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Abstract. Homomorphic Encryption (HE) is a type of cryptography
that allows computing on encrypted data, enabling computation on sen-
sitive data to be outsourced securely. Many popular HE schemes rely
on noise for their security. On the other hand, Differential Privacy (DP)
seeks to guarantee the privacy of data subjects by obscuring any one
individual’s contribution to an output. Many mechanisms for achieving
DP involve adding appropriate noise. In this work, we investigate the ex-
tent to which the noise native to Homomorphic Encryption can provide
Differential Privacy “for free".
We identify the dependence of HE noise on the underlying data as a
critical barrier to privacy, and derive new results on the Differential Pri-
vacy under this constraint. We apply these ideas to a proof of concept
HE application, ridge regression training using gradient descent, and are
able to achieve privacy budgets of ε ≈ 2 after 50 iterations.

Keywords: Differential Privacy · Homomorphic Encryption · Machine
Learning

1 Introduction

Homomorphic Encryption (HE) is a technology which allows computing on en-
crypted data without knowing the decryption key. Efficient and secure Homo-
morphic Encryption has the potential to make many standard scenarios private,
including outsourced computation, database queries, machine learning inference,
and many more. On the other hand, Differential Privacy is a technique for en-
suring the privacy of each data contributor while outputting some statistic or
function or a database. At a high level, the goal of both technologies is the same
– keep the data secret.

Standard techniques for achieving this secrecy are also superficially simi-
lar between the two technologies: namely, both introduce noise. Many popular
HE schemes [11,12,37,20,22] use the Learning with Errors (LWE) [72] or Ring
Learning with Errors (RLWE) [62] problem, which involve adding noise dur-
ing encryption for security. Differential Privacy (DP) is also achieved by adding
noise, but in this context the noise serves to obscure the contribution of any one
individual [35,36,15,2].
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In this work, we investigate the following question: does the noise in Homo-
morphic Encryption give Differential Privacy “for free"?

At first glance, this may seem unlikely for several reasons. Firstly, as noise
is only introduced in HE as part of encryption, standard schemes will remove
the noise during decryption. Secondly, to formally quantify Differential Privacy
guarantees, we must be able to specify how the noise is distributed, and not just
an upper bound, which is the typical output of an HE noise analysis. Lastly, as
we only introduce noise in HE for security, and do not want it to corrupt the
result of our computation, typically the noise is small relative to the message,
and so cannot be sufficient to guarantee privacy.

However, there are contexts where none of these difficulties apply. For the
first, the CKKS, or HEAAN, scheme [20] departs from traditional constructions
in that noise is not removed during decryption, and is retained in the least signif-
icant bits of the final output. For this reason, it is sometimes called “Approximate
Homomorphic Encryption". For the second, a recent work [26] analyzed noise
growth when computing over CKKS, and argues that the noise can be modelled
as normally distributed throughout the course of an algorithm. For the final
challenge, we make the following observation: when evaluating a very complex
or deep algorithm using CKKS, noise can start to overwhelm the message, be-
coming as large as is required to guarantee privacy. It is this intuition, of noise
growing over the course of an application, which we explore in the case study in
this paper.

We therefore have HE applications where noise is never removed, grows over
the course of an algorithm, and is normally distributed, which suggests these
HE applications can achieve DP without further processing; in other words, for
free. We just need the noise to grow large enough to mask the contribution of
any one individual.

But there is an additional complication. If we examine the results of [26], we
find the variance after a multiplication depends on the messages being multiplied.
In other words, changing the entries in a database will not only change the “true"
output of the algorithm, but the variance of the noise we will add to it. We derive
novel results on the impact this has on Differential Privacy, and find that, at
least for our case study, this message dependent variance is more important than
noise growth in preventing us from achieving Differential Privacy for free.

Building on this result, we are able to formally quantify the Differential
Privacy of our case study, and show that, for the proposed parameters, we can
achieve privacy budgets of ε ≈ 2. In contexts where this is an acceptable level
of privacy, we therefore find that Homomorphic Encryption gives Differential
Privacy for free.

1.1 Contributions

In this work, we identify a connection between noise in Homomorphic Encryption
and Differential Privacy, and explore this correspondence when Homomorphic
Encryption noise is treated as a database dependent output perturbation. We
present novel results on the Differential Privacy guarantees of adding database
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dependent noise in both the one- and multi-dimensional case. We believe this
is the first time database dependent noise has been analyzed in the Differential
Privacy literature, and may be of independent interest.

We explore these results with a proof of concept case study from the HE liter-
ature: ridge regression training using gradient descent [66]. Two factors constrain
the choice of case study. Firstly, we require the noise growth analysis from [26],
which does not extend to powers beyond the square, so any polynomial evalua-
tion must be at most quadratic1; quadratic circuits are however not required in
general, and in principle our techniques extend to higher degrees. Secondly, we
are guided by the intuition that the noise growth over high depth algorithms is
what will guarantee privacy, and so require an application of high multiplicative
complexity. In the HE literature, the only application we are aware of that meets
both of these criteria is the ridge regression training introduced in [66]. For this
case study, we provide a blueprint for how to derive all parameters relevant to
Differential Privacy, and present findings on noise growth, message dependence,
and finally privacy.

1.2 Related Work

Homomorphic Encryption Since Gentry’s breakthrough construction of a
fully homomorphic encryption (FHE) scheme based on lattices [40], many schemes
have been proposed following similar principles [12,11,22,20,41,34,74]. Develop-
ment of HE solutions has also been aided by an ecosystem of software tools,
including libraries [43,76,67,58,6,23], compilers [30,31,29,42] and toolkits [1,3].

Due to its ability to handle approximate real numbers, CKKS has been ap-
plied to various Machine Learning problems, including ridge and logistic regres-
sion training [66,53,54,13], neural network inference [16,49,8,7], federated learn-
ing [64], and decision tree training [4]. CKKS has also been successfully applied
to problems with discrete message spaces [33].

In this work, we will restrict our attention to CKKS as originally presented [20].
However, there have been many works improving and extending the function-
ality of CKKS, including a Residue Number System (RNS) variant [18], noise
reduction techniques [33,52], and hardware acceleration [9,73,75].

Differential Privacy For an in depth overview of the core concepts and lit-
erature for differentially private machine learning, we refer to [47]. There, the
authors give a helpful representation of the different stages in an algorithm where
we can add noise to achieve Differential Privacy, which we have reproduced in
Algorithm 1. The inclusion of “Input Perturbation" is our own. We present rele-
vant works following this taxonomy, cataloguing output, gradient, objective, and
input perturbations.

Output perturbation methods involve analyzing how much the algorithm’s
output can change from one database to another, and adding enough noise to
1 More practical use cases might include [54,53], which use degree 3,5, or 7 approxi-

mations to the sigmoid function.
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Algorithm 1 Mechanisms for Achieving Differential Privacy in Machine Learn-
ing Training (based on Algorithm 1 of [47]).

Input: Data X
Output: A result β
β ← 0
#1 Input perturbation: add noise to data, X ← X + e.
#2 Objective perturbation: add noise to the loss function, J(β,X)← J(β,X) + e.
for t = 1, ..., T do

#3 Gradient perturbation: add noise to the gradient updates,
∇J(β,X)← ∇J(β,X) + e.
β ← β − α∇J(β,X)

end for
#4 Output perturbation: add noise to the final result β ← β + e
return β

mask this difference. This technique is pursued when the training algorithm
uses a finite number of updates in [82,83], and the algorithm outputs a global
minimum in [61,15,48].

For deep learning tasks, when loss functions may be non-convex or non-
smooth, it can be difficult to quantify and bound how sensitive the training
algorithm is to a single data point in general. Instead, perturbing gradients
during training serves to obscure the contribution, and so preserve the privacy,
of any one individual each iteration, and then a composition theorem may be
used to find the total privacy loss over the course of the algorithm. This approach
is adopted in many works, including [78,2,77,48,68].

Objective perturbations broadly fall into two categories. The first seeks to en-
sure the objective function itself can be released without compromising privacy,
while the second seeks to ensure that the minimizer of the objective function can
be released without compromising privacy. In other words, the first approach
achieves Differential Privacy before training begins, while the second achieves
Differential Privacy for the returned value only. The first approach is also called
a “Functional Mechanism", and is explored in [84,32], while for the second we
refer to [51,15,46].

Input perturbation is the least established of these methods. The authors
of [38] use the terminology to refer to perturbing each data contributor’s con-
tribution to the loss function coefficients, and so in our framework is better
categorized as an objective perturbation. In [39], the authors achieve a differen-
tially private chi-squared test by perturbing each of the frequencies at the outset,
so that we have differential privacy before the algorithm starts. In [50,79], the
authors observe that input perturbations in turn perturb the gradients, and so
argue that it is sufficient to lower bound this induced perturbation with a known
threshold from the gradient perturbation literature. However, this reasoning fails
to consider that the width of this induced perturbation will depend on the data
itself for almost all loss functions, and so constitutes an additional leakage which
needs to be analyzed.
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DP and HE The authors of [69] use both HE and DP in their work, training
models homomorphically and then adding a perturbation after decryption to
give differential privacy. The protocol proposed in [71] processes sensitive queries
homomorphically, and then adds an optional perturbation to achieve Differential
Privacy, depending on the clearance of the user. In [80], a two-party protocol
is constructed where the input data is differentially private while the output is
calculated homomorphically.

Differential Privacy is also combined with Homomorphic Encryption in [60],
where DP is used as a tool to harden the security of CKKS in certain security
models [59]. Here, the authors’ goal is to give privacy to the HE noise itself. Due
to the security model considered in [60], and in particular that the adversary
there observes the input data, we consider our work orthogonal, but future work
may wish to examine whether the modification to the CKKS scheme proposed
also gives Differential Privacy “for free". We additionally remark that the issues
the authors identify in Section 5, which considers Dynamic Error Estimation,
seem analogous to the message dependent variance problem we identify in this
work.

1.3 Paper Outline

In Section 2 we give the necessary background material. In Section 3 we present
a formal analysis of the Differential Privacy guarantees of algorithms evaluated
homomorphically. In Section 4 we apply our results to Ridge Regression to pro-
vide a proof of concept analysis, including experimental outcomes in Section 4.2.
We conclude and outline future research directions in sections 5 and 6. Omitted
details and proofs are provided in the appendices.

2 Background

2.1 Basic Notation

We will use log(·), for the base-2 logarithm, and ln(·) for the natural logarithm.
For a vector v, we will write vj to denote the jth component of v, and ||v|| to
denote the 2-norm. For a polynomial m, we will write ||m|| to denote the 2-norm
of the vector of its coefficients. If the coefficients are modulo q, we consider their
absolute value to be their representative in [−q/2, q/2]. We use v ← D to denote
sampling v according to the distribution D, and N(µ,Σ) for the multivariate
Gaussian distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. We
extend this notation to the 1-dimensional case, where we will use N(µ, σ2) for
the univariate Gaussian with mean µ and variance σ2. We will write χ2

d(ν) for the
non-central chi-squared distribution with d degrees of freedom and non-centrality
parameter ν. In more detail, if we have for Xi ∼ N(µi, 1) for i = 1, ..., d then
Y =

∑d
i=1 X

2
i has distribution χ2

d(ν), where ν =
∑d

i=1 µ
2
i .

We will use the following standard tail bound for Gaussian distributions.
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Lemma 1. Let X ∼ N (0, ρ2). Then for any t > 0 we have

Pr[X > t] ≤ ρ√
2πt

exp

(
−t2

2ρ2

)
.

Rearranging for t gives the following corollary.

Corollary 1. Let X ∼ N (0, ρ2). Then if t > 0 and

ln(t/ρ) + t2/2ρ2 > ln

(√
2

π

1

δ

)

we have Pr[X > t] < δ/2.

As we will need to quote results from two literatures, which frequently use
the same symbol for different concepts, we additionally provide a table of the
notation we follow in this paper in Section 2.6.

2.2 CKKS

Our work focuses on the CKKS scheme [20]. We present a description of the
original scheme in Appendix A.1. Typically, HE schemes [11,37,62,41] maintain
a strict separation between message bits and noise bits, enabling the noise bits
to be efficiently removed during decryption. On the other hand, the authors of
CKKS argue that in some contexts this is unnecessary, and it is sufficient to
allow the noise to interact with the lower bits of the message, controlling the
noise growth via a Rescale() procedure. This relaxation is compared to floating
point precision errors, which are tolerable in some contexts. This relaxation also
enables efficiently encrypting and homomorphically processing high precision
real numbers.

For our purposes, we will only need to consider a few key features of the
CKKS scheme: CKKS is parametrised by a power of 2 polynomial modulus N ,
as well as a (typically power of 2) precision parameter ∆. The scheme has message
space given by CN/2, where C is the set of complex numbers, and plaintext space
given by the ring Z[X]/(XN +1). Data is encoded from the native message space
into the plaintext space before encryption. For a more comprehensive exploration
of the CKKS scheme, we refer to [20,70,52,10,17]

The approximate nature of CKKS requires additional security considerations
in many scenarios. Although this is beyond the scope of this work, it should be
taken into consideration whenever deploying CKKS based solutions. Further
details can be found in [59,60,19].

CKKS Noise Growth Understanding and bounding noise growth is critical
to applications of HE. A typical approach2 [14,27] involves arguing that “fresh"
2 For TFHE and related schemes [22,24], a so-called “average case", or variance track-

ing, approach is more common – see for example [21,25,56].
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sources of noise are normally distributed, and so uses a Gaussian tail bound
to give a high probability bound B, which can be used to bound the noise
in plaintexts. Together with the triangle inequality, this gives high probability
bounds for the noise resulting from homomorphic computation. For example, if
we add two ciphertexts with noise bounds B1 and B2 respectively, we can bound
the noise of the resulting ciphertext by B1 +B2.

A different approach is explored in [65,28,26], where it is argued that, due the
Central Limit Theorem, noise remains Gaussian throughout the entire computa-
tion. This approach generates much tighter noise bounds. For example, in [26],
the authors show that if we multiply encryptions of plaintexts m1 and m2 with
noise variances σ2

1 and σ2
2 respectively, the resulting ciphertext has Gaussian

noise in the ring with variance

σ2 = Nσ2
1σ

2
2 + σ2

1 ||m2||22 + σ2
2 ||m1||22 .

In order to translate a variance σ2 in the plaintext space to a variance ρ2 in
RN/2, we have to understand the impact of decoding on a Gaussian distribution.
As shown in [26], and observed in other contexts [63,70], if we restrict ourselves
to real messages, we have that the noise in the message space is also normally
distributed, with variance ρ2 = N

2∆2σ
2, where ∆ is the decoding scale factor. We

give full details of how to update the ring variance after various homomorphic
operations in Appendix A.2 using the analysis of [26].

2.3 Differential Privacy

We draw extensively from [35,47]. Differential Privacy seeks to formally quantify
and minimise the extent to which an algorithm’s output depends on the input
of any one individual to the dataset. To this end, we will say two databases D
and D′ are neighboring or adjacent if they differ on at most one row. We define
Differential Privacy as follows:

Definition 1 ((ε, δ)-Differential Privacy). A randomized algorithm M with
domain N|χ| is (ε, δ) differentially private if for all S ⊆ Range(M) and for all
neighboring databases D and D′,

Pr[M(D) ∈ S] ⩽ exp(ε) Pr[M(D′) ∈ S] + δ,

where the probability is over the randomness of M.

We can interpret this as any outcome S does not become much more or less
likely by modifying a single entry, except with a small tolerance probability δ.
There are various alternative notions of Differential Privacy in the literature: we
refer to [47] for an overview.

Observe that the algorithmM can take many forms, from individual database
entries, to summary statistics, to the outcome of a machine learning training al-
gorithm with training set D, and in each case the Differential Privacy considera-
tions will be different. It will be necessary to understand the extent to which an
algorithm can be influenced by a single entry, which is captured in the following
definition.
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Definition 2 (lp Sensitivity). The lp sensitivity of an algorithm f : N|χ| → Rk

is:
δ
(p)
f = max

D,D′∈N|χ|

adjacent

||f(D)− f(D′)||p

In this work we will only consider p = 2, and so will omit the (p)-superscript.
Frequently Differential Privacy is achieved via adding random noise. One

such method is the Gaussian Mechanism, defined as follows.

Definition 3 (Gaussian Mechanism). The Gaussian Mechanism with pa-
rameter ρ2 adds zero-mean Gaussian noise with variance ρ2 to each of the d
coordinates of an algorithm’s output.

The relationship between (ε, δ)-Differential Privacy, sensitivity, and the Gaus-
sian Mechanism is a standard result in the literature, but we will defer it’s pre-
sentation to Section 3, as well as recapping the proof in Appendix B, in order
to properly motivate our own analysis.

Finally, we repeat the post-processing principle, which guarantees that if an
algorithm is (ε, δ)-differentially private, any further data-independent computa-
tion preserves this privacy.

Proposition 1 (Proposition 2.1 of [35]). LetM : N|χ| → R be a randomized
algorithm that is (ε, δ)-differentially private. Let f : R → R′ be an arbitrary
mapping. Then f ◦M : N|χ| → R′ is (ε, δ)-differentially private.

The parameter ε is sometimes referred to as a privacy budget, and an ac-
ceptable value will depend on the context. Indeed, in [47], it is observed that
for simpler applications, a privacy budget in the range (0, 1) is sufficient to have
a performant algorithm. On the other hand, for more complex learning tasks,
a typical privacy budget can be around 10. As observed by the authors of [47]
however, in standard applications, the privacy implications of budgets this high
may be unacceptable. Indeed, if ε = 10, an outcome can go from almost im-
possible to almost certain by changing just one value in the dataset, completely
compromising the privacy of the individual added.

2.4 Update Rules

In the analysis of sensitivity for our case study, we will use the terminology and
notation of [82] and [44] for clarity, namely update rules. An update rule is simply
a function G : Ω → Ω for some arbitrary set Ω. For gradient descent, Ω = Rd,
and we would have an update rule of the following form

G(β) = β − α∇J(β,D).

where J is our cost function, ∇J its derivative, and α the learning rate. In
particular, the update rule G depends on the database. The authors of [82,44]
use this terminology to analyze, respectively, the stability and differential privacy
of Permutation Based Stochastic Gradient Descent (PSGD). PSGD differs from
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Gradient Descent in that it only uses one randomly selected training example
per update.

If we have an iterative procedure with updates G1, G2, ..., GT , and a fixed
starting point β(0), the full algorithm is therefore equivalent to the composition
GT ◦GT−1 ◦ ... ◦G1 applied to β(0).

2.5 Ridge Regression Case Study

We will explore our results with an application to ridge regression training using
gradient descent. This algorithm was originally implemented using CKKS in [66].

As an additional assumption, we will assume databases satisfy each |yi|, |xij | ≤
1 which can be achieved via normalization.

Ridge regression takes n entries xi ∈ Rd with n labels yi, and seeks weights
β1, β2, ...βd such that3:

yi ≈ β1xi1 + β2xi2 + ...+ βdxid

for each i. Ridge regression additionally seeks to prevent overfitting by penalising
large values of βj with l2 regularisation. The cost function for ridge regression
is of the form:

J(β,D) = 1

2
λ ||β||2 + 1

2n

n∑
i=1

(yi − β · xi)
2, (1)

where the parameter λ is the regularization parameter, and determines the degree
of penalization of large coefficients. We will sometimes omit the second argument
D.

We will be considering minimising (1) using gradient descent. We will initial-
ize β = 0, and then iteratively update the parameters via

β ← β − α∇J(β), (2)

where α is the learning rate, which possibly changes from iteration to iteration.
Differentiating our cost function, this is equivalent to updating each weight via

βj ← (1− λα)βj +
α

n

n∑
i=1

xij (yi − β · xi) (3)

Without additional restrictions, the unbounded gradients of the cost function
make it impossible to bound the sensitivity of ridge regression parameters after a
fixed number of updates. We therefore assume the following additional heuristic.

Heuristic 2.51 The learning rate is such that J(β,D) decreases each iteration.

Observe that such a learning rate can be chosen whenever the cost function is
Lipschitz continuous, which is not the case here. In our experiments, we will use
a decaying learning rate, which perhaps makes this heuristic more reasonable.
3 In this work, for simplicity we do not train a constant weight β0.
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For our case study, as a consequence, we will only be able to claim differential
privacy over the subset of databases for which this heuristic holds. If the heuristic
fails, it may be possible to distinguish which database was used during training.

From the heuristic, we can derive the following4.

Lemma 2. Assuming Heuristic 2.51, at each iteration we have that β satisfies
||β||2 ≤

1√
λ
.

Proof. As the cost decreases each iteration, letting β(k) be the output of the kth

update, so that β(0) = 0, and recalling each |yi| ≤ 1,

J(β(k),D) ≤ J(β(0),D) = 1

2n

n∑
i=1

y2i ≤
1

2
,

while on the other hand

λ
∣∣∣∣∣∣β(k)

∣∣∣∣∣∣2
2
≤ λ

∣∣∣∣∣∣β(k)
∣∣∣∣∣∣2
2
+

1

n

n∑
i=1

(yi − β(k) · xi)
2 = 2J(β(k),D),

so we can conclude
∣∣∣∣β(k)

∣∣∣∣2
2
≤ 1/λ.

2.6 Notation Key

We present a guide to the notation we will use throughout this paper.

H
E

N polynomial modulus
∆ precision parameter

ct.X a ciphertext encrypting X
σ2
X ring variance when calculating X homomorphically

ρ2X real variance when calculating X homomorphically

D
P

ε privacy budget
δ failure probability
δf sensitivity of the function f

D
at

ab
as

e n number of database rows
d number of database columns
xij feature j of ith entry
yi label of ith entry

M
L

β vector of model weights
λ regularization coefficient
α learning rate

Table 1. A guide to the notation we follow in this paper.

4 This bound applies unconditionally to the minimum of the cost function – see [61].
However, in our case study we will only evaluate a fixed number of iterations of
gradient descent, and so cannot assume we converge to the minimum.
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As we are unifying concepts from various fields, some of these depart from
standard notation. Most prominently, in Differential Privacy, it is typical to use
∆ to denote sensitivity, whereas in CKKS, this symbol is used for the precision
parameter. For the noise analysis, we consistently use σ2 for noise variances in
the plaintext space (ring), and ρ2 for the variance of the real error.

3 Differential Privacy Analysis

Let us now consider how best to analyze the Differential Privacy guarantees of
an algorithm evaluated homomorphically using the CKKS scheme. Let us first
note that, since all intermediary stages are encrypted, it is sufficient to consider
the privacy of the final output. Secondly, we can use the results in [26] to argue
that the final output follows a normal distribution of the following form

β +N(0, ρ2) (4)

where β is the “true" output of the algorithm. Thus an initial approach may
attempt to ensure ρ is large enough to mask the difference β − β′ over adja-
cent databases. For this approach, we have the following classical result on the
privacy guarantee of the Gaussian Mechanism [35,51]. The proof is recapped in
Appendix B.1 for completeness.

Theorem 1. Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian
Mechanism is (ε, δ)-differentially private whenever ρ ≥ cδf/ε, where δf is the
sensitivity.

Therefore, if we bound ||β − β′|| at iteration k by δk, and have the variance at
iteration k is (at least) ρ2, then if we have ρ2 > 2 ln(1.25/δ)δk/ε it may seem we
can argue we have (ε, δ) Differential Privacy at the kth iteration5. We present
experimental results for this approach applied to our case study in 4.2.

However, let’s look more closely at how we update the variance after a mul-
tiplication. If we multiply encryptions of plaintexts m1 and m2 with ring noise
variances σ2

1 and σ2
2 respectively, the resulting encryption has ring noise with

variance:
Nσ2

1σ
2
2 + σ2

1 ||m2||2 + σ2
2 ||m1||2 . (5)

Therefore, the variance of an algorithm’s output when evaluated homomorphi-
cally using CKKS is dependent on the input data. Therefore, our situation is
more accurately modelled as outputs from the distribution

βD +N
(
0, ρ2D

)
(6)

where mean and variance depend on the underlying database. We therefore
need to properly quantify the impact of this additional database dependency on
Differential Privacy. This is accomplished in the one dimensional case by the
following theorem.
5 In the multivariate case, we may have the variance ρ2i differs from component to

component. Here we would say instead min ρ2i > 2 ln(1.25/δ)δk/ε.
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Theorem 2. Suppose we use a Gaussian mechanism with variance ρ2D depen-
dent on the underlying database. Then the resulting mechanism is (ε, δ) differ-

ential private if D = 2 ln
(√

2
π

1
δ

)
> 1 and

ε > T 2K
√
D +

1

2
T 2K2 +

1

2
(T 2 − 1)D + lnT

where max ρD
ρD′
≤ T , max |βD−βD′ |

ρD
≤ K, where the maximums are taken over

adjacent databases.

Proof. Fix adjacent databases D and D′, and suppose the respective mechanisms
are given by

A ∼ N(β, ρ2) and A′ ∼ N(β′, ρ′2)

Our proof strategy will follow the standard proof of Theorem 1: namely, to
examine the ratio of probability density functions fA(α)

fA′ (α)
, and isolate a subset

R ⊂ R with the following properties:

1. Pr[A ∈ R] ≥ 1− δ

2. α ∈ R =⇒ e−ε ≤ fA(α)
fA′ (α)

≤ eε.

So consider the ratio of the probability density functions at a fixed point α ∈ R:

fA(α)

fA′(α)
=

ρ′

ρ
exp

(
1

2ρ′2
(α− β′)2 − 1

2ρ2
(α− β)2

)
=

1

τ
exp

(
1

2
τ2
(
α− β

ρ
− κ

)2

− 1

2

(
α− β

ρ

)2
)

Where τ = ρ
ρ′ , and κ = β′−β

ρ . Observe that 1
T ≤ τ ≤ T , and |κ| ≤ K.

Without loss of generality6 let τ ≥ 1. Setting this ratio to lie in the range
[e−ε, eε], and letting α follow the distribution ofA, and observing A−β

ρ ∼ N(0, 1),
we are interested in the probability

−2ε+ 2 ln τ ≤ τ2(Z − κ)2 − Z2 ≤ 2ε+ 2 ln τ, (7)

where Z ∼ N(0, 1). We will show that if ε satisfies the condition of the theorem,
this inequality is satisfied with probability at least 1− δ.

The random variable τ2(Z − κ)2 − Z2 = (τ2 − 1)Z2 − 2κτ2Z + τ2κ2 is a
quadratic in Z, with minimum at

(
κτ2

τ2−1 ,−
τ2κ2

τ2−1

)
. The upper bound in (7) is

achieved at z±1 , where

z±1 =
κτ2

τ2 − 1
±
√

τ2κ2 + (τ2 − 1)(2ε+ 2 ln τ)

τ2 − 1

6 Indeed, if instead τ < 1, we can exchange D and D′ and use the lower e−ε bound.
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The lower bound in (7) is achieved whenever −2ε+2 ln τ ≥ − τ2κ2

τ2−1 , at z±2 where

z±2 =
κτ2

τ2 − 1
±
√

τ2κ2 − (τ2 − 1)(2ε− 2 ln τ)

τ2 − 1

Our inequality is met therefore whenever Z ∈ [z−1 , z−2 ] ∪ [z+2 , z
+
1 ], or in the case

the lower equality is never met, [z−1 , z+1 ]. Consider the case κ ≥ 0: we will show
the probability Z ∈ [z−1 , z−2 ] ≥ 1− δ, from which we will be able to conclude the
proof. The case κ < 0 follows almost identically, instead considering Z ∈ [z+1 , z

+
2 ].

We first can show that z−1 ≤ −1, since this is true if and only if

ε ≥ κτ2 +
1

2
κ2τ2 +

1

2
(τ2 − 1)− ln τ,

which follows from our condition on ε, and the additional requirement that
D ≥ 1.

So we can use the tail bound (1) as follows:

Pr[Z < z−1 ] = Pr[Z > −z−1 ] ≤ 1√
2π(−z−1 )

exp

(
− (z−1 )2

2

)
(8)

≤ 1√
2π

exp

(
− (z−1 )2

2

)
(9)

To bound this tail by δ/2, we need to show

−z−1 ≥

√√√√2 ln

(√
2

π

1

δ

)
=:
√
D.

But this is true if and only if

ε ≥ κτ2
√
D +

1

2
κ2τ2 +

1

2
(τ2 − 1)D − ln τ,

which is guaranteed by our condition.
We now turn to the upper tail bound. If −2ε− 2 ln τ is below the minimum

of the quadratic, we only need to consider Pr[Z > z+1 ], which is less than Pr[Z <
z−1 ] ≤ δ/2 since κ ≥ 0 implies z+1 ≥ −z

−
1 , and so we can say the probability of

(7) is at least 1− δ.
If we instead have the minimum lies below −2ε − 2 ln τ , we consider the

probability Z exceeds z−2 . We can again show z−2 ≥ 1 using the condition on ε
and D, so that as above we need to show

z+2 ≥
√
D,

which is true if and only if

ε ≥ τ2κ
√
D − 1

2
τ2κ2 − 1

2
D + ln τ,
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which is again guaranteed by our condition.
To finish the proof, we let R be the following set

R := {α ∈ R : −2ε+ 2 ln τ ≤ τ2(α− κ)2 − α2 ≤ 2ε+ 2 ln τ}

We have shown that Pr[A ∈ R] ≥ 1−δ, and that α ∈ R =⇒ e−ε ≤ fD(α)
fD′ (α)

≤ eε.
Therefore,

Pr[A ∈ S] = Pr[A ∈ S ∩R] + Pr[A ∈ S ∩ (R\R)]

≤
∫
α∈S∩R

fA(α)dα+ Pr[A /∈ R]

≤
∫
α∈S∩R

eεfA′(α)dα+ δ

≤ eε Pr[A′ ∈ S] + δ

as required.

Remark 1. In the case T = 1, we might hope to recover the standard Gaussian
Mechanism inequality, since this corresponds to the variance having no mes-
sage dependence. And indeed, if we let T = 1, we have ε > K

√
D + 1

2K
2 =

O
(√

ln( 1δ )δf/ρ
)
, which is asymptotically the same as in the standard case.

In the multidimensional case, we instead prove the following.

Theorem 3. Suppose we use the following Gaussian mechanism: for a database
D, we provide a sample from the distribution N(βD, ΣD), where βD ∈ Rd, and
ΣD is a diagonal matrix with diagonal entries ρD,1, ..., ρD,d which are dependent
on the database D. This mechanism is (ε, δ) differentially private if

ε >

√
(
1

2
d(T 2 − 1) + T 4K2)D +

1

2
T 2K2 +

1

2
(T 2 − 1)(D + d) + d lnT

where D = 2 ln 1
δ , max

ρD,i

ρD′,i
≤ T for all i, and

max

∣∣∣∣∣∣∣∣(βD,1 − βD′,1

ρD,1
, ...,

βD,d − β′
D′,d

ρD,d

)∣∣∣∣∣∣∣∣ ≤ K,

where maximums are taken over adjacent databases D and D′.

Proof. The proof is given in Appendix B.2.

Remark 2. We again have that the asymptotic behaviour when T = 1 is equal to
that in the classical case. However, when d = 1 the multivariate ε is strictly larger
than in the univariate case. This may be an artefact of our proof technique, and
in particular that the tail bound we use for a noncentral chi-squared distribution
is strictly looser than the tail bound we use for a Gaussian distribution.
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The full version of this theorem provides the opportunity to treat different
components of the algorithm output differently. This may be valuable if, for ex-
ample, we want to release the evaluation of different functions which have distinct
sensitivities or variance growth. For our case study we will not take advantage
of this flexibility, and so give the following corollary for the homogeneous case.

Corollary 2. The mechanism from Theorem 3 is (ε, δ) differentially private
whenever

ε >

√
(
1

2
d(T 2 − 1) + T 4K2)D +

1

2
T 2K2 +

1

2
(T 2 − 1)(D + d) + d lnT,

where D = 2 ln 1
δ , max

ρD,i

ρD′,i
≤ T for all i and δf/ρ ≤ K, where δf is the

sensitivity and we have ρD,i ≥ ρ for all i and all databases D.

4 Case Study

Now that we have an analysis of the privacy guarantees of an abstract homomor-
phic algorithm, we make these ideas concrete by analysing ridge regression, and
provide a “recipe" for how to use these ideas for other applications. As we are
pursuing a gradient descent approach, we will be investigating the differential
privacy guarantees after k iterations.

Looking at Corollary 2 and Theorem 1, we must analyze the following quan-
tities:

– Sensitivity. Written δf , a bound on ||β − β′|| at iteration k where β and
β′ are produced by neighboring databases. We provide a novel analysis in
Section 4.1.

– Noise Variance. Written ρD,i, we must understand the variance of the noise
on each βi in the message space. We give an analysis in Appendix C.1,
and upper and lower bounds in Appendix C.2. We believe this is the first
“average case" analysis of the noise growth across a full CKKS algorithm.
For the lower bounds, we introduce a density parameter c which corresponds
to a lower bound on relevant message magnitudes.

– Message Dependence. Written T , we must bound the ratio of variances pro-
duced by neighboring databases. This is done in Appendix C.3.

We make essential use of the heuristics derived in [26], which to the best of
our knowledge represents the state of the art for average case analysis of CKKS,
and argue that deriving additional average case heuristics is beyond the scope
of this work. As such, our noise analysis is specific to textbook CKKS, as this
is what is analyzed in [26], and does not use SIMD packing, SIMD techiques, or
rotations, as these are not treated by the authors of [26].

4.1 Sensitivity

To bound the difference ||β − β′||, we will use a corollary to the following lemma.
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Lemma 3. Fix an arbitrary sequence of updates G1, ..., GT : Ω → Ω and an-
other sequence G′

1, ..., G
′
T : Ω → Ω. Let β0 = β′

0 be a fixed starting point in Ω
and define δt = ||βt − β′

t|| where βt, β
′
t are defined recursively through

βt = Gt(βt−1), β′
k = G′

t(β
′
t−1)

Let B = {β0, ..., βT , β
′
0, ..., β

′
T } be the “update set". Then, if

supx∈B ||Gt(x)−G′
t(x)|| ≤ ηt and either Gt or G′

t is Lt-Lipschitz, we have δt ≤
ηt + Ltδt−1.

Proof. Consider update t. Without loss of generality, let G′
t be Lipschitz. Then

δt =
∣∣∣∣Gt(βt−1)−G′

t(β
′
t−1)

∣∣∣∣
≤ ||Gt(βt−1)−G′

t(βt−1)||+
∣∣∣∣G′

t(βt−1)−G′
t(β

′
t−1)

∣∣∣∣
≤ ηt + Lt

∣∣∣∣βt−1 − β′
t−1

∣∣∣∣
≤ ηt + Ltδt−1

as required.

Corollary 3. Let δk be the sensitivity of the kth ridge regression update as de-
scribed in Section 2.5. Then we have the recurrence relation

δ0 = 0, δ1 =
2α
√
d

n
, δk ≤

2α

n

(√
d+

d√
λ

)
+ (|1− λ|+ αd)δk−1.

Proof. Without loss of generality, say D and D′ differ on the nth training sample.
We let Gk and G′

k be the kth gradient update with databases D and D′, so that,
using Eq. (3),

Gk(β) = (1− λα)β +
α

n

n∑
i=1

xi(yi − β · xi) +
α

n
xn(yn − β · xn),

G′
k(β) = (1− λα)β +

α

n

n∑
i=1

xi(yi − β · xi) +
α

n
x′
n(y

′
n − β · x′

n).

Let us bound δ1 directly.

δ1 = ||G1(0)−G′
1(0)|| =

α

n
||yixi − y′ix

′
i|| ≤

2α
√
d

n
,

since |yi| ≤ 1 and ||x|| ≤
√
d.

We will now show that supβ ||Gk(β)−G′
k(β)|| ≤ 2α

n (1 + 1√
λ
) and Gk is

(|1− λ|+ αd)-Lipschitz, so that the claim follows from Lemma 3.
For the first part, we have

||Gk(β)−G′
k(β)|| =

α

n
||xn(yn − β · xn)− x′

n(y
′
n − β · x′

n)||

≤ α

n
(||xn|| (|yn|+ |β · xn|) + ||x′

n|| (|y′n|+ |β · x′
n|))

≤ 2α

n
(
√
d+ d ||β||),
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where the last inequality follows by Cauchy-Schwartz and that ||xi|| ≤
√
d. For

the β in the update set, we have ||β|| ≤ 1/
√
λ due to Heuristic 2.51 and Lemma 2.

For the Lipschitz condition,

||Gk(β)−Gk(β
′)|| =

∣∣∣∣∣
∣∣∣∣∣(1− λ)(β − β′) +

α

n

n∑
i=1

xi(xi · (β − β′))

∣∣∣∣∣
∣∣∣∣∣

≤ |1− λ| ||β − β′||+ α

n

n∑
i=1

||xi|| |xi · (β − β′)|

≤ (|1− λ|+ αd) ||β − β′||

as required.

4.2 Experiments

We now explore the Differential Privacy of our case study experimentally by
simulating the noise growth with our heuristics. Since we see in [66] that this
algorithm exhibits very slow convergence, we do not report on the accuracy
of derived models – we will be exclusively interested in the privacy properties.
Our primary goal in this section is to use this case study to explore the theory
developed in Section 3.
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Fig. 1. Variance Growth with Iteration. log∆ = 20.

Between the database, algorithm, HE, and DP parameters, we will not be
able to explore the impact of all choices on Differential Privacy, and fix many
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throughout. For the database, we set n = 4096 and d = 10, while for the re-
gression we let λ = 1, and use a dynamic learning rate α = 1/i at iteration
i. On the privacy side, we fix the failure tolerance as δ = 1/n = 1/4096. For
the homomorphic encryption, we will fix all but the precision parameter ∆ – we
detail additional parameters in Appendix A.1.

We first examine how variance grows as we compute more and more iterations
for a fixed precision. This is done in Fig. 1, where we plot the variance lower
bound against the iteration number for two different density parameters c, as well
as the upper bound. From this graph, we observe that, as expected, the variance
grows with iteration number in both “best" and “worst" case for this value of ∆.
We also observe that for these parameters the maximum and minimum values
of the variance have a difference of around 1 bit by iteration 50. Surprisingly,
we find that the density parameter does not impact how the variance lower
bound grows. For this reason, we do not vary this parameter in the rest of our
experiments, instead using c = 0 (the least restrictive value).

We additionally show how sensitivity changes with iteration in Fig. 2. Due
to our parameter choices, in particular the decay of the learning rate α, we have
that sensitivity increases at first, and then decreases. This shape is echoed in
many of the following figures, as many quantities are dependent on sensitivity.
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Fig. 2. Sensitivity Growth with Iteration.

”Variance Only" Approach Let’s now investigate how much Differential Pri-
vacy we might expect if we only look at the variance, i.e., if we treat this as
a standard Gaussian Mechanism. In more detail, we calculate a lower bound
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on the variance ρ2, and use Theorem 1 to calculate the ε for which we have
(ε, δ) privacy. We results are displayed in Fig. 3. These values for the precision
parameter may appear quite low, with log∆ in the range 30 to 40 being more
common. However, this graph does suggest that a small parameter relaxation
can give Differential Privacy, with all parameter sets reaching a privacy leak-
age less than 1 by iteration 30. As we might expect, we also find that, for this
approach, the privacy leakage increases with log∆. This corresponds to higher
precision ∆ giving smaller noise.
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Fig. 3. ε Growth with Iteration for Varying ∆.

To give an additional insight into the relationship between ∆ and privacy in
this model, we plot log∆ against the number of iterations required to achieve
(ε, δ) privacy for a variety of privacy budgets ε in Fig. 4. Lines cutting off cor-
respond to not being able to stay below the privacy budget for a given log∆
within 100 iterations.

Full Approach Modelling Homomorphic Encryption noise as a simple Gaussian
Mechanism suggests we can be cautiously optimistic about achieving Differen-
tial Privacy with only a small relaxation of the precision parameter. However,
to accurately capture the situation we must consider the impact of message de-
pendence. We plot how this varies over many iterations in Fig. 5. We first note
that perhaps surprisingly, message dependence for this case study decreases with
iteration, getting very close to the “no message dependence" by iteration 50 for
log∆ = 20 and 25. We also have that the lines for log∆ = 20 and 25 almost coin-
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Fig. 4. Number of Iterations for (ε, δ) Privacy as a Function of ∆ and ε.

cide completely. Another key observation is that message dependence decreases
as log∆ increases.
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Fig. 5. Message Dependence Change with Iteration.

Lastly, we look at the full privacy leakage of this case study. We plot the
privacy budget of each iteration, for a range of log∆, following Corollary 2. We
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find the privacy leakage is much worse than we might expect, given the small
leakage in the “variance only" approach (Fig. 3) and the low message dependence
for later iterations (Fig. 5). In fact, for these parameters, ε never falls below 2.

Interestingly, we find the opposite relationship between ∆ and privacy than
was observed when only considering the variance – namely, past a certain number
of iterations, higher ∆ gives better privacy. This is because message dependence
(T ) dominates the sensitivity to variance ratio (δf/ρ ≤ K) in the calculation of
ε.
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Fig. 6. Change in Log Privacy Leakage with Iteration log ε.

We find that for this case study, privacy leakage falls as we perform more
iterations. This observation contrasts with findings in the differential privacy
literature, where early stopping is used to reduce privacy leakage [85,81].

We also probed our privacy budget formula ε to determine exactly which
term(s) dominate, at least for this case study. We found that the 1

2dD(T 2 − 1)
inside the square root has a large impact on the privacy leakage in later iterations.
Interestingly, this term is not present in our result for the one dimensional case
(Theorem 2), implying algorithms with one dimensional outputs may be able to
achieve stronger privacy guarantees.

To understand the privacy-accuracy trade off, we can use the 6
√
V tail bound

which is standard in HE noise analysis to give a worst case error on each coeffi-
cient of the output. We compute that for log∆ = 25, our heuristics give an error
of at most −6 bits.

The number of iterations we suggest to give good privacy guarantees is much
higher than that of the existing implementation. Indeed, the authors of [66]
perform only 9 iterations at 40 bit precision, and 13 iterations at 30 bit precision.
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However, our simplified algorithm actually has lower depth consumption7. We
could therefore evaluate k iterations of this algorithm consuming a bit length of
(k + 1) · log∆.

5 Conclusion

In this work, we investigated the extent to which the noise growth in homomor-
phic encryption can provide differential privacy to the output. We identify that
the major challenge is that the noise growth is dependent on the input messages,
and so forms an additional privacy leakage. To this end, we derive new results
on the differential privacy guarantees when adding message dependent noise.
Using a case study, we find that a small relaxation of the precision parameter is
enough to give reasonable privacy guarantees when we do not consider message
dependence, achieving privacy budgets of ε < 0.5 within 50 iterations. However,
when we properly account for message dependence, the privacy leakage is much
higher, and we find that message dependence dominates noise growth, leading
to noise budgets of ε ≈ 2 after 50 iterations.

6 Further Work

Further Noise Analysis. We were limited in our case study by the state of
the art in average case, or variance tracking, analysis for CKKS. In particular, to
investigate the privacy guarantees of more practical algorithms, we would need
to develop heuristics for degrees beyond squaring, and polynomial evaluations
more generally. We would also need to understand the impact of packing and
packing techniques on slotwise variance growth. Lastly, the heuristics we use
apply only to the textbook version of CKKS, whereas most implementations
will use an RNS variant.

From Heuristic to Guarantee. While heuristic results may be sufficient when
developing functionality, the burden of proof is higher when we want to use
these results to argue for privacy. Independence assumptions are commonplace;
in this paper for example, we assumed independence between the noise of cer-
tain ciphertexts and implicitly between keyswitching keys. More generally in the
RLWE setting, it is common to assume independence between the noise on each
coefficient, and discrete distributions are approximated with continuous ones.
Without understanding either the validity of these assumptions, or their im-
pact on privacy, it is premature to make claims on the Differential Privacy of
applications “in the wild".

7 Indeed, high precision constants are used, requiring an additional rescale, as well
as multiplying by 1-hot masks to compensate for the feature by feature encoding.
By contrast, our method uses 1 level in precomputation of Mjk, Yj , and then one
multiplication per iteration.



Differential Privacy for Free? 23

Alternative Applications and Schemes. As a major challenge identified in
our work is message dependent noise growth, future work may seek encodings and
algorithms which minimize this factor, in order to take advantage of Differential
Privacy “for free". In particular, we note that message dependence is not present
until the first multiplication – if an algorithm begins with many additions, it
may be possible to argue that differential privacy has already been achieved
before message dependence becomes an issue, and then argue privacy via post
processing. Alternatively, schemes such as TFHE do not appear to suffer from
the same message dependence, so that relaxing the correctness requirements may
result in differentially private outputs.

Beyond Output Perturbation. In this work, we only looked into whether the
final noise was sufficient to give differential privacy. In short, we modelled the
homomorphic noise as behaving like an output perturbation. However, noise is
added to the data during encryption, and so could alternatively be characterized
as an input perturbation. Indeed, in some contexts which have very sensitive
message spaces, it may be possible that the noise added during encryption means
that differential privacy is already achieved at this stage, and then argue by post
processing that any output must also be differentially private. It may also be
possible to draw from known results on objective and gradient perturbation,
since any noise added to the data will perturb the objective as well as any
gradient – however, it would appear that message dependence would play a role
in these contexts as well.

DP “At A Discount". We have explored Differential Privacy “for free" –
i.e., without making modifications to the algorithm or scheme. Future work
could investigate whether hybrid solutions can achieve better Differential Privacy
guarantees, while still harnessing the noise in approximate HE. For example, it
may be possible to introduce independent noise which is less than would be
required in a pure DP solution, but compensates for the message dependence
present in a pure HE solution. It may also be possible to argue that the noise
flooding recommended in [60] to secure CKKS is of sufficient width to guarantee
differential privacy.
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A CKKS Scheme and Noise Growth

A.1 CKKS Scheme

The CKKS, or HEAAN, scheme [20] is a cryptosystem based on the Ring Learn-
ing with Errors (RLWE) problem, and is parametrised by the power of 2 poly-
nomial modulus N , power-of-two top level and auxiliary moduli QL and P ,
power-of-two precision parameter ∆, and secret key and error distributions S
and χ. The relationship between PQL, N , S, and χ determines the security of
the RLWE instance. How to set these securely is beyond the scope of this paper,
but we refer to [5] for an overview.

For plaintexts m ∈ ZQ[X]/(XN + 1) the scheme is as follows. We omit the
details of homomorphic rotations as we do not use them.

SecretKeyGen: Sample s← S and output sk = (1, s).
PublicKeyGen(sk): Sample a ← Rq uniformly at random and e ← χ. Output

pk = ([−as+ e]q, a).
EvaluationKeyGen(sk): Sample a′ ← RP ·QL

uniformly at random and e′ ← χ.
Output evk =

(
[−a′s+ e′ + Ps2]P ·q, a

′).
Encrypt(pk,m ∈ RqL): Let pk = (p0, p1), sample v ← S and e1, e2 ← χ. Output

ct = ([m+ p0v + e1]QL
, [p1v + e2]QL

)

.
Decrypt(sk, ct): Let ct = (c0, c1). Output m′ = [c0 + c1s]ql .
Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).
Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]q,

d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and
d2 = [ct0[1]ct1[1]]q. Output ct = (d0, d1, d2).

KeySwitch(ct = (d0, d1, d2), evk): Output (d0, d1) + ⌊P−1d2 · evk⌋ mod q.
Rescale(ct, ∆) : Output ct = (⌊ 1

∆c′0⌋, ⌊ 1
∆c′1⌋).

Multiply(ct0, ct1, evk, ∆): Output the result of Pre-Multiply, followed by
KeySwitch, followed by Rescale.

To translate messages from CN/2 to plaintexts in Z[X]/(XN + 1), we use
the canonical embedding. In more detail, if ζ1, ..., ζN/2 are a set of primitive
2Nth roots of unity without conjugates, define the canonical embedding π :
Z[X]/(XN + 1)→ CN/2 as follows

π(m(X)) =
(
m(ζ1),m(ζ2), ...,m(ζN/2)

)
.

We in fact have that π is an isomorphism, and we can use this as an encoding
of our messages z ∈ CN/2 into plaintexts as follows:

Encode(z,∆) = ⌊∆π−1(z)⌉.

When we have finished computing, we return to the message space via

Decode(m,∆) =
1

∆
π(m).
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Remark 3. In our work, we will only use constant real scalars, rather than vec-
tors, and so our encoding is much simpler – for z ∈ R we set the constant
coefficient of the plaintext equal to ⌊∆z⌉. When we decode, we take only the
real part of the first slot.

For our case study, we let N = 216, set χ as the discrete Gaussian with
standard deviation 3.2, and let S be the uniform ternary distribution, so that
the hamming weights of both s and v are well approximated by 2

3N . For the
keyswitching, we assume the auxiliary modulus has the same size as the top level
modulus, or QL = P , as was the case in the original CKKS implementation [45].
We also implicitly assume the final modulus is large enough that neither plaintext
nor noise have a wrap around. For a more comprehensive treatment of how to
set parameters for Homomorphic Encryption, and the security of Ring Learning
with Errors more generally, we refer to the HE Standard [5].

A.2 Noise Growth

We recap the heuristics from [26]. We describe the plaintext space, or ring,
variance, and write this σ2

op. We have that the variance on each slot in the real
message space after decoding is then given by ρ2op = N

2∆2σ
2
op.

Fresh The fresh noise polynomial is given by ve+ se2 + e1. Approximating the
discrete Gaussian with the continuous one, we have that the coefficients of this
polynomial are distributed N(0, (||v||22+ ||s||

2
2+1)σ2IN ). Since for our case study

we have ||v||2 , ||s||2 ≈ 2N
3 , we can let σ2

fresh =
(
4N
3 + 1

)
σ2.

Round Suppose we have a ciphertext with coefficients in the reals, and we
wish to round it back to the integers. This introduces an additional error. If
the rounding polynomials for ciphertext components 0 and 1 respectively are
τ0 and τ1, the error from this procedure after decrypting will be τ0 + τ1s, so
that, modelling τi as having independent coefficients uniform in [− 1

2 ,
1
2 ], the

Central Limit Theorem gives that as a polynomial, this error distribution is well
approximated by a N(0, ( 1

12+
1
12 ||s||

2
2)IN ), so that the polynomial noise variance

is well approximated by

σ2
round =

(
1

12
+

1

18
N

)
.

Keyswitch Error here has variance given by

σ2
ks =

(
1

12
P−2Nq2l σ

2

)
+ 1P ∤qlσ

2
round

where P is the large keyswitching modulus – for our use case, this is equal to
the top level modulus. For our heuristics therefore, we will only need to know
the ratio between ql and P .
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Add If we have two independent encryptions, with noise variances σ2
1 and σ2

2

respectively, adding the two ciphertexts will give a ciphertext encrypting the
sum of the underlying messages with noise variance given by σ2

1 + σ2
2 .

Multiplication Suppose we have independent encryptions of the polynomials
m1 and m2 with polynomial noise variances σ2

1 and σ2
2 respectively. Then after

the tensor, the noise polynomial coefficients have distribution well approximated
by N(0, (Nσ2

1σ
2
2 +σ1 ||m2||22+σ2 ||m1||22)IN ) so that, after the tensor but before

the keyswitch and rescale, the error variance is given by

σ2
mult = Nσ2

1σ
2
2 + σ2

1 ||m2||22 + σ2
2 ||m1||22 . (10)

To recover polynomial bounds (e.g., ||m1||22), we recall that ||zi||22 = N
2∆2 ||mi||22.

In particular, for vectors with constant entry z ∈ R, as we will consider here,
||m||22 = ∆2z2.

Squaring If we instead square an encryption of a polynomial m, the noise
random variables are clearly not independent. In this case, we have the noise
has variance

σ2
square = 2Nσ4 + 4σ2 ||m||22 . (11)

Rescale Rescale consists of taking an encryption of the polynomial ∆m and
dividing both ciphertext components by ∆ and rounding, resulting in a an ap-
proximate ciphertext encrypting m with noise divided by ∆, plus an additional
rounding error. Therefore the noise variance after rescale is given by

σ2
rs =

1

∆2
σ2 + σ2

round.

Plaintext Multiplication When multiplying an encryption by a polynomial
p(X), we should use the multiplication heuristic, but model the polynomial p(X)
as an encryption whose only error is a rounding error resulting from encoding
(an encoding error).

When instead multiplying by a constant c ∈ Z in the ring, we can instead
simply scale the noise variance up by c2. We will extend this heuristically to
c ∈ R as well.

B Differential Privacy Proofs

B.1 Proof of Theorem 1

Let us first restate the theorem:
Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mechanism is

(ε, δ)-differentially private whenever ρ ≥ cδf/ε, where δf is the sensitivity.
The following proof is adapted from [35,51].
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Proof. Fix adjacent databases D and D′, and let A be the algorithm output
when we use D as input database, and A′ when we use D′. Our strategy will be
to show the ratio of probability density functions fA(α)/fA′(α) is less than eε,
except with probability at most δ as α follows the distribution of A. From here
we will be able to conclude. So let

A = β +N(0, ρ2Id), A′ = β′ +N(0, ρ2Id).

where β, β′ ∈ Rd are the true outputs of the algorithm, without noise, for
databases D and D′ respectively. Let κ = β − β′. By definition of sensitivity,
||κ|| ≤ δf .

The pdf ratio at a point α ∈ Rd therefore satisfies

fA(α)

fA′(α)
= exp

(
||α− β′||2

2ρ2
− ||α− β||2

2ρ2

)
(12)

= exp

(
1

2ρ2

(
||α− β + κ||2 − ||α− β||2

))
(13)

= exp

(
1

2ρ2

(
2(α− β) · κ+ ||κ||2

))
(14)

≤ exp

(
1

ρ2
(α− β) · κ+

δ2f
2ρ2

)
. (15)

We want to show this is less than eε with probability at least 1 − δ as α ← A.
So let

R :=

{
α ∈ Rd :

∣∣∣∣ 1ρ2 (α− β) · κ+ δ2f/2ρ
2

∣∣∣∣ ≤ ε

}
Let t = ερ2 − δ2f , so that α ∈ R whenever |(α− β) · κ| < t. We want to show
Pr[A − β) · κ > t] ≤ δ/2. Since (A − β) · κ ∼ N(0, ||κ||2 ρ2), so that, using
Corollary 1, we must show

ln

(
t

||κ|| ρ

)
+

1

2

(
t

||κ|| ρ

)2

> ln

(√
2

π

1

δ

)
(16)

Let ρ = cδf/ε. We will show that if c2 > 2 ln(1.25/δ) then Eq. (16) holds. First
observe

t

||κ|| ρ
≥ t

δfρ
= c− ε

2c
> 1,

whenever ε ≤ 1 and c > 3/2, so that ln
(

t
||κ||ρ

)
> 0 and we can ignore the first

term. Now, since ε ≤ 1 and we have already bounded c > 3/2,

1

2

(
t

||κ|| ρ

)2

≥ 1

2

(
c− ε

2c

)2
>

1

2

(
c2 − 8

9

)
> ln

(√
2

π

1

δ

)
,
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with the last inequality following as c2 > 2 ln(1.25/δ) > 8
9 + 2 ln

(√
2
π

)
+

2 ln(1/δ). We have therefore shown Pr[A /∈ R] ≤ 1− δ.
To conclude, we have, for all S ⊂ Rd,

Pr[A ∈ S] = Pr[A ∈ S ∩R] + Pr[A ∈ S ∩ (Rd\R)] (17)

≤
∫
α∈S∩R

fA(α)dα+ Pr[A /∈ R] (18)

≤
∫
α∈S∩R

eεfA′(α)dα+ δ (19)

≤ eε Pr[A′ ∈ S] + δ, (20)

so that the mechanism A is (ε, δ)-differentially private by definition.

B.2 Proof of Theorem 3

We will use the following tail bound for non-central chi-squared distributions.

Lemma 4. [57] Let Y ∼ χ2
d(ν) be a non-central chi-squared distribution with

d degrees of freedom and non-centrality parameter ν. Then for x ≥ 0 we have

Pr
[
Y > d+ ν + 2

√
(d+ 2ν)x+ 2x

]
≤ exp(−x)

Let us restate Theorem 3.
Suppose we use the following Gaussian mechanism: for a database D, we

provide a sample from the distribution N(βD, ΣD), where βD ∈ Rd, and ΣD is a
diagonal matrix with diagonal entries ρD,1, ..., ρD,d which are dependent on the
database D. This mechanism is (ε, δ) differentially private whenever

ε >

√
(
1

2
d(T 2 − 1) + T 4K2)D +

1

2
T 2K2 +

1

2
(T 2 − 1)(D + d) + d lnT (21)

where D = 2 ln 1
δ , max

ρD,i

ρD′,i
≤ T for all i, and

max

∣∣∣∣∣∣∣∣(βD,1 − βD′,1

ρD,1
, ...,

βD,d − β′
D′,d

ρD,d

)∣∣∣∣∣∣∣∣ ≤ K,

where maximums are taken over adjacent databases D and D′.

Proof. We recycle the proof strategy from Theorem 2, namely, we fix a database
D and identify a set R ⊂ Rd such that the mechanism A ∈ R with probability at
least 1− δ, and whenever α ∈ R, the ratio fA(α)

fA′ (α)
≤ eε for all adjacent database

mechanisms, A′.
So fix a database with mechanism A ∼ N(β,Σ), and an adjacent database

with mechanism A′ ∼ N(β′, Σ′), where Σ and Σ′ are diagonal with diagonal
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entries (ρ1, ..., ρd) and (ρ′1, ..., ρ
′
d) respectively. Then the ratio of pdfs at a point

α ∈ Rd is given by

fA(α)

fA′(α)
=

(
d∏

i=1

ρ′i
ρi

)
exp

(
1

2

d∑
i=1

(
αi − β′

i

ρ′i

)2

−
(
αi − βi

ρi

)2
)

=

d∏
i=1

1

τi
exp

(
1

2

d∑
i=1

τ2i

(
αi − βi

ρi
− κi

)2

−
(
αi − βi

ρi

)2
)

where τi = ρi

ρ′
i

and κi =
β′
i−βi

ρi
. We are interested in bounding the probability

this exceeds eε as α ← A. Letting Z ∼ N(0, Id) be a standard normal, this
probability can be written

Pr

[
d∑

i=1

(
ln τi +

1

2
τ2i (Zi − κi)

2 − 1

2
Z2
i

)
> ε

]
(22)

≤ Pr

[
d lnT +

1

2

d∑
i=1

(
T 2(Zi − κi)

2 − Z2
i

)
> ε

]

= Pr

[
(T 2 − 1)

∣∣∣∣∣∣∣∣Z − T 2

T 2 − 1
κ

∣∣∣∣∣∣∣∣2 − T 2

T 2 − 1
||κ||2 > 2ε− 2d lnT

]

= Pr

[
X >

2ε− 2d lnT

T 2 − 1
+

T 2

(T 2 − 1)2
||κ||2

]
, (23)

where X =
∣∣∣∣∣∣Z − T 2

T 2−1κ
∣∣∣∣∣∣2 ∼ χ2

d

(∣∣∣∣∣∣ T 2

T 2−1κ
∣∣∣∣∣∣2) is a non central chi-squared

distribution with d degrees of freedom, and non centrality parameter
∣∣∣∣∣∣ T 2

T 2−1κ
∣∣∣∣∣∣2.

Using Lemma 4 with x = 1
2D we have that (23) is less than δ so long as

2ε− 2d lnT

T 2 − 1
+

T 2

(T 2 − 1)2
||κ||2

≥ d+

∣∣∣∣∣∣∣∣ T 2

T 2 − 1
κ

∣∣∣∣∣∣∣∣2 + 2

√√√√(1

2
d+

∣∣∣∣∣∣∣∣ T 2

T 2 − 1
κ

∣∣∣∣∣∣∣∣2
)
D +D.

Rearranging for ε, this is precisely what is guaranteed by the condition (21).
To conclude the proof, let

R =

{
α ∈ Rd :

fA(α))

fA′(α)
≤ eε

}
.
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We have shown that Pr[A ∈ R] ≥ 1− δ. Now we have

Pr[A ∈ S] = Pr[A ∈ S ∩R] + Pr[A ∈ S ∩ (Rd\R)]

≤
∫
α∈S∩R

fA(α)dα+ Pr[A /∈ R]

≤
∫
α∈S∩R

eεfA′(α)dα+ δ

≤ eε Pr[A′ ∈ S] + δ

So that this mechanism is differentially private by definition.

C Case Study Details

C.1 Noise Analysis

We will calculate how the ring variance changes over the course of an iteration,
so that we can iteratively calculate the ring variance σ2

βj
from the fixed starting

point. From here, we can calculate the real variance ρ2βj
via ρ2βj

= N
2∆2σ

2
βj

.
Let us first follow [66] and rearrange the update circuit for the jth weight as

follows.

βj ← βj − α
∂J

∂βj

= (1− λα)βj + α
1

n

n∑
i=1

yixij︸ ︷︷ ︸
Yj

−α
d∑

k=1

βk
1

n

n∑
i=1

xijxik︸ ︷︷ ︸
Mjk

In the original homomorphic implementation of ridge regression training using
gradient descent [66], SIMD, or packing, was used for efficiency. We will however
assume that each value is packed into a separate ciphertext, and call them ct.xij ,
ct.yj , etc.. The ciphertexts ct.Yj and ct.Mjk are therefore calculated homomor-
phically via

ct.Yj ←
1

n

n∑
i=1

Mult(ct.yi, ct.xij), (24)

ct.Mjk ←
1

n

n∑
i=1

Mult(ct.xij , ct.xik), (25)

and gradient descent updates are then evaluated via

ct.βj ← Mult (1− λα− αct.Mjj , ct.βj)︸ ︷︷ ︸
(1)

+αct.Yj︸ ︷︷ ︸
(2)

−α
∑
k ̸=j

Mult (ct.βk, ct.Mjk)︸ ︷︷ ︸
(3)
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We highlight that, since Mjj corresponds to summing the squares of ciphertexts,
we calculate this variance using the squaring heuristic (see (Eq. (11)) rather than
the multiplication heuristic (see Eq. (10)).

We model the noise of the three terms (1), (2) and (3) as independent, as well
as assuming independence within these terms: e.g. noise on ct.βk is independent
of the noise associated with ct.Mjk, the noise associated with their product is
independent of the noise in the product of ct.βk′ and ct.Mjk′ etc.

The variance of the noise in the polynomial ring for the ciphertexts ct.Yj and
ct.Mjk for j ̸= k are then given by

σ2
Yj

=
1

n2

(
nN

∆2
σ4

fresh + σ2
fresh

n∑
i=1

(x2
ij + y2i ) + σ2

ks + σ2
round

)
, (26)

σ2
Mjk

=
1

n2

(
nN

∆2
σ4

fresh + σ2
fresh

n∑
i=1

(x2
ij + x2

ik) + σ2
ks + σ2

round

)
, (27)

while for j = k, we have

σ2
Mjj

=
1

n2

(
2nN

∆2
σ4

fresh + 4σ2
fresh

n∑
i=1

x2
ij + σ2

ks + σ2
round

)
(28)

where we have assumed a lazy keyswitching/rescale paradigm has been em-
ployed [55,52]. As the weights are initialized to zero, we have that the variances
after the first iteration are given σ2

βj
← α2σ2

Yj
.

For a fixed j, the three variances are therefore given by

σ2
1 =

Nα2

∆2
σ2
Mjj

σ2
βj

+ α2σ2
Mjj

β2
j + σ2

βj
(1− λα− αMjj)

2,

σ2
2 = α2σ2

Yj
,

σ2
3 =

∑
k ̸=j

(
Nα2

∆2
σ2
Mjk

σ2
βk

+ α2σ2
Mjk

β2
k + α2σ2

βk
M2

jk

)
.

After the update, we can update σ2
βj
← σ2

1 + σ2
2 + σ2

3 + σ2
ks + σ2

round.

C.2 Variance Bounds

Lower Bounds After a multiplication and rescale of two ciphertexts ct.m1 and
ct.m2 with ring noise variances σ2

1 and σ2
2 , our noise variance is of the form

N

∆2
σ2
1σ

2
2 + σ2

1m
2
2 + σ2

2m
2
1 (29)

As ∆2 is very large, we would expect noise growth to come from the σ2
im

2
j

terms. In standard noise analysis, we only want to bound noise above, and so it
is sufficient to upper bound message magnitude. However, for our purposes, we
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will want to bound messages away from zero to accurately reflect noise growth.
To this end, we introduce a new parameter c and claim bounds of the form

for all j,
n∑

i=1

x2
ij ≥ c, as well as

n∑
i=1

y2i ≥ c (30)

In other words, the 2-norms of the columns are bounded below. As we already
assume |yi|, |xij | ≤ 1, we have 0 ≤ c ≤ n; c can be thought of as reflecting the
density of databases under consideration. We explore the impact of c on privacy
in our experiments.

Remark 4. As with Heuristic 2.51, for a fixed c, we will only be able to ensure
Differential Privacy over the databases where Eq. (30) holds.

The parameter c enables us to more realistically lower bound σ2
Yj
, σ2

Mjk
, σ2

Mjj
.

We therefore can bound as follows.

σ2
Yj
≥ 1

n2

(
nN

∆2
σ4

fresh + 2cσ2
fresh + σ2

ks + σ2
round

)
, (31)

σ2
Mjk
≥ 1

n2

(
nN

∆2
σ4

fresh + 2cσ2
fresh + σ2

ks + σ2
round

)
, (32)

σ2
Mjj
≥ 1

n2

(
2nN

∆2
σ4

fresh + 4cσ2
fresh + σ2

ks + σ2
round

)
. (33)

As the first iteration is given by βj ← αYj , we can initialize our lower bound on
σ2
βj

with α2 multiplied by the lower bound on σ2
Yj

.
If α ≤ 1, as it will be for our experiments, since Mjj ≤ 1, we can bound

(1− αMjj − λα)2 ≥ (1− α− λα)2. Without additional assumptions, we cannot
bound any of the β2

k,M
2
jk away from zero. We therefore lower bound σ2

βj
after

the update as follows:

σ2
βj
≥ Nα2

∆2

d∑
k=1

σ2
βk
σ2
Mjk

+ α2σ2
Yj

+ σ2
βj

(αMjj + λα− 1)
2
+ σ2

ks + σ2
round,

where we replace each term with its lower bound.

Upper Bounds From the assumptions x2
ij ≤ 1 and y2i ≤ 1, we have that∑n

i=1(x
2
ij + y2i ) ≤ 2n and

∑n
i=1 x

2
ij ≤ n. We can therefore upper bound the

relevant variances as follows:

σ2
Yj
≤ 1

n2

(
nN

∆2
σ4

fresh + 2nσ2
fresh + σ2

ks + σ2
round

)
, (34)

σ2
Mjk
≤ 1

n2

(
nN

∆2
σ4

fresh + 2nσ2
fresh + σ2

ks + σ2
round

)
, (35)

σ2
Mjj
≤ 1

n2

(
2nN

∆2
σ4

fresh + 4nσ2
fresh + σ2

ks + σ2
round

)
. (36)
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We can additionally upper bound β2
j ≤ 1

λ ,M
2
jk ≤ 1, and if α ≤ 1, (αMjj + λα−

1)2 ≤ max((λα− 1)2, (λα)2).
As the first iteration is given by βj ← αYj , we can initialize our upper bound

on σ2
βj

with α2 multiplied by the upper bound on σ2
Yj

.
Therefore, if we have that each σ2

βj
≤ σ2

β , after performing an additional
iteration we have

σ2
βj
≤ Nα2

∆2

d∑
k=1

σ2
Mjk

σ2
β +

α2

λ

d∑
k=1

σ2
Mjk

+ α2σ2
Yj
+ (37)

(d− 1)α2σ2
β + σ2

β(αMjj + λα− 1)2,

where terms are replaced with their upper bounds.it’

C.3 Message Dependence

To apply our theorem, we need to bound the ratio of message space variances
ρ2

ρ′2 for adjacent databases at iteration k. We will approach this by bound-
ing

∣∣σ2 − σ′2
∣∣, where σ2 and σ′2 are in the ring and associated with adjacent

databases, and then invoking:

ρ2

ρ′2
=

σ2

σ′2 ≤ 1 +
|σ2 − σ′2|

σ2
min

where σ2
min is the minimum possible value for σ2.

Remark 5. This methodology may lead to weak bounds. In particular, it may be
that the databases which maximize

∣∣σ2 − σ′2
∣∣ do not coincide with the databases

which minimize σ2. In our context, we believe this method produces least upper
bounds, particularly for continuous input data.

Our analysis makes use of the following identities:

– if x2, x′2 ≤ 1, then
∣∣x2 − x′2

∣∣ ≤ 1.
– |σ2

1σ
2
2 − σ′2

1 σ′2
2 | ≤ σ2

1 |σ2
2 − σ′2

2 |+ σ′2
2 |σ2

1 − σ2
1 |,

– If ||x||2 , ||x′||2 ≤ 1
λ , then for each j we have |x2

j − x′2
j | ≤ 2√

λ
||x− x′||.

Recall our approach is to bound |σ2 − σ′2| at a fixed iteration. In this section,
as well as in the code, we will use the notation dX to denote the difference in
variance when calculating X with adjacent databases, or∣∣σ2

X − σ2
X′

∣∣ ≤ dX ,

so that the aim of this section is to upper bound dβj
at iteration k.
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Assume without loss of generality the two databases differ on the nth row.
For our three primary variances, we have

dYj =
σ2

fresh
n2

∣∣x2
nj + y2n − x′2

nj − y′2n
∣∣ ≤ 2σ2

fresh
n2

, (38)

dMjk
=

σ2
fresh
n2

∣∣x2
nj + x2

nk − x′2
nj − x′2

nk

∣∣ ≤ 2σ2
fresh
n2

, (39)

dMjj
=

4σ2
fresh
n2

∣∣x2
nj − x′2

nj

∣∣ ≤ 4σ2
fresh
n2

. (40)

As before, we can initialize dβj with α2 multiplied with the upper bound on
dYj

.
In addition, we can bound the message differences as follows:

∣∣M2
jk −M2

jk

∣∣ = ∣∣(Mjk −M ′
jk

) (
Mjk +M ′

jk

)∣∣ ≤ ∣∣∣∣ 2n · 2
∣∣∣∣ = 4

n
, (41)∣∣β2

k − β′2
k

∣∣ ≤ 2√
λ
||βk − βk′ || , (42)

while

∣∣(αMjj + λα− 1)2 − (αM ′
jj + λα− 1)2

∣∣
= |α(Mjj −Mjj′)(αMjj + αMjj′ + 2λα− 2)|

≤ 2α

n
max(2, 2α(λ+ 1)).

(43)

We can now explain how to update the bound on |σ2
βj
− σ′2

βj
|. Using the

triangle inequality, we must sum bounds on the following

d1 =
Nα2

∆2

d∑
k=1

|σ2
Mjk

σ2
βj
− σ2

M ′
jk
σ2
β′
j
|,

d2 = α2
d∑

k=1

|σ2
Mjk

β2
k − σ2

M ′
jk
β′2
k |,

d3 = α2
∑
k ̸=j

|σ2
βk
M2

jk − σ2
β′
k
M ′2

jk|,

d4 = α2|σ2
Yj
− σ2

Y ′
j
|,

d5 = |σ2
βj
(1− λα− αMjj)

2 − σ2
β′
j
(1− λα− αM ′

jj)
2|.
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Via repeated application of |x2y2 − x′2y′2| ≤ x2|y2 − y′2| + y′2|x2 − x′2|, these
terms can be bounded as follows:

d1 ≤
Nα2

∆2

d∑
k=1

(
σ2
Mjk

∣∣∣σ2
βk
− σ2

β′
k

∣∣∣+ σ2
β′
k

∣∣∣σ2
Mjk
− σ2

M ′
jk

∣∣∣) ,
d2 ≤ α2

d∑
k=1

(
σ2
Mjk

∣∣β2
k − β′2

k

∣∣+ σ2
β′
k

∣∣∣σ2
Mjk
− σ2

M ′
jk

∣∣∣) ,
d3 ≤ α2

∑
k ̸=j

(
σ2
βk

∣∣M2
jk −M ′2

jk

∣∣+M ′2
jk

∣∣∣σ2
βk
− σ2

β′
k

∣∣∣) ,
d5 = α2|σ2

Yj
− σ2

Y ′
j
|,

while

d4 ≤ σ2
βj

∣∣(αMjj + λα− 1)2 − (αM ′
jj + λα− 1)2

∣∣
+ (αM ′

jj + λα− 1)2
∣∣∣σ2

βj
− σ2

β′
j

∣∣∣ . (44)

We then replace each term with it’s upper bound, either using the sensitivity
analysis, the bounds in this section, or the variance upper bounds.
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