pn. To prove that these
shares are correct, the dealer publishes a PVP for the relations R0, R1, . . . , Rn

as described above, and each party Pi can then verify the main statement R0 as
well as the statement Ri related to their share. In the honest-majority setting,
if all honest parties agree that their share is correct, they know that they each
possess a share of a unique polynomial f(X) of degree t, whose evaluation in 0
is in the commitment E1 = [f(0)]E0.

We describe the proof generation and verification of their PVP scheme in
Algorithms 1 and 2, where H : {0, 1}∗ → {0, 1}λ is a random oracle and C :
{0, 1}∗ × {0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [35,
Definition 12] and quantum computationally hiding [6, Definition 2]. The authors
prove that their PVP scheme is correct, sound and ZK, therefore constitutes a
ZK proof system for the individual relations R0, . . . , Rn. For more details, we
refer the reader to the original CSI-RAShi paper [6].

The CSI-RAShi DKG protocol. We quickly outline the building blocks and
underlying security rationale of CSI-RAShi [6]. We refer the reader to the original
source for more details and an algorithmic description of the protocol. The CSI-
RAShi protocol consists of two consecutive phases, the VSS step, and the PK
computation. The VSS is executed as outlined in Sec. 2.2, using a Pedersen-type
approach [25] for a distributed secret generation. The shares are then verified
using PVPs and any inconsistencies are resolved using the complaint resolution
protocol introduced in [22]. At the end of the VSS, the parties that have not
been disqualified, define the qualified set Q, which also implicitly defines the
secret s =

∑
i∈Q f (i)(0). In the PK computation step, the parties within the

qualified set then engage in a round-robin MPC protocol to compute the PK
E = [s]E0 as successive computations of the type Fi = [f (i)(0)]Fi−1, starting at
F0 = E0 and ending at F|Q| = E. Parties prove correctness of their action using
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Algorithm 1: PVP.P : The prover of non-interactive PVP [6].

Input : A witness polynomial f(X) ∈ ZN [X]≤t,
a statement x = ((E0, E1), x1, · · · , xn).

Output: A non-interactive piecewise proof π of the relations in equation (1).

for j = 1, . . . , λ do

bj ← ZN [X]≤t uniformly at random; Set Êj ← [bj(0)]E0

Sample y0, y
′
0 ← {0, 1}λ uniformly at random, and set

C0 ← C(Ê1 ∥ · · · ∥ Êλ, y0), and C′
0 ← C(E0, E1, y

′
0).

for i = 1, . . . , n do

yi, y
′
i ← {0, 1}λ uniformly at random and set Ci ← C(b1(i) ∥ · · · ∥ bλ(i), yi)

and C′
i ← C(xi, y

′
i)

d = d1 . . . dλ ← H(C,C′), where C = (C0, . . . ,Cn),C
′ = (C′

0, . . . ,C
′
n)

for j = 1, . . . , λ do
rj(x)← bj(x)− djf(x) mod N

return π̃ = (C,C′, r) and {πi = (yi, y
′
i)}ni=0, where r = (r1, . . . , rλ).

Algorithm 2: PVP.V : The verifier of non-interactive PVP [6].

Input : An index i = 0, . . . , n, a statement piece xi of the form
x0 = (E0, E1) if i = 0, or xi ∈ ZN if i ̸= 0, as well as a proof piece
(π̃, πi) = ((C,C′, r), (yi, y

′
i)).

Output: true or false

if C′
i ̸= C(xi, y

′
i) then

return false

d1 . . . dλ ← H(C,C′)
if i == 0 then

for j = 1, . . . , λ do

if dj == 0 then Ẽj ← [rj(0)]E0

else Ẽj ← [rj(0)]E1

return C0 == C(Ẽ1, · · · , Ẽλ, y0)
else

return Ci == C(r1(i) + d1xi ∥ · · · ∥ rλ(i) + dλxi, yi)

the ZK proofs introduced in [15, Sec. 3.1]. The share f (i)(0) of any party that
misbehaves in the protocol can be reconstructed using Lagrange interpolation,
so that the protocol always succeeds in the honest-majority setting.

CSI-RAShi satisfies the robust correctness property of Definition 2.2, relying
on the soundness of PVPs. Furthermore, it satisfies a weaker variant of the
secrecy property, which unlike Definition 2.3 assumes the input curve E to be
uniformly sampled from E , rather than being arbitrary [6, Definition 4]. This
modification stems from the fact, that secrecy relies not only on the ZK property
of PVPs, but also on the isogeny-based Decisional Diffie-Hellman assumption
(DDH) [34, Problem 2.2], which only holds for random inputs.8

8 We note that the authors of [6] use the description of very hard homogeneous spaces
as introduced by Couveignes [14], where this assumption is called the decisional
parallelization problem.
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Costs of CSI-RAShi. We discuss the computational and communication costs
of the CSI-RAShi protocol. The authors of [6] state the total sequential cost of
the protocol as n+2+(4n+1)λ isogeny computations, arguing that other costs
are negligible in comparison. For direct comparison with the results in Tables 2
and 3, we summarize the costs of CSI-RAShi and its extended and structured
versions in Table 1 below.

Table 1. Computational (top) and communication (bottom) cost of CSI-RAShi and
its extended and structured versions. The computational costs in terms of isogenies are
taken from [8] and [2], respectively. The communication cost for the basic protocol can
be recovered from the extended case, by setting k = 1. Note that the factor 1

2
in the

CC-communication cost comes from the λ-bit challenge in the zero-knowledge proofs
of [8], which is half the size of a commitment scheme output (CC = 2λ).

Basic Extended Structured

TE 1 + 2nλ (1 + 2nλ)k 1 + 2nλ

TI n+ 2 + (4n+ 1)λ (n+ 2)(k − 1) + 2nλ(3k − 1) 2 + n(k − 1) + 2λ
(
n(
√
k − 1 + 1)2 + 1

)
TC 6n− 2 (6n− 2)k 6n− 2

TH 3n 3nk n(2k + 1)

Extended Structured

CN kλ(t+ 2) λ(t+ 1 +
√
k − 1)

CE 3k k + 2

CC (3n+ 2 + 1
2
)k 3n+ 2 + 1

2

√
k − 1

Security assumptions. Next, we recall the security definitions of isogeny-
based Decisional Diffie-Hellman assumption (DDH) [34, Problem 2.2], and (c0, c1,
· · · , ck−1)-Vectorization Problem with Auxiliary Inputs (Ck−1-VPwAI) [3], that
are used in CSI-RAShi [6] and its structured variant [2], respectively.

Definition 2.4 (Decisional Diffie-Hellman assumption). Distinguish with
non-negligible advantage between the distributions ([a]E, [b]E, [a + b]E) and
([a]E, [b]E, [c]E), where a, b and c are chosen uniformly at random from ZN .

Definition 2.5 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary

Inputs (Ck−1-VPwAI)). Given an element E ∈ E and the pairs (ci, [cix]E)
k−1
i=1 ,

where Ck−1 = {c0 = 0, c1 = 1, c2, . . . , ck−1} is an exceptional set, find x ∈ ZN .

3 Robust DKG for CSIDH Using Bivariate Polynomials

In this section, we introduce a new DKG protocol for CSIDH, based on a VSS
using bivariate polynomials [4,33], an idea that was originally introduced in [4].
When comparing to CSI-RAShi [6], the main advantage of this approach is that
we can replace the piecewise verifiable proofs in the VSS step with simple com-
parison operations and further replace the ZK proofs used in the PK computation
step with the cheaper piecewise verifiable proofs. This results in a more efficient
DKG protocol. On the downside, the protocol has increased the communication
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cost, mainly due to the nature of the IT-secure VSS, and the number of cor-
rupted parties is restricted to t < n

3 , rather than honest-majority (i.e. t < n
2 ),

as is the case for CSI-RAShi. Throughout this section, we assume that n < N1,
where N1 is the smallest divisor of N | #cl(O).

3.1 A VSS Based on Bivariate Polynomials

We revisit the VSS approach from [1, 4, 33], using bivariate polynomials. This
section follows closely along the lines of [1, Sec. 5]. Yet, since we are working
with polynomials over rings, we have to slightly adapt the theorems and point
out differences in the proofs, in order to account for this fact.

A bivariate polynomial S(X,Y ) ∈ ZN [X,Y ] of degree t is a polynomial over
variables X and Y , each of which has degree at most t, i.e. we can write it as

S(X,Y ) =
∑t

i=0

∑t
j=0 aijX

iY j .

We write S(X,Y ) ∈ Z[X,Y ]t. The idea behind using bivariate polynomials in
the BGW VSS [4] is related to the following Theorem, adapted from [1, Claim
5.2].

Theorem 3.1. Let f1(X), . . . , ft+1(X) ∈ ZN [X] be polynomials of degree t.
Then there exists a unique bivariate polynomial S(X,Y ) ∈ ZN [X,Y ] of degree t
such that for every k = 1, . . . , t+ 1, it holds that S(X, k) = fk(X).

Proof. The proof is identical to the proof of Claim 5.2 of [1], which uses La-
grange interpolation over a finite field to construct S(X,Y ) from the evaluations
S(X, k). Since t + 1 < N1, the Lagrange interpolation polynomials are well-
defined over the ring ZN and the proof works analogously. ⊓⊔

Thus every degree-t bivariate polynomial can be interpolated from t+1 univariate
degree-t polynomials in the same way that every degree-t univariate polynomial
can be interpolated from t + 1 points. Conversely, the evaluation of a bivariate
polynomial in one of its variables defines a univariate polynomial (of the same
degree), in the same way as evaluating a univariate polynomial defines a point.
Similarly, if less than t + 1 univariate polynomials are known, the overarching
bivariate polynomial is IT hidden as the following theorem suggests.

Theorem 3.2. Let I ⊂ {1, . . . , n} with |I| ≤ t and let f, g ∈ ZN [X]t with f(i) =
q(i) for all i ∈ I. Then for any two bivariate polynomials S1(X,Y ), S2(X,Y ) ∈
ZN [X,Y ]t with S1(0, Y ) = f(Y ) and S2(0, Y ) = g(Y ), the two sets

{i, S1(X, i), S1(i, Y )}i∈I and {i, S2(X, i), S2(i, Y )}i∈I

are indistiguishable.

Proof. See proof of Claim 5.4 of [1]. ⊓⊔
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Bivariate polynomials can be used in VSSs as follows [4]. To share a secret
x between n parties P1, . . . , Pn, one party, called the dealer, samples a random
polynomial q(Z) ∈ ZN [Z]t such that q(0) = x. Then the dealer samples a random
bivariate polynomial S(X,Y ) ∈ ZN [X,Y ]t with the constraint that S(0, Z) =
q(Z), so in particular S(0, 0) = x. In order to distribute x among the n parties,
the dealer sets

fi(X) = S(X, i) and gi(Y ) = S(i, Y ) ,

then sends fi(X) and gi(Y ) privately to party Pi for i = 1, . . . , n. Each party
can now construct their share as xi = fi(0) = S(0, i) , which allows to recover
x = S(0, 0) via Lagrange interpolation. The true advantage of using bivariate
polynomials manifests itself in the share verification step, which relies on the
following theorem.

Theorem 3.3. Let K ⊆ {1, . . . , n} be a set of indices with |K| ≥ t + 1 and
let {fk(X), gk(X)}k∈K be a set of pairs of polynomials in ZN [X]t. If fi(j) =
gj(i) holds for every i, j ∈ K, then there exists a unique bivariate polynomial
S(X,Y ) ∈ ZN [X,Y ]t, such that for every k ∈ K, fk(X) = S(X, k) and gk(Y ) =
S(k, Y ) .

Proof. This proof works analogous to the proof of Claim 5.3 of [1], by using the
uniqueness of S(X,Y ) guaranteed by Theorem 3.1 (instead of [1, Claim 5.2]). ⊓⊔

Thus, in order to verify the correctness of their shares, each pair of parties Pi, Pj

simply checks that fi(j) = gj(i) and gi(j) = fj(i). If all these tests succeed, then
parties know that their shares are consistent with a single bivariate polynomial
and that the sharing was successful. In the converse case, if some of these checks
do not succeed, the players engage in the following steps to resolve the conflict [1].

1. If for a player Pi, the checks fi(j)
?
= gj(i) or gi(j)

?
= gj(i) do not succeed,

then Pi broadcasts a complaint by disclosing (i, j, fi(j), gi(j)). As a response,
the dealer reveals (i, fi(X), gi(Y )). Then each other player Pk evaluates the
complaints as below. Whenever players are satisfied with the complaint res-
olution, they broadcast consistent, otherwise they don’t.

(a) If, for every joint complaint, e.g. (i, j, fi(j), gi(j)) by Pi and (j, i, fj(i), gj(i))
by Pj , the dealer does not reveal (i, fi(X), gi(Y )) nor (j, fj(X), gj(Y )),
jump to step 2. (without broadcasting consistent), otherwise continue.

(b) If there exists a response (k, fk(X), gk(X)), Pk accepts this as its new
shares, then jumps to step 2. (without broadcasting consistent), otherwise
continue.

(c) For any other response, verify if the polynomials revealed by the dealer
indeed do not satisfy the necessary checks. If they don’t, jump to step
2. (without broadcasting consistent), otherwise continue.

(d) Broadcast the message consistent.

2. If at least n− t parties have broadcasted consistent, then each party outputs
its share xi = fi(0), otherwise return ⊥.
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Theorem 3.4. For t < n/3, the secret sharing protocol, along with the conflict
resolution procedure described above, implements FV SS in a correct and secure
way, for a static malicious adversary (which might include the dealer).

Proof. We refer the reader to the proof of Theorem 5.7 of [1]. The proof here
works the same way, except that references to Claims 5.3 and 5.4 should be
substituted with Theorems 3.3 and 3.2, respectively. Furthermore, the values
α1, . . . , αn, at which the polynomials are evaluated in these proofs, should be
chosen from the subset {1, . . . , N1− 1}. For simplicity, we choose {1, . . . , n}. ⊓⊔

3.2 Robust Distributed Generation of [x]E0

We can easily extend the protocol described in the previous section to a dis-
tributed VSS by using the approach from [25]. There, each party Pi involved
in the protocol individually takes the role of the dealer and constructs and dis-
tributes shares of its secret x(i) to each other party. The final secret is then
simply the sum of all the secrets and each party’s share is the sum of all the
shares. Yet, if parties misbehave (as dealers or as receiving parties), the checks
described in the previous section will uncover this and parties will be disqual-
ified. In the end, the secret and secret shares are then actually defined as the
sum of the respective elements of all the qualified players. After a shared secret
x was implicitly defined in the VSS step, the parties engage in a PK compu-
tation step to compute the PK [x]E0. Thus our DKG protocol’s steps follow a
two step approach, along the lines of [22] or [6]. In contrast to those protocols
however, the parties do not have to commit to their shares in the first phase, but
rather resort to the pairwise comparisons described in the previous subsection.
We present our protocol in Fig. 1 and prove the following theorem in App. A.

Theorem 3.5. If PVPs are sound, then the DKG protocol of Fig. 1 is correct
and robust. If PVPs are zero-knowledge, then the DKG protocol satisfies the
secrecy property.

Below, we explain some details of the steps in Fig. 1.

VSS Step. We assume each party Pi wants to share a secret x
(i). The distribution

of x(i) is achieved by sampling a random univariate polynomial q(i)(Z) ∈ ZN [Z]t
with x(i) = q(i)(0) and a random bivariate polynomial S(i)(X,Y ) ∈ ZN [X,Y ]t
with S(i)(0, Z) = q(i)(Z). Then Pi sets

f
(i)
j (X) = S(i)(X, j) and g

(i)
j (Y ) = S(i)(j, Y )

for j = 1, . . . , n and sends f (j)(X) and g(j)(Y ) privately to party Pj for all j.
The parties engage in the protocol to verify the correctness of their shares. In
case the checks fail, i.e. ⊥ is returned while a player Pk is the dealer, then Pk

will be disqualified and the protocol continues without the inputs by Pk. Thus,
after the consistency check step, there will be a set Q ⊆ {1, . . . , n} of qualified
parties which implicitly defines the shared secret x as

x =
∑

i∈Q x(i) =
∑

i∈Q S(i)(0, 0) =
∑

i∈Q q(i)(0) = q(0) .
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Verifiable Secret Sharing:

1. For i = 1, . . . , n, player Pi

(a) samples q(i)(Z)← ZN [Z]t and sets x(i) = q(i)(0),
(b) samples S(i)(X,Y )← ZN [X,Y ]t with S(i)(0, Z) = q(i)(Z),

(c) for j = 1, . . . , n, defines f
(i)
j (X) = S(i)(X, j) and g

(i)
j (Y ) = S(i)(j, Y ) and

sends {f (i)
j (X), g

(i)
j (Y )} privately to party Pj .

2. For k = 1, . . . , n, each pair of players Pi, Pj checks that f
(k)
i (j) = g

(k)
j (i) and

g
(k)
i (j) = f

(k)
j (i). Whenever one of these checks fails, the concerned player runs

the conflict resolution procedure described in Sec. 3.1. In case the procedure
outputs ⊥, the dealer Pk of the concerned polynomials is disqualified, otherwise
the protocol continues normally.

3. In the end, all the honest players agree on the same set of qualified players
Q ⊆ {1, . . . , n}, and the shared secret key x is given as the sum of the individual
secrets of the qualified players x =

∑
i∈Q x(i), while the parties’ shares of x can

be constructed as xj =
∑

i∈Q f
(i)
j (0).

Computing the Public Key:

4. Let for simplicity Q = {1, . . . , n′}. In a round-robin way, the qualified players
now compute Fi ← [x(i)]Fi−1 where F0 = E0. At each step, using Algorithm 1,
player Pi further creates and publishes a PVP proof

π(i) = (π̃(i), π
(i)
1 , . . . , π

(i)

n′ )← PVP.P
(
(Fi−1, Fi); q

(i)(Z)
)

which includes a main proof (π̃(i), π
(i)
0 ) as well as individual proof pieces π

(i)
j for

each other player Pj .

5. Using Algorithm 2, each other player Pj verifies both PVP.V(j, f
(i)
j (0), π̃(i), π

(i)
j )

and PVP.V(0, (Fi−1, Fi), π̃
(i), π

(i)
0 ). Whenever a verification of π(i) fails, the ver-

ifier Pj broadcasts f
(i)
j (X). All other parties verify correctness of f

(i)
j (X) as in

step 2. If it is correct, since there are at least t + 1 honest players, they will
be able to reconstruct q(i)(0), compute Fi and proceed with the protocol (and

potentially disqualify Pi). Otherwise, if the checks of f
(i)
j (0) fail, the complaint

can be ignored (or Pj disqualified). In the latter case, the shares of Pj can also
be reconstructed by the at least t+ 1 honest players.

6. At the end of the round-robin, the parties return the public key Fn′ = [x]E0 .

Fig. 1. The DKG protocol for a single public key [x]E0.

Each party can derive their share xj of x as

xj = q(j) =
∑

i∈Q q(i)(j) =
∑

i∈Q f
(i)
j (0) ,

and x = q(0) can be recovered by any subset of at least t+ 1 parties.

PK Computation Step. In this step, the parties in Q engage in a round-robin
protocol for computing the public key [x]E0. For simplicity, we assume Q =
{1, . . . , n′}. Then, at step i, party Pi will compute

Fi−1 7→ Fi = [x(i)]Fi−1 ,
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where F0 is some starting curve. At the end of the round-robin,

Fn′ = [x(n′)] · · · [x(1)]F0 =
[∑

i∈Q x(i)
]
F0 = [x]F0

is the public key. The only thing left to do for each player Pi is to prove that
they used the correct x(i) = q(i)(0). Since the other parties Pj each possess a

share f
(i)
j (0) = S(i)(0, j) = q(i)(j), the dealer Pi can convince them of having

used the correct action by proving the following relation

- Fi = [q(i)(0)]Fi−1 and
- for j ∈ Q, player Pj possesses the share q(i)(j) of q(i)(0).

for the witness polynomial q(i)(Z) ∈ ZN . It turns out that this is exactly the
language that is proved using the PVPs from Sec. 2.2, originally introduced in [6].
Thus a player Pi can convince the other players of having acted with q(i)(0), by

relating it to the shares q(i)(j) = f
(i)
j (0) distributed in the VSS step.

Extended Public Keys. The DKG protocol in Fig. 1 can be easily extended
to sample k public keys, which is required in protocols like CSI-FiSh [7]. This can

simply be done by generating multiple polynomials S
(i)
1 , . . . , S

(i)
k for the respec-

tive secrets x(1,i), . . . , x(k,i). In the PK computation step, parties then compute
the curves F 1

i ← [x(1,i)]F 1
i−1, . . . , F k

i ← [x(k,i)]F k
i−1 , and prove correctness at

each step. In this case, it requires running k independent PVPs.

4 Robust DKG for Structured Public Keys

We recall that for a given secret x ∈ ZN , an SPK [2, 3] has the form {Ei =
[cix]E0}ki=1, where ci ∈ Ck and Ck = {c1 = 1, c2, · · · , ck} is a public (su-
per)exceptional set, see also Sec. 2.1. In this section, we present a new variant
of the DKG protocol in Fig. 1, which would allow a set of parties to sample an
SPK in a distributed manner.

VSS Step. Since an SPK has only one secret key, we need to execute the VSS
step only once. This is done exactly as in Fig. 1.

SPK Computation Step. In the SPK computation step, for a given superexcep-
tional set Ck = {c1 = 1, c2, . . . , ck}, each party Pi has to compute

F 1
i ← [x(i)]F 1

i−1, F 2
i ← [c2x

(i)]F 2
i−1, . . . , F k

i ← [ckx
(i)]F k

i−1 ,

and give a proof that they updated all the curves in the SPK with correct factors
of the secret key x(i) = q(i)(0) shared with other parties. Since the other parties

Pj each possess a share f
(i)
j (0) = S(i)(0, j) = q(i)(j) from the VSS step, party Pi

needs to convince them that it used the correct action by proving the following
relation:
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- For a public superexceptional set Ck = {c1 = 1, c2, . . . , ck}:
F 1
i = [c1q

(i)(0)]F 1
i−1 ∧ · · · ∧ F k

i = [ckq
(i)(0)]F k

i−1, and

- for j ∈ Q, player Pj possesses the share q(i)(j) of q(i)(0),

where q(i)(Z) ∈ ZN is the witness polynomial. To prove the above relations, we
propose a new PVP scheme, which we call Structured PVP (SPVP), that can
be considered as an extension of the one proposed in [6, Algorithms 3 and 4],
and which will allow us to prove the computation of SPKs in our DKG.

Structured PVP (SPVP). We define the following list of relations R =
(R0, . . . , Rn), whose common witness space is ZN [X]≤t, the set of polynomials
over ZN of degree at most t:

R0 = {((Ck, F1, F
′
1, . . . , Fk, F

′
k), f(x)) | (F ′

l = [clf(0)]Fl)
k
l=1 },

∀i = 1, . . . , n : Ri = {(xi, f(x))|f(i) = xi} . (2)

A statement x0 for R0 consists of a public superexceptional set Ck = {c1 =
1, c2, . . . , ck}, and a set of curves (F1, F

′
1, . . . , Fk, F

′
k) ∈ E2k. Just as in the original

PVPs, a statement xi for the relations {Ri}i=1,··· ,n is an element of ZN .
The description of non-interactive SPVP for relations of the above form

are presented in Algorithms 3 and 4. The algorithms use a random oracle
H : {0, 1}⋆ → {0, 1}λ, and a non-interactive commitment scheme C : {0, 1}⋆ ×
{0, 1}λ → {0, 1}2λ, where λ is the security parameter. In App. A, we prove the
following Theorem.

Theorem 4.1. Assuming that the commitment scheme C is collapsing and quan-
tum computationally hiding, the described non-interactive PVP for structured
public keys (in Algorithms 3 and 4) is complete, sound, and ZK in the QROM
for the list of relations given in equation (2).

Efficiency. As it can be seen, by running SPVP.P a party needs to compute λk
group actions, query once to the random oracle H, and 2(n + 1) times to the
commitment scheme C. Similarly, by running SPVP.V a verifier needs to query
once to the random oracle H, and twice to the commitment scheme C, and only
in the case i = 0 it needs to compute λk group actions.

Ternary Challenge Space. The challenge space of the (structured) PVP schemes
is binary. As a result, the PVP scheme constructed in [6] and its new variant
proposed above need to be repeated λ times to achieve the soundness error 1

2λ
.

Unlike in CSI-RAShi, in our DKG protocols, the first party generates a PVP
proof starting from the base curve E0. Since the class group enjoys a symmetry
around the elliptic curve E0, this allows us to use the twist trick introduced in [7]
and extend the challenge space of the PVP schemes to {−1, 0, 1}, with minimal
changes to the descriptions in Algorithms 3 and 4. The resulting soundness
error rate becomes 1

3 and the number of repetitions reduces to λ′ := ⌈λ/ log2 3⌉
to achieve the soundness error 1

2λ
. This results in a noticeable gain, especially if

the number of parties is small.
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Algorithm 3: SPVP.P : The prover of non-interactive Structured PVP.

Input : A witness polynomial f(X) ∈ ZN [X]≤t,
a statement x = ((Ck, F1, F

′
1, . . . , Fk, F

′
k), x1, · · · , xn)).

Output: A non-interactive piecewise proof π of the relations in equation (2).

Parse Ck = {c1, c2, . . . , ck}.
for j = 1, . . . , λ do

bj ← ZN [X]≤t uniformly at random

F̂ 1
j ← [c1bj(0)]F1 , . . . , F̂ k

j ← [ckbj(0)]Fk

Sample y0, y
′
0 ← {0, 1}λ uniformly at random, and set

C0 ← C(F̂ 1
1 , · · · , F̂ k

1 ∥ · · · ∥ F̂ 1
λ , . . . , F̂

k
λ , y0),

C′
0 ← C(F1, F

′
1 ∥ · · · ∥ Fk, F

′
k, y

′
0).

for i = 1, . . . , n do

yi, y
′
i ← {0, 1}λ uniformly at random; set Ci ← C(b1(i) ∥ · · · ∥ bλ(i), yi);

and C′
i ← C(xi, y

′
i)

d = d1 . . . dλ ← H(C,C′), where C = (C0, . . . ,Cn),C
′ = (C′

0, . . . ,C
′
n)

for j = 1, . . . , λ do
rj(x)← bj(x)− djf(x) mod N

return π̃ = (C,C′, r) and {πi = (yi, y
′
i)}ni=0, where r = (r1, . . . , rλ).

Algorithm 4: SPVP.V : The verifier of non-interactive Structured PVP.

Input : An index i = 0, . . . , n, a statement piece xi of the form
x0 = (Ck, F1, F

′
1, · · · , Fk, F

′
k) if i = 0, or xi ∈ ZN if i ̸= 0, as well as

a proof piece (π̃, πi) = ((C,C′, r), (yi, y
′
i)).

Output: true or false

if C′
i ̸= C(xi, y

′
i) then

return false

d1 . . . dλ ← H(C,C′)
if i == 0 then

for j = 1, . . . , λ do

if dj == 0 then F̃ 1
j ← [c1rj(0)]F1, . . . , F̃ k

j ← [ckrj(0)]Fk

else F̃ 1
j ← [c1rj(0)]F

′
1, . . . , F̃ k

j ← [ckrj(0)]F
′
k

return C0 == C(F̃ 1
1 , · · · , F̃ k

1 ∥ · · · ∥ F̃ 1
λ , · · · , F̃ k

λ , y0)
else

return Ci == C(r1(i) + d1xi ∥ · · · ∥ rλ(i) + dλxi, yi)

Construction of the DKG Protocol. Fig. 2 describes the construction of our
proposed robust DKG protocol for structured public keys. The protocol uses the
distributed VSS scheme described in Sec. 3.1, and the non-interactive Structured
PVP (SPVP.P,SPVP.V ), given in Algorithms 3 and 4, as a subroutine. We prove
the following Theorem in App. A.

Theorem 4.2. If structured PVPs are sound, then the DKG protocol of Fig. 2
to generate structured public keys is correct and robust. If structured PVPs are
ZK, then the DKG protocol satisfies the secrecy property.
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Verifiable Secret Sharing:
This is done in the same way as Fig. 1. The players furthermore agree on an excep-
tional set Ck = {c1 = 1, c2, . . . , ck}.

Computing the Structured Public Key:

4. Let for simplicity Q = {1, . . . , n′}. Given a superexceptional set Ck = {c1 =
1, c2, . . . , ck}, a qualified set of parties engage in a round-robin protocol, and
party Pi computes

F 1
i ← [x(i)]F 1

i−1, F 2
i ← [c2x

(i)]F 2
i−1, . . . , F k

i ← [ckx
(i)]F k

i−1 ,

where F 1
0 = F 2

0 = · · · = F k
0 = E0. At each step, player Pi further uses the

non-interactive Structured PVP (SPVP.P,SPVP.V ), given in Algorithms 3 and
4, and creates and publishes a structured PVP proof,

π(i) = (π̃(i), π
(i)
1 , . . . , π

(i)

n′ )← SPVP.P
(
Ck, (F

1
i−1, F

1
i , · · · , F k

i−1, F
k
i ); q

(i)(Z)
)

which includes a main proof (π̃(i), π
(i)
0 ) as well as individual proof pieces π

(i)
j for

each other player Pj .

5. Each other player Pj verifies both SPVP.V(j, f
(i)
j (0), π̃(i), π

(i)
j ) and

SPVP.V(0, (Ck, (F
1
i−1, F

1
i , · · · , F k

i−1, F
k
i )), π̃

(i), π
(i)
0 ). Whenever a verifica-

tion of π(i) fails, the verifier Pj broadcasts f
(i)
j (X). All other parties verify

correctness of f
(i)
j (X) as in step 2 of Fig. 1. If it is correct, since there are at

least t + 1 honest players, they will be able to reconstruct q(i)(0), compute Fi

and proceed with the protocol (and potentially disqualify Pi). Otherwise, if

the checks of f
(i)
j (0) fail, the complaint can be ignored (or Pj disqualified). In

the latter case, the shares of Pj can also be reconstructed by the at least t+ 1
honest players.

6. At the end of the round-robin, the parties return the structured public key

F 1
n′ = [x]E0, F 2

n′ = [c2x]E0, · · · , F k
n′ = [ckx]E0 .

Fig. 2. The DKG protocol for structured public keys.

5 Efficiency of the DKG Protocols and Optimizations

We summarize the computational and communication costs of our DKG pro-
tocols in Tables 2 and 3. We express the computational cost as the sequential
runtime of the protocol steps, i.e. the total runtime from start to finish, including
when some of the parties are idle. The communication cost is expressed in terms
of outgoing communication per party. These costs are established in detail in
the App. B, where we also discuss optimizations in order to minimize them.

Comparison of Extended and Structured Cases. We end this section
with a comparison between DKGs building extended or structured public keys
in terms of computational and communication costs. A direct comparison of
Tables 2 and 3 reveals that while extended DKGs scale linearly with k in every
term, structured DKGs only scale with k in the number of isogeny computations
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Table 2. Computational costs of the basic, extended and structured DKG in terms
of polynomial evaluations TE , isogeny computations TI and calls to the commitment
scheme TC and random oracle TH . The cost represents the total sequential cost of the
protocol, including idle times by the parties. For compactness, we do not consider the
twist trick described in the previous section; it can easily be reinstated by substituting
the terms of the form nλ to λ′ + (n− 1)λ in the factors of TE and TI . The impact of
the twist trick is further discussed in App. B. We define χn,k =

⌈
k
n

⌉
−

⌊
k
n

⌋
.

Basic DKG Extended DKG Structured DKG

TE 2(n− 1)2 + nλ(n+ 2) 2(n− 1)2k + nλ(n
⌈
k
n

⌉
+ k + χn,k) 2(n− 1)2 + nλ(2n+ 1)

TI 2nλ+ n nλ(k + χn,k) + n
⌈
k
n

⌉
nλ(k + χn,k) + n

⌈
k
n

⌉
TC 2n(n+ 3) 2n

(⌈
k
n

⌉
(n− 1) + 2k + 2χn,k

)
2n(3n− 1)

TH 2n n(k + χn,k) n2

Table 3. Communication costs of the extended and structured DKG in terms of the
information contained in elements of ZN and E , i.e. CN and CE respectively, and of
the output of our commitment scheme CC . The cost represents the outgoing cost per
party. The cost of the basic DKG immediately follows by setting k = 1 in either case.
We regain the twist trick by the substitution λ 7→ λ′ in the costs of CN .

Extended DKG Structured DKG

CN 2k(n− 1)(n+ t− 1) + kλ(t+ 1) 2(n− 1)(n+ t− 1) + λ(t+ 1)
CE k k
CC k(3n+ 2) 3n+ 2

TI and the number of shared elliptic curves CE . We summarize the trends for
varying k and n in Figs. 3 and 4 below, and discuss more details in the App. B.
Figs 3 and 4 also compare our results with CSI-RAShi [6] with extended public
keys (using the optimizations from [2, Sec. 4.3]), as well as the recently proposed
structured CSI-RAShi from [2, Sec. 5.3].9 Both of these schemes are honest-
majority Shamir secret sharing based DKG protocols in the CSIDH setting.
To our current knowledge, Structured CSI-RAShi represents the most efficient
isogeny-based DKG in the literature for (structured) public keys of size k > 1.

9 We note that [2] also analyzes extended and structured versions of the Sashimi
DKG [15], which is a full-threshold DKG. The authors in [2] show that the communi-
cation and computational costs of this DKG are basically the same as for CSI-RAShi,
up to some barely noticeable constant factors. We therefore omit their analysis here.
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Fig. 3. Computational cost in terms of isogeny computations for the CSIDH-512 pa-
rameter set, shown as a function of the number of parties n (left; for k = 26) and as a
function of the public key size k (right; for n = 6). We can see that our protocols out-
perform the protocols from [2,6], most notably for large n or low k. For asymptotically
large k, our protocols coincide with structured CSI-RAShi in the number of isogeny
computations.
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Fig. 4. Communication cost in kilobytes for the CSIDH-512 parameter set, shown as
a function of the number of parties n (left; exemplified for k = 26) and as a function
of the public key size k (right; for n = 6).
We compare our results to the extended and structured CSI-RAShi from [2]. We choose
t as the largest integer < n/3 in the bivariate case and < n/2 for (structured) CSI-
RAShi. The communication cost of our schemes is lower for n < 10 (extended case)
and n < 25 (structured case), but the worse asymptotic behavior becomes noticeable
above those values.

6 Conclusion

In this paper, we presented two efficient robust DKG protocols in the CSIDH
setting, based on secret sharing with bivariate polynomials, which outperform
current alternatives [2, 6] in terms of computational cost.

The first protocol allows a set of parties to sample a public key like [x]E0 or
([x1]E0, · · · , [xk]E0) and obtain a Shamir share of each of the secret keys. Such
public keys are used in isogeny-based cryptosystems (e.g. [19,28]) and signature
schemes (e.g. [7]), respectively. The second protocol allows a set of parties to

21



sample a structured public key, e.g. a PK of the form ([c1x]E0, · · · , [ckx]E0),
as used in the CSI-SharK signature scheme [2], and obtain a Shamir share of
x. Both protocols are secure in the QROM and achieve IT security in the VSS
step. However, compared to current alternatives, our protocols generally require
more communication between parties (for a high number of parties) and a higher
number of honest participants (more than two-thirds) during the VSS step.

In Sec. 5 we showed that for generating a single PK, [x]E0, our first protocol
is at least two times faster than the state-of-the-art scheme CSI-RAShi [6]. In
cases where the number of parties is small, the improvement is even higher, e.g.
for n = 2, our first DKG protocol is about 3 times faster and also requires 27%
less communication. When generating extended or structured public keys, our
protocols are also faster than the currently most efficient ones [2,6]. For instance,
using our protocol, 4 parties can sample a PK of size 4kB (i.e., k = 26), for CSI-
FiSh [7] and CSI-SharK [2], respectively 3.4 and 1.7 times faster than the current
DKG protocols.

As a building block for our second DKG protocol, in Sec. 4, we presented a
new PVP scheme specifically for SPKs, which we think can be of independent
interest for future protocols using SPK.
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A Security Proofs

A.1 Proof of Theorem 3.5

We prove the security of the new DKG protocol shown in Fig. 1 by the following
theorem.

Theorem 3.5. If PVPs are sound, then the DKG protocol of Fig. 1 is correct
and robust. If PVPs are zero-knowledge, then the DKG protocol satisfies the
secrecy property.

Proof. Robust correctness: By Theorem 3.4, it is clear that the execution of
the VSS step is correct. At the end of this step, there is a non-empty qualified
set Q, containing at least n− t honest parties. Each party in Q holds a correct
share of the secret x, as specified by Theorem 3.4.

Correctness of the public-key computation step arises from the correct ex-
ecution of the round-robin computation, the latter being proven and verified
using PVPs. We now show that the correctness of our protocol reduces to the
soundness of the PVPs. To this end, define A as an adversary against the cor-
rectness of our protocol. We then construct a PPT algorithm BA that breaks
the soundness of the PVP, simulating the honest parties and interacting in the
protocol with A. Let QB denote the set of the honest parties controlled by B
and let QA = Q\QB. At the end of the protocol, B samples a random index i∗
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in QA and returns the statements ((Fi∗−1, Fi∗), {q(i
∗)(j)}j∈QB) and the proofs

(π̃(i∗), π
(i∗)
0 , {π(i∗)(j)}j∈QB).

If no party in QA successfully proved an invalid statement of the PVP, then
we know that for each i, there exists q(i)(Z), such that Fi = [q(i)(0)]Fi−1 and

q(i)(j) = f
(i)
j (0) for all j. For any proof that fails, the honest parties can recon-

struct this polynomial using the shares received in the VSS, thus they will be
able to compute Fi = [q(i)(0)]Fi−1. Therefore, in this case, the honest parties are
guaranteed to be able to output the public key Fn′ = [x]E0, making the output
correct and satisfying robustness.

Assume now that a party in QA was able to successfully prove an invalid
statement using the PVP, which can lead to an incorrect protocol output. If
the index of this party coincides with the index i∗ selected by B, then B has
successfully output a statement and proof violating the soundness of the PVPs.
It is clear that the probability of B choosing the correct index is 1/|QA|. With
|QA| ≤ t, we can express AdvcorrectnessA ≤ t · AdvsoundnessB . Thus, if A is a PPT-
adversary, which has a non-negligible advantage against the correctness of the
DKG protocol, then B will be a PPT-adversary with a non-negligible advantage
against the soundness of the PVP.

Secrecy: Let A be an adversary against the secrecy of the protocol. On a given
input E∗ ∈ E , we construct a simulator S = (S1,S2) (with shared state), which
simulates the honest parties interacting with A as well as the random oracle, so
that the simulation is indistinguishable from the real protocol, and the output
curve is E∗. Similar to [6], we do this in incremental steps, here as a sequence of
three simulators S(0),S(1) and S(2), which we describe below. We again denote
by QA ⊂ Q, the subset of qualified parties controlled by A and QS = Q\QA.

- S(0): S(0)1 simulates the honest parties correctly, while S(0)2 simulates a ran-
dom oracle by maintaining a list of queries.

- S(1): S(1)1 picks a honest party Pi∗ for i∗ ∈ QS , which behaves exactly as in
the real protocol with one exception. Instead of computing the proof π(i∗)

honestly, S(1)1 calls the simulator SPV P to construct π(i∗). S(1)2 still takes the
role of the random oracle, but forwards the queries of the PVP simulation
to the random oracle simulator of SPV P .

- S(2): In order to force the element E∗ as output of the protocol, S(2)1 first

reconstructs the value x∗ =
∑n′

i=i∗+1 x
(i). For i ∈ QS , these values are known,

while for i ∈ QA, these can be computed by interpolation of q(i) (since

|QS | > t). Then instead of computing Fi∗ in the standard way, S(2)1 computes
F ∗ = [−x∗]E∗ and uses the same procedure as S(1) for constructing the

proof. S(3)2 behaves in the same way as S(2)2 .

We can see that with the change by S(2), due to the correctness and robustness of
the protocol the round-robin will necessarily lead to the computation and output

of
[∑n′

i=i∗+1 x
(i)
]
F ∗ = [x∗ − x∗]E∗ = E∗. We are left to prove that the view

of A is indistinguishable from the real execution of the protocol. We argue the
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following identification step-by-step, using the notation introduced in Sec. 2.2.

Dout(AO, {PO
i }i∈QS )

(1)
= Dout(AS(0)

2 ,S(0)1 )
(2)
≈ c Dout(AS(1)

2 ,S(1)1 )
(3)
= Dout(AS(2)

2 ,S(2)1 ) .

(1) Since S(0) performs the simulation faithfully, it is clear that the distribution
is identical to the real protocol.

(2) Distinguishing these two distributions means distinguishing the real execu-
tion of the PVP protocol from the simulated one, thus breaking the zero-
knowledge property of the PVPs. Therefore, since PVPs are computationally
zero-knowledge, these two distributions are computationally indistinguish-
able.

(3) The real and simulated distributions here are identical. This is due to the
fact, that the information which A holds, tells it nothing about how the
action of x(i) should look like. In fact, x(i) is information-theoretically hidden
by Theorem 3.2. Therefore, there is no way for A to distinguish between the
real and simulated executions of the protocol.

⊓⊔

A.2 Proof of Theorem 4.1

We prove the security of new non-interactive Structured PVP, described in Al-
gorithms 3 and 4 by the following theorem.

Theorem 4.1. Assuming that the commitment scheme C is collapsing and quan-
tum computationally hiding, the described non-interactive PVP for the structured
public keys (in Algorithms 3 and 4) is complete, sound, and ZK in the QROM
for the list of relations given in equation (2).

Proof. The proof of this theorem is analogous to the proof of [6, Theorem 2],
with a few differences, which we will highlight in this proof.

A key peculiarity of PVPs (and SPVPs) is that they use a weak version of the
Fiat–Shamir transform, i.e. where the random oracle is called with commitments
as inputs rather than commitments and statements. In [6], the consequences
regarding the security of this are treated in detail and PVPs could be proven
secure, even with this modification. We refer the reader to [6, App. A] for more
details. We note that these results also still apply to our case, so we will omit
proving them again. Rather, let us point out, where the differences between
SPVPs and PVPs lie. These are mainly in the definition of the relation R0,
which in the original CSI-RAShi paper is defined as

{(x0 = (F1, F
′
1), f(x)) | (F ′

1 = [f(0)]F1)} ,

and thus represents the special case k = 1 and c1 = 1 of the definition in
equation (2).10 Similarly, the commitments as represented in Algorithms 3 and
4 also reduce to the case k = 1.
10 Regarding security assumptions, the fact that f(0) cannot be obtained from

(F1, F
′
1 = [x]F1) relies on the GAIP, while we additionally rely on Ck-Vectorization
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As a result of this different structure, the proofs for completeness and sound-
ness are adapted below for the case i = 0. The case i ̸= 0 remains unchanged, as
also here the relation is unchanged. We note that zero-knowledge immediately
follows from the properties of the commitment scheme C and is therefore analo-
gous to the proof in [6].

Completeness. For any j = 1, . . . , λ, if dj = 0, then rj = bj and hence F̃ l
j =

[clrj(0)]Fl = [clbj(0)]Fl = F̂ l
j for l = 1, · · · , k. If dj = 1, then rj(0) = bj(0)−f(0),

so again we have F̃ l
j = [clrj(0)]F

′
l = [clbj(0) − clf(0)][clf(0)]Fl = [clbj(0)]Fl =

F̂ l
j , for l = 1, · · · , k. Thus both C0 are equal and the verifier will accept.

Soundness. Let I ⊆ {0, 1, · · · , n} with |I| > t. Given two accepting transcripts
with different challenges (e.g. dj = 0 and d′j = 1, without loss of generality), if 0 ∈
I and any of [c1rj(0)]F1 ̸= [c1r

′
j(0)]F

′
1, [c2rj(0)]F2 ̸= [c2r

′
j(0)]F

′
2, · · · , [ckrj(0)]Fk ̸=

[ckr
′
j(0)]F

′
k, then we found a collision in C. Similarly, if for some non-zero i ∈ I

we have rj(i) ̸= r′j(i) + xi then we also have a collision for C. If there is no
collision, then

rj(i) = r′j(i) + xi for all i ∈ I, i > 0 , and

[clrj(0)]Fl = [clr
′
j(0)]F

′
l for l = 1, 2, · · · , k (if 0 ∈ I) ,

so we can extract a valid witness as rj(X)− r′j(X). ⊓⊔

A.3 Proof of Theorem 4.2

Theorem 4.2. If structured PVPs are sound, then the DKG protocol of Fig. 2
to generate structured public keys is correct and robust. If structured PVPs are
ZK, then the DKG protocol satisfies the secrecy property.

Proof. The proof follows the same steps as Theorem 3.5, with the exception of
using the Structured PVP (SPVP) scheme and the expansion of the public key
computation step to incorporate the structured public keys.

Robust correctness: The VSS step is identical to the one used in the single
DKG protocol (given in Fig. 1), and its correctness can be argued as before. Once
the VSS step is complete, each party in a qualified set Q, with at least n − t
honest parties, will hold a Shamir share of the secret key x. The correctness of
SPK computation step arises from the correct execution of the round-robin com-
putations and verifications, which is ensured by the soundness of the new SPVP
scheme (given in Algorithms 3 and 4). Let,A be an adversary against the correct-
ness of our SPVP scheme. We then construct a PPT algorithm BA that breaks
the soundness of the SPVP, simulating the honest parties and interacting in the

Problem with Auxiliary Inputs (Ck-VPwAI) to ensure that f(0) cannot be obtained
from the structured public key (Ck, F1, F

′
1, · · · , Fk, F

′
k).
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protocol with A. Let QB denote the set of the honest parties controlled by B and
let QA = Q\QB. At the end of the protocol, B samples a random index i∗ in QA
and returns the statements ((F 1

i∗−1, F
1
i∗), · · · , (F k

i∗−1, F
k
i∗)), {q(i

∗)(j)}j∈QB) and

the proofs (π̃(i∗), π
(i∗)
0 , {π(i∗)(j)}j∈QB).

If no party in QA successfully proved an invalid statement of the SPVP, then
we know that for each i, there exists q(i)(Z), such that F 1

i = [c1q
(i)(0)]F 1

i−1, · · · , F k
i =

[ckq
(i)(0)]F k

i−1 and q(i)(j) = f
(i)
j (0) for all j, and the superexceptional set

Ck = {c1 = 1, c2, · · · , ck}. For any proof that fails, the honest parties can
reconstruct this polynomial using the shares received in the VSS, thus they
will be able to compute F 1

i = [q(i)(0)]F 1
i−1, F

2
i = [c2q

(i)(0)]F 2
i−1, · · · , F k

i =

[ckq
(i)(0)]F k

i−1, given the superexceptional set Ck = {c1 = 1, c2, · · · , ck}. There-
fore, in this case, the honest parties are ensured to be able to return the SPK
(F 1

n′ = [x]E0, F
2
n′ = [c2x]E0, · · · , F k

n′ = [ckx]E0), making the output correct and
satisfying robustness. Let a party in QA successfully prove an invalid statement
using the SPVP, which can lead to incorrect output. If the index of this party
coincides with the index i∗ selected by B, then B has successfully output a state-
ment and proof violating the soundness of the SPVP scheme. The probability
of B choosing the correct index is 1/|QA|, thus, with |QA| ≤ t, we can express
AdvcorrectnessA ≤ t ·AdvsoundnessB . Thus, if A is a PPT adversary, which has a non-
negligible advantage against the correctness of the structured DKG protocol,
then B will be a PPT adversary with a non-negligible advantage against the
soundness of the SPVP.

Secrecy: Let A be an adversary against the secrecy of the structured DKG
protocol. On a given input (E∗,1, · · · , E∗,k) ∈ Ek, we construct a simulator S =
(S1,S2) (with the shared state), which simulates the honest parties interacting
with A as well as the random oracle so that the simulation is indistinguishable
from the real protocol, and the output curves are (E∗,1, · · · , E∗,k). Similar to [6]
and Theorem 3.5, we do this in incremental steps, here as a sequence of three
simulators S(0),S(1), and S(2), which we describe next. We again denote by
QA ⊂ Q, the subset of qualified parties controlled by A and QS = Q\QA.

- S(0): S(0)1 simulates the honest parties correctly, while S(0)2 simulates a ran-
dom oracle by maintaining a list of queries.

- S(1): S(1)1 picks an honest party Pi∗ for i∗ ∈ QS , which behaves exactly
as in the real protocol with one exception. Instead of computing the proof

π(i∗) honestly, S(1)1 calls the simulator SSPV P to construct π(i∗). S(1)2 still
takes the role of the random oracle, but forwards the queries of the SPVP
simulation to the random oracle simulator of SSPV P .

- S(2): To force the elements E∗,1, · · · , E∗,k, as the output of the protocol,

S(2)1 first reconstructs the value x∗ =
∑n′

i=i∗+1 x
(i). For i ∈ QS , these values

are known, while for i ∈ QA, these can be computed by interpolation of q(i)

(since |QS | > t). Then instead of computing (F i∗,1, · · · , F i∗,k) in the stan-

dard way, S(2)1 computes (F ∗,1 = [−x∗]E∗,1, F ∗,2 = [−c2x∗]E∗,2, · · · , F ∗,k =
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[−ckx∗]E∗,k) and uses the same procedure as S(1) for constructing the proof.

S(3)2 behaves in the same way as S(2)2 .

We can see that with the change by S(2), due to the correctness and robust-
ness of the protocol the round-robin will necessarily lead to the computation

and output of
[∑n′

i=i∗+1 clx
(i)
]
F ∗,l = [clx

∗ − clx
∗]E∗,l = E∗,l for l = 1, · · · , k.

To prove that the view of A is indistinguishable from the real execution of the
protocol, next, we will proceed step-by-step, using the notation introduced in
Sec. 2.2.

Dout(AO, {PO
i }i∈QS )

(1)
= Dout(AS(0)

2 ,S(0)1 )
(2)
≈ c Dout(AS(1)

2 ,S(1)1 )
(3)
= Dout(AS(2)

2 ,S(2)1 ) .

(1) Since S(0) performs the simulation faithfully, it is clear that the distribution
is identical to the real protocol.

(2) Distinguishing these two distributions means distinguishing the real exe-
cution of the SPVP protocol from the simulated one, thus breaking the
zero-knowledge property of the SPVP scheme. Therefore, since SPVPs are
computationally ZK, these two distributions are computationally indistin-
guishable.

(3) The real and simulated distributions here are identical. This is due to the
fact, that the information which A holds, tells it nothing about how the
action of x(i) should look like. In fact, x(i) is information-theoretically hidden
by Theorem 3.2. Therefore, there is no way for A to distinguish between the
real and simulated executions of the protocol.

⊓⊔

B Computational and Communication Costs of Our
Protocols

In this section, we establish the computational and communication costs of our
DKG protocols. We express the sequential costs τ of the protocol steps, i.e. the
total runtime from start to finish, including when some of the parties are idle
and discuss optimizations that minimize these idle times. We denote by TI , TE ,
TC and TH the cost of isogeny computations, polynomial evaluations, calls to the
commitment scheme and calls to the random oracle, respectively. We ignore the
cost of other operations, such as sampling and addition and multiplication over
the ring ZN , as they are negligible in comparison. We express the communication
cost in terms of outgoing communication cost γ per party. Let CE and CN

denote the information content of an elliptic curve in E and an element in ZN ,
respectively. A monovariate polynomial of degree t can be represented by t + 1
elements in ZN . We first determine the costs of the individual building blocks
of our protocol, before we put them together and compute the full costs.

VSS. We can easily see that in the VSS step from Figure 1, each party first eval-
uates and sends out 2(n− 1) monovariate polynomials. Then, in the verification
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step, parties further evaluate and share 2(n− 1)(n− 2) polynomial evaluations.
We note that the evaluations can be done in parallel, thus this amounts to a
total of 2(n− 1)2 sequential evaluations and 2(n− 1)(n+ t− 1) elements in ZN

sent out to the other parties. We find

τvss(n) = 2(n− 1)2TE and γvss(n, t) = 2(n− 1)(n+ t− 1)CN .

Proof step. In the public key computation step of Figure 1, parties have to
compute one isogeny and run the proof in Algorithm 1. By carefully counting
the operations in the latter, we find the total cost of

τproof (n, λ) = λ(n+ 1)TE + (λ+ 1)TI + 2(n+ 1)TC + TH .

After this step, the party has to publish the computed curve and the main proof
and send the individual proof pieces to each other player. We can easily check
that the proof pieces are 2λ bits each and that the main proof consists of 2(n+1)
commitments, each for 2λ bits and of the response, for λ(t+ 1)CN .

We note that both the computational and communication cost change when
we use the twist trick. Remember that in this case, the challenge space increases
from size 2 to 3, resulting in the number of repetitions being reduced to λ′ :=
⌈λ/ log2 3⌉. In this case, the proof simply cost becomes τproof (n, λ

′). Regarding
communication, we point out that the size of the proof pieces, determined by
the security parameter λ, does not change when using the twist trick. To avoid
confusion, we simply denote the cost of a commitment, or of a proof piece as
CC = 2λ, which is fixed. We can then express the total communication cost in
the proof step as

γproof (n, t, λ) = CE + (3n+ 2)CC + λ(t+ 1)CN .

Verification step. For simplicity, we look at the upper bound |Q| = n. The
verification step is reduced to the evaluation of Algorithm 2 by n − 1 parties,
in parallel, once for i = 0 and once for i ̸= 0. Note that the hash computation
remains the same in both cases, and so only has to be computed once. By
counting the different steps, we find the total of

τverif (λ) = λ(TE + TI) + 4TC + TH .

If all the checks succeed, parties do not have to communicate anything in this
step. In the converse case, per failed verification, parties have to broadcast one
polynomial and verify at most n by evaluating them. This happens at most t
times. We will ignore these costs in the interest of more realistic estimates.

Basic DKG protocol. We can finally compute the full cost of the protocol in
Figure 1. This protocol simply consists of a VSS, and n consecutive proof and
verification steps in the round-robin. We note that in the first round, we can use
the twist trick. We find

τDKG(n, λ) = τvss(n) + τproof (n, λ
′) + τverif (λ

′)
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+ (n− 1)(τproof (n, λ) + τverif (λ)) .

and γDKG(n, t, λ) = γvss(n, t) + γproof (n, t, λ) , where in the first round, we
can substitute λ for λ′. By looking at the individual terms, we find the results
summarized in Tables 2 and 3.

Extended DKG protocol. In the case of extended (non-structured) public
keys discussed at the end of Sec. 3.2, the VSS step has to be repeated k times
and the cost of a round-robin step naively increases by a factor k. This cost can
be greatly improved by staggering the proofs and verifications, as was proposed
in [19] and analyzed in more detail in [2]. Roughly, the idea is to compute the
first proof and then publish it, so that other parties can verify it during the
creation of the second proof and so on. As a result, the sequential cost of a
round-robin step is reduced to the cost of k consecutive proofs plus one extra
verification. But we can even do better, using the idea from [2, Sec. 6]: Since all
the different round-robins are independent computations, we can permute the
players for each of them, and run multiple round-robins in parallel. This means,
that while P1 computes the k first curves for one secret and creates the PVP,
P2 does the same but for a different secret etc. Then, all of the verifications are
performed, before moving onto the second step of all of the round-robins. In that
way, we minimize idle time.

For n players with k secrets, the lowest attainable sequential runtime in this
way is composed of

⌈
k
n

⌉
proof steps and k −

⌊
k
n

⌋
sequential verification steps,

per round-robin step. Including the twist trick, we find the total cost

τext.DKG(n, k, λ) = kτvss(n) +
(⌈

k
n

⌉
τproof (n, λ

′) +
(
k −

⌊
k
n

⌋)
τverif (λ

′)
)

+ (n− 1)
(⌈

k
n

⌉
τproof (n, λ) +

(
k −

⌊
k
n

⌋)
τverif (λ)

)
. (3)

The communication costs are not changed by changing the order, so that we
simply find γext.

DKG(n, k, t, λ) = kγDKG(n, t, λ) . The individual terms are again
summarized in Tables 2 and 3.

Structured DKG protocol. If we use the DKG for structured public keys
(given in Fig. 2), the VSS does not have to be repeated k times as we only have
a single secret. Furthermore, in the public key computation step, proofs and
verifications are done with SPVPs, which are introduced in Algorithms 3 and 4.
Some scrutiny reveals

τSPV P
proof (n, k, λ) = λ(n+ 1)TE + k(λ+ 1)TI + 2(n+ 1)TC + TH ,

τSPV P
verif (k, λ) = λTE + kλTI + 4TC + TH .

Note that τSPV P
proof also includes the computation of the curves in the round-robin

step. In comparison to the cost of the standard PVPs established earlier, only
the isogeny computations increase by a factor k, while the other terms remain
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unchanged. Regarding communication cost, we can easily see that an SPVP has
the same size as a PVP, independent of k. The difference to the basic case is
that we publish k curves instead of one, resulting in the cost per proof step of
γSPV P
proof (n, k, t, λ) = kCE + (3n+ 2)CC + λ(t+ 1)CN . We end up with the total

γSPK
DKG(n, k, t, λ) = γvss(n, t) + γSPV P

proof (n, t, λ) ,

where again, we can substitute λ 7→ λ′ in the first round. In the protocol from
Figure 2, we can use a similar approach as for the extended DKG protocol, in
the sense that we can run multiple round-robins in parallel. A difference here, is
that each player does not run k individual PVPs, but instead batches them into
SPVPs. This allows to run an initial round of n SPVPs in parallel, each with

⌊
k
n

⌋
elements, and a second round with k mod n PVPs in parallel. The first round
has n−1 subsequent verifications to be performed and the second k mod n more,
again all in parallel by the individual players. The cost per round-robin step can
therefore be expressed as

R(n, k, λ) = τSPV P
proof (n,

⌊
k
n

⌋
, λ) + (n− 1)τSPV P

verif (
⌊
k
n

⌋
, λ)

+ χn,k(τproof (n, λ) + (k mod n)τverif (λ)) ,

where we define χn,k =
⌈
k
n

⌉
−
⌊
k
n

⌋
, i.e. χn,k = 0, if n | k or k | n, and 1 otherwise.

These steps are repeated n times, where at the first step we can use the twist
trick. Together with the VSS, we find the total cost of

τstr.DKG(n, k, λ) = τvss(n) +R(n, k, λ′) + (n− 1)R(n, k, λ) . (4)

Again, the individual terms are summarized in Tables 2 and 3.

Comparison of extended and structured case. Finally, we establish some
of the background related to Figures 3 and 4.

Communication. Using the fact that N ≈ √p [31] and choosing the security
parameter λ ≈ 4

√
p (reflecting the classical security, see [2, 12]), we can easily

identify 2λ ≈ CC ≈ CN ≈ 1
2CE . By plugging this into the terms in Table 3,

setting t = n/3 and dropping some of the constant terms, we can see, that
the communication cost of the extended DKG asymptotically scales with ∼
k(8n2λ+nλ2+6λ+9n), while the structured case scales with ∼ (8n2λ+2nλ2+
6kλ+9n). For n→∞, the latter is k times smaller, while for k →∞, the latter
is 8n2 + nλ+ 6 + 9n/λ times smaller, both considerable gains. We depict these
trends in Figure 4. The asymptotic quadratic trend in n and linear trend in k of
our schemes are clearly visible in the figure.

Computation. The results in Table 2 show that using structured public keys
removes the dependency on k in all cases but isogeny computations. It is clear
that the number of calls to commitment schemes or random oracles becomes the
same around k ≈ n. For the number of polynomial evaluations, this behavior
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becomes a bit more complex, and the structured case always outperforms the
extended case for some k ≤ n. This is due to the fact that the VSS in the
extended case scales with k, while it is independent of k in the structured case.

We note that in general, isogeny computation costs will strongly dominate the
full protocol cost. We restate the full isogeny costs of both protocols here, in the
most general case, using the twist trick. For the latter, we define λ′ = ⌈λ/ log2 3⌉.
By looking at the isogeny cost terms of equations (3) and (4), we find, after some
arithmetic, that they are both equal to

I(n, k, λ) = (λ′ + (n− 1)λ)
(
k + χn,k

)
+ n

⌈
k
n

⌉
.

We compare this with the results from [2] in Figure 3. Below, we also summarize
the gains we get by using the twist trick for low n.

n 2 3 4 5 6 8 10 20 50
Gain 18.3% 12.2% 9.2% 7.3% 6.1% 4.6% 3.6% 1.8% 0.7%
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