
Not so Difficult in the End: Breaking the
Lookup Table-based Affine Masking Scheme

Lichao Wu1, Guilherme Perin2, and Stjepan Picek1

1 Radboud University, The Netherlands
2 Leiden University, The Netherlands

Abstract. The lookup table-based masking countermeasure is preva-
lent in real-world applications due to its potent resistance against side-
channel attacks and low computational cost. The ASCADv2 dataset, for
instance, ranks among the most secure publicly available datasets today
due to two layers of countermeasures: lookup table-based affine masking
and shuffling. Current attack approaches rely on strong assumptions. In
addition to requiring access to the source code, an adversary would also
need prior knowledge of random shares.
This paper forgoes reliance on such knowledge and proposes two attack
approaches based on the vulnerabilities of the lookup table-based affine
masking implementation. As a result, the first attack can retrieve all se-
cret keys’ reliance in less than a minute without knowing mask shares.
Although the second attack is not entirely successful in recovering all
keys, we believe more traces would help make such an attack fully func-
tional.

Keywords: Side-channel analysis · Side-channel collision attack · Cor-
relation.

1 Introduction

Side-channel analysis (SCA) on symmetric-key cryptography implementations is
typically divided into non-profiling [20,31] and profiling attacks [10,37], depend-
ing on the availability of a replica of the device under attack (profiling device).
Non-profiling attacks operate without this assumption, and an adversary collects
measurements that encode secret information and subsequently perform a sta-
tistical analysis to form a guess about the secrets. In contrast, profiling attacks
assume that the adversary has unrestricted control over a duplicate of the tar-
geted device. Using this duplicate, the adversary identifies and understands the
device’s side-channel behavior, subsequently leveraging this knowledge to extract
secret information from the device under attack. Recent advancements, especially
deep learning-based side-channel analysis, have significantly improved profiling
attacks. Today, researchers can compromise various protected targets using a
single measurement, underscoring the impressive progress in this field [24]. Such
results were achieved on datasets only a few years ago considered difficult to
break: ASCAD with fixed key and ASCAD with random keys, both protected
with the first-order Boolean masking.
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However, one dataset is yet to be broken without prior knowledge about
the random shares: ASCADv2 [2]. Indeed, this secure AES-128 implementation
published by the Agence Nationale de la Sécurité des Systèmes d’Information
(ANSSI) has been protected with multiple layers of hiding (shuffling) and mask-
ing countermeasures. Specifically, a lookup table-based masking scheme [9,28,13]
is adopted, wherein a masked Sbox is pre-computed with random shares before
the cryptographic operation. Consequently, any intermediate data leakages re-
lating to the non-linear operation of the cipher are effectively eliminated. Al-
though the weaknesses of lookup table-based masking schemes have been dis-
cussed in [32], to our knowledge, a direct key-recovery attack without any prior
knowledge of mask shares never succeeded. One of the most significant challenges
in overcoming this implementation is the masking schemes that incorporate both
multiplicative mask computation with finite field multiplication over GF(28) and
additive (Boolean) masks. Traditional attacks on the Boolean masked imple-
mentation depend on the ability of the profiling model to combine mask shares
and masked data to retrieve the sensitive data. For ASCADv2, even though the
multiplicative masks significantly leak [23], the additive masked Galois field mul-
tiplication is complex for a profiling model to comprehend, even when leveraging
deep learning [8]. Therefore, all existing attacks on this dataset are performed
in a white-box setting with prior knowledge of the random shares, at least in
the profiling phase or in both profiling and attack phases [23,22]. We argue that
such assumptions could not be practical even in secure evaluation labs that per-
form white-box evaluations. Although cryptographic algorithms are evaluated
with all implementation details (e.g., source code of the cryptographic library
and hardware design details), the random shares would rarely be accessible to
an evaluator. The reason is straightforward: the registers that store the random
values for the system protection would never be accessible from the outside world
unless severe implementation flaws exist. Although it is possible to predict the
output of some weak pseudo-random number generators (PRNG) with model-
ing techniques [1], we consider it difficult considering the unknown random seeds
and complexity (e.g., high-order polynomials) of PRNG. Other ways of bypass-
ing such protections are monitoring the random number leakages on data bus
with probes or forcing the PRNG stuck at some fixed value with fault injection.
However, it highly depends on the implementation, and it is out of the scope of
this paper that focus solely on SCA.

This paper presents two vulnerabilities in ASCADv2’s affine masking imple-
mentation that could lead to successful key recovery without knowledge of the
mask shares. With the knowledge of plaintexts, the implementation could be
broken down in less than a minute with a CPU only. Note that we disable the
shuffling countermeasure and concentrate solely on masking schemes. Although
turning on this countermeasure would cause the proposed attack to fail with
the number of traces we have, we expect it could be circumvented with, for in-
stance, more leakage measurements [39]. For instance, without further means to
overcome the shuffling, one would need approximately 120 times more traces to
overcome a true random permutation. Our main contributions are:
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1. We conduct an in-depth investigation into two vulnerabilities inherent in
implementing the lookup table-based affine masking scheme, substantiating
our findings with theoretical analysis.

2. We propose several strategies to execute second-order attacks that leverage
the identified vulnerabilities.

3. We demonstrate two attack methodologies that lead to efficient key recovery
without the knowledge of the mask shares.

4. We discuss several protection methods that would be resilient to our attack.
The rest of this paper is organized as follows. In Section 2, we provide the

necessary background information. Section 3 discusses related works. Section 4
details the identified vulnerabilities. In Section 5, we provide experimental re-
sults. Section 6 discusses the identified vulnerability from a higher level, then
offer possible protection methods to defend against proposed attacks. Finally, in
Section 7, we conclude the paper and discuss potential future research directions.

2 Preliminaries

This section introduces the notation we follow. Afterward, the relevant informa-
tion about the side-channel analysis, collision attack, and the targeted ASCADv2
dataset is discussed.

2.1 Notation

We utilize calligraphic letters such as X to represent sets, while the corresponding
uppercase letters X denote random variables and random vectors X defined
over X . Realizations of X and X are denoted by lowercase letters x and x,
respectively. Functions, such as f, are presented in a sans-serif font.

The symbol k represents a candidate key byte in a key space K. The notation
k∗ refers to the correct key byte or the key byte assumed to be correct by the
adversary.3

A dataset T comprises traces ti, which are associated with plaintext/cipher-
text pairs di in plaintext/ciphertext space D and keys ki, or ki,j and di,j when
considering partial key recovery on byte j. Throughout this work, we focus on a
fixed key scenario where ki remains constant for each trace ti, resulting in the
utilization of byte vector notation exclusively in equations.

2.2 Side-channel Analysis

As briefly mentioned in the introduction section, side-channel analysis (SCA)
can be broadly classified into two types, profiling SCA and non-profiling SCA,
based on the availability of a fully-controlled cloned device. Non-profiling side-
channel analysis exploits the correlation between key-related intermediate values

3 It is important to note that subkey candidates can involve guessing any number
of bits. Although we assume the AES cipher here, the concept remains algorithm-
independent.
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and leakage measurements. An adversary collects a series of traces generated
during the encryption of different plaintexts. The adversary can guess a key por-
tion by examining the correlation between the key-related intermediate values
and the leakage measurements. The attack strategy typically involves a “divide-
and-conquer” approach. First, an adversary divides the traces into groups based
on the predicted intermediate value corresponding to the current key guess. If
the groups exhibit noticeable differences (the definition of “difference” depends
on the attack method), it suggests that the current key guess is likely correct.
The non-profiling attacks assume relatively weaker adversaries who do not have
access to a cloned device. Consequently, these attacks may require many mea-
surements (potentially millions) to extract confidential information. Examples
of non-profiling attacks include simple power analysis (SPA), differential power
analysis (DPA) [20]/correlation power analysis (CPA) [7], and some machine
learning-based attacks [31,16,38]. Note that side-channel collision attack [29,5]
and its deep learning version [30] are also considered a non-profiling SCA but
follows a slightly different strategy, discussed in the next section.

Profiling side-channel attacks aim to map a set of inputs (e.g., side-channel
traces) to outputs (e.g., a probability vector of key hypotheses). Profiling attacks
involve two phases. In the profiling phase, the adversary constructs a profiling
model fMθ , parameterized by a leakage model M and a set of learning parame-
ters θ. This model maps the inputs (side-channel measurements) to the outputs
(classes obtained by evaluating the leakage model during a sensitive operation)
using a set of N profiling traces. The notations fMθ and fθ are used interchange-
ably. Then, in the attack phase, the trained model processes each attack trace ti
and produces a vector of probabilities pj , representing the likelihood of the asso-
ciated leakage value or label j. The adversary determines the best key candidate
based on this vector of probabilities. If the adversary constructs an effective pro-
filing model, only a few measurements from the target device may be sufficient to
break its security. Examples of profiling attacks include the template attack [10],
stochastic models [27], and supervised machine learning-based attacks [19,21,25].

2.3 Side-channel Collision Attack

Side-channel Collision Attack (SCCA) represents a class of non-profiling attacks
that leverage information dependence leaked during cryptographic processes.
Traditional collision attacks capitalize on situations where two distinct inputs
into a cryptographic algorithm yield an identical output, a circumstance known
as a “collision”. Since collisions are generally infrequent in robustly designed
cryptographic systems, SCCA explicitly targets the internal state, which is more
likely to be identical.

In SCCA, an adversary observes the side-channel information as the system
processes different inputs. The adversary then scans for patterns or similarities
in the side-channel data that indicate a collision has occurred. Upon identifying
a collision, the adversary can utilize this knowledge to deduce information about
the inter-dependencies of different key portions or the algorithm’s internal state,
thereby significantly reducing the remaining key space.
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As an illustration, let us consider the SubBytes operation of the Advanced
Encryption Standard (AES) [15]. The same intermediate data (Sbox input or
output) could be processed if two different Sbox operations result in an identical
side-channel pattern. Since the Sbox operation is bijective (i.e., a one-to-one
correspondence between two sets), we have the following equations:

Sbox(ki ⊕ pi) = Sbox(kj ⊕ pj)

=⇒ ki ⊕ pi = kj ⊕ pj

=⇒ ki ⊕ kj = pi ⊕ pj .

(1)

Note that a collision of Sbox input would also satisfy ki⊕kj = pi⊕pj . Indeed,
in contrast to other SCA methods concentrating on key recovery, SCCA aims
to uncover the linear difference between various keys. By making guesses on a
single subkey, an adversary can leverage this linear difference to compute the
remainder of the key. This essentially reduces the remaining key space to the
equivalent of a single byte, 28.

2.4 The ANSSI’s AES Implementation: ASCADv2

ANSSI has published a library implementing a secure AES-128 on an ARM
Cortex-M4 architecture [2] together with 800 000 power measurements focusing
on the full AES encryption. This implementation is equipped with several layers
of countermeasures, such as affine secret-sharing [17] and random shuffling of
independent operations [36]. We briefly discuss their implementations in this
section. More implementation details can be found on the corresponding GitHub
page [2] and paper [8,23].

An overview of generating a mask state Ci with an AES state Xi is shown
in Equation 2.

Ci = (Xi ⊗ α)⊕ β, (2)

where i stands for byte indices. Two random shares realize the affine masking
scheme: the multiplicative share α and additive share β. Finite field multiplica-
tion over GF(28) and xor are denoted by ⊗ and ⊕, respectively. Note that β may
denote Sbox’s input mask rin, Sbox’s output mask rout, or rl, the mask used in
the linear operation of AES 4. To ensure there is no direct leakage on the AES
state, a masked Sbox, denoted as Sboxm, is pre-computed for all bytes based on
rin, rout and α, enabling the processing of the masked data in the non-linear part
of AES, illustrated in Equation 3. Note that rl is removed after rin is applied
and added before rout is canceled. Therefore, sensitive states are masked during
the entire AES process.

(Xi ⊗ α)⊕ rin
Sboxm−−−−→ (Sbox(Xi)⊗ α)⊕ rout. (3)

The random shares α, rin, and rout remain the same during the computations
of each byte and are refreshed in the next AES operation.

4 The proposed attack target the intermediate data when β = rin and β = rout.
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Random permutations are applied to ShiftRows, MixColumns, and Sbox exe-
cutions; the permutations indices for each byte are generated based on random
seeds.

3 Related works

Side-channel analysis has been widely researched and applied to different crypto-
graphic algorithms during past decades. Multiple attack methods have been de-
veloped, such as direct (non-profiled) attacks like Simple Power Analysis (SPA),
Differential Power Analysis (DPA) [20], and two-stage (profiling) attacks like
the template attack [10]. Machine learning-based attacks have been actively re-
searched in recent years and could be used in both profiling [19,25,41,37,24] and
non-profiling settings [31,16,38].

ASCAD [3], a first-order masked AES-128 implementation running on an
8-bit AVR microcontroller, is one of the most studied datasets by the side-
channel community. While there are two versions of this ASCAD dataset (one
with a fixed key and the other one with random keys), there is little difference
in attacking those two datasets, see, e.g., [24], which is also discussed in more
generic terms of portability difficulty in [4]. During only a few years of active
research, the secret key of this dataset managed to be retrieved from around
a thousand attack traces [3] to one trace [24]. For an overview of novel attack
methodologies based on the publicly available implementations and the corre-
sponding leakage measurements, as well as for the details on those datasets, we
refer readers to [26]. Considering that almost all of the available datasets can
be “easily” broken, there is a strong demand from the SCA community to have
more robust open-source implementations and leakage measurements. Indeed,
knowing the complexity of modern devices, we see a large disbalance between
the realistic implementations and those studied in academia. The release of new
cryptographic implementations implemented with different hardware, software,
and protections fills the gap between academics and the real world.

Lookup table-based masking is a common countermeasure against SCA. This
strategy, particularly when applied to mask the Sbox, stands out for its compu-
tational efficiency. The pre-computed Sbox notably reduces the computational
load during operations. The initial provably secure first-order lookup table-based
masking scheme was proposed by Chari et al. [9]. A randomized Sbox lookup ta-
ble undergoes a shift and receives protection with an output mask. Following this
seminal work, enhancements have been made in terms of enhancing its secure
order [28,11,12] and decreasing its memory requirement [33,34]. In 2019, ANSSI
publicly released a hardened AES-128 implementation. This secure variant em-
ploys a lookup table-based affine masking scheme in line with [17], incorporating
both multiplicative and additive masking. This combination poses a significant
challenge to the profiling attack on first-order leakages. Initial security analysis
of this implementation was undertaken by Bronchain et al., who proposed sev-
eral attack strategies given knowledge of the source code, the secret key, and the
random shares processed during the profiling phase [8]. Following this, Cristiani
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et al. [14] uses non-profiled SCA with Joint Moments Regression to break the
ASCADv2 dataset with 100M traces. Masure et al. conducted partial attacks
on various shares and permutation indices [23]. The knowledge they garnered
from these attacks was subsequently used to orchestrate a global attack on the
protected data. Marquet et al. further contributed to the field by highlighting
the superiority of multi-task learning over single-task learning when the analysis
is focused exclusively on secret data [22]. Recently, Vasselle et al. published an
AES implementation that included both masking and artificially implemented
shuffling as countermeasures [35]. They successfully breached the target using
a spatial dependency analysis. Their research has helped to further our under-
standing of the strengths and weaknesses of these countermeasures and offers
new avenues for exploration in securing AES implementations.

4 Vulnerability Analysis

This section first discusses the constant affine mask shares used in ASCADv2.
Afterward, we discuss the zero input to the affine masking scheme.

4.1 Constant Affine Mask Shares for an Encryption

As mentioned, the ASCADv2 implementation is protected by an affine mask-
ing scheme consisting of independent additive and multiplicative mask shares
(see Equation 2). This implementation increases the security level of the im-
plementation [8,23]. Nonetheless, upon analyzing the code, we observe that the
same pre-computation table is used for all state bytes, meaning that additive
and multiplicative masks remain constant throughout a single AES encryption.
Random values are pre-loaded into mask registers before encryption and are
retrieved during mask calculations. Such an implementation presents the oppor-
tunity to bypass these masking schemes altogether. Formally, assuming Ci = Cj

during an AES processing, we have:

(Xi ⊗ α)⊕ β = (Xj ⊗ α)⊕ β

=⇒ Xi = Xj , α ̸= 0.
(4)

Lemma 1. Given Xi ⊗ α ⊕ β = Xj ⊗ α ⊕ β, we xor both sides of the equation
with β to cancel it out

Xi ⊗ α = Xj ⊗ α. (5)

Since we work with finite field multiplication (in GF(28)), each element has a
unique inverse (except the element 0). Since α is non-zero (otherwise, both sides
of the original equation would equal β, which would not provide any information),
we can multiply both sides of the equation by the multiplicative inverse of α,
denoted as α−1:

Xi ⊗ α⊗ α−1 = Xj ⊗ α⊗ α−1, α ̸= 0. (6)
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Applying the associative property of finite field multiplication over GF(28),
we have:

Xi ⊗ (α⊗ α−1) = Xj ⊗ (α⊗ α−1)

=⇒ Xi ⊗ 1 = Xj ⊗ 1

=⇒ Xi = Xj .

(7)

Therefore, a collision between Xi and Xj is created without the knowledge of
α and β.

Equation 4 illustrates the vulnerability of this AES implementation. Indeed,
a fixed mask can be easily canceled by comparing intermediate data protected by
the same mask shares. Note that Xi and Xj could be key-related intermediate
data, represented by Sbox(kj ⊕ pj). In this case, Equation 1 is satisfied if Xi

equals Xj . Since the plaintext is known, we adopt a side-channel collision attack
to retrieve ki ⊕ kj for all keys, detailed in Section 5.1.

4.2 Zero Input of Affine Masking Scheme

As discussed in Equation 7, the multiplicative mask α is non-zero, so each el-
ement has a unique inverse. However, it is also possible that Xi is zero (e.g.,
Sbox(·) = 0). Formally speaking, when Xi = 0, Equation 2 can be rewritten as:

Ci = (Xi ⊗ α)⊕ β

= 0⊕ β

= β.

(8)

The masked state Ci only relies on β, and the multiplicative mask α is dis-
abled in this scenario, links to the zero-value 2nd-order leakage mentioned in [17].
To exploit this attack path, an adversary would try all possible keys to calcu-
late Xi and select the traces that satisfy Xi = 0. Then, the chosen traces are
correlated with β. The traces set with the highest correlation would indicate the
correct key.

There are two ways to perform such an attack. The first attack path requires
the knowledge of β, indicating that an adversary should, for instance, access the
output of a PRNG that provides the mask value. In this case, one could conduct
the attack in the profiling SCA setting similar to other researches [8,23,22],
namely learning β on the cloned and fully controlled device and predict β on a
victim device, finally performing correlation analysis using the predicted values
and leakage measurements. Since this attack path relies on the knowledge of the
mask shares, it is less interesting considering the scope of this paper that aims
at breaking ASCADv2 with no assumption on prior knowledge about the mask
shares.

The second attack path is similar to a side-channel collision attack in which
an adversary compares two trace segments. Instead of correlating with the β
value, an adversary could correlate with the leakage segments that process β.
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According to the source code, since β is handled in plaintext (which makes
sense as there is no need to protect a random value from side-channel leakages),
we expect significant leakages of the β processing. The relevant features would
correlate well with the trace segments that process SubBytes with zero Sbox
inputs. The attack results are shown in subsection 5.2.

5 Attack Results

This section provides experimental results, first the collision attack on canceling
mask shares, followed by correlation attack on GF(0). Instead of regenerating
leakage traces [8,23], the original traces provided by ANSSI are used for attacks 5.

5.1 Side-channel Collision Attack on Canceling Mask Shares

The collision attacks require the trace segments of each intermediate data pro-
cessing. Therefore, the leakage analysis is crucial for the success of such an
attack. Figure 1a presents an averaged trace representing the first round of the
AES. Y-axis stands for the leakage amplitude. The sixteen SubBytes operations
are highlighted in red. Repeated patterns can be observed when zooming in on
each SubBytes operation, as shown in Figure 1b. The trace segments for each
operation (T 0, T 1, · · · T 15) are selected based on the lowest value of each repet-
itive pattern (e.g., the end of T 0, T 1, and T 2 interval in Figure 1b). Note that
the selection of the trace segment is neither restricted to the highlighted ranges
nor requires any additional knowledge regarding the data being processed or
random shares. For instance, one could include intervals between T 0, T 1, and
T 2 (according to the source code, these intervals could represent operations such
as register writing). Based on our preliminary experiments, such a setting would
also break the target.

Algorithm 1 Side-channel collision attack on ASCADv2

Input: trace segments Ti and Tj , plaintext bytes di and dj

Output: most-likely key difference δ∗

1: for δ in K do
2: indices = argwhere(di ⊕ δ == dj)
3: diff δ = E(

∥∥Ti
indices −Tj

indices

∥∥)
4: end for
5: δ∗ = argminδ diff

Following Algorithm 1, we perform a side-channel collision attack with the
selected trace segments. Given trace segments Ti and Tj and plaintext bytes
di and dj , we first find the trace indices that satisfies ki ⊕ kj = pi ⊕ pj (Equa-
tion 1) with the current ki⊕kj guess in an AES encryption, denoted as δ. Then,

5 https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2

https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
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(a) Leakage trace and SubBytes operations.

(b) Zoom-in view of the leakage trace and selected time intervals.

Fig. 1: An overview of the leakage trace and the target time interval.

the similarity of the two trace segments is measured with squared Euclidean
distance [6] and averaged (represented by E in Algorithm 1) over indices. After
looping through all possible δ candidates, the δ guess that leads to the lowest
averaging difference would be the most likely candidate δ∗.

The experimental result is shown in Figure 2. When attacking with 30 000
traces, only k1 ⊕ k2 and k13 ⊕ k14 cannot be successfully recovered (δ rank are
3 and 12, respectively). In this case, one could adopt error correction meth-
ods [18,40] to recover the true key differences. With around 70 000 attack traces,
all δ∗ that represents the correct subkey difference can be recovered. Given this
information, the entropy of the key is reduced to 256 and can be easily brute-
forced.

Fig. 2: Side-channel collision attack on all bytes.
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5.2 Correlation Attack on GF(0)

The same trace segments used in the previous section, namely T0 to T15, are
adopted for the attack presented in this section. Based on the source code, Sbox’s
output mask rout is loaded right after the SubBytes operation is finished. There-
fore, the time interval of β is selected similarly to the selection of SubBytes oper-
ations with the same pattern gap, for instance, T14 and T15 shown in Figure 3.

Fig. 3: The selected time intervals including the additive mask (β).

The attack method is presented in Algorithm 2. Since the goal is to correlate
the β leakages with the trace segments of SubBytes, the pairwise correlation
corr is performed column-wise. Note that each column in trace segments Ti

represents a leakage feature at a specific time location; the pairwise correlation
ensures the dissimilarity of traces segments, due to different operation steps and
data handling methods, less influence the correlation results. After averaging the
output correlation matrix with E, the k guess that leads to the highest correlation
value would be the most likely candidate k∗.

Algorithm 2 Correlation attack on ASCADv2

Input: trace segments Ti and Tβ , plaintext bytes di

Output: most-likely key k∗

1: for k in K do
2: indices = argwhere(Sbox(di ⊕ k) == 0)
3: corrk = E(corr(Ti

indices,T
β
indices))

4: end for
5: k∗ = argmax corr

The experimental result is shown in Figure 4. Although most of the correct
key does not reach a key rank of zero (the most-likely key), we see a clear
convergence of the key rank with increased attack traces. Table 1 shows the
detailed key rank of each subkey with 500 000 attack traces. Two subkeys are
successfully recovered, and the rest (except k5 and k6) reach low values of the
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key rank. As a rough estimation, eight times more traces would lead to successful
δ recovery of all subkeys.

Fig. 4: Correlation attack results on all bytes.

Table 1: The rank of each subkey with 500 000 attack traces.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Key rank 1 22 0 3 1 112 113 0 37 1 21 23 12 24 24 8

6 Discussion and Protection Methods

The implementation of AES by ANSSI provides an excellent example of a secure
AES execution. It employs masking schemes that protect the entire AES process
while shuffling serves to minimize potential leakages further. From the viewpoint
of a first-order attack focusing on the leakage of a single intermediate data,
this implementation exhibits robust security, only breakable under strong attack
assumptions. However, this masking scheme could be easily compromised with
straightforward techniques when examining second-order leakages. A solitary
shuffling countermeasure could be defeated by employing more traces.

Analyzing its design reveals that the reliance on a single Sboxm facilitates
the attacks discussed in this paper. Despite all AES states being masked and
unknown to an adversary, the deterministic association between the Sbox input
and output leaves the computation of each byte susceptible to second-order at-
tacks. One might propose the generation of sixteen distinct Sboxm to facilitate
byte substitution. However, in the specific case of the affine masking scheme
outlined in [17], it’s crucial that the multiplicative share must remain consis-
tent across every byte in the state. Deviating from this principle would result in
linear operations, such as AddRoundKey and MixColumns, losing their homomor-
phic property with the affine encoding. This, in turn, implies that each operation
would necessitate 16 pre-computed lookup tables, each with a size of 2562, which
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makes the cryptographic implementation prohibitively resource-intensive. Alter-
natively, implementing hiding countermeasures may be a simple and effective
strategy against the proposed attacks. The proposed attacks require the com-
parison of trace segments. The original implementation’s random shuffling sig-
nificantly increases the required attack traces. Adding to this, countermeasures
introducing temporal randomnesses, such as clock jitters and random branch
insertion, could further complicate the process of identifying and comparing the
target operations, enhancing the security of the implementation.

Addressing the second vulnerability would involve carefully redesigning the
implementation, ensuring that GF(0) results in a random output. A more straight-
forward solution would involve randomizing the timing β process, thereby reduc-
ing the correlation between the Sbox operation and β leakages.

7 Conclusions and Future Work

In this paper, we evaluate two vulnerabilities in lookup table-based affine mask-
ing implementation, then leverage them to perform efficient second-order attacks
on the ASCADv2 dataset. Specifically, we notice that some mask shares remain
constant during an AES encryption, which leads to an easy cancellation of masks
with a side-channel collision attack. Another vulnerability relies on implement-
ing the Galois field multiplication, which always outputs zero when one input is
zero. In this case, an adversary could choose specific traces that generate zero
input. In this case, the affine masking scheme is significantly weakened, as only
additive mask shares remain as the output.

Multiple aspects would be interesting to consider in future research. First,
the proposed attacks rely on the single masked SBox used during encryption. It
will be interesting to investigate the applicability of the proposed attack when
two or more masked SBoxm are used in a cryptographic operation. Next, the
proposed attacks are grounded on the squared Euclidean distance and Pearson
correlation coefficient for similarity assessment. It would be interesting to explore
deep learning in initiating attacks under more noisy circumstances, such as those
involving desynchronization. Further, it would be compelling to study and aug-
ment the attack performance hinging on our second identified vulnerability: the
zero output of the finite field multiplication. Finally, an optimal objective would
be to devise innovative techniques to overcome the complexity inherent in finite
field multiplication, enabling direct attacks on this dataset’s intermediate data.
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