
1

VeriVoting: A decentralized, verifiable and privacy-preserving
scheme for weighted voting

Xiaohan Yue

Shenyang University of Tech.
xhyue@sut.edu.cn

ABSTRACT
Decentralization, verifiability, and privacy-preserving are three
fundamental properties of modern e-voting. In this paper, we con-
duct extensive investigations into them and present a novel e-vot-
ing scheme, VeriVoting, which is the first to satisfy these proper-
ties. More specifically, decentralization is realized through block-
chain technology and the distribution of decryption power among
competing entities, such as candidates. Furthermore, verifiability
is satisfied when the public verifies the ballots and decryption
keys. And finally, bidirectional unlinkability is achieved to help
preserve privacy by decoupling voter identity from ballot content.
Following the ideas above, we first leverage linear homomorphic
encryption schemes and non-interactive zero-knowledge argu-
ment systems to construct a voting primitive, SemiVoting, which
meets decentralization, decryption-key verifiability, and ballot
privacy. To further achieve ballot ciphertext verifiability and an-
onymity, we extend this primitive with blockchain and verifiable
computation to finally arrive at VeriVoting. rough security
analysis and performance evaluations, VeriVoting offers a new
trade-off between security and efficiency that differs from all pre-
vious e-voting schemes and provides a radically novel practical
approach to large-scale elections.

CCS CONCEPTS
•Security and privacy~Cryptography •Security and privacy ~Secu-
rity services~Privacy-preserving protocols •Security and pri-
vacy~Security services~Pseudonymity, anonymity and untracea-
bility

KEYWORDS
Decentralization, Verifiability, Privacy-preserving, Weighted Vot-
ing

1 INTRODUCTION
Electronic voting (e-voting), an election method for people to
freely express their will, plays a crucial role in the process of de-
mocratization and development with its efficiency and flexibility.
In all e-voting schemes, it is essential to ensure that the final tally
result correctly reflects the ballots cast by the voters. Moreover,
voters' ballots must remain private so that the final result is not
biased by those afraid to express their will freely. Another signif-
icant challenge in centralized e-voting systems is the issue of trust,
which means that the correctness of the tally result as well as the
privacy of ballots and voters must be guaranteed by one or more
trusted entities. However, finding such entities that everyone
trusts in real life is not easy. The above basic security and privacy

requirements in modern e-voting systems can be further ex-
plained as the following properties.
Decentralization. In decentralized e-voting schemes, the process
and outcome of voting cannot be controlled by a single party. As
a consequence, existing decentralized voting schemes commonly
use cryptographic technologies, such as ring signatures[1,2], se-
cret sharing[3], multi-party computation[4,5], blockchain[6,7],
etc., to distribute trust to multi-entities. However, these decentral-
ized schemes are typically designed for small-scale elections fo-
cusing on security with minimal trust assumptions[8]. Two issues
limit the scalability: One is performance. The cost of the voting or
tally algorithm running on the voter's side is linearly related to
the number of participating voters, such as [1],[4],[5]; Another is
dynamic join. Due to some system parameters (such as public pa-
rameters, decryption keys, etc.) are determined by a fixed number
of voters before the voting phase, most decentralized e-voting
schemes do not support dynamic join for voters.
Verifiability. In decentralized voting systems, the verifiability of
the process and outcome of voting is particularly crucial due to
the lack of trust[9]. Verifiability for the decentralized voting sys-
tem should consist of the following aspects: The first is ballot ver-
ifiability, which prevents dishonest voters from voting without
following the prescribed rules; The second is decryption-key ver-
ifiability, which is optionally considered due to the difference in
e-voting construction, can prevent decryption-key holders from
submitting false ones to sway the outcome of elections; The third
is tally result verifiability, which enables external and internal en-
tities to detect and reject false election results.
Privacy-preserving. Privacy-preserving on ballots and voters are
called ballot privacy[10] and anonymity[11], respectively. Ballot
privacy means that no coalition of malicious parties (consisting of
partial voters or decryption key holders) can learn an honest vot-
er's ballot content. Anonymity enables voters to cast their ballots
anonymously, and even if the ballot content was revealed, indi-
vidual ballots could not be traced back to individual voters. Essen-
tially, ballot privacy and anonymity protect the content of ballots
and voters' identities and further imply bidirectional unlinkability
between ballots and voters.

Our roadmap. In a weighted voting scheme, the tallying algo-
rithm for a candidate 𝕔𝕔𝑗𝑗 can be mathematically expressed as an
inner operation 𝑡𝑡𝑗𝑗 =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >, where 𝑡𝑡𝑗𝑗 is the final score for the
candidate 𝕔𝕔𝑗𝑗 , 𝑣𝑣𝑗𝑗 is the vector consisting of ballots cast by voters
for the candidate 𝕔𝕔𝑗𝑗 , and 𝑤𝑤��⃑ is the vector consisting of correspond-
ing voters' weights. As such, from a conceptual standpoint, de-
centralized variants of functional encryption(FE) schemes with ci-
phertext indistinguishability (IND)-security, such as DMCFE[12],
DDFE[13], and ad hoc MIFE[14], are good candidates to meet not

2

only the functionality requirements for decentralized e-voting but
also the security requirements for ballot privacy.

However, as described in the definition of DDFE[13], the output
of functions, including the inner product function, is determined
by participants' inputs and decryption keys. Thus, once some par-
ticipants are offline or absent after the encryption operation, the
decryption algorithm cannot work to output the result of func-
tions because the complete decryption key cannot be aggregated
from all participants’ partial decryption keys. Alternatively, if a
malicious participant provides a false decryption key, then the
output of the decryption algorithm would be incorrect. To fill the
gap of lacking verifiable, in 2023, Nguyen et al.[15] presents veri-
fiable decentralized inner product FE. However, generating a par-
tial decryption key relies on multi-party protocols, which makes
verifying each key highly inefficient. Another drawback of this
solution[15] is that a receiver cannot detect which participant sent
a malicious key share if the aggregated decryption key is invalid.
Inspired by[13],[15], the verifiability of decryption (i.e., tally result)
is conducted by the verifiability of encryption and decryption key
in our scheme so as to get rid of the performance and centraliza-
tion problems caused by the existing verifiable e-voting systems
which focus on the verifiability of encryption and decryption.

SemiVoting. The starting point of our paper is to design a decen-
tralized weighted voting primitive for semi-honest voters, named
SemiVoting, which features ballot privacy and efficient decryp-
tion-key verifiability.

Our primitive of SemiVoting is based on two facts about large-
scale elections: Fact 1. The candidates will not be absent through-
out the election, and the size of candidates is always smaller than
the size of voters, even if candidates are also voters. Fact 2. As
fellow competitors, the candidates never collude with each other,
or at least one of the candidates does not collude with the other
candidates. These two facts make candidates being holders of en-
cryption keys and decryption keys in our construction such that:
In the voting phase, without generating the encryption and de-
cryption keys, each voter can dynamically participate in voting
activities and encrypt their ballots using aggregated encryption
keys of candidates; In the decryption-key generation phase, each
candidate generates verifiable partial decryption keys, which can
be aggregated into one decryption key by anyone after verifying
the validity of all the partial decryption keys; In the tally phase,
anyone can decrypt aggregated encrypted ballots using the de-
cryption keys. In each phase, the number of keys and the cost of
algorithms are related to the size of candidates, not voters, which
enables our construction to be feasible for large-scale elections.
The detail of the SemiVoting primitive is shown in Section 2.

SemiVoting, however, only accomplishes half of the work in
our scheme, namely decentralization, decryption-key verifiability,
and ballot privacy. For dishonest voters, they could not follow the
rule of voting, such as duplicate voting[16,17], casting ill-formed
ballots [18], etc. Thus, from the perspective of object-oriented pro-
gramming, we derive a new class named VeriVoting from the
SemiVoting primitive to fill the gap that prevents this primitive
from being practical.

VeriVoting. Similar to other decentralized private computation
schemes, such as Zcash[19], Hawk[20], and Zexe[21], we mainly
add two extra components for the voting transaction, including a

commitment scheme and a verifiable computation system, i.e.,
zkSNARKs[22-24], to avoid voter’s dishonest behaviors and
achieve encrypted ballot verifiability while keeping voters' ano-
nymity. At a high level, as a result of horizontal extension on the
base class, we decouple ballot privacy and anonymity by using
different privacy components where the linear homomorphic en-
cryption scheme is for ballot privacy, and the zkSNARK system is
for anonymity. The detail of VeriVoting is shown in Section 3.

Our contributions. Following the above roadmap, our contribu-
tions are summarized below.

(1). We first introduce a novel weighted voting primitive, Semi-
Voting, which features decentralization, decryption-key verifia-
bility, and ballot privacy. In addition, the computational complex-
ity of the voting and tally algorithms is only related to the number
of candidates rather than voters. Furthermore, based on bounded-
collusion indistinguishability secure encryption schemes with lin-
ear homomorphic properties and non-interactive zero-knowledge
(NIZK) arguments system, we give a feasible general construction
later used by VeriVoting.

(2). To fill the gap in making SemiVoting practical, we employ
zkSNARKs and blockchain technologies to build our final
weighted voting scheme, VeriVoting. Benefiting from both tech-
nologies, VeriVoting provides ballot verifiability and voter ano-
nymity and realizes the horizontal extension of SemiVoting.

(3). With the help of the Remix IDE[25] and Zokrates toolbox
[26], we evaluate the performance of core algorithms in VeriVot-
ing on the smart contract side and the voter and candidate side,
respectively. The result shows that the computation cost of the
algorithms is related to the number of candidates, not voters,
which makes VeriVoting suitable for large-scale elections.

(4). With the linear homomorphism of ballot ciphertexts, we
present a distributed framework to solve the problem that a single
contract cannot be executed in parallel for large-scale elections.

Table 1: Symbols
Symbols Meaning

𝕍𝕍 Set of valid voters
𝕧𝕧𝑖𝑖 Voter 𝑖𝑖, 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍
𝕒𝕒 Aggregator
ℂ Set of candidates
𝕔𝕔𝑗𝑗 Candidate 𝑗𝑗, 𝕔𝕔𝑗𝑗 ∈ ℂ
𝜆𝜆 Security parameter

𝑝𝑝𝑘𝑘𝑗𝑗 ,𝑠𝑠𝑘𝑘𝑗𝑗 Candidate 𝕔𝕔𝑗𝑗 's public and secret key
𝑑𝑑𝑘𝑘𝑗𝑗 Decryption key generated by 𝕔𝕔𝑗𝑗 's secret key 𝑠𝑠𝑘𝑘𝑗𝑗
𝑣𝑣𝑖𝑖 Voter 𝕧𝕧𝑖𝑖’s ballot vector, 𝑣𝑣𝑖𝑖 ∈ ℬ|ℂ|
𝑣𝑣𝑗𝑗 Vector of ballots casting for the candidate 𝕔𝕔𝑗𝑗, 𝑣𝑣𝑗𝑗 ∈ ℬ|𝕍𝕍|
𝑤𝑤��⃑ Valid voters’ weight vector, |𝑤𝑤��⃑ | = |𝕍𝕍|
𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 Encrypted/Secret ballot vector, 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ∈ 𝒞𝒞|ℂ|
ℂ𝕋𝕋 Iteratively aggregatable ciphertext set, |ℂ𝕋𝕋| = |ℂ|.
𝔻𝔻𝔻𝔻 Iteratively aggregatable decryption-key set, |𝔻𝔻𝔻𝔻| = |ℂ|

2 SEMIVOTING PRIMITIVE
In this section, we introduce a weighted voting construction for
semi-honest voters in which the computational cost of the voting
and tally algorithm is related to the number of candidates rather
than voters. Moreover, since the number of voters is always
smaller than the candidates in most voting applications, we call
our scheme moderately succinct. To show our detailed

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

3

construction clearly, we will first introduce the overview of the
SemiVoting primitive, mainly including introductions of entities
and a formal definition of SemiVoting. Then, we give informal de-
scriptions of security requirements that our scheme should guar-
antee.

The parameters of the primitive are described in Table 1.

2.1 Overview
The overview of SemiVoting is shown in Figure 1, which consists
of three entities, namely voters, candidates, and an aggregator,
and four phases, including initialization, voting, decryption-key
(DK) generation, and tally phases. Notes that we omit the regis-
tration process in this section, which we include in VeriVoting.

Voter. Each Voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 is assumed semi-honest, which means
the behaviors of each voter follow the scheme's rules, but they are
curious about other voters' ballot content.

Candidate. Each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ is malicious, which means
they will break the fairness of the voting via some illegal methods,
such as collusion, submitting false decryption keys, etc.

Aggregator. The aggregator 𝕒𝕒 initializes the bulletin board, and
adds ℂ𝕋𝕋 and 𝔻𝔻𝔻𝔻 to the bulletin board. The internal state of the
aggregator 𝕒𝕒 is public, which means all operation processes and
state variables inside the aggregator are public to all parties. (In
VeriVoting, we replace the aggregator with a smart contract.).

Bulletin board
Aggregator Tally Ballots

Result

Initialization Tally

Voting Timeline in SemiVoting

Voting
DK

Generation

𝐒𝐒𝐕𝐕.𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀 𝐒𝐒𝐕𝐕.𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐀𝐀𝐀𝐀𝐀𝐀

𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 , 𝜋𝜋𝑗𝑗

ℂ𝕋𝕋
𝔻𝔻𝔻𝔻

Figure 1: Overview of SemiVoting
Definition 1 (SemiVoting, SV). A SemiVoting primitive on cipher-
text space 𝒞𝒞, decryption-key space 𝒦𝒦 and ballot space ℬ, over a
set 𝕍𝕍 of voters, a set ℂ of candidates and an aggregator 𝕒𝕒, is de-
fined by the following algorithms:
• 𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣 ← Setup �1λ�: Takes as input a security parameter 𝜆𝜆, and
generates public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠.
• �𝑝𝑝𝑘𝑘𝑗𝑗,𝑠𝑠𝑘𝑘𝑗𝑗� ← KeyGen�𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣�: Each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ takes as in-
put the public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 and runs the algorithm, outputs
his/her public-private keys (𝑝𝑝𝑘𝑘𝑗𝑗, 𝑠𝑠𝑘𝑘𝑗𝑗).

• 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ← Vote �𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ],𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖�: Each Voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 takes as

input the public parameter 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠, public keys �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ], a ballot

vector 𝑣𝑣𝑖𝑖 ∈ ℬ|ℂ| and her weight 𝑤𝑤𝑖𝑖, outputs ciphertexts 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ∈ 𝒞𝒞|ℂ|.
■ ⊥/ℂ𝕋𝕋 ← VoteAgg�ℂ𝕋𝕋′, 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�: Upon receiving the ballot ci-
phertexts 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 from a voter 𝕧𝕧𝑖𝑖 , the aggregator 𝕒𝕒 iteratively up-
dates its state variables set ℂ𝕋𝕋 by aggregating 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 into the last
state set ℂ𝕋𝕋′.

• �𝑑𝑑𝑘𝑘�����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� ← DKeyGen�𝑠𝑠𝑘𝑘𝑗𝑗,ℂ𝕋𝕋�: When the voting phase finished,
each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ takes the aggregated set ℂ𝕋𝕋 and secret key
𝑠𝑠𝑘𝑘𝑗𝑗 as inputs, outputs the vector consisting of partial decryption
keys 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 ∈ 𝒦𝒦 |ℂ| and a proof 𝜋𝜋𝑗𝑗 to the aggregator 𝕒𝕒.

■ ⊥/𝔻𝔻𝔻𝔻 ← DKeyAgg�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗,𝔻𝔻𝔻𝔻′�: Takes as input the partial
decryption-key vector 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 from a candidate 𝕔𝕔𝑗𝑗 and correspond-
ing proof 𝜋𝜋𝑗𝑗, the aggregator 𝕒𝕒 first checks the validity of partial
decryption-keys in 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 with the proof 𝜋𝜋𝑗𝑗, if all is valid, updates
its state variable set 𝔻𝔻𝔻𝔻 by aggregating 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 into 𝔻𝔻𝔻𝔻′; Other-
wise, outputs ⊥ and abort.

• �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ] ← Tally(𝔻𝔻𝔻𝔻,ℂ𝕋𝕋) : Takes as input the aggregated ci-

phertext set ℂ𝕋𝕋 and the decryption-key set 𝔻𝔻𝔻𝔻 , outputs final
weighted tallies �𝑡𝑡𝑗𝑗 =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >�𝑗𝑗∈[ℂ].

2.2 Security Requirements
SemiVoting should follow the below security requirements.
Decentralization. Similar to decentralized functional encryptions,
our SemiVoting primitive allows aggregating data coming from
different parties and does not require a trusted party with a master
secret key, such that no centralized entity or organization can
change or control the outcome of elections.
Ballot Privacy. It means that, in the event of collusion among at
most 𝛿𝛿𝑐𝑐 ≔ (|ℂ| − 1) candidates or 𝛿𝛿𝑠𝑠 ≔ (|𝕍𝕍| − |𝕍𝕍ℎ|) voters, the
contents of ballots of the target voters in the honest-voter set 𝕍𝕍ℎ
cannot be revealed. In addition, we assume that the size of set 𝕍𝕍ℎ
is at least equal to two, and the voters in set 𝕍𝕍ℎ can not cast their
ballots for the same candidate.
Decryption-Key Verifiability. According to the definition of func-
tional encryption[13], the output of the encryption scheme is de-
termined by inputs consisting of decryption keys and messages.
Thus, a malicious candidate can easily generate a false decryption
key to affect the election outcome. To avoid cheating, all decryp-
tion keys generated by candidates should be verifiable.

2.3 Building Blocks
This section briefly introduces related technologies, including BC-
IND-secure encryption schemes and NIZK argument system,
which will be used as the building blocks for one feasible construc-
tion of SemiVoting in the following section. Moreover, we illus-
trate the required properties related to these building blocks.
(1) Bounded-collusion indistinguishability(BC-IND)-secure en-
cryption schemes

In our construction, the ciphertext 𝑐𝑐𝑡𝑡 = ℰ. Encrypt(𝑝𝑝𝑘𝑘, 𝑥𝑥; 𝑟𝑟)
needs to consist of two parts 𝑐𝑐𝑡𝑡0 and 𝑐𝑐𝑡𝑡1 . The first part 𝑐𝑐𝑡𝑡0 =
Comm(𝑟𝑟) is a commitment to the randomness 𝑟𝑟 used for the en-
cryption. The second part 𝑐𝑐𝑡𝑡1 is the encryption Enc(𝑝𝑝𝑘𝑘, 𝑥𝑥; 𝑟𝑟) of
the plaintext 𝑥𝑥 under public key 𝑝𝑝𝑘𝑘 and randomness 𝑟𝑟. Accord-
ingly, the decryption algorithm ℰ. Decrypt(𝑠𝑠𝑘𝑘, 𝑐𝑐𝑡𝑡) consist of two
routines KeyGen(𝑠𝑠𝑘𝑘, 𝑐𝑐𝑡𝑡0) → 𝑑𝑑𝑘𝑘 and Dec(𝑑𝑑𝑘𝑘, 𝑐𝑐𝑡𝑡1) → 𝑥𝑥 . The BC-
IND-secure encryption needs to meet the following properties:

Linear Commitment Homomorphism. We say that a commit-
ment scheme has linear commitment homomorphism (LCH, for
short) if 𝑐𝑐𝑡𝑡0 ← Comm(𝑟𝑟1 + 𝑟𝑟2) can be efficiently computed from
𝑐𝑐𝑡𝑡10 ← Comm(𝑟𝑟1) and 𝑐𝑐𝑡𝑡20 ← Comm(𝑟𝑟2).

Linear Encryption Homomorphism. We say that public key en-
cryption has linear encryption homomorphism (LEH, for short) if
𝑐𝑐𝑡𝑡1 ← Enc(𝑝𝑝𝑘𝑘1 ⋅ 𝑝𝑝𝑘𝑘2,𝑥𝑥1 + 𝑥𝑥2;𝑟𝑟1 + 𝑟𝑟2) can be efficiently com-
puted from 𝑐𝑐𝑡𝑡11 ← Enc(𝑝𝑝𝑘𝑘1,𝑥𝑥1;𝑟𝑟1) and 𝑐𝑐𝑡𝑡21 ← Enc(𝑝𝑝𝑘𝑘2,𝑥𝑥2; 𝑟𝑟2).

Linear Key Homomorphism. We say that public key encryption
has linear key homomorphism (LKH, for short) if the decryption

4

ℰ. Decrypt(𝑠𝑠𝑘𝑘1 + 𝑠𝑠𝑘𝑘2, 𝑐𝑐𝑡𝑡) → Dec(𝑑𝑑𝑘𝑘1 ⋅ 𝑑𝑑𝑘𝑘2, 𝑐𝑐𝑡𝑡1) → ∑𝑥𝑥𝑖𝑖 can cor-
rectly recover the aggregated plaintext from decryption keys
�𝑑𝑑𝑘𝑘1 ← KeyGen(𝑠𝑠𝑘𝑘1, 𝑐𝑐𝑡𝑡0),𝑑𝑑𝑘𝑘2 ← KeyGen(𝑠𝑠𝑘𝑘2, 𝑐𝑐𝑡𝑡0)� , where
𝑐𝑐𝑡𝑡 ≔ (𝑐𝑐𝑡𝑡0, 𝑐𝑐𝑡𝑡1) is the aggregated ciphertext by LEH and LCH
properties.

Discussion. By the LKH property, the decryption keys from all
candidates can be combined to decrypt the aggregated ciphertext
in the tally phase. However, our construction is no longer secure
if all candidates collude to decrypt a target ciphertext. Therefore,
based on Fact 2, we need encryption schemes to be secure against
a bounded number of collusions, i.e., at most 𝛿𝛿𝑐𝑐 candidates. This
security property is slightly similar to bounded-collusion(BC) in
IBE[121]-[123] or called key-insulated[27] in PKE. The difference
is that in BC-IBE, 𝑛𝑛 public-secret key pairs are held by a single
entity, whereas in our scheme, 𝑛𝑛 public-secret key pairs are held
separately by 𝑛𝑛 candidates. Thus, the essential difference about
bounded-collusion is that in BC-IBE schemes, the attacker who
owns 𝑡𝑡 − 1 linear combination secret keys cannot create 𝑡𝑡’th de-
cryption key for 𝑖𝑖𝑑𝑑𝑡𝑡 ∈ ℐ𝒟𝒟 which is guaranteed by a cover-free
map 𝜙𝜙: ℐ𝒟𝒟 → {0,1}𝑛𝑛, while in SemiVoting, the linear combination
of secret keys is completed under linear homomorphism one-way
functions[28], e.g., 𝑓𝑓𝑜𝑜𝑜𝑜(𝑎𝑎; 𝑏𝑏) ≔ (𝑔𝑔𝑏𝑏)𝑎𝑎 under the computational
Diffie-Hellman (CDH) assumption.

Therefore, our security against bounded-collusion is straight-
forward, that is, if homomorphic one-way functions exist, even
though 𝛿𝛿𝑐𝑐 malicious candidates collude to compute

{𝑓𝑓𝑜𝑜𝑜𝑜(𝑠𝑠𝑘𝑘∗; 𝑟𝑟𝑘𝑘)}𝑘𝑘∈[|ℂ|] from �𝑓𝑓𝑜𝑜𝑜𝑜 �∑ 𝑠𝑠𝑘𝑘𝑗𝑗
[ℂ]
𝑗𝑗 ; 𝑟𝑟𝑘𝑘��𝑘𝑘∈[|ℂ|]

 with their se-

cret keys �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ\𝕔𝕔∗], and given 𝑓𝑓𝑜𝑜𝑜𝑜(𝑠𝑠𝑘𝑘∗; 1) and 𝑓𝑓𝑜𝑜𝑜𝑜(1;𝑟𝑟𝑡𝑡), they

cannot compute 𝑓𝑓𝑜𝑜𝑜𝑜(𝑠𝑠𝑘𝑘∗; 𝑟𝑟𝑡𝑡) without knowing the target candi-
date 𝕔𝕔∗’s secret key 𝑠𝑠𝑘𝑘∗. Obviously, based on the CDH assumption,
if 𝑓𝑓𝑜𝑜𝑜𝑜(𝑠𝑠𝑘𝑘; 𝑟𝑟) ≔ (𝑔𝑔𝑟𝑟)𝑠𝑠𝑘𝑘 , the security against bounded-collusion
holds. In Lemma A.4, we prove the property through an instance.

(2). Non-interactive zero-knowledge argument systems
For the verifiability of decryption keys, we employ non-inter-

active zero-knowledge(NIZK) argument systems[29-31] to con-
vince the verifier that the public key and decryption key are gen-
erated using the same secret key. A NIZK argument system ΠNIZK
consists of two core algorithms: ΠNIZK. Prove(𝑐𝑐𝑟𝑟𝑠𝑠, 𝑠𝑠,𝜔𝜔) → 𝜋𝜋 ,
ΠNIZK. Verify(𝑐𝑐𝑟𝑟𝑠𝑠, 𝑠𝑠,𝜋𝜋) → 1/0, where 𝑐𝑐𝑟𝑟𝑠𝑠 ← ΠNIZK. Setup(1λ) is
the common reference string, 𝑠𝑠 denotes statements belonging to
an NP language ℒ, 𝜔𝜔 denotes witnesses s.t. (𝑠𝑠,𝜔𝜔) ∈ ℛℒ . For a pair
of polynomial time algorithm (𝒫𝒫,𝒱𝒱), (𝒫𝒫,𝒱𝒱) is called the non-in-
teractive zero-knowledge argument of knowledge for language ℒ
if the following conditions are met.

Completeness: for any statement 𝑠𝑠 ∈ ℒ and a negligible func-
tion negl(⋅), Pr[𝒱𝒱(𝑠𝑠,𝜋𝜋 ← 𝒫𝒫(𝑠𝑠,𝜔𝜔)) = 1] ≥ 1 − negl(𝜆𝜆).

Knowledge Soundness: for any statement 𝑠𝑠′ ∉ ℒ, any adversary
𝒫𝒫′ and a knowledge extractor ℰ𝓍𝓍𝓍𝓍(⋅):

Pr�𝒱𝒱�𝑠𝑠′,𝜋𝜋′ ← 𝒫𝒫′(𝑠𝑠′,𝜔𝜔′)�� = 1 < negl(𝜆𝜆) ∧
𝑃𝑃𝑟𝑟[ℰ𝓍𝓍𝓍𝓍(𝑐𝑐𝑟𝑟𝑠𝑠,𝜋𝜋′, 𝑠𝑠′) → 𝜔𝜔′] ≥ 1 − negl(𝜆𝜆).

Zero-knowledge: for any statement 𝑠𝑠 ∈ ℒ , a zero-knowledge
simulator 𝒮𝒮 with simulation trapdoor 𝜏𝜏 , 𝒫𝒫(𝑠𝑠,𝜔𝜔) ≈

𝑐𝑐
𝒮𝒮𝜏𝜏(𝑠𝑠) ∧

Pr[𝒮𝒮𝜏𝜏 fails] < negl(λ).

2.4 Our Construction

Let ℰ be an encryption scheme with the properties defined above,
and ΠNIZK be a NIZK argument system. A feasible construction is
as follows.

• Setup �1𝜆𝜆�: Taking as input a security parameter 𝜆𝜆, and gener-
ates public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 .
• KeyGen�𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣�: Taking as input the public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠, each
candidate 𝕔𝕔𝑗𝑗 ∈ ℂ performs the key generation algorithm of ℰ, to
generate the public encryption key 𝑝𝑝𝑘𝑘𝑗𝑗 and secret key 𝑠𝑠𝑘𝑘𝑗𝑗 .(If nec-
essary, such as to defend against the rogue public-key attack[126],
proving knowledge of the secret key must be performed in this
algorithm.).
• Vote �𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣, �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ]

,𝑣𝑣��⃗ 𝑖𝑖,𝑤𝑤𝑖𝑖�: Taking as input the public param-

eter 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠, the aggregated encryption key 𝑒𝑒𝑘𝑘 ≔ ∏ 𝑝𝑝𝑘𝑘𝑗𝑗
[ℂ]
𝑗𝑗 , a vector

𝑣𝑣𝑖𝑖 of ballots and the weight 𝑤𝑤𝑖𝑖 of voter 𝕧𝕧𝑖𝑖 , each voter 𝕧𝕧𝑖𝑖 outputs

ciphertext 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ≔ �𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 ≔ ℰ. Comm�𝑟𝑟𝑖𝑖,𝑗𝑗�, 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1 ≔ ℰ. Enc�𝑒𝑒𝑘𝑘, 𝑣𝑣𝑖𝑖,𝑗𝑗 ⋅

𝑤𝑤𝑖𝑖;𝑟𝑟𝑖𝑖,𝑗𝑗��𝑗𝑗∈[ℂ]
, where 𝑣𝑣𝑖𝑖,𝑗𝑗 ∈ 𝑣𝑣𝑖𝑖 denotes the value of the voter 𝕧𝕧𝑖𝑖

casting for the candidate 𝕔𝕔𝑗𝑗 .
■ VoteAgg�ℂ𝕋𝕋′, 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�: Upon receiving the ballot ciphertexts 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖
from a voter 𝕧𝕧𝑖𝑖 , the aggregator 𝕒𝕒 updates its state variable set
ℂ𝕋𝕋 = ��ℂ𝕋𝕋.𝐶𝐶𝐶𝐶𝑗𝑗0 = ℂ𝕋𝕋′.𝐶𝐶𝐶𝐶𝑗𝑗0 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 ,ℂ𝕋𝕋.𝐶𝐶𝐶𝐶𝑗𝑗1 = ℂ𝕋𝕋′.𝐶𝐶𝐶𝐶𝑗𝑗1 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1 ��𝑗𝑗∈[ℂ]

.
For simplicity, set ℂ𝕋𝕋.ℂ0 ≔ �𝐶𝐶𝐶𝐶𝑗𝑗0�𝑗𝑗∈[ℂ]

, ℂ𝕋𝕋.ℂ1 ≔ �𝐶𝐶𝐶𝐶𝑗𝑗1�𝑗𝑗∈[ℂ]
.

• DKeyGen�𝑠𝑠𝑘𝑘𝑗𝑗,ℂ𝕋𝕋.ℂ0�: When the voting phase finished, each
candidate 𝕔𝕔𝑗𝑗 ∈ ℂ takes the aggregated set ℂ𝕋𝕋.ℂ0 and secret key

𝑠𝑠𝑘𝑘𝑗𝑗 as inputs, then generates the partial decryption keys 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 ≔
�𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′ ≔ ℰ. KeyGen�𝑠𝑠𝑘𝑘𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗′

0��
𝑗𝑗′∈[ℂ]

 and an argument 𝜋𝜋𝑗𝑗 ←

ΠNIZK. Prove(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 ,𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗, 𝑠𝑠𝑘𝑘𝑗𝑗) to 𝕒𝕒.

■ DKeyAgg�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗,𝔻𝔻𝔻𝔻′�: After receiving 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 from each candi-

date 𝕔𝕔𝑗𝑗 ∈ ℂ, 𝕒𝕒 checks whether Π. Verify�𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 ,𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� outputs
1. If positive, update the decryption key set 𝔻𝔻𝔻𝔻 = �𝐷𝐷𝐾𝐾𝑗𝑗′ =
𝔻𝔻𝔻𝔻′.𝐷𝐷𝐾𝐾𝑗𝑗′ ⋅ 𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′�𝑗𝑗′∈[ℂ]

; else return ⊥.

• Tally(𝔻𝔻𝔻𝔻,ℂ𝕋𝕋.ℂ1) → �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]: Takes as input the decryption
key set 𝔻𝔻𝔻𝔻 and the aggregated ballot ciphertext set ℂ𝕋𝕋.ℂ1, out-
puts final tallies �𝑡𝑡𝑗𝑗 = ℰ. Dec�𝐷𝐷𝐾𝐾𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗1� =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >�

𝑗𝑗∈[ℂ]
.

Correctness. By the LCH, LEH, and LKH properties, we prove the
correctness of the construction in Appendix A.1.

Instantiation. The detailed instantiation building from the modi-
fied BC-IND secure encryption[110] scheme and Fiat-Shamir-
based NIZK argument system [107,108] is shown in Appendix A.2.

2.5 Security Analysis
Ballot Privacy. The ballot privacy is guaranteed by the BC-IND-
secure public key encryption. Informally speaking, the indistin-
guishability of ciphertexts means that ciphertexts cannot be dis-
tinguished from one another regardless of the ballot on which the
ciphertext is generated. On the other hand, if an attacker can gen-
erate valid decryption keys without knowing candidates’ secret
keys, it can quickly reveal each voter’s ballot, while the BC-IND-
secure encryption scheme can prevent it.
Decryption-Key Verifiability. This property straightforwardly re-
lies on the completeness and computational soundness of the
NIZK argument system ΠNIZK, which means once the proof passes

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

5

the ΠNIZK. Verify algorithm, the decryption key is correctly cre-
ated by the owner of the secret key with overwhelming probabil-
ity. On the contrary, if the decryption key is generated by a secret
key independent of the candidate’s public key, it passes the
ΠNIZK. Verify algorithm with negligible probability.

To formally prove the properties, we first give the formal secu-
rity definition of the construction for SemiVoting, then prove the
corresponding theorem in Appendix A.3.

Definition 2. Let ℱ𝑆𝑆𝑆𝑆 be the functionality as defined below. We
say that the construction in Section 2.4 securely computes ℱ𝑆𝑆𝑆𝑆 in
the presence of the static adversaries if for every PPT adversary
𝒜𝒜 for the real world, there exists a PPT simulator 𝒮𝒮 for the ideal
world, such that:
IDEAL𝒮𝒮(𝑧𝑧)

ℱ𝑠𝑠𝑠𝑠 �{𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗: 𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐],𝕒𝕒:⊥)� ≈
𝑐𝑐

REAL𝒮𝒮(𝑧𝑧)
Π𝑆𝑆𝑆𝑆 �{𝕧𝕧𝑖𝑖: 𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗: 𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐],𝕒𝕒:⊥�

In Definition 2, we consider a static adversary 𝒜𝒜 who controls
one of the two parties: semi-honest voters and malicious candi-
dates. We denote corrupted sets of voters and candidates by 𝕍𝕍𝑐𝑐
and ℂ𝑐𝑐 , respectively, and |ℂ𝑐𝑐| ≤ 𝛿𝛿𝑐𝑐 , |𝕍𝕍𝑐𝑐| ≤ 𝛿𝛿𝑠𝑠 . Intuitively, our
construction is secure against them if the semi-honest voters and
malicious candidates only learn the encrypted ballots �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]

and tally result �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ] nothing about unencrypted ballots

{𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]. Besides, the internal state variables of aggregator
𝕒𝕒 is append-only, transparent and verifiable for any participant.
We formalize the definition based on the simulation paradigm. For
convenience, let: ℱSV: {𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍] × �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[𝕍𝕍] ×⊥→ �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍] ×

�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�𝑗𝑗∈[ℂ] × �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ] be the functionality for the SemiVoting

construction ΠSV, where ⊥ refers to an empty string. For each tu-
ple of inputs {𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍] belonging to voters and �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[𝕍𝕍] be-

longing to candidates, the function ℱSV outputs �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍] ,

�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�𝑗𝑗∈[ℂ] and �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ] to voters and candidates, respectively.

To define security, we first formalize the ideal and real worlds. In
the ideal world, a non-corrupted trusted third party (TTP) also
computes the functionality on the inputs and forwards to each
party its respective output. It is said to achieve privacy and secu-
rity if there exists a simulator 𝒮𝒮 who can emulate the execution of
the real world in the ideal world and no one can distinguish them.
Real world. Our construction ΠSV is conducted among the parties
in 𝕍𝕍,ℂ and the static adversary 𝒜𝒜. At the beginning of the con-
struction ΠSV , each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 first receive her input (𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖)
then receive random coins 𝑟𝑟𝑖𝑖 and an auxiliary input 𝑧𝑧. At the end
of the execution, the honest party outputs whatever is prescribed
by the protocol ΠSV and the adversary 𝒜𝒜 outputs its view. The
output of the real-world execution of the protocol ΠSV among
these parties in the presence of the adversary 𝒜𝒜 is defined as
REAL𝒜𝒜(𝑧𝑧)

ΠSV ({𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗: 𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐],𝕒𝕒:⊥).

Ideal world. The ideal world is executed among the parties 𝕍𝕍,ℂ
and a simulator 𝒮𝒮 who is allowed to corrupt the aggregator 𝕒𝕒 and
some subset of voters or candidates. At the beginning of the ideal
world, each party receives the same input as the corresponding
party in the real world. The honest party always forwards its input

to the TTP. The corrupted party may abort or send arbitrary input.
The TTP returns the result 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 to the voter 𝕧𝕧𝑖𝑖 or (𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗) to the
candidate 𝕔𝕔𝑗𝑗 . If the TTP receives an abort message as input, it
sends the abort message to the voter. The output of the parties in
the ideal world in the presence of the simulator 𝒮𝒮 is defined as
IDEAL𝒮𝒮(𝑧𝑧)

ℱ ({𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗: 𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐],𝕒𝕒:⊥).

Then, we have the below theorem.
Theorem 1. Suppose the encryption scheme is BC-IND-secure, the
NIZK argument system is computationally sound, and the internal
state variables of aggregator 𝕒𝕒 are append-only, transparent, and
verifiable for any participant, then our SemiVoting construction
is (𝛿𝛿𝑐𝑐 ,𝛿𝛿𝑠𝑠)-bounded secure as defined in Definition 2.

Rather than the above properties, our construction also cap-
tures the features below.
Decentralization. Based on Fact 1 and Fact 2 in the introduction,
we distribute the power of generating partial decryption keys to
all candidates, meaning no single entity or organization can influ-
ence the outcome of elections. Furthermore, we employ block-
chain technology to enhance decentralization in Section 3.
Self-Tallying. This functionality implies public verifiability, as an-
yone, including external and internal observers, can calculate the
election outcome by themselves, i.e., by taking the aggregated de-
cryption keys set 𝔻𝔻𝔻𝔻 and ciphertexts ℂ𝕋𝕋 as inputs and running
the Tally algorithm to get the output.
Moderately Succinctness. We exploit the nature of linear homo-
morphic encryption, which allows us to tally the ballot results
without revealing the content of ballots. In addition, the cost of
the Tally and Vote algorithms is only related to the number of
candidates |ℂ|, not the number of voters |𝕍𝕍|.
Dynamic join. Since the initialization of public system parameters
and the generation of decryption keys are independent of voters,
any voter can dynamically join the voting system and generate
encrypted ballots using system parameters before the voting
phase finishes.

Although SemiVoting satisfies the described properties, it is
still a strawman construction, as it lacks the restriction of dishon-
est voters’ illegal behaviors and does not provide anonymity for
voters. To overcome these issues, we propose VeriVoting.

Table 2: Symbols
Symbols Meaning

𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 A random seed key sampled by 𝕧𝕧𝑖𝑖
PRF𝑠𝑠𝑠𝑠𝑘𝑘(⋅) Pseudorandom Function

𝑐𝑐𝑚𝑚𝑖𝑖 Commitment on 𝕧𝕧𝑖𝑖’s token(i.e. weight)

𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 Voter 𝕧𝕧𝑖𝑖’s wallet address

ℂ𝕠𝕠𝕠𝕠 Set of token commitments

𝕃𝕃 Append-only ledger storing published transactions

𝕄𝕄𝕋𝕋
Merkle tree over token commitments. The depth of

the Merkle tree denotes by 𝕄𝕄𝕋𝕋. depth

𝜌𝜌𝑖𝑖
The authentication path from (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖,𝑐𝑐𝑚𝑚𝑖𝑖) to

Merkle tree’s root 𝕄𝕄𝕋𝕋. rt.
𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) Compiled program of the voting function

𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) The prescribed voting function

𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃,𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃 Proving keys and Verification keys of zkSNARKs

6

3 VERIVOTING SCHEME
In this section, we remove the assumption that the voter is semi-
honest in SemiVoting, such that voters can be dishonest partici-
pants who do not follow the prescribed voting rule. To prevent
dishonest voters from repeating voting and casting the ill-formed
ballot, while keeping voters' identities private, we employ
zkSNARKs [32] and blockchain[44] to present our weighted vot-
ing scheme, VeriVoting, which implements and extends the Sem-
iVoting primitive. For simplicity, we introduce some new symbols
used in VeriVoting in Table 2.

3.1 Building Blocks
ZkSNARKs. Zero-knowledge succinct non-interactive arguments
of knowledge (zkSNARKs)[32]-[34] are generic NIZK argument
constructions supporting any arithmetic circuit 𝜑𝜑 and featuring
constant-cost proof verification in the size of 𝜑𝜑. Due to their low
verification costs, zkSNARKs are frequently used on the Ethereum
blockchain [35],[36]. Consistent with the traditional NIZK argu-
ment system[37]-[39], a zkSNARK system ΠSNARK also consists of
two core algorithms: ΠSNARK. Prove(𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 ,𝑠𝑠,𝜔𝜔) → 𝜋𝜋 and
ΠSNARK. Verify(𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃, 𝑠𝑠,𝜋𝜋) → 1/0 , and meet completeness,
knowledge soundness and zero-knowledge properties.

Another important reason we use zkSNARKs is that it can make
our scheme support more flexible voting functions or complex
ballot condition formats as long as they can be compiled into an
arithmetic circuit.
PRFs. A pseudorandom function family[40,41] PRF𝑠𝑠𝑘𝑘: {0,1}|𝑥𝑥|
→ {0,1}𝜆𝜆(|𝑥𝑥|), where 𝑠𝑠𝑘𝑘 denotes the seed key, 𝑥𝑥 ∈ {0.1}∗, 𝜆𝜆:ℕ →
ℕ, is computationally indistinguishable from a random function
family.
Commitments. Commitment schemes[42,43] are designed so that
a party cannot change the value or statement after they have com-
mitted to it: that is, commitment schemes are binding, while keep-
ing the value or statement hidden to others: that is, commitment
schemes are hiding. Let Comm denote a statistically-hiding non-
interactive commitment scheme, i.e., 𝑐𝑐𝑚𝑚 ≔ Comm(𝑤𝑤, 𝑠𝑠), where
𝑤𝑤 is the token, 𝑠𝑠 is randomness; Then, 𝑐𝑐𝑚𝑚 is opened by revealing
𝑤𝑤 and 𝑠𝑠, and one can verify that Comm(𝑤𝑤, 𝑠𝑠) equals 𝑐𝑐𝑚𝑚.
Smart Contracts. Smart contracts are a core building block of de-
centralized applications, facilitating the execution of specified
tasks (such as payments) based on predetermined rules. Since the
smart contract features transparency, verifiability, trust, and acc-
uracy[44], we exploit it as the verifier to verify the output of par-
ties in our VeriVoting scheme and as the aggregator to combine
received ciphertexts and partial decryption keys.

3.2 Overview
The overview of the VeriVoting scheme is shown in Figure 2. In
addition to the entities already defined in the SemiVoting primi-
tive, we introduce two new entities: election authority and smart
contract, where the smart contract plays the aggregator role.

Election Authority(ℰ𝒜𝒜). The responsibilities of ℰ𝒜𝒜 include gen-
erating global public parameters, accepting voters’ requests for
registration, issuing tokens (equivalent to the weight value of dif-
ferent roles) to authenticated voters, and publishing the list of el-
igible voters and the list of candidates.

Smart Contract(𝒮𝒮𝒞𝒞). The functions of 𝒮𝒮𝒞𝒞 include uploading each
voter’s submitted commitment and secret ballot vector into the
blockchain after verifying the validity of the commitments and
ballots in the commitment and voting phase, uploading each can-
didate’s submitted partial decryption keys into the blockchain af-
ter verifying the correctness of the keys in the DK generation
phase.

Blockchain

Block Block Block Block

Smart
Contract Tally Ballots

Result

Initialization Registration Tally

Voting Timeline in VeriVoting

··· ···

Commitment
& Voting

DK
Generation

𝐕𝐕𝐕𝐕.𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐬𝐬 𝐕𝐕𝐕𝐕.𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬 𝐕𝐕𝐕𝐕.𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊𝐬𝐬𝐬𝐬

𝑡𝑡𝑥𝑥𝑟𝑟𝑒𝑒𝑔𝑔 𝑡𝑡𝑥𝑥𝑐𝑐𝑚𝑚 𝑡𝑡𝑥𝑥𝑣𝑣𝑣𝑣𝑡𝑡𝑒𝑒 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘

Figure 2: Overview of VeriVoting

Definition 3 (VeriVoting, VV). A VeriVoting scheme, over a set of
voters 𝕍𝕍, a set of candidates ℂ, smart contracts 𝒮𝒮𝒞𝒞s, and an elec-
tion authority ℰ𝒜𝒜, is defined by three algorithms and four proto-
cols:
• (𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣,𝑐𝑐𝑟𝑟𝑠𝑠) ← Setup �1λ� Input security parameter 𝜆𝜆 , call

SV. Setup�1𝜆𝜆� and ΠSNARK. Setup�1𝜆𝜆�, outputs system public pa-
rameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑟𝑟𝑠𝑠 = (𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 , 𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃).
• (𝑝𝑝𝑘𝑘𝑗𝑗,𝑠𝑠𝑘𝑘𝑗𝑗) ← KeyGen𝕔𝕔�𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣� Each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ takes as in-
put the public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠, calls SV. KeyGen(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠) to output
�𝑝𝑝𝑘𝑘𝑗𝑗, 𝑠𝑠𝑘𝑘𝑗𝑗�.
• 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 ← KeyGen𝕧𝕧�𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣�. Each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 takes as input the
public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , outputs a random seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 as the
secret key of the PRF.
• (𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖,𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖) × 𝑡𝑡𝑥𝑥𝑟𝑟𝑒𝑒𝑔𝑔 ← Register�𝕧𝕧𝑖𝑖:𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 × ℰ𝒜𝒜: (𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖,𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖)�.

■ Each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 submits her valid credential 𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 and an
empty wallet address 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 generated by 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 to ℰ𝒜𝒜.
■ After verifying the validity of the voter’s credential, ℰ𝒜𝒜 trans-
fers a token 𝑤𝑤𝑖𝑖 (equals the voter’s weight value) to the voter’s
address, which can be expressed as a transaction 𝑡𝑡𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≔
(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟ℛ𝒜𝒜 → 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖:𝑤𝑤𝑖𝑖).

• 𝑡𝑡𝑥𝑥𝑐𝑐𝑚𝑚 × 1/0 ← Commit�𝕧𝕧𝑖𝑖: (𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣,𝑤𝑤𝑖𝑖,𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖� × 𝒮𝒮𝒞𝒞: (𝑝𝑝𝑝𝑝𝑠𝑠𝑣𝑣, 𝑡𝑡𝑥𝑥𝑐𝑐𝑚𝑚,𝕃𝕃)).

■ Each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 takes the public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 and a to-
ken 𝑤𝑤𝑖𝑖 as inputs, performs the Commit algorithm to generate a
commitment on the token 𝑤𝑤𝑖𝑖, 𝑐𝑐𝑚𝑚𝑖𝑖 ≔ Comm(𝑤𝑤𝑖𝑖 , 𝑠𝑠𝑖𝑖), then out-
puts the transaction 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐 ≔ (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑤𝑤𝑖𝑖 , 𝑠𝑠𝑖𝑖) to 𝒮𝒮𝒞𝒞.
■ Once called by the voter 𝕧𝕧𝑖𝑖 , the contract 𝒮𝒮𝒞𝒞 parses 𝑡𝑡𝑥𝑥𝑐𝑐𝑜𝑜𝑐𝑐 as
(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑤𝑤𝑖𝑖 , 𝑠𝑠𝑖𝑖), computes 𝑐𝑐𝑚𝑚𝑖𝑖

′: = Comm(𝑤𝑤𝑖𝑖 , 𝑠𝑠𝑖𝑖) and exe-
cutes the following assert:

Assert 𝑐𝑐𝑚𝑚𝑖𝑖
′ = 𝑐𝑐𝑚𝑚𝑖𝑖;

Assert (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑐𝑐𝑣𝑣𝑖𝑖𝑛𝑛𝑖𝑖) ∉ ℂ𝕠𝕠𝕠𝕠;
Assert 𝕃𝕃[𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖] = 𝑤𝑤𝑖𝑖 .

Then, 𝒮𝒮𝒞𝒞 sets 𝕃𝕃[𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖] = 0 and adds (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖) to ℂ𝕠𝕠𝕠𝕠.
• 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 × 1/0 ← Vote(𝕧𝕧𝑖𝑖: (𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 ,𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ],𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑖𝑖,

𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞,𝕄𝕄𝕋𝕋. rt,𝕄𝕄𝕋𝕋. depth, 𝜌𝜌𝑖𝑖) × 𝒮𝒮𝒞𝒞: (𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃, 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟)).
■ Each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 firstly takes public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 and
candidates’ public keys �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ], her seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 and token
𝑤𝑤𝑖𝑖 , and (𝕄𝕄𝕋𝕋. rt,𝕄𝕄𝕋𝕋. depth,𝜌𝜌𝑖𝑖) as inputs of the compiled

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

7

voting program 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞 , runs 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞 to output statement 𝐬𝐬𝑖𝑖 and
witness 𝐚𝐚𝑖𝑖 . Then 𝕧𝕧𝑖𝑖 performs ΠSNARK. Prove(𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 , 𝐬𝐬𝑖𝑖 ,𝐚𝐚𝑖𝑖) to
generate proof 𝜋𝜋𝑖𝑖, and finally sends 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 ≔ (𝐬𝐬𝑖𝑖 ,𝜋𝜋𝑖𝑖) to 𝒮𝒮𝒞𝒞.

The detail of the compiled program 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞, which contains
SV. Vote algorithm, is shown in Figure 3.
■ Once called by the voter 𝕧𝕧𝑖𝑖 , the contract 𝒮𝒮𝒞𝒞 parses 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 as
(𝐬𝐬𝑖𝑖 ,𝜋𝜋𝑖𝑖) , then runs ΠSNARK. Verify(𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃, 𝐬𝐬𝑖𝑖 ,𝜋𝜋𝑖𝑖) to check the
validity of statements. If the verification passes, 𝒮𝒮𝒞𝒞 performs
SV. VoteAgg algorithm to update ℂ𝕋𝕋.

• 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘 × 1/0 ← DKeyGen�𝕔𝕔𝑗𝑗: �𝑠𝑠𝑘𝑘𝑗𝑗,ℂ𝕋𝕋.ℂ0� × 𝒮𝒮𝒞𝒞: (𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘)�.
■ Each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ executes SV. DKeyGen algorithm and
sends 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘 ≔ (𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗) to 𝒮𝒮𝒞𝒞.
■ The contract 𝒮𝒮𝒞𝒞 parses 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 as �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� , and performs
SV. DKeyAgg algorithm to verify-then-update 𝔻𝔻𝔻𝔻.

• �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]
← Tally(𝔻𝔻𝔻𝔻,ℂ𝕋𝕋.ℂ1). Any participant can carry out the

SV. Tally algorithm to output final weighted tallies

Compiled Program 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅)
INPUTS:
− public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠
− public keys �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ]

− Voter 𝕧𝕧𝑖𝑖′s weight 𝑤𝑤𝑖𝑖 and 𝑐𝑐𝑚𝑚𝑖𝑖
− Voter 𝕧𝕧𝑖𝑖′s seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖
− Ballot vector �⃗�𝑣𝑖𝑖
− Path 𝜌𝜌𝑖𝑖 and 𝕄𝕄𝕋𝕋. rt, 𝕄𝕄𝕋𝕋. depth
OUTPUTS:
− Statement 𝐬𝐬𝒊𝒊 ≔ (𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 , 𝑠𝑠𝑛𝑛𝑖𝑖)
− Witness 𝐚𝐚𝒊𝒊 ≔ (𝜌𝜌𝑖𝑖,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 , �⃗�𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖,⋆), where ⋆ are witnesses of computa-

tion.
1. Assert Predicate(�⃗�𝑣𝑖𝑖) = true.
2. Compute 𝑠𝑠𝑛𝑛𝑖𝑖 ≔ PRF𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖�𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ≔ PRF𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖(0) ∥ 𝑐𝑐𝑚𝑚𝑖𝑖�.
3. Assert MerkleAuth(𝕄𝕄𝕋𝕋. rt,𝕄𝕄𝕋𝕋. depth,𝜌𝜌𝑖𝑖, (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖)).
4. Compute ballot ciphertext vector:

𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ≔ SV. Vote(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , ��𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ]
, �⃗�𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖�.

5. Output 𝐬𝐬𝒊𝒊 and 𝐚𝐚𝒊𝒊.

Figure 3: The compiled program 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) (Removing the grey
ground parts in Fig.3 is the definition of the function 𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞.)

3.3 Security Requirements
To fix the vulnerabilities of SemiVoting, our VeriVoting scheme
should follow the security requirements below.
Anonymity. In the voting phase, the voting transaction 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟
cannot leak any information about a voter’s identity, even if all
the candidates collude with at most 𝛿𝛿𝑠𝑠 dishonest voters. For
weighted voting, we assume that at least two honest voters with
the same weight value cast their ballots for different candidates;
otherwise, any observer can trace the voting transaction to the
voter who owns the unique weight value.
Ballot Verifiability. To forbid dishonest voter’s illegal behaviors,
there are five statements that each voter should prove in the vot-
ing phase:

Statement 1: “Predicate(𝑣𝑣𝑖𝑖) = true”, which means the ballot
vector 𝑣𝑣𝑖𝑖 should meet predefined voting predicate logic, e.g.,
Predicate(𝑣𝑣𝑖𝑖) ≔ (𝑣𝑣𝑖𝑖 ∈ {0,1}|ℂ|) ∧ (∥ 𝑣𝑣𝑖𝑖 ∥= 2) indicates that if
each element in 𝑣𝑣𝑖𝑖 should be in {0,1} and the norm of 𝑣𝑣𝑖𝑖 equals 1,
output true; else false. As such, suppose a voter 𝕧𝕧𝑖𝑖 is willing to
cast her ballot for the candidate 𝕔𝕔2 in the three-candidate election,

the well-formedness of the ballot vector should be 𝑣𝑣𝑖𝑖 ≔ (0,1,1)
that can pass the predicate function.

Statement 2: “𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 = PRF𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖(0)” , which means the voter
𝕧𝕧𝑖𝑖’s seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 matches the wallet address 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 .

Statement 3: “𝑠𝑠𝑛𝑛 = PRF𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ∥ 𝑐𝑐𝑚𝑚𝑖𝑖)”, which means that
the serial number 𝑠𝑠𝑛𝑛𝑖𝑖 is computed correctly to prevent duplicate
voting of dishonest voters.

Statement 4: “𝜌𝜌𝑖𝑖 ∈ 𝕄𝕄𝕋𝕋”, which means the weight commitment
(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖) appears as a leaf of a Merkle tree with root 𝕄𝕄𝕋𝕋. rt.

Statement 5: “𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ← SV. Vote(⋅)” , the ballot ciphertexts are
well-formed: for any ballot ciphertext 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗 ∈ 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 it holds that
𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗 = Enc(𝑒𝑒𝑘𝑘, 𝑣𝑣𝑖𝑖,𝑗𝑗 ⋅ 𝑤𝑤𝑖𝑖; 𝑟𝑟𝑖𝑖,𝑗𝑗).

3.4 Our Construction
This section presents the construction of VeriVoting in six phases:

Initialization phase. In this phase, all public parameters are fixed
and submitted onto the blockchain by the election authority ℰ𝒜𝒜,
candidates, and voters.

VV. SetupEA�1𝜆𝜆 ,𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞� : ℰ𝒜𝒜 performs SV. Setup�1λ� → 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠
and ΠSNARK. Setup�1λ,𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞� → 𝑐𝑐𝑟𝑟𝑠𝑠, publishes public parameters
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 and common reference string 𝑐𝑐𝑟𝑟𝑠𝑠 = (𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 , 𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃) on the
blockchain, which serves as a public bulletin board.

VV. KeyGen𝕔𝕔(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠): Each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ takes as input the
public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , calls SV. KeyGen(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠) → (𝑝𝑝𝑘𝑘𝑗𝑗, 𝑠𝑠𝑘𝑘𝑗𝑗) and
publishes 𝑝𝑝𝑘𝑘𝑗𝑗 on the blockchain.

VV. KeyGen𝕧𝕧(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠): Each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 takes as input the pub-
lic parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , samples randomly a secret seed 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖, then
outputs 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ≔ PRF𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖(0) as her new wallet address.

For simplicity, we assume that the verification process of each
candidate’s 𝑝𝑝𝑘𝑘𝑗𝑗 was done before issuing them on the blockchain.
In addition, if our NIZK system requires honestly generated CRSs,
such as zkSNARKs, there are several well-known mechanisms
that are practical with the parameters we need, such as distributed
generation of 𝑐𝑐𝑟𝑟𝑠𝑠 by multiple parties[45] or by SGX[46].

Registration phase. In this phase, each voter registers his/her vot-
ing information with ℰ𝒜𝒜 who will issue tokens(i.e., weight value)
according to the role of each voter.

VV. Register𝕧𝕧(𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 ,𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖) : Each voter 𝕧𝕧𝑖𝑖 submits his/her
valid voting credential 𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 and empty wallet address 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 to
ℰ𝒜𝒜.

VV. RegisterEA(𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 ,𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖) : After verifying the validity of
the voter’s credential 𝑐𝑐𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖 , ℰ𝒜𝒜 transfers a token 𝑤𝑤𝑖𝑖 equals the
voter’s weight to the voter’s address 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , then adds the trans-
action 𝑡𝑡𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≔ (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟ℰ𝒜𝒜 ⇒ 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖:𝑤𝑤𝑖𝑖) to the blockchain.

Commitment and voting phase. The formal descriptions of com-
mitment and voting phases are given in Figure 4. We use the pseu-
docode format to illustrate the core phase of our construction.

In the commitment phase, each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 needs to generate
a commitment 𝑐𝑐𝑚𝑚𝑖𝑖 to his/her token 𝑤𝑤𝑖𝑖 as the certificate of voting,
deriving his/her weight from the token sent by ℰ𝒜𝒜. Subsequently,
all commitments of ℂ𝕠𝕠𝕠𝕠 on the ledger are collected in a Merkle
tree, which facilitates efficiently proving that an address-commit-
ment pair (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖) appears on the ledger.

In the voting phase, each voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 needs to convince 𝒮𝒮𝒞𝒞
that Statements 1-5 are correct. To do so, 𝕧𝕧𝑖𝑖 performs 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅),

�𝑡𝑡𝑗𝑗 =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >�𝑗𝑗∈[ℂ].

8

which is the compiled version of the function 𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) in SNARK-
friendly format, and then calls ΠSNARK. Prove algorithm to com-
pute the proof 𝜋𝜋𝑖𝑖 according to the outputs of 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) (s.t.
(𝐬𝐬𝑖𝑖 ,𝐚𝐚𝑖𝑖) ∈ ℛℒ𝑠𝑠 , where ℒ𝑠𝑠 is the language consisting of valid voting
statements, ℛℒ𝑠𝑠 is the relation specifying a collection of valid
statement-witness pairs (𝐬𝐬𝑖𝑖 ,𝐚𝐚𝑖𝑖).

Possession of token being voted. It is essential for a voter to
prove the possession of the on-chain token such that no one can
illegally invade her token to vote. To prove this point efficiently,
the blockchain maintains a Merkle tree 𝕄𝕄𝕋𝕋 over ℂ𝕠𝕠𝕠𝕠, which can
be viewed as an oblivious Merkle tree construction to hide the
voter of a token, and which token was transferred. Membership in
the set can be demonstrated by a Merkle authentication path 𝜌𝜌𝑖𝑖
consistent with the root hash 𝕄𝕄𝕋𝕋. 𝑟𝑟𝑡𝑡; moreover, the serial number
𝑠𝑠𝑛𝑛𝑖𝑖 is computed using the same seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 from which the ad-
dress 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 is derived; these are done in zero-knowledge.

No duplicate voting. Each commitment (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖) has a
cryptographically unique serial number 𝑠𝑠𝑛𝑛𝑖𝑖 that can be computed
as a pseudorandom function of 𝕧𝕧𝑖𝑖’s seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖 and commit-
ment. To cast a ballot, its serial number 𝑠𝑠𝑛𝑛𝑖𝑖 must be disclosed, and
a zero-knowledge proof must be given to show the correctness of
𝑠𝑠𝑛𝑛𝑖𝑖. The contract checks that no 𝑠𝑠𝑛𝑛𝑖𝑖 is used twice.

Ballot ciphertexts aggregation. After verifying the correctness
of 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 from a voter 𝕧𝕧𝑖𝑖 , the contract aggregate the new 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 into
ℂ𝕋𝕋 by computing �𝐶𝐶𝐶𝐶𝑗𝑗0 = 𝐶𝐶𝐶𝐶𝑗𝑗0 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 ,𝐶𝐶𝐶𝐶𝑗𝑗1 = 𝐶𝐶𝐶𝐶𝑗𝑗1 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1 �𝑗𝑗∈[ℂ]

. In

other words, the state variables set ℂ𝕋𝕋, stored in contract storage,
is iteratively updated through the ciphertext aggregation when a
new valid transaction arrives. At a high level, the whole process
of aggregation can be expressed as:

�(𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 , 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1)�
|𝕍𝕍|×|ℂ| 𝐚𝐚𝐀𝐀𝐀𝐀

�� �(𝐶𝐶𝐶𝐶𝑗𝑗0,𝐶𝐶𝐶𝐶𝑗𝑗1)�
|ℂ|

.

Decryption-key(DK) generation phase. When the voting phase is
over, 𝒮𝒮𝒞𝒞 publishes the aggregated ciphertexts set ℂ𝕋𝕋 on the
blockchain. By using their secret keys, each candidate creates par-
tial decryption keys on ℂ𝕋𝕋.ℂ0 ≔ �𝐶𝐶𝐶𝐶𝑗𝑗0�𝑗𝑗∈[ℂ]

 and forwards the
transaction 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘 ≔ (𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗) to 𝒮𝒮𝒞𝒞 who will check the validity of
𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 by corresponding proof 𝜋𝜋𝑗𝑗. After that, 𝒮𝒮𝒞𝒞 aggregates the re-
ceived �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗�𝑗𝑗∈[ℂ] , i.e., �𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′�

|ℂ|×|ℂ| 𝐚𝐚𝐀𝐀𝐀𝐀
�� �𝑑𝑑𝑘𝑘𝑗𝑗�

|ℂ|
, and then pub-

lishes 𝔻𝔻𝔻𝔻 ≔ �𝑑𝑑𝑘𝑘𝑗𝑗�
|ℂ|

as the decryption key.
The above process of aggregating refers to SV. DKeyAgg algo-

rithm where the aggregator 𝕒𝕒 is replaced by 𝒮𝒮𝒞𝒞.

Smart Contract
𝐕𝐕𝐕𝐕.𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐬𝐬
INPUTS:
- Public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠
- A transaction 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐
- The ledger 𝕃𝕃
OUPUTS bit 𝑏𝑏 (1-accept, 0-reject):
1. Prase 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐 as (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑠𝑠𝑖𝑖).
2. Compute 𝑐𝑐𝑚𝑚𝑖𝑖

′ ≔ COMM(𝑠𝑠𝑖𝑖,𝑤𝑤𝑖𝑖).
3. Assert 𝑐𝑐𝑚𝑚𝑖𝑖

′ = 𝑐𝑐𝑚𝑚𝑖𝑖.
4. Assert (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑐𝑐𝑚𝑚𝑖𝑖) ∉ ℂ𝕠𝕠𝕠𝕠.
5. Assert 𝕃𝕃[𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖] = 𝑤𝑤𝑖𝑖 .
6. Set 𝕃𝕃[𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖] = 0.
7. Append (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖,𝑐𝑐𝑚𝑚𝑖𝑖) to ℂ𝕠𝕠𝕠𝕠.
8. Return 𝑏𝑏. //if all success, 𝑏𝑏 = 1 else 0.

𝐕𝐕𝐕𝐕.𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬
INPUTS:
- Verification key 𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃
- A transaction 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟
- The ledger 𝕃𝕃
OUTPUTS: bit 𝑏𝑏 (1-accept, 0-reject)
1. Prase 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 as (𝜋𝜋𝑖𝑖,𝐬𝐬𝒊𝒊), where 𝐬𝐬𝒊𝒊 ≔ (𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 , 𝑠𝑠𝑛𝑛𝑖𝑖).
2. Assert ΠSNARK . Verify(𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃 ,𝐬𝐬𝒊𝒊,𝜋𝜋𝑖𝑖).
3. Assert 𝑠𝑠𝑛𝑛𝑖𝑖 ∉ 𝕊𝕊ℕ.
4. Add 𝑠𝑠𝑛𝑛𝑖𝑖 to 𝕊𝕊ℕ.
5. Update ℂ𝕋𝕋 by aggregating the received 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 .
6. Return 𝑏𝑏. //if all success, 𝑏𝑏 = 1 else 0.

Voter
𝐕𝐕𝐕𝐕.𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝕧𝕧
INPUTS:
- Public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠
- The voter 𝕧𝕧𝑖𝑖’s weight 𝑤𝑤𝑖𝑖
- The voter 𝕧𝕧𝑖𝑖’s wallet address 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖
OUTPUTS: transaction 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐
1. Randomly sample a randomness 𝑠𝑠𝑖𝑖.
2. Compute 𝑐𝑐𝑚𝑚𝑖𝑖 ≔ COMM(𝑠𝑠𝑖𝑖,𝑤𝑤𝑖𝑖).
3. Store (𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑠𝑠𝑖𝑖,𝑤𝑤𝑖𝑖) in the wallet.
4. Send 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐 ≔ (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑤𝑤𝑖𝑖,𝑠𝑠𝑖𝑖) to 𝒮𝒮𝒞𝒞.

𝐕𝐕𝐕𝐕.𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝕧𝕧
INPUTS:
- Public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠
- Proving key 𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃
- Set of Candidates’ public keys �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ]

- Voter 𝕧𝕧𝑖𝑖’s weight 𝑤𝑤𝑖𝑖 and 𝑐𝑐𝑚𝑚𝑖𝑖
- Voter 𝕧𝕧𝑖𝑖’s seed key 𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖
- Ballot vector 𝑣𝑣𝑖𝑖
- Authentication path 𝜌𝜌𝑖𝑖 and 𝕄𝕄𝕋𝕋. rt, 𝕄𝕄𝕋𝕋. depth
- Compiled program 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅)
OUTPUTS: transaction 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟
1. Perform 𝐏𝐏𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) to obtain statement 𝐬𝐬𝑖𝑖 and witness 𝐚𝐚𝑖𝑖.
2. Remove (𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑠𝑠𝑖𝑖,𝑤𝑤𝑖𝑖) from the wallet.
3. Compute 𝜋𝜋𝑖𝑖 ≔ ΠSNARK . Prove(𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃 ,𝐬𝐬𝑖𝑖,𝐚𝐚𝑖𝑖)
4. Send 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 ≔ (𝜋𝜋𝑖𝑖 ,𝐬𝐬𝑖𝑖) to 𝒮𝒮𝒞𝒞.

Figure 4: The commitment and voting phase
Tally phase. Any participant can run the SV. Tally algorithm to
compute the tally results �𝑡𝑡𝑗𝑗 =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >�𝑗𝑗∈[ℂ]. For fairness, ℰ𝒜𝒜
can call the contract 𝒮𝒮𝒞𝒞 to execute the SV. Tally(⋅) algorithm and
publish the results on the blockchain. Notes that if we employ the
instantiation implemented in Appendix A.3 as the encryption
scheme, then the contract 𝒮𝒮𝒞𝒞 can call the off-chain computing
power by Oracle[47] to compute the discrete logarithms �𝑡𝑡𝑗𝑗′�𝑗𝑗∈[ℂ]

of �𝑔𝑔𝑡𝑡𝑗𝑗=<𝑠𝑠�⃗ 𝑗𝑗,𝑜𝑜��⃗ >�𝑗𝑗∈[ℂ] and check if �𝑔𝑔𝑡𝑡𝑗𝑗

′
= 𝑔𝑔𝑡𝑡𝑗𝑗=<𝑠𝑠�⃗ 𝑗𝑗,𝑜𝑜��⃗ >�

𝑗𝑗∈[ℂ]
 holds.

Correctness. The correctness of the VeriVoting straightforwardly
relies on the correctness of SemiVoting, the completeness of
zkSNARKs, and the binding of the commitment scheme.

3.5 Security Analysis
Anonymity. Unlike anonymous payment systems[19,20], our
scheme is not a cash transfer system, which means no malicious
recipient can provide additional information, e.g., token value, to

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

9

an adversary 𝒜𝒜. With the benefit of the zero-knowledge feature
of zkSNARKs, in the voting phase, an adversary 𝒜𝒜 learns only the
output 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 ≔ (𝜋𝜋𝑖𝑖 , 𝐬𝐬𝑖𝑖 ≔ (𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ,𝕄𝕄𝕋𝕋. 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑛𝑛𝑖𝑖)) which does not leak
any information about the voter’s identity, such that in the worst
case, all candidates collude to decrypt the ballot ciphertext 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 in
order to recover 𝑣𝑣𝑖𝑖, they cannot identify the voter who cast the
revealed ballot 𝑣𝑣𝑖𝑖.
Ballot Verifiability. With the soundness of zkSNARKs, no poly-
nomial time adversary can prove that a false statement 𝑠𝑠′ ∉ ℒ𝑠𝑠,
∃ 𝑤𝑤𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 𝑎𝑎′ , s.t. (𝑠𝑠′,𝑎𝑎′) ∈ ℛℒ𝑠𝑠 . Thus, ballot verifiability is en-
sured once the contract has verified the correctness of the trans-
action 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟.

To formally represent the security of VeriVoting, we first give
the formal security definition of VeriVoting, then prove the cor-
responding theorem in Appendix B.1.

Definition 4. Let ℱVV be the functionality as defined below. We
say that the construction in Section 3.4 securely computes ℱVV in
the presence of the static adversaries if for every PPT adversary
𝒜𝒜 for the real world, there exists a PPT simulator 𝒮𝒮 for the ideal
world, such that:
IDEAL𝒮𝒮(𝑧𝑧)

ℱVV �{𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝐶𝐶], �𝕔𝕔𝑗𝑗:⊥�𝑗𝑗∈[ℂ],𝒮𝒮𝒞𝒞:⊥)� ≈
𝑐𝑐

REAL𝒜𝒜(𝑧𝑧)
ΠVV ({𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗:⊥�𝑗𝑗∈[ℂ],𝒮𝒮𝒞𝒞:⊥)

Since VeriVoting is the extension of SemiVoting construction, the
functionality ℱVV is similar to ℱSV, except that the input/output
of voters: ℱVV: {𝑣𝑣𝑖𝑖,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖}𝑖𝑖∈[𝕍𝕍] ×⊥×⊥→ {𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐, 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟}𝑖𝑖∈[𝕍𝕍] ×
{𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘}𝑗𝑗∈[ℂ] × �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]. Similar to Definition 2, to define the secu-

rity, we first formalize the ideal and real worlds below.
Real world. Our construction ΠVV is conducted among the 𝒮𝒮𝒞𝒞 and
parties in 𝕍𝕍,ℂ and the static adversary 𝒜𝒜 who controls a subset
of parties. At the beginning of the construction ΠVV, each voter
𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 first receive his/her input (𝑣𝑣𝑖𝑖,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖) then receive ran-
dom coins 𝑟𝑟𝑖𝑖 and an auxiliary input 𝑧𝑧. At the end of the execution,
the honest party outputs whatever is prescribed by the scheme
ΠSV and the adversary 𝒜𝒜 outputs its view. The output of the real-
world execution of the protocol ΠSV among these parties in the
presence of the adversary 𝒜𝒜 is defined as

REAL𝒜𝒜(𝑧𝑧)
ΠVV ({𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗:⊥�𝑗𝑗∈[ℂ]𝒮𝒮𝒞𝒞:⊥).

Ideal world. The ideal world is executed among the 𝒮𝒮𝒞𝒞 and parties
in 𝕍𝕍,ℂ and a simulator 𝒮𝒮 who is allowed to corrupt the contract
𝒮𝒮𝒞𝒞 and some subset of voters or candidates. At the beginning of
the ideal world, each party receives the same input as the corre-
sponding party in the real world. The honest party always for-
wards its input to the TTP. The corrupted party may abort or send
arbitrary input. The TTP returns the result 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐 or 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 to the
voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍 or 𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘 to the candidate 𝕔𝕔𝑖𝑖 ∈ ℂ. If the TTP receives
an abort message as input, it sends the abort message to the
voter/candidate. The output of the parties in the ideal world in the
presence of the simulator 𝒮𝒮 is defined as

IDEAL𝒮𝒮(𝑧𝑧)
ℱVV ({𝕧𝕧𝑖𝑖:𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑠𝑠𝑘𝑘𝑖𝑖}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗:⊥�𝑗𝑗∈[ℂ],𝒮𝒮𝒞𝒞:⊥).

Then, we have the below theorem.
Theorem 2. Suppose that the hash function in the Merkle tree is
collision-resistant, the commitment scheme is perfectly binding
and computationally hiding, the zkSNARK scheme is computa-
tionally zero-knowledge and simulation sound extractable, the

PRF scheme is secure, and SemiVoting is (𝛿𝛿𝑐𝑐 ,𝛿𝛿𝑠𝑠)-bounded secure,
then our scheme is secure as defined in Definition 4.

4 PERFORMANCE ANALYSIS ON VERIVOTING
In this section, we first analyze the computation complexity of al-
gorithms in four phases, including the commitment, voting, DK
generation, and tally phases. Then we separately evaluate the
computation cost of these algorithms on Remix IDE[25] and local
computer with ZoKrates toolbox[26] by instantiating VeriVoting.

4.1 Analysis of Computation Complexity
Table 3 summarizes the computational complexity of algorithms
running in different phases from a theoretical perspective and
mainly focuses on the influence of the number of voters and can-
didates and the depth of the Merkle tree on algorithm complexity.

Table 3: Computational complexity of algorithms in VeriVoting
Phase Entity Algorithm Complexity

Comm.
Voter 𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝕧𝕧 𝑂𝑂(1)

Contract 𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐬𝐬 𝑂𝑂(1)

Voting
Voter 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝕧𝕧 𝑂𝑂(|ℂ| +𝕄𝕄𝕋𝕋. depth)

Contract 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬 𝑂𝑂(|ℂ| +𝕄𝕄𝕋𝕋. depth)

DK Gen.
Candidate 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊 𝑂𝑂(|ℂ|)
Contract 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐀𝐀𝐀𝐀𝐀𝐀 𝑂𝑂(|ℂ|)

Tally Contract 𝐓𝐓𝐚𝐚𝐓𝐓𝐓𝐓𝐊𝐊 𝑂𝑂(|ℂ|)

In the commitment phase, the voter straightforwardly commits
her token regardless of the number of voters and candidates, i.e.,
the complexity of 𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝕧𝕧 is trivially 𝑂𝑂(1) . Accordingly, the
complexity of the verification algorithm 𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐬𝐬 on the con-
tract side is 𝑂𝑂(1) as well.

In the voting phase, to guarantee ballot verifiability, the voter
needs to make proof on Statements 1~5 in zero-knowledge. Obvi-
ously, in Statements 4 and 5, the depth of the Merkle tree and the
number of candidates conduct the size of inputs of the function
𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞. This implies that not only the complexity of the voting al-
gorithm 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝕧𝕧, but also the size of 𝑐𝑐𝑟𝑟𝑠𝑠 depends on the depth of
the Merkle tree 𝕄𝕄𝕋𝕋. depth and the number of candidates |ℂ|. As
a result, the complexity of the verification algorithm 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬 tak-
ing 𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃 as input is 𝑂𝑂(|ℂ| + 𝕄𝕄𝕋𝕋. depth) as well.

In the DK generation phase, taking the aggregated ciphertexts
set ℂ𝕋𝕋.ℂ0 as input, the candidate 𝕔𝕔𝑗𝑗 generates partial decryption
keys for each ciphertext in ℂ𝕋𝕋.ℂ0 and performs ΠNIZK. Proof al-
gorithm in 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊. As the size of ℂ𝕋𝕋.ℂ0 is |ℂ|, the complexity
of 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊 algorithm is 𝑂𝑂(|ℂ|). Accordingly, taking the partial
decryption key (𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗) from candidate 𝕔𝕔𝑗𝑗 as input, the contract
needs to verify-then-aggregate 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 ��𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗� = |ℂ|� into 𝔻𝔻𝔻𝔻 , the
complexity of 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐀𝐀𝐀𝐀𝐀𝐀 algorithm is 𝑂𝑂(|ℂ|) as well.

In the tally phase, since the tally process is indeed the decryp-
tion operation on ℂ𝕋𝕋 , the complexity of 𝐓𝐓𝐚𝐚𝐓𝐓𝐓𝐓𝐊𝐊 algorithm is
𝑂𝑂(|ℂ|) as the size of ℂ𝕋𝕋 is |ℂ|.

Based on the above analysis, we conclude that the computa-
tional complexity of our scheme depends on the number of candi-
dates and the depth of the Merkle tree, rather than the number of
voters. Thus, we call our scheme moderately succinct, as the num-
ber of voters is always greater than that of candidates in most
weighted voting schemes.

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

10

Figure 5: The number of constraints
for 𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅)

Table 4: Measurements for the commitment and voting phases

|ℂ|

Voter Smart Contract

𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝕧𝕧 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝕧𝕧 𝐂𝐂𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐬𝐬 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬

Time(ms)
Con-

straints
(Num.)

𝑐𝑐𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃
(MB)

Time(s) Gas 𝑐𝑐𝑟𝑟𝑠𝑠𝑆𝑆𝑃𝑃
(KB)

Gas

3

0.686

364644 144.3 11.69

57160

27.2 1,254K

5 401476 160.9 15.05 44.2 1,362K

10 493556 197.9 18.96 86.7 1,630K

Figure 6: Comp./Gas cost of 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝕧𝕧
and 𝐕𝐕𝐨𝐨𝐨𝐨𝐞𝐞𝐬𝐬𝐬𝐬

Figure 7: The number of constraints by two

factors
Figure 8: Comp./Gas cost of 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊 and

𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐀𝐀𝐀𝐀𝐀𝐀
Figure 9: Gas cost of 𝐓𝐓𝐚𝐚𝐓𝐓𝐓𝐓𝐊𝐊

4.2 Performance Evaluation
In this section, we implement an instance of VeriVoting to evalu-
ate the performance. The instantiation for SemiVoting has already
been shown in Appendix A.3. The Commit, Merkle tree and PRF
algorithms are implemented by SHA-256[48]. The zkSNARK sys-
tem we chose is Groth16[32] with 128-bit security.

With the help of Remix IDE as the test platform for the contract
and precompiled contracts for elliptic-curve operations[49] in
Ethereum, we make some emulation tests1 for our instantiation.
The terminal configuration at the voter and candidate side is: Intel
i7 7700HQ CPU, 8GB memory, Ubuntu OS with Zokrates toolbox.

We first present measurements for the commitment and voting
phases in Table 4, in which we use ‘Gas’ to denote the contract
cost (The gas cost includes the basic cost for sending a transaction,
the storage cost, and the computational cost.). Due to the com-
plexity of the voting phase is 𝑂𝑂(|ℂ| + 𝕄𝕄𝕋𝕋. depth) , we let the
depth of the Merkle tree be a bounded value, i.e., 𝕄𝕄𝕋𝕋. depth = 8,
and apply different numbers of candidates, i.e., |ℂ| ∈ {3,5,10} to
evaluate the performance of each algorithm. In Table 4, The num-
ber of R1CS constraints is determined by the prescribed voting
function 𝐅𝐅𝐯𝐯𝐨𝐨𝐨𝐨𝐞𝐞(⋅) where the proportion is accounted for by the en-
cryption operation ℰ. Encrypt rises as the number of candidates
increases, as shown in Figure 5. For the same reason, the size of
𝑐𝑐𝑟𝑟𝑠𝑠, as well as time and gas costs of the voter and contract, grow
linearly with the number of candidates, as shown in Figure 6. Fur-
thermore, we take the Merkle tree's depth and the number of

1 More details on Github: https://github.com/PropersonCyber/VeriVoting

candidates as factors for emulating the number-changing trend of
R1CS constraints. The emulation results are shown in Figure 7,
where we set the depth of the Merkle tree varying from 4 to 12.

Table 5: Measurements for the DK generation phase

|ℂ|

Candidate Smart Contract

𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐊𝐊𝐞𝐞𝐊𝐊 𝐃𝐃𝐊𝐊𝐞𝐞𝐊𝐊𝐀𝐀𝐀𝐀𝐀𝐀
Π. Prove
Time(ms)

DK Gen
Time(ms)

Π. Verify
(Gas)

DK Agg
(Gas)

3 53 20 173847 115862
5 75 33 259114 169689

10 123 67 503174 304263
Next, we present measurements2 for the decryption-key gener-

ation phase in Table 5, where we make independent statistics of
the measurement results of the two algorithms, Π. Prove and
Π. Verify, in the NIZK argument system Π to make explicit the
computational cost accounted for by the argument system. The
complete measurement results are drawn in Figure 8.

Finally, we present measurements for the tally phase in Figure
9. In this phase, we only evaluate the gas consumption of
ℰ. Decrypt operation on different numbers of candidates, and do
not count the statistics of computing the discrete logarithms.

5 A DISTRIBUTED VOTING FRAMEWORK FOR THE
LARGE-SCALE ELECTION

A potential performance bottleneck we do not discuss in Section
4 is that the execution of smart contract transactions cannot be

2 We use the BabyJubJub[127] curve to impletement DK generatioin and verification.

3 5 10
0.00

5.00×104

1.00×105

1.50×105

2.00×105

2.50×105

3.00×105

3.50×105

4.00×105

4.50×105

5.00×105

R
1C

S

Number of candidates

 Encrypted ballots Serial Num.
 Merkle tree Predicate condition

3 5 10
0

3

6

9

12

15

18

Ti
m

e
(s

)

Number of candidates

 Proof(s) Verify(Gas)

1.50×106

1.60×106

1.70×106

1.80×106

1.90×106

2.00×106

3

5

10

4

8

12

1.00×105

2.00×105

3.00×105

4.00×105

5.00×105

6.00×105

7.00×105

Depth of Merkle Tree

R1
CS

Number
of c

and
idat

es

115862
169689

304263
173847

259114

503174

3 5 10
0.00

4.00×105

8.00×105

C
os

t (
ga

s)

Number of candidates

 DK.Agg DK.Verify
 DKeyGen

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)

3 5 10
0.00

1.00×105

2.00×105

3.00×105

4.00×105

5.00×105

C
os

t (
ga

s)

Number of candidates

 Tally(Gas)

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

11

parallelized because Ethereum virtual machine (EVM) is a single-
threaded state machine[50]. As a result, a single contract could
not afford the requirement to execute a mass of transactions in a
large-scale election. Although smart contracts functions can be
migrated to the chaincode in Hyperledger Fabric[51] to consider-
ably improve the performance[1,52,53] of executing transactions
in VeriVoting, it is possible that a single party or organization may
have the ability to control the consortium or private blockchain.

Block

B
lock

B
lock

Block

R
egistration Phase

C
om

m
it &

 V
ote Phase

D
K

 G
eneration

Phase

Voters

𝒮𝒮𝒞𝒞agg

𝒮𝒮𝒞𝒞1

ℛ𝒜𝒜1

Constituency con1 ℰ𝒜𝒜

ℛ𝒜𝒜𝑁𝑁

Constituency con𝑁𝑁

𝒮𝒮𝒞𝒞𝑁𝑁

Figure 10: Overview of the distributed voting framework

By LCH, LEH, and LKH properties of our construction for Sem-
iVoting, we can take a distributed approach to solve the challenge
of being unable to execute in parallel. Figure 10 illustrates the
overview of the distributed VeriVoting framework. We assume
that the initialization phase is already done, i.e., all public param-
eters, a list of candidates, and smart contracts are published and
deployed on the blockchain. In Figure 10, we divide the whole
constituency into constituencies by some strategy(e.g., based on
the voter’s wallet address) in the registration phase, i.e.,
𝐬𝐬𝐨𝐨𝐊𝐊

div
�� {con𝑘𝑘}𝑘𝑘∈[𝑁𝑁], where 𝑁𝑁 is the number of constituencies. In

addition, we introduce a new entity below:
• Registration authority(ℛ𝒜𝒜), located in each constituency, is

responsible for accepting registration requests from voters instead
of ℰ𝒜𝒜 in the registration phase. The topology of ℰ𝒜𝒜 and ℛ𝒜𝒜 is
similar to that of CA and RA in PKI. The difference is that CA
issues digital certificates to users, whereas ℰ𝒜𝒜 issues token to
valid voters.

Next, we split the original functionality of contract 𝒮𝒮𝒞𝒞 into the
following two parts:

• Smart contract 𝒮𝒮𝒞𝒞𝑘𝑘 . In the commitment and voting phase, It
is responsible for interacting with voters to verify the validity of
commitments and ballots submitted by voters located in the con-
stituency con𝑘𝑘. By the factory pattern in Solidity, ℰ𝒜𝒜 can create
an instance of the same contract for each constituency.

• Smart contract 𝒮𝒮𝒞𝒞agg. It is responsible for aggregating all ag-
gregated ciphertext set {ℂ𝕋𝕋𝑘𝑘}𝑘𝑘∈[𝑁𝑁] from constituencies and inter-
acting with each candidate to generate decryption keys in the DK
generation phase.

In Figure 10, the registration, commitment, and voting phases
run as usual in each constituency. In the DK generation phase,
𝒮𝒮𝒞𝒞agg calls the external contracts {𝒮𝒮𝒞𝒞𝑘𝑘}𝑘𝑘∈𝑁𝑁 to obtain each con-
stituency’s aggregated secret ballot set ℂ𝕋𝕋𝑘𝑘, then aggregates all
the set {ℂ𝕋𝕋𝑘𝑘}𝑘𝑘∈𝑁𝑁 into one set ℂ𝕋𝕋 = (ℂ0 = ∏ ℂ𝕋𝕋𝑘𝑘 .ℂ0𝑁𝑁

𝑘𝑘=1 ,ℂ1 =
Π𝑘𝑘=1𝑁𝑁 ℂ𝕋𝕋𝑘𝑘 .ℂ1) ∈ 𝒞𝒞|ℂ| . After that, all candidates execute
SV. DKeyGen algorithm with 𝒮𝒮𝒞𝒞agg to output the decryption key
set 𝔻𝔻𝔻𝔻. Finally, taking ℂ𝕋𝕋 and 𝔻𝔻𝔻𝔻 as input, the SV. Tally algo-
rithm outputs election results.

6 DISCUSSION
At the beginning of the paper’s introduction, we stressed that an
e-voting scheme should meet decentralization, verifiability, and
privacy-preserving properties, each of which is conducted by sev-
eral practical performance or security and privacy requirements.
In this section, we recall and show how VeriVoting achieves these
required properties.
Decentralization. In decentralized e-voting systems, the two most
essential requirements are performance and verifiability of the
output of each entity in the scheme. The former requirement de-
termines whether the voting scheme is suitable for large-scale
elections and whether it supports voters dynamically joining the
vote; the latter requirement determines the credibility of the elec-
tion results.

In response to the performance requirement, the computational
complexity of the main algorithms of the scheme, i.e., Commit and
Vote algorithms, is related to the number of candidates. Although
the number of executions is related to the number of voters for
the contract in the commitment and voting phases, the perfor-
mance can be optimized by a distributed method due to the ci-
phertext aggregatable feature of SemiVoting, as in Section 5. On
the other hand, VeriVoting supports dynamic join, as none of the
public parameters are generated by voters, such that voters can
still join the election by the registration algorithm before the
deadline of the voting phase. However, most other voting schemes
[115]-[118] do not support the dynamic joining of voters, due to
the system parameters need to be generated jointly by a fixed
number of voters. In response to the need for verifiability, we next
discuss verifiability.
Verifiability. With the decryption-key and ballot verifiability, the
output of each voter and candidate can be publicly verified in the
contract. With the append-only and transparency of the contract
(i.e., the state variables and entire process of actions taken in a
smart contract are publicly visible), voters are able to trivially ver-
ify that their ballots were actually counted by checking the change
before and after the update of state variables. Moreover, with the
self-tallying property[54], every observer, including voters, can-
didates, and election officials, is able to verify whether the final
election outcome indeed corresponds to the votes submitted by
the voters.
Privacy-Preserving. In the VeriVoting scheme, we decouple pri-
vacy-preserving on voter identity and ballot content to achieve
bidirectional unlinkability. It is a stronger privacy-preserving no-
tion that if either ballot privacy is broken or anonymity is broken,
not both, the adversary cannot determine by whom the revealed
ballot is cast or which candidates the revealed voter cast her ballot

12

for. Our approach to decoupling is that ballot privacy is guaran-
teed by encryption schemes where the encryption key is gener-
ated by all candidates, and anonymity is ensured by zkSNARKs
where the 𝑐𝑐𝑟𝑟𝑠𝑠 is created by different entities, such as SGX[46].

Rather than the above necessary properties, VeriVoting cap-
tures eligibility, transparency, fairness, recipient-freeness[125],
duplicate voting detection, and dispute-freeness, which we dis-
cussed in Appendix B.2.

7 RELATED WORK
In this section, we compare and discuss VeriVoting with related
electronic voting schemes designed to be decentralized, verifiable,
and privacy-preserving, respectively. This is then followed by a
qualitative summary in Table 6.
Decentralization. Decentralized voting systems have gradually
drawn the attention of researchers over the last few years.
McCorry et al.[114] proposed the first implementation of a decen-
tralized and self-tallying voting scheme, which utilizes smart con-
tracts to manage the entire voting process, and a two-round pro-
tocol (called Open Vote Network, OVN)[5] to make the scheme
self-tallying. Hereafter, OVN with blockchain technology was
used in several decentralized voting schemes[56-59] and [114]-
[120]. However, a limitation of OVN is that the number of voters
needs to be fixed before voting, which means these schemes do
not support the dynamic join for voters. Also, the computational
cost of this voting algorithm is related to the number of voters.

There are several decentralized voting schemes[61-65] with the
linkable ring signatures technology [2,60]. In these schemes, to
detect two signatures generated by the same voter, the verifier
must execute the Link algorithm to check if each received signa-
ture is linked to an already stored signature, bringing an expen-
sive computational cost to the verifier. New voters cannot dynam-
ically participate in the vote after a fixed number of voters initial-
ize the ring signature public keys. To avoid the problem of being
unable to count votes due to the absence of voters, several
schemes[66-70] use secret sharing technology [3, 71] to overcome
the challenge. A drawback of these schemes is that if the authority
responsible for distributing secret values is dishonest, the confi-
dentiality of ballots will disappear.
Verifiability. As remarked in [72], if both the ciphertext and de-
cryption key are verifiable, so does the corresponding decryption
result. VeriVoting follows this rule to achieve verifiability of the
tally result. Another widely used way to achieve this point is
based on the verifiability of the ciphertext and decryption result,
such as [73-79], and these schemes feature individual, universal
[80,81] or E2E[82] verifiability. However, since they rely on one

or more trustees (or called tellers/talliers) to tally the outcome of
elections, an assumption is that at least one trustee must be honest;
otherwise, the verifiability and privacy do not hold. Nevertheless,
in our scheme, we leverage the fact that there is a competitive re-
lationship between candidates to guarantee that at least one can-
didate will not collude with other candidates, so our assumption
is weaker than that of the other schemes.

On the one hand, in the tally phase of these schemes, at least
two statements should be proved: one is the correctness of the de-
cryption for each ballot ciphertext, and the other is the complete-
ness of the tally. On the other hand, the computational cost of the
tally algorithm is related to the number of voters. These two fac-
tors will make large-scale impractical.
Privacy-preserving. In e-voting, privacy-preserving consists of
ballot privacy(BP) and anonymity(Anon.), or at least one of
two[83]. To keep ballot privacy, technologies like homomorphic
encryption[84], threshold decryption [85], secret sharing, and
mix-net[86] are employed [87-94]. To provide voters anonymity,
there are schemes [95-100] adopting pseudonyms, blind signa-
tures[101], group signatures [102], ring signatures, and NIZKs.
Also, some schemes consider two properties together to achieve
bidirectional unlinkability(BU) [95,103-105]. However, in these
schemes, the public parameters, including encryption keys and
common reference string, etc, are generated together by trustees
or ℰ𝒜𝒜, this implies that ballot privacy and anonymity can be com-
promised together if a collusion attack occurs. Instead, our scheme
decouples ballot privacy and anonymity by generating public pa-
rameters separately from different parties.

For simplicity, we compared the above properties with previous
works, as shown in Table 6.

8 CONCLUSION
In this paper, we highlight three essential properties that modern
e-voting should have and propose the first weighted voting
scheme that sufficiently meets the claimed properties of decen-
tralization, verifiability, and privacy-preserving. Compared to
previous works, our design offers a novel, practically relevant
trade-off between security and performance for large-scale elec-
tions. With the computation verifiability feature of zkSNARKs,
VeriVoting supports complex ballot formats, along with complex
well-formedness conditions. Furthermore, VeriVoting, as a gen-
eral e-voting framework, is compatible with other linear homo-
morphic encryption and NIZKs technologies. With the develop-
ment of these technologies our scheme relies on, VeriVoting will
arrive at a new balance point between security and performance.

Table 6: Comparison of different voting schemes

Schemes Decentralization
Verifiability Privacy-preserving Cost of Tally

alg.
Dynamic Join

Ballot DK Decryption BP Anon. BU
[117] N/A 𝑂𝑂(|𝕍𝕍|)
[115] N/A 𝑂𝑂(|𝕍𝕍|)
[77] N/A 𝑂𝑂(|𝕍𝕍|)
[73] N/A 𝑂𝑂(|𝕍𝕍|)
[103] N/A 𝑂𝑂(|𝕍𝕍|)
[106] N/A 𝑂𝑂(|ℂ|)

VeriVoting N/A 𝑂𝑂(|ℂ|)
 denotes satisfaction; denotes dissatisfaction; N/A denotes no need.

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

13

ACKNOWLEDGMENTS

REFERENCES

[1]. Bin Yu, Joseph Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba, a
nd Man Ho Au. 2018. Platform-independent secure blockchain-based voting
system. In Proceedings of the International Information Security Conferenc
e (ISC '18). Springer Press, Guildford, UK, 369-386. https://doi.org/10.1007/97
8-3-319-99136-8_20

[2]. Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas
Schneider. 2019. Ring signatures: logarithmic-size, no setup—from standard
assumptions. In Proceedings of the EUROCRYPT 2019: 38th Annual Internat
ional Conference on the Theory and Applications of Cryptographic Techniq
ues (EUROCRYPT '19). Springer Press, Darmstadt, Germany, 281-311. https:/
/doi.org/10.1007/978-3-030-17659-4_10

[3]. Adi Shamir. 1979. How to share a secret. Communications of the ACM. AC
M Press, New York, NY, United States, 1979, 612–613. https://doi.org/10.1145
/359168.359176

[4]. Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. 2019. U
niversally Verifiable MPC and IRV Ballot Counting. In Proceedings of the Fi
nancial Cryptography and Data Security: 23rd International Conference (FC
 '19). Springer-Verlag Press, Berlin, Heidelberg, 301–319. https://doi.org/10.1
007/978-3-030-32101-7_19

[5]. Hao Feng, Peter YA Ryan, and Piotr Zieliński. 2010. Anonymous voting by t
wo-round public discussion. IET Information Security . Wiley Press, Hoboke
n NJ, 2010, 62-67. https://doi.org/10.1049/iet-ifs.2008.0127

[6]. Thomas Bocek, and Burkhard Stiller. 2017. Smart contracts–blockchains in t
he wings. Digital marketplaces unleashed. Digital marketplaces unleashed. S
pringer Press, Berlin, Heidelberg, 2017, 169-184. https://doi.org/10.1007/978-
3-662-49275-8_19

[7]. Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
 Weng, and Muhammad Imran. 2020. An overview on smart contracts: Chall
enges, advances and platforms. Future Generation Computer Systems. Elsev
ier Press, 2020, 475-491. https://doi.org/10.1016/j.future.2019.12.019

[8]. Dalia Khader, Ben Smyth, Peter Ryan, and Feng Hao. 2012. A fair and robust
 voting system by broadcast. Lecture Notes in Informatics. Gesellschaft fur I
nformatik (GI) Press, 2012, 285-299. http://hdl.handle.net/10993/25419

[9]. Cortier Véronique, Galindo David, Küsters R Ralf, Müller Johannes, and Tru
derung Tomasz. 2016. SoK: Verifiability Notions for E-Voting Protocols. In P
roceedings of the 2016 IEEE Symposium on Security and Privacy (S&P '16). I
EEE Press, San Jose, CA, USA, 779-798. http://doi.org/10.1109/SP.2016.52

[10]. Bernhard D, Cortier V, Galindo D, Pereira O, and Warinschi B. 2015. SoK: A
Comprehensive Analysis of Game-Based Ballot Privacy Definitions. In Proc
eedings of the 2015 IEEE Symposium on Security and Privacy (S&P '15). IEE
E Press, San Jose, CA, USA, 499-516. http://doi.org/10.1109/SP.2015.37

[11]. Malik Najmus Saqib, Junaid Kiani, Basit Shahzad, Adeel Anjum, Saif ur Reh
man Malik, Naveed Ahmad, and Atta ur Rehman Khan. 2019. Anonymous a
nd formally verified dual signature based online e-voting protocol. Cluster C
omputing. Springer Press, Berlin, Heidelberg, Germany, 2019, 1703–1716. ht
tps://doi.org/10.1007/s10586-018-2162-7

[12]. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and
 David Pointcheval. 2018. Decentralized Multi-Client Functional Encryption
for Inner Product. In Proceedings of the Cryptology–ASIACRYPT 2018: 24th
 International Conference on the Theory and Application of Cryptology and
 Information Security (ASIACRYPT '18). Springer Press, Brisbane, QLD, Aus
tralia, 703-732. https://doi.org/10.1007/978-3-030-03329-3_24

[13]. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and
 David Pointcheval. 2020. Dynamic Decentralized Functional Encryption. In
Proceedings of the Cryptology - CRYPTO 2020: 40th Annual lnternational C
ryptology Conference (CRYPTO '20). Springer Press, Santa Barbara, CA, US
A, 747-775. https://doi.org/10.1007/978-3-030-56784-2_25

[14]. Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill,
and Justin Thaler. 2020. Ad hoc multi-input functional encryption. In Procee
dings of the 11th Innovations in Theoretical Computer Science Conference
(ITCS '20). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik Press, Dagst
uhl, Germany, 1-41. https://doi.org/10.4230/LIPIcs.ITCS.2020.40

[15]. Dinh Duy Nguyen, Duong Hieu Phan, and David Pointcheval. 2023. Verifiab
le Multi-Client Functional Encryption for Inner Product. Cryptology ePrint
Archive. IACR Press, 2023, 268. https://eprint.iacr.org/2023/268

[16]. Kazue Sako, and Joe Kilian. 1995. Receipt-Free Mix-Type Voting Scheme. In
Proceedings of the International Conference on the Theory and Application
of Cryptographic Techniques (EUROCRYPT '95). Springer Press, Saint-Malo,
 France, 393–403. https://doi.org/10.1007/3-540-49264-X_32

[17]. Michanel Schläpfer, Rolf Haenni, Reto Koenig, and Oliver Spycher. 2012. Eff
icient Vote Authorization in Coercion-Resistant Internet Voting. In Proceedi
ngs of the E-Voting and Identity (Vote-ID '11). Springer Press, Tallinn, Eston
ia, 71–88. https://doi.org/10.1007/978-3-642-32747-6_5

[18]. Alshehri Ali, Mohamed Baza, Gautam Srivastava, Wahid Rajeh, Majed Alro
waily, and Majed Almusali. 2023. Privacy-Preserving E-Voting System Supp
orting Score Voting Using Blockchain. Applied Sciences Press, 2023, 1096. ht
tps://doi.org/10.3390/app13021096

[19]. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anon
ymous Payments from Bitcoin. In Proceedings of the IEEE Symposium on Se
curity and Privacy (S&P '14). IEEE Press, Berkeley, CA, USA , 459–474. https:
//doi.org/10.1109/SP.2014.36

[20]. Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pap
amanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy
-Preserving Smart Contracts. In Proceedings of the IEEE Symposium on Sec
urity and Privacy (S&P '16). IEEE Press, San Jose, CA, USA, 839-858. https://
doi.org/10.1109/SP.2016.55

[21]. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,
 and Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation.
 In Proceedings of the IEEE Symposium on Security and Privacy (S&P '20). I
EEE Press, San Francisco, CA, USA, 947-964. https://doi.org/10.1109/SP4000
0.2020.00050

[22]. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recur
sive composition and bootstrapping for SNARKS and proof-carrying data. In
 Proceedings of the forty-fifth annual ACM symposium on Theory of Comp
uting (STOC '13). ACM Press, New York, NY, USA, 111–120. https://doi.org/
10.1145/2488608.2488623

[23]. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. S
onic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable S
tructured Reference Strings. In Proceedings of the 2019 ACM SIGSAC Confe
rence on Computer and Communications Security (CCS '19). ACM Press, Ne
w York, NY, USA, 2111–2128. https://doi.org/10.1145/3319535.3339817

[24]. Parno Bryan, Howell Jon, Gentry Craig, and Raykova Mariana. 2013. Pinocc
hio: Nearly Practical Verifiable Computation. In Proceedings of the 2019 IEE
E Symposium on Security and Privacy (S&P '13). IEEE Press, Berkeley, CA,
USA, 2013, 238-252. https://doi.org/10.1109/SP.2013.47

[25]. Ethereum. Ethereum ide and tools for the web. [Online]. Available: http://re
mix.ethereum.org/

[26]. Jacob Eberhardt, and Stefan Tai. 2018. ZoKrates - Scalable Privacy-Preservin
g Off-Chain Computations. In Proceedings of the IEEE International Confer
ence on Internet of Things (iThings) and IEEE Green Computing and Comm
unications (GreenCom) and IEEE Cyber, Physical and Social Computing (CP
SCom) and IEEE Smart Data (SmartData). IEEE Press, Halifax, NS, Canada, 1
084-1091. https://doi.org/10.1109/Cybermatics_2018.2018.00199

[27]. Dodis Yevgeniy, Katz Jonathan, Xu Shouhuai, and Yung Moti. 2002. Key-Ins
ulated Public Key Cryptosystems. In Proceedings of the EUROCRYPT: Inter
national Conference on the Theory and Applications of Cryptographic Tech
niques Amsterdam (EUROCRYPT '02). Springer Press, Amsterdam, The Net
herlands, 65–82. https://doi.org/10.1007/3-540-46035-7_5

[28]. Jing Liu, and Bo Yang. 2011. Collusion-Resistant Multicast Key Distribution
Based on Homomorphic One-Way Function Trees. IEEE Transactions on Inf
ormation Forensics and Security. IEEE Press, CA, USA, 2011, 980-991. https:/
/doi.org/10.1109/TIFS.2011.2144584

[29]. Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Arg
uments. In Proceedings of the16th International Conference on the Theory a
nd Application of Cryptology and Information Security (ASIACRYPT '10). S
pringer Press, Singapore, 321–340. https://doi.org/10.1007/978-3-642-17373-8
_19

[30]. Mihir Bellare, and Phillip Rogaway. 1993. Random oracles are practical: a pa
radigm for designing efficient protocols. In Proceedings of the 1st ACM conf
erence on Computer and communications security (CCS '93). ACM Press, N
ew York, NY, USA, 62–73. https://doi.org/10.1145/168588.168596

[31]. Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of
Generalized Schnorr Proofs. In Proceedings of the 28th Annual Internationa
l Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT '09). Springer Press, Cologne, Germany, 425-442. https://doi.o
rg/10.1007/978-3-642-01001-9_25

[32]. Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. I
n Proceedings of the EUROCRYPT 2016: 35th Annual International Confere
nce on the Theory and Applications of Cryptographic Techniques (EUROCR
YPT '16). Springer Press, Vienna, Austria, 305-326. https://doi.org/10.1007/97
8-3-662-49896-5_11

[33]. Jens Groth, and Mary Maller. 2017. Snarky Signatures: Minimal Signatures o
f Knowledge from Simulation-Extractable SNARKs. In Proceedings of the Cr
yptology – CRYPTO 2017: 37th Annual International Cryptology Conferenc
e (CRYPTO '17). Springer Press, Santa Barbara, CA, USA, 581-612. https://do
i.org/10.1007/978-3-319-63715-0_20

https://doi.org/10.1007/978-3-319-99136-8_20
https://doi.org/10.1007/978-3-319-99136-8_20
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1049/iet-ifs.2008.0127
https://doi.org/10.1007/978-3-662-49275-8_19
https://doi.org/10.1007/978-3-662-49275-8_19
https://doi.org/10.1016/j.future.2019.12.019
http://hdl.handle.net/10993/25419
http://doi.org/10.1109/SP.2016.52
http://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/s10586-018-2162-7
https://doi.org/10.1007/s10586-018-2162-7
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.4230/LIPIcs.ITCS.2020.40
https://eprint.iacr.org/2023/268
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.3390/app13021096
https://doi.org/10.3390/app13021096
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2016.556
https://doi.org/10.1109/SP.2016.556
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1145/3319535.3339817
https://doi.org/document/6547113
http://remix.ethereum.org/
http://remix.ethereum.org/
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1109/TIFS.2011.2144584
https://doi.org/10.1109/TIFS.2011.2144584
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20

14

[34]. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From
extractable collision resistance to succinct non-interactive arguments of kno
wledge, and back again. In Proceedings of the 3rd Innovations in Theoretica
l Computer Science Conference (ITCS '12). ACM Press, New York, NY, USA,
 326–349. https://doi.org/10.1145/2090236.2090263

[35]. Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev.
2022. ZeeStar: Private Smart Contracts by Homomorphic Encryption and Ze
ro-knowledge Proofs. In Proceedings of the 2022 IEEE Symposium on Securi
ty and Privacy (S&P '22). IEEE Press, San Francisco, CA, USA, 179-197. https:
//doi.org/10.1109/SP46214.2022.9833732

[36]. Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsa
nkov, and Martin Vechev. 2019. Zkay: Specifying and Enforcing Data Privac
y in Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS '19). ACM Press, New Yor
k, NY, USA, 1759–1776. https://doi.org/10.1145/3319535.3363222

[37]. Jens Groth, and Amit Sahai. 2008. Efficient Non-interactive Proof Systems fo
r Bilinear Groups. In Proceedings of the Advances in Cryptology – EUROCR
YPT 2008: 17th Annual International Conference on the Theory and Applica
tions of Cryptographic Techniques (EUROCRYPT '08). Springer Press, Berli
n, Heidelberg, 415-532. https://doi.org/10.1007/978-3-540-78967-3_24

[38]. Shafi Goldwasser, and Yael Tauman Kalai. 2003. On the (In)security of the Fi
at-Shamir Paradigm. In Proceedings of the 44th Annual IEEE Symposium on
 Foundations of Computer Science (FOCS '03). IEEE Computer Society Press,
 Cambridge, MA, USA, 102-113. http://doi.org/10.1109/SFCS.2003.1238185

[39]. Amos Fiat, and Adi Shamir. 1987. How to prove yourself: practical solutions
 to identification and signature problems. In Proceedings of the CRYPTO 19
86: 6th Annual International Cryptology Conference (CRYPTO '86). Springe
r Press, Berlin, Heidelberg, 186–194. https://doi.org/10.1007/3-540-47721-7_1
2

[40]. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construc
t random functions. ACM Press, New York, NY, USA, 1986, 792–807. https://
doi.org/10.1145/6490.6503

[41]. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1985. On the Cryptogr
aphic Applications of Random Functions (Extended Abstract). In Proceeding
s of the CRYPTO 1984: 4th Annual lnternational Cryptology Conference (CR
YPTO '84). Springer Press, Berlin, Heidelberg, 276-288. https://doi.org/10.100
7/3-540-39568-7_22

[42]. Claude Crépeau, Commitment, Cryptography and Quantum Information La
b, McGill University School of Computer Science, accessed April 11, 2008

[43]. Mouris Dimitris, and Nektarios Georgios Tsoutsos. Masquerade: Verifiable
multi-party aggregation with secure multiplicative commitments. Cryptolog
y ePrint Archive.IACR Press, 2021. https://eprint.iacr.org/2021/1370.pdf

[44]. Thomas Bocek, and Burkhard Stiller. 2018. Smart Contracts – Blockchains in
 the Wings. Digital Marketplaces Unleashed. Springer Press, Berlin, Heidelb
erg, 2018, 169-184. https://doi.org/10.1007/978-3-662-49275-8_19

[45]. Sean Bowe, Ariel Gabizon, and Matthew D. Green. 2018. A Multi-party Prot
ocol for Constructing the Public Parameters of the Pinocchio zk-SNARK. In
Proceedings of the Financial Cryptography and Data Security (FC '18). Sprin
ger Press, Berlin, Heidelberg, 64–77. https://doi.org/10.1007/978-3-662-58820
-8_5

[46]. INTEL CORP. Product Change Notification 114074-00. 2015. https://qdms.int
el.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.
 pdf.

[47]. Beniiche Abdeljalil. 2020. A Study of Blockchain Oracles. https://doi.org/10.4
8550/arXiv.2004.07140

[48]. W Penard, and T van Werkhoven. On the secure hash algorithm family. Cry
ptogr. Context, 2008, 1–18

[49]. C Reitwiessner. 2021. Precompiled contracts for addition and scalar multipli
cation on the elliptic curve alt bn128. https://eips.ethereum.org/EIPS/eip-19
6.

[50]. Vikram Saraph, and Maurice Herlihy. 2019. An Empirical Study of Speculati
ve Concurrency in Ethereum Smart Contracts. In Tokenomics (OASIcs '19).
Schloss Dagstuhl, 1-15. https://doi.org/10.48550/arXiv.1901.01376

[51]. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantin
os Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrys
oula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellic
k. 2018. Hyperledger fabric: a distributed operating system for permissioned
 blockchains. In Proceedings of the Thirteenth EuroSys Conference (EuroSy
s '18). ACM Press, New York, NY, USA, 1-15. https://doi.org/10.1145/319050
8.3190538

[52]. Denis Kirillov, Vladimir Korkhov, Vadim Petrunin, Mikhail Makarov, Ildar
M. Khamitov, and Victor Dostov. 2019. Implementation of an E-Voting Sche
me Using Hyperledger Fabric Permissioned Blockchain. In Proceedings of th
e Computational Science and Its Applications (ICCSA '19). Springer Press, S
aint Petersburg, Russia, 509-521. https://doi.org/10.1007/978-3-030-24296-1_
40

[53]. Chaisawat S, and Vorakulpipat C. 2020. Fault-tolerant architecture design fo
r blockchain-based electronics voting system. In Proceedings of the 2020 17t
h International Joint Conference on Computer Science and Software Engine
ering (JCSSE '20). IEEE Press, Bangkok, Thailand, 116-121. http://doi.org/10.
1109/JCSSE49651.2020.9268264

[54]. Gongxian Zeng, Meiqi He, Siuming Yiu, and Zhengan Huang. 2021. Corrige
ndum to: A Self-Tallying Electronic Voting Based on Blockchain. The Comp
uter Journal. Oxford University Press Press, United Kingdom, 2021, 3020–30
34. https://doi.org/10.1093/comjnl/bxab123

[55]. Dimitriou Tassos. 2020. Efficient, coercion-free and universally verifiable bl
ockchain-based voting. Computer Networks. Elsevier Press, Nx Amsterdam,
 Netherlands, 2020. https://doi.org/10.1016/j.comnet.2020.107234

[56]. Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, and Fengling Han.202
0. Blockchain voting: Publicly verifiable online voting protocol without trus
ted tallying authorities. Future Generation Computer Systems. Elsevier Pres
s, Nx Amsterdam, Netherands, 2020, 859-874. https://doi.org/10.1016/j.futur
e.2020.06.051

[57]. Tong Wu, Guomin Yang, Liehuang Zhu, and Yulin Wu. 2021. Privacy-pres
erving voluntary-tallying leader election for Internet of Things. Information
 Sciences. Elsevier Press New York, NY, USA, 2021, 461-472. https://doi.org/1
0.1016/j.ins.2021.06.028

[58]. Xuechao Yang, Xun Yi, Andrei Kelarev, Fengling Han, and Junwei Luo. 202
1. A distributed networked system for secure publicly verifiable self-tallying
 online voting. Information Sciences. Elsevier Press, New York, NY, USA, 20
21, 125-142. https://doi.org/10.1016/j.ins.2020.07.023

[59]. Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. 2012. A fair and r
obust voting system by broadcast. In Proceedings of the 5th International C
onference on Electronic Voting 2012 (EVOTE '12). Gesellschaft fur Informati
k (GI) press, Bonn, Germany, 285-299.https://subs.emis.de/LNI/Proceedings/
Proceedings205/285.pdf

[60]. Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. 2014. Linkable
Ring Signature with Unconditional Anonymity. IEEE Transactions on Know
ledge and Data Engineering. IEEE Press, Los Alamitos, USA, CA, 2014, 157-1
65. https://doi.org/10.1109/TKDE.2013.17

[61]. Alexandra Kugusheva, and Yury Yanovich. 2020. Ring Signature-Based Voti
ng on Blockchain. In Proceedings of the 2020 2nd International Conference
on Blockchain Technology and Applications (ICBTA '20). ACM Press, New
York, NY, USA, 70–75. https://doi.org/10.1145/3376044.3376054

[62]. Lyu J, Jiang Z L, Wang X, et al. 2019. A secure decentralized trustless E-voti
ng system based on smart contract. In Proceedings of the 2019 18th IEEE Int
ernational Conference On Trust, Security And Privacy In Computing And C
ommunications/13th IEEE International Conference On Big Data Science An
d Engineering (TrustCom/BigDataSE '19). IEEE Press, Los Alamitos, CA US
A, 570-577. https://doi.org/10.1109/TrustCom/BigDataSE.2019.0008

[63]. Deng Robert H, Bao Feng, Pang HweeHwa, and Zhou Jianying. 2005. Short l
inkable ring signatures for e-voting, e-cash and attestation. In Proceedings o
f the 1st Information Security Practice and Experience Conference (ISPEC '0
5). Springer Press, Berlin Heidelberg, 48-60. https://doi.org/10.1007/978-3-54
0-31979-5_5

[64]. Zhu Yan, Zichuan Zeng, and Chunli Lv. 2018. Anonymous voting scheme fo
r boardroom with blockchain. International journal of performability engine
ering. RAMS Consultants, 2018, 2414-2422.https://doi.org/10.23940/ijpe.18.1
0.p17.24142422

[65]. Curran Kevin. 2018. E-Voting on the Blockchain. The Journal of the British
Blockchain Association. The British Blockchain Association Press, United Ki
ngdom,2018, 2516-3949. https://doi.org/10.31585/jbba-1-2-(3)2018

[66]. Li J, Wang X, Huang Z, Wang L, and Xiang Y. 2019. Multi-level multi-secret
sharing scheme for decentralized e-voting in cloud computing. Journal of Pa
rallel and Distributed Computing. Academic Press Inc Press, United States, 2
019, 91-97. https://doi.org/10.1016/j.jpdc.2019.04.003

[67]. Liu Y, and Zhao Q. 2019. E-voting scheme using secret sharing and K-anony
mity. In World Wide Web. Springer Press, Guildford, UK, 2019, 1657-1667. h
ttps://doi.org/10.1007/s11280-018-0575-0

[68]. Huang J, He D, Chen Y, Khan M K, and Luo M. 2022. A Blockchain-Based Se
lf-Tallying Voting Protocol With Maximum Voter Privacy. IEEE Transaction
s on Network Science and Engineering, 3808-3820. IEEE Press, Los Alamitos,
 CA USA, 2022, 3808-3820 https://doi.org/10.1109/TNSE.2022.3190909

[69]. Bartolucci S, Bernat P, and Joseph D. 2018. SHARVOT: secret SHARe-based
VOTing on the blockchain. In Proceedings of the 1st international workshop
 on emerging trends in software engineering for blockchain. IEEE Press, Got
henburg, SWEDEN, 30-34. https://doi.org/10.1145/3194113.3194118

[70]. Hsiao J H, Tso R, Chen C M, and Wu, M. E. 2018. Decentralized E-voting sys
tems based on the blockchain technology. In Proceedings of the 2018 Comp
uter Science and Ubiquitous Computing(CSA-CUTE '18). Springer Press,305
-309. https://doi.org/10.1007/978-981-10-7605-3_50

[71]. Naor Moni, and Adi Shamir. 1995. Visual cryptography. In Proceedings of th
e 1995 EUROCRYPT: Workshop on the Theory and Application of Cryptogr
aphic Techniques Perugia(EUROCRYPT '95). Springer Press, Berlin Heidelbe
rg, 1-12. https://doi.org/10.1007/BFb0053419

https://doi.org/10.1109/SP46214.2022.9833732
https://doi.org/10.1109/SP46214.2022.9833732
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1007/978-3-540-78967-3_24
http://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22
https://eprint.iacr.org/2021/1370.pdf
https://doi.org/10.1007/978-3-662-49275-8_19
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.48550/arXiv.2004.07140
https://doi.org/10.48550/arXiv.2004.07140
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196
https://doi.org/10.48550/arXiv.1901.01376
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1007/978-3-030-24296-1_40
https://doi.org/10.1007/978-3-030-24296-1_40
http://doi.org/10.1109/JCSSE49651.2020.9268264
http://doi.org/10.1109/JCSSE49651.2020.9268264
https://doi.org/10.1093/comjnl/bxab123
https://doi.org/10.1016/j.comnet.2020.107234
https://doi.org/10.1016/j.future.2020.06.051
https://doi.org/10.1016/j.future.2020.06.051
https://www.sciencedirect.com/author/57197768545/yulin-wu
https://doi.org/10.1016/j.ins.2021.06.028
https://doi.org/10.1016/j.ins.2021.06.028
https://doi.org/10.1016/j.ins.2020.07.023
https://doi.org/10.1109/TKDE.2013.17
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00082
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.23940/ijpe.18.10.p17.24142422
https://doi.org/10.23940/ijpe.18.10.p17.24142422
https://doi.org/10.31585/jbba-1-2-(3)2018
https://doi.org/10.1016/j.jpdc.2019.04.003
https://doi.org/10.1007/s11280-018-0575-0
https://doi.org/10.1007/s11280-018-0575-0
https://doi.org/10.1109/TNSE.2022.3190909
https://doi.org/10.1145/3194113.3194118
https://doi.org/10.1007/978-981-10-7605-3_50
https://doi.org/10.1007/BFb0053419

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

15

[72]. Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. 2016.
 Verifiable Functional Encryption. In Proceedings of the 2016 ASIACRYPT: L
ecture Notes in Computer Science(ASIACRYPT '16). Springer Press, Berlin,
Heidelberg, 557-587. https://doi.org/10.1007/978-3-662-53890-6_19.

[73]. Iovino Vincenzo, Rial Alfredo, Ronne Peter B, and Ryan Peter Y. A. 2020. (U
niversal)Unconditional Verifiability in E-Voting without Trusted Parties. In
Proceedings of the 33th IEEE Computer Security Foundations Symposium (C
SF '20). IEEE Press, New York, NY USA, 33-48. https://doi.org/10.1109/CSF4
9147.2020.00011

[74]. Sébastien Canard1, David Pointcheval, Quentin Santos, and Jacques Traoré.
2018. Practical strategy-resistant privacy-preserving elections. In Proceedin
gs of the 2018 Computer Security: European Symposium on Research in Co
mputer Security (ESORICS '18). Springer Press, Barcelona Spain, 331-349. htt
ps://doi.org/10.1007/978-3-319-98989-117

[75]. Xingyue Fan, Ting Wu, Qiuhua Zheng, Yuanfang Chen, Muhammad Alam,
and Xiaodong Xiao. 2020. HSE-Voting: A secure high-efficiency electronic
voting scheme based on homomorphic signcryption. Future Generation Co
mputer Systems. Elsevier Press, Nx Amsterdam, Netherands, 2020, 754-762.
https://doi.org/10.1016/j.future.2019.10.016

[76]. Kuesters Ralf, Liedtke Julian, Mueller Johannes, Rausch Daniel, and Vogt An
dreas. 2020. Ordinos: a verifiable tally-hiding e-voting system.In Proceeding
s of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P '
20). IEEE Press, Los Alamitos, 216-235. https://doi.org/10.1109/EuroSP48549.
2020.00022

[77]. Nicolas Huber, Ralf Küsters, Toomas Krips, Julian Liedtke, Johannes Müller,
Daniel Rausch, Pascal Reisert, and Andreas Vogt. 2022. Kryvos: Publicly Tall
y-Hiding Verifiable E-Voting. In Proceedings of the 2022 ACM SIGSAC Con
ference on Computer and Communications Security (CCS '22). ACM Press,
New York, NY, USA, 1443–1457. https://doi.org/10.1145/3548606.356yem070
1

[78]. Boyen Xavier, Thomas Haines, and Johannes Müller. 2021. Epoque: practical
 end-to-end verifiable post-quantum-secure e-voting. In Proceedings of the I
EEE European Symposium on Security and Privacy (EUROS&P '21). IEEE Pr
ess, New York, NY USA, 272-291. https://doi.org/10.1109/EuroSP51992.2021.
00027

[79]. Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. 2015.
 VVote: A Verifiable Voting System. ACM Transactions on Information and
System Security. ACM Press, New York, NY, USA, 2015, 1-30. https://doi.org
/10.1145/2746338

[80]. Smyth Ben, Steven Frink, and Michael R. Clarkson.2015. Computational elec
tion verifiability: Definitions and an analysis of helios and JCJ. Technical Re
port Cryptology ePrint Archive. IACR Press, 2015. https://eprint.iacr.org/201
5/233.

[81]. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: d
efinition and relationship to verifiability. In Proceedings of the 17th ACM co
nference on Computer and communications security (CCS '10). ACM Press,
New York, NY, USA, 526–535. https://doi.org/10.1145/1866307.1866366

[82]. Kiayias Aggelos, Thomas Zacharias, and Bingsheng Zhang. 2015. End-to-en
d verifiable elections in the standard model. In Proceedings of the 2015 EUR
OCRYPT: Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT '15). Springer Berlin Heidelberg,
 26-30. https://doi.org/10.1007/978-3-662-46803-6_16

[83]. Thomas Haines, Rafieh Mosaheb, Johannes Mueller, and Ivan Pryvalov. 202
3. SoK: Secure e-voting with everlasting privacy. In Proceedings on Privacy
Enhancing Technologies (PoPETs '23). IEEE Press, Lansanne, Switzerland, 2
79-293. https://doi.org/10.56553/popets-2023-0017

[84]. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homom
orphic Encryption for Arithmetic of Approximate Numbers. In Proceedings
of the Advances in Cryptology – ASIACRYPT 2017. ASIACRYPT 2017. Lectu
re Notes in Computer Science (LNCS '17). Springer Press, Cham, 409-437. ht
tps://doi.org/10.1007/978-3-319-70694-8_15

[85]. Berry Schoenmakers. 1999. A Simple Publicly Verifiable Secret Sharing Sche
me and Its Application to Electronic Voting. In Proceedings of the Advances
 in Cryptology — CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer S
cience (LNCS '99). Springer Press, Berlin, Heidelberg, 148-164. https://doi.or
g/10.1007/3-540-48405-1_10

[86]. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. 2002. Making mix nets ro
bust for electronic voting by randomized partial checking. In Proceedings of
 the 11th USENIX Security Symposium (USS '02). USENIX Association Press,
 Berkeley, CA, USA, 339-353. https://eprint.iacr.org/2002/025

[87]. Johannes Buchmann, Denise Demirel, and Jeroen van de Graaf. 2013. Towar
ds a Publicly-Verifiable Mix-Net Providing Everlasting Privacy. In Proceedin
gs of the Financial Cryptography and Data Security. FC 2013. Lecture Notes
in Computer Science (LNCS '13). Springer Press, Berlin, Heidelberg. 197-204.
 https://doi.org/10.1007/978-3-642-39884-1_16

[88]. Kristian Gjøsteen, Thomas Haines, and Morten Rotvold Solberg. 2021. Effici
ent Mixing of Arbitrary Ballots with Everlasting Privacy: How to Verifiably
Mix the PPATC Scheme. In Proceedings of the Secure IT Systems. NordSec 2

020. Lecture Notes in Computer Science (LNCS '21). Springer Press, Cham,9
2-107. https://doi.org/10.1007/978-3-030-70852-8_6

[89]. Tal Moran, and Moni Naor. 2010. Split-ballot voting: Everlasting privacy wit
h distributed trust. ACM Transactions on Information and System Security.
ACM Press, 2010, 246-255. https://doi.org/10.1145/1698750.1698756

[90]. Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. 2020. V
OTEAGAIN: a scalable coercion-resistant voting system. In Proceedings of t
he 29th USENIX Conference on Security Symposium (SEC '20). USENIX Ass
ociation Press, USA, 1553-1570. https://doi.org/10.48550/arXiv.2005.11189

[91]. Édouard Cuvelier, Olivier Pereira, and Thomas Peters. 2013. Election Verifia
bility or Ballot Privacy: Do We Need to Choose?. In Proceedings of the Com
puter Security – ESORICS 2013. ESORICS 2013. Lecture Notes in Computer
Science (LSCS'13). Springer Press, Berlin, Heidelberg, 481-498. https://doi.or
g/10.1007/978-3-642-40203-6_27

[92]. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. 2001. Sharing D
ecryption in the Context of Voting or Lotteries. In Proceedings of the Financ
ial Cryptography. FC 2000. Lecture Notes in Computer Science (LNCS '01). S
pringer Press, Berlin, Heidelberg, 90-104. https://doi.org/10.1007/3-540-4547
2-1_7

[93]. Aram Jivanyan, and Araon Feickert. 2022. Aura: private voting with reduced
 trust on tallying authorities. Cryptology ePrint Archive. IACR Press, 2022.
https://eprint.iacr.org/2022/543

[94]. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Mariya Izabachène. 20
16. A Homomorphic LWE Based E-voting Scheme. In Proceedings of the Pos
t-Quantum Cryptography. PQCrypto 2016. Lecture Notes in Computer Scien
ce (LNCS '16). Springer Press, Cham, 245-265. https://doi.org/10.1007/978-3-
319-29360-8_16

[95]. Mahender Kumar, Satish Chand, and C.P. Katti. 2020. A Secure End-to-End
Verifiable Internet-Voting System Using Identity-Based Blind Signature. IEE
E Systems Journal. IEEE Press, 2020, 2032-2041. https://doi.org/10.1109/jsyst.
2019.2940474

[96]. Mahender Kumar, C.P. Katti and P. C. Saxena. 2017. An Identity-based Blind
 Signature Approach for E-voting System. International Journal of Modern E
ducation and Computer Science. MECS Press, 47-54. https://doi.org/10.5815/
ijmecs.2017.10.06

[97]. Julio César Perez Carcia, A. Benslimane and S. Boutalbi. 2021. Blockchain-ba
sed system for e-voting using Blind Signature Protocol. In Proceedings of th
e 2021 IEEE Global Communications Conference (GLOBECOM '21). IEEE Pr
ess, Madrid, Spain, 01-06, https://doi.org/10.1109/GLOBECOM46510.2021.96
85189

[98]. Lukas Malina, Jan Smrz, Jan Hajny, and Kamil Vrba. 2015. Secure electronic
voting based on group signatures. In Proceedings of the 2015 38th Internatio
nal Conference on Telecommunications and Signal Processing (TSP '15). IEE
E Press, Prague, Czech Republic, 06-10. https://doi.org/10.1109/tsp.2015.7296
214

[99]. Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, a
nd Bryan Ford. 2016. AnonRep: towards tracking-resistant anonymous repu
tation. In Proceedings of the 13th Usenix Conference on Networked Systems
 Design and Implementation (NSDI '16). USENIX Association Press, USA, 58
3–596. https://www.usenix.org/conference/nsdi16/technical-sessions/presen
tation/zhai

[100]. Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir, Benedi
kt Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. 2017. Machine-Check
ed Proofs of Privacy for Electronic Voting Protocols. In Proceedings of the I
EEE Symposium on Security and Privacy (S&P '17). IEEE Press, San Jose, CA,
 USA, 993-1008. https://doi.org/10.1109/sp.2017.28

[101]. David Chaum. 1983. Blind signatures for untraceable payments. In Proceedi
ngs of the Advances in Cryptology: Proceedings of Crypto 82 (Crypto '82). N
ew York, USA, Plenum Press, 199-203. https://doi.org/10.1007/978-1-4757-06
02-4_18

[102]. Mihir Bellare, Haixia Shi, Chong Zhang. 2005. Foundations of Group Signat
ures: The Case of Dynamic Groups. In Proceedings of the 2005 Cryptograph
er’s Track at the RSA Conference on Cryptographic Techniques and Securit
y Practices. Lecture Notes in Computer Science (LNCS '05). Springer-Verlag
Press, Berlin, Germany, 136-153. https://doi.org/10.1007/978-3-540-30574-3_
11

[103]. Siqi Lu, Zhaoxuan Li, Xuyang Miao, Qingdi Han, and Jianhua Zheng. 2022.
PIWS: Private Intersection Weighted Sum Protocol for Privacy-Preserving S
core-Based Voting with Perfect Ballot Secrecy. IEEE Transactions on Compu
tational Social Systems. IEEE Press, 2022, 1-18. https://doi.org/10.1109/TCSS.
2022.3162869

[104]. Huilin Li, Yannan Li, Yong Yu, Baocang Wang, and Kefei Chen. 2021. A Bloc
kchain-Based Traceable Self-Tallying E-Voting Protocol in AI Era. In IEEE T
ransactions on Network Science and Engineering. IEEE Press, 2021, 1019-10
32, https://doi.org/10.1109/TNSE.2020.3011928

[105]. Vincenzo Agate, Alessandra De Paola, Pierluca Ferraro, Giuseppe Lo Re, and
 Marco Morana. 2021. SecureBallot: A secure open source e-Voting system. J
ournal of Network and Computer Applications. ACM Press, 2021, https://do
i.org/10.1016/j.jnca.2021.103165

https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1109/CSF49147.2020.00011
https://doi.org/10.1109/CSF49147.2020.00011
https://doi.org/10.1007/978-3-319-98989-117
https://doi.org/10.1007/978-3-319-98989-117
https://doi.org/10.1016/j.future.2019.10.016
https://doi.org/10.1109/EuroSP48549.2020.00022
https://doi.org/10.1109/EuroSP48549.2020.00022
https://doi.org/10.1145/3548606.356yem0701
https://doi.org/10.1145/3548606.356yem0701
https://doi.org/10.1109/EuroSP51992.2021.00027
https://doi.org/10.1109/EuroSP51992.2021.00027
https://doi.org/10.1145/2746338
https://doi.org/10.1145/2746338
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.56553/popets-2023-0017
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://eprint.iacr.org/2002/025
https://doi.org/10.1007/978-3-642-39884-1_16
https://doi.org/10.1007/978-3-030-70852-8_6
https://doi.org/10.1145/1698750.1698756
https://doi.org/10.48550/arXiv.2005.11189
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/3-540-45472-1_7
https://doi.org/10.1007/3-540-45472-1_7
https://eprint.iacr.org/2022/543
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1109/jsyst.2019.2940474
https://doi.org/10.1109/jsyst.2019.2940474
https://doi.org/10.5815/ijmecs.2017.10.06
https://doi.org/10.5815/ijmecs.2017.10.06
https://doi.org/10.1109/GLOBECOM46510.2021.9685189
https://doi.org/10.1109/GLOBECOM46510.2021.9685189
https://doi.org/10.1109/tsp.2015.7296214
https://doi.org/10.1109/tsp.2015.7296214
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://doi.org/10.1109/sp.2017.28
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1109/TCSS.2022.3162869
https://doi.org/10.1109/TCSS.2022.3162869
https://doi.org/10.1109/TNSE.2020.3011928
https://doi.org/10.1016/j.jnca.2021.103165
https://doi.org/10.1016/j.jnca.2021.103165

16

[106]. Xinyu Zhang, Bingsheng Zhang, Aggelos Kiayias, Thomas Zacharias, and K
ui Ren. 2022. An Efficient E2E Crowd Verifiable E-Voting System. IEEE Tran
sactions on Dependable and Secure Computing. IEEE Press, 3607-3620.https:
//doi.org/10.1109/TDSC.2021.3103336

[107]. Sebastain Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele V
enturi. 2012. On the Non-malleability of the Fiat-Shamir Transform. In Proc
eedings of the 13th International Conference on Cryptology in India (INDO
CRYPT '12). Springer Press, Kolkata, India, 60-79. https://doi.org/10.1007/978
-3-642-34931-7

[108]. Schnorr C. P.. 1991. Efficient signature generation by smart cards. Journal of
 Cryptology, 161-174. https://doi.org/10.1007/BF00196725

[109]. F. Hao. 2017. Schnorr Non-interactive Zero-Knowledge Proof. RFC Editor. T
ech. Rep. 2070-1721. [Online]: https://www.rfc-editor.org/rfc/rfc8235

[110]. Stefano Tessaro, and David A. Wilson. 2014. Bounded-Collusion Identity-Ba
sed Encryption from Semantically-Secure Public-Key Encryption: Generic C
onstructions with Short Ciphertexts. In Proceedings of the 17th Internationa
l Conference on Practice and Theory in Public-Key Cryptography (PKC '14).
 Springer Press, Buenos Aires, Argentina, 257-274. https://doi.org/10.1007/97
8-3-642-54631-0_15

[111]. T. Elgamal. 1985. A public key cryptosystem and a signature scheme based o
n discrete logarithms. In Proceedings of the IEEE Transactions on Informati
on Theory (IEEE T INFORM THEORY '85). IEEE Press, USA, 469-472. https:
//doi.org/10.1109/TIT.1985.1057074

[112]. Yiannis Tsiounis, and Moti Yung. 1998. On the security of ElGamal-based en
cryption. In Proceedings of the First International Workshop on Practice an
d Theory in Public Key Cryptography (PKC '98). Springer Press, Pacifico Yo
kohama, Japan, 117–134. https://doi.org/10.1007/BFb0054019

[113]. K. Kobara, and H. Imai. 2003. On the one-wayness against chosen-plaintext
attacks of the Loidreau’s modified McEliece PKC. In Proceedings of the IEEE
 Transactions on Information Theory (IEEE T INFORM THEORY '03). IEEE
 Press, USA, 3160-3168. https://doi.org/10.1109/TIT.2003.820016

[114]. McCorry Patrick, Shahandashti Siamak F, and Hao Feng. 2017. A smart cont
ract for boardroom voting with maximum voter privacy. In Proceedings of t
he International Conference on Financial Cryptography and Data Security
(FC '17). Springer Press, Berlin, Germany, 357-375. https://doi.org/10.1007/97
8-3-319-70972-7_20

[115]. Yannan Li, Willy Susilo, Guomin Yang, Yong Yu, Dongxi Liu, Xiaojiang Du,
and Mohsen Guizani. 2022. A Blockchain-Based Self-Tallying Voting Protoc
ol in Decentralized IoT. IEEE Transactions on Dependable and Secure Comp
uting. IEEE Press, Los Alamitos, 2022, 119-130. https://doi.org/10.1109/TDS
C.2020.2979856

[116]. Panja Somnath, Bag Samiran, Hao Feng, and Roy Bimal. 2020. A Smart Cont
ract System for Decentralized Borda Count Voting. IEEE Transactions on En
gineering Management. IEEE Press, Piscataway, NJ, 2020, 1323-1339. https://
doi.org/10.1109/TEM.2020.2986371

[117]. Yang Yang, Zhangshuang Guan, Zhiguo Wan, Jian Weng, Hwee Hwa Pang,
and Robert H. Deng. 2021. PriScore: Blockchain-Based Self-Tallying Election
 System Supporting Score Voting. IEEE Transactions on Information Forensi
cs and Security. IEEE Press, Piscataway, NJ, 2021, 4705-4720. https://doi.org/
10.1109/TIFS.2021.3108494

[118]. Gang Han, Yannan Li, Yong Yu, Kim-Kwang Raymond Choo, and Nadra Gui
zani. 2020. Blockchain-Based Self-Tallying Voting System with Software Up
dates in Decentralized IoT. IEEE Network. IEEE Press, Piscataway, NJ, 2020,
166-172. https://doi.org/10.1109/MNET.001.1900439

[119]. Christian Killer, Bruno Rodrigues, Eder John Scheid, Muriel Franco, Moritz
Eck, Nik Zaugg, Alex Scheitlin, and Burkhard Stiller. 2020. Provotum: A Blo
ckchain-based and End-to-end Verifiable Remote Electronic Voting System I
n Proceedings of the Annual IEEE Conference on Local Computer Networks
 (LCN '20). IEEE Press, Los Alamitos, CA, USA, 172-183. https://doi.org/10.11
09/LCN48667.2020.9314815

[120]. Huang J, He D, Chen Y, Khan M K, and Luo M. 2022. A Blockchain-Based Se
lf-Tallying Voting Protocol With Maximum Voter Privacy. IEEE Transaction
s on Network Science and Engineering, 3808-3820. IEEE Press, Los Alamitos,
 CA USA, 2022, 3808-3820 https://doi.org/10.1109/TNSE.2022.3190909

[121]. Morio Kevin,and Künnemann Robert. 2021. Verifying Accountability for Un
bounded Sets of Participants. In Proceedings of the IEEE Computer Security
Foundations Symposium (CSF '21). IEEE Press, Los Alamitos, CA USA, 173-1
88. https://doi.org/10.1109/CSF51468.2021.00032

[122]. Stefano Tessaro, and David A. Wilson. 2014. Bounded-Collusion Identity-Ba
sed Encryption from Semantically-Secure Public-Key Encryption: Generic C
onstructions with Short Ciphertexts. In Proceedings of the 17th Internationa
l Conference on Practice and Theory in Public-Key Cryptography (PKC 201
4). Springer Press, Buenos Aires, Argentina, 257-274. https://doi.org/10.1007/
978-3-642-54631-0_15

[123]. Sato Shingo, and Junji Shikata. 2023. Compact Bounded-Collusion Identity-b
ased Encryption via Group Testing. Cryptology ePrint Archive, IACR Press,
2023. https://eprint.iacr.org/2023/444

[124]. Shafi Goldwasser, Allison Lewko, and David A Wilson. 2012. Bounded-collu
sion IBE from key homomorphism. In Proceedings of the Theory of Cryptog

raphy Conference (TCC '12). Springer Press, Berlin, Heidelberg, 564-581. htt
ps://doi.org/10.1007/978-3-642-28914-9_32

[125]. Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. 2
016. BeleniosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. I
n ACM CCS 2016. 1614–1625. hps://doi.org/10.1145/2976749.2978337

[126]. omas Ristenpart and Sco Yilek. 2007. e Power of Proofs-of-Possession:
 Securing Multiparty Signatures against Rogue-Key Aacks. In EUROCRYPT
 2007. Springer Press, volume 4515 of LNCS, pages 228–245. hps://doi.org/1
0.1007/978-3-540-72540-4_13

[127]. WhiteHat, B., Baylina, J., & Bellés, M. (2020). Baby Jubjub elliptic curve. Ethe
reum Improvement Proposal, EIP-2494, 29. hps://doi.org/10.17487/RFC7748

https://doi.org/10.1109/TDSC.2021.3103336
https://doi.org/10.1109/TDSC.2021.3103336
https://doi.org/10.1007/978-3-642-34931-7
https://doi.org/10.1007/978-3-642-34931-7
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-642-54631-0_15
https://doi.org/10.1007/978-3-642-54631-0_15
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/BFb0054019
https://doi.org/10.1109/TIT.2003.820016
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1007/978-3-319-70972-7_20
https://ieeexplore.ieee.org/author/37076870900
https://ieeexplore.ieee.org/author/37323637000
https://ieeexplore.ieee.org/author/37072031100
https://ieeexplore.ieee.org/author/37085876485
https://ieeexplore.ieee.org/author/37402810300
https://ieeexplore.ieee.org/author/37279746200
https://ieeexplore.ieee.org/author/37273043000
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://doi.org/10.1109/TDSC.2020.2979856
https://doi.org/10.1109/TDSC.2020.2979856
https://ieeexplore.ieee.org/author/37088534094
https://ieeexplore.ieee.org/author/37086926775
https://ieeexplore.ieee.org/author/37694914000
https://ieeexplore.ieee.org/author/37694914000
https://doi.org/10.1109/TEM.2020.2986371
https://doi.org/10.1109/TEM.2020.2986371
https://ieeexplore.ieee.org/author/37086848955
https://ieeexplore.ieee.org/author/37089710640
https://ieeexplore.ieee.org/author/37530287400
https://ieeexplore.ieee.org/author/37691874200
https://ieeexplore.ieee.org/author/37279369600
https://doi.org/10.1109/TIFS.2021.3108494
https://ieeexplore.ieee.org/author/37088703883
https://ieeexplore.ieee.org/author/37076870900
https://ieeexplore.ieee.org/author/37085876485
https://ieeexplore.ieee.org/author/37428299900
https://ieeexplore.ieee.org/author/37085400615
https://ieeexplore.ieee.org/author/37085400615
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=65
https://doi.org/10.1109/MNET.001.1900439
https://ieeexplore.ieee.org/author/37086877411
https://ieeexplore.ieee.org/author/37085448660
https://ieeexplore.ieee.org/author/37085843868
https://ieeexplore.ieee.org/author/37085819748
https://ieeexplore.ieee.org/author/37088644523
https://ieeexplore.ieee.org/author/37088644523
https://ieeexplore.ieee.org/author/37088647270
https://ieeexplore.ieee.org/author/37088641396
https://ieeexplore.ieee.org/author/37274556000
https://doi.org/10.1109/LCN48667.2020.9314815
https://doi.org/10.1109/LCN48667.2020.9314815
https://doi.org/10.1109/TNSE.2022.3190909
https://ieeexplore.ieee.org/author/37088935124
https://ieeexplore.ieee.org/author/37085500811
https://ieeexplore.ieee.org/xpl/conhome/9504607/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9504607/proceeding
https://doi.org/10.1109/CSF51468.2021.00032
https://doi.org/10.1007/978-3-642-54631-0_15
https://doi.org/10.1007/978-3-642-54631-0_15
https://eprint.iacr.org/2023/444
https://doi.org/10.1007/978-3-642-28914-9_32
https://doi.org/10.1007/978-3-642-28914-9_32
https://doi.org/10.1145/2976749.2978337
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.17487/RFC7748

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

17

APPENDIX A

A.1 CORRECTNESS
Correctness. By the LEH, LCH, and LKH properties, the correct-
ness of our construction is straightforward.
Tally(𝔻𝔻𝔻𝔻,ℂ𝕋𝕋.ℂ1) = �ℰ. Dec�𝐷𝐷𝐾𝐾𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗1��𝑗𝑗∈[ℂ]

=

⎩
⎪
⎨

⎪
⎧
ℰ. Dec

⎝

⎜
⎛� KeyGen�𝑠𝑠𝑘𝑘𝑗𝑗′ ,𝐶𝐶𝐶𝐶𝑗𝑗0�

[ℂ]

𝑗𝑗′
,

� Enc�𝑒𝑒𝑘𝑘,𝑣𝑣𝑖𝑖,𝑗𝑗 ⋅ 𝑤𝑤𝑖𝑖;𝑟𝑟𝑖𝑖,𝑗𝑗�
[𝕍𝕍]

𝑖𝑖 ⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

𝑗𝑗∈[ℂ]

=

⎩
⎪⎪
⎨

⎪⎪
⎧

ℰ. Dec

⎝

⎜
⎜
⎜
⎜
⎛KeyGen��𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ]

𝑗𝑗′
, Comm��𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]

𝑖𝑖

�� ,

Enc��𝑝𝑝𝑘𝑘𝑗𝑗′
[ℂ]

𝑗𝑗′
,�𝑣𝑣𝑖𝑖,𝑗𝑗

|𝕍𝕍|

𝑖𝑖=1

⋅ 𝑤𝑤𝑖𝑖;�𝑟𝑟𝑖𝑖,𝑗𝑗

|𝕍𝕍|

𝑖𝑖=1

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪⎪
⎬

⎪⎪
⎫

𝑗𝑗∈[ℂ]

(LCH, LEH)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

ℰ. Decrypt

⎝

⎜
⎜
⎜
⎛

�𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ]

𝑗𝑗′
, ℰ. Encrypt

⎝

⎜⎜
⎜
⎛�𝑝𝑝𝑘𝑘𝑗𝑗′

[ℂ]

𝑗𝑗′
,�𝑣𝑣𝑖𝑖,𝑗𝑗

|𝕍𝕍|

𝑖𝑖=1

⋅

𝑤𝑤𝑖𝑖;�𝑟𝑟𝑖𝑖,𝑗𝑗

|𝕍𝕍|

𝑖𝑖=1 ⎠

⎟⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎞

⎭
⎪⎪
⎬

⎪⎪
⎫

(LKH)

= ��𝑣𝑣𝑖𝑖,𝑗𝑗 ⋅ 𝑤𝑤𝑖𝑖

|𝕍𝕍|

𝑖𝑖=1

�

𝑗𝑗∈[ℂ]

A.2 INSTANTIATION
A.2.1 Building blocks
Fiat-Shamir based Non-Interactive Zero-Knowledge Argument of
Knowledge (FS-NIZK[107,108]). To efficiently prove the equality
of discrete logarithms of decryption keys and public key gener-
ated by the same candidate, we use the FS-NIZK argument sys-
tems to achieve this. The FS-NIZK argument systems meet simu-
lation soundness and simulation extraction in the random oracle
model[31,109]. Moreover, the FS-NIZK argument systems are al-
ways more efficient than other argument/proof systems under the
common reference string model.
BC-IND-Secure Encryption. As discussed in Section 2.3, we ex-
plain the security against bounded-collusion in our scheme, which
is different from traditional bounded-collusion in IBE. Tessaro et
al[110] presented an efficient scheme satisfying the bounded-col-
lusion based on the ElGamal encryption scheme [111,112]. We
take the modified ElGamal scheme as our BC-IND-secure encryp-
tion scheme in our instantiation.
A.2.2 Instantiation
• Setup�1λ�: Taking as input a security parameter 𝝀𝝀, and gene-
rates public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠: = (𝔾𝔾,𝑝𝑝,𝑔𝑔, ℎ, Hash) , where 𝔾𝔾 is a
cyclic group of prime order 𝑝𝑝 , 𝑔𝑔 is a generator of 𝔾𝔾 , ℎ ←𝑅𝑅 𝔾𝔾 ,
Hash is a hash function that Hash: {0,1}∗ → ℤ𝒑𝒑, which plays the
random oracle in Fiat-Shamir based NIZK argument system
ΠFS−NIZK.

• KeyGen(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠): Taking as input the public parameters 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 ,
each candidate 𝕔𝕔𝑗𝑗 ∈ ℂ generates a secret key 𝑠𝑠𝑘𝑘𝑗𝑗 ←𝑅𝑅 ℤ𝑝𝑝 as well as

public key �𝑝𝑝𝑘𝑘𝑗𝑗 ← 𝑔𝑔𝑠𝑠𝑘𝑘𝑗𝑗� ∈ 𝔾𝔾.

• Vote �𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ],𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖�: Each voter 𝕧𝕧𝑖𝑖 takes the following

steps to encrypt its 𝑣𝑣𝑖𝑖:
(1).Compute the aggregated encryption key 𝑒𝑒𝑘𝑘 ≔ ∏ 𝑝𝑝𝑘𝑘𝑗𝑗 =[ℂ]

𝑗𝑗

𝑔𝑔∑ 𝑠𝑠𝑘𝑘𝑗𝑗
[ℂ]
𝑗𝑗 ∈ 𝔾𝔾; (This step can be precomputed)
(2).For each 𝑗𝑗 ∈ [ℂ], compute ciphertexts ��𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 ← 𝑔𝑔𝑟𝑟𝑖𝑖,𝑗𝑗 , 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1 ←

𝑒𝑒𝑘𝑘𝑟𝑟𝑖𝑖,𝑗𝑗 ⋅ 𝑔𝑔𝑠𝑠𝑖𝑖,𝑗𝑗⋅𝑜𝑜𝑖𝑖��𝑗𝑗∈[ℂ], where 𝑟𝑟𝑖𝑖,𝑗𝑗 ←𝑅𝑅 ℤ𝑝𝑝;

(3).Output 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ≔ �(𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 , 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1)�
𝑗𝑗∈[ℂ]

.

■ VoteAgg�ℂ𝕋𝕋′, 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�: Upon receiving the ballot ciphertexts 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖
from a voter 𝕧𝕧𝑖𝑖 , the aggregator 𝕒𝕒 updates its state variable set
ℂ𝕋𝕋 = ��ℂ𝕋𝕋.𝐶𝐶𝐶𝐶𝑗𝑗0 = ℂ𝕋𝕋′.𝐶𝐶𝐶𝐶𝑗𝑗0 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗0 ,ℂ𝕋𝕋.𝐶𝐶𝐶𝐶𝑗𝑗1 = ℂ𝕋𝕋′.𝐶𝐶𝐶𝐶𝑗𝑗1 ⋅ 𝑐𝑐𝑡𝑡𝑖𝑖,𝑗𝑗1 ��𝑗𝑗∈[ℂ]

.

At the end of the voting phase, we have:

ℂ𝕋𝕋 = �ℂ𝕋𝕋.ℂ0 = �𝐶𝐶𝐶𝐶𝑗𝑗0 = 𝑔𝑔∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 �

𝑗𝑗∈[ℂ]
,ℂ𝕋𝕋.ℂ1 = �𝐶𝐶𝐶𝐶𝑗𝑗1 =

𝑒𝑒𝑘𝑘∑ 𝑟𝑟𝑖𝑖 ,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 ⋅ 𝑔𝑔∑ 𝑠𝑠𝑖𝑖,𝑗𝑗⋅𝑜𝑜𝑖𝑖

[𝕍𝕍]
𝑖𝑖 �

𝑗𝑗∈[ℂ]
� ∈ (𝔾𝔾 × 𝔾𝔾)|ℂ|.

• DKeyGen�𝑠𝑠𝑘𝑘𝑗𝑗,ℂ𝕋𝕋.ℂ0�: When the voting phase finished, each

candidate 𝕔𝕔𝑗𝑗 generates the partial decryption keys 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 ≔

�𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′ = (𝐶𝐶𝐶𝐶𝑗𝑗′
0�

𝑠𝑠𝑘𝑘𝑗𝑗
}𝑗𝑗′∈[ℂ] and corresponding NIZK argument of

knowledge(AoK) to 𝕒𝕒:

ΠFS−NIZK. Prove�𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 ,𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗, 𝑠𝑠𝑘𝑘𝑗𝑗� → 𝜋𝜋𝑗𝑗 ≔

AoK ��𝑠𝑠𝑘𝑘𝑗𝑗�: �log𝐶𝐶𝑇𝑇𝑗𝑗′0 𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′ = log𝑟𝑟 𝑝𝑝𝑘𝑘𝑗𝑗�
𝑗𝑗′∈[ℂ]

�

■ DKeyAgg�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗,𝔻𝔻𝔻𝔻′,ℂ𝕋𝕋.ℂ0�: After receiving 𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗 from can-

didate 𝕔𝕔𝑗𝑗 ∈ ℂ, 𝕒𝕒 checks whether ΠFS−NIZK. Verify�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� = 1 If

all positive, update the decryption key set 𝔻𝔻𝔻𝔻 = �𝐷𝐷𝐾𝐾𝑗𝑗′ =
𝔻𝔻𝔻𝔻′.𝐷𝐷𝐾𝐾𝑗𝑗′ ⋅ 𝑑𝑑𝑘𝑘𝑗𝑗�𝑗𝑗′∈[ℂ]

; else return ⊥. Finally,

𝔻𝔻𝔻𝔻 = �𝐷𝐷𝐾𝐾𝑗𝑗 = �𝑔𝑔𝑠𝑠𝑘𝑘𝑗𝑗′⋅∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 = 𝑔𝑔∑ 𝑠𝑠𝑘𝑘𝑗𝑗′⋅∑ 𝑟𝑟𝑖𝑖 ,𝑗𝑗

[𝕍𝕍]
𝑖𝑖

[ℂ]
𝑗𝑗′

[ℂ]

𝑗𝑗′
�

𝑗𝑗∈[ℂ]

∈ 𝔾𝔾|ℂ|

• Tally(𝔻𝔻𝔻𝔻,ℂ𝕋𝕋.ℂ1) → �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]: Takes as input the decryption

key set 𝔻𝔻𝔻𝔻 and the aggregated ballot ciphertext set ℂ𝕋𝕋.ℂ1, out-

puts final tallies �𝑡𝑡𝑗𝑗 = ℰ. Dec�𝐷𝐷𝐾𝐾𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗1� =< 𝑣𝑣𝑗𝑗,𝑤𝑤��⃗ >�
𝑗𝑗∈[ℂ]

∈ ℤ𝑝𝑝
|ℂ|.

Correctness. The correctness is straightforward.
𝑡𝑡𝑗𝑗 = ℰ. Dec�𝐷𝐷𝐾𝐾𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗1�

= 𝐶𝐶𝐶𝐶𝑗𝑗1/𝐷𝐷𝐾𝐾𝑗𝑗

=
𝑒𝑒𝑘𝑘∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖

𝑔𝑔∑ 𝑠𝑠𝑘𝑘𝑗𝑗′⋅∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖

[ℂ]
𝑗𝑗′

⋅ 𝑔𝑔∑ 𝑠𝑠𝑖𝑖,𝑗𝑗⋅𝑜𝑜𝑖𝑖
[𝕍𝕍]
𝑖𝑖

=
�𝑔𝑔∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ]
𝑗𝑗′ �

∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖

𝑔𝑔∑ 𝑠𝑠𝑘𝑘𝑗𝑗′⋅∑ 𝑟𝑟𝑖𝑖 ,𝑗𝑗
[𝕍𝕍]
𝑖𝑖

[ℂ]
𝑗𝑗′

⋅ 𝑔𝑔∑ 𝑠𝑠𝑖𝑖,𝑗𝑗⋅𝑜𝑜𝑖𝑖
[𝕍𝕍]
𝑖𝑖

= 𝑔𝑔∑ 𝑠𝑠𝑖𝑖,𝑗𝑗⋅𝑜𝑜𝑖𝑖
[𝕍𝕍]
𝑖𝑖 = 𝑔𝑔<𝑠𝑠�⃗ 𝑗𝑗,𝑜𝑜��⃗ >

18

A.3 PROOF OF THEOREM 1.
Proof. We now show that under the assumption of computation-
ally simulation-knowledge-sound NIZKs, BC-IND-secure encryp-
tion schemes, then for every real-world adversary 𝒜𝒜 against our
construction ΠSV there exists an ideal-world simulator 𝒮𝒮 such
that the view of the real-world and ideal-world adversaries are
computationally indistinguishable. We will now describe the op-
eration of the ideal-world simulator 𝒮𝒮, which runs 𝒜𝒜 internally
and interacts with the ideal functionality ℱSV.

We begin by sketching the operation of the ideal-world simu-
lator 𝒮𝒮.

There are three kinds of parties: aggregator, voter and candi-
date, where the aggregator is simulated by the simulator 𝒮𝒮, since
all messages to the aggregator functionality are public, simulating
the aggregator functionality is trivial.

Malicious candidates and semi-honest voters are both cor-
rupted. Before simulating the view of candidates and voters, we
introduce an approach to making the tally outcome consistent in
both worlds. Instead of uncorrupted candidates, the simulator 𝒮𝒮
generates elaborate decryption keys to achieve the consistency re-
quirement. Therefore, in the decryption key generation phase, the
simulator 𝒮𝒮 does the following:
1). By the simulation sound extractability of NIZK argument sys-
tems, extract secret keys �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐] of all corrupted candidates in

ℂ𝑐𝑐.
2). Decrypt all ciphertexts from voters in 𝕍𝕍 to compute the ideal
world’s tally result �𝑡𝑡𝑗𝑗′�𝑗𝑗∈[ℂ]

 in advance.

3). According to the tally result �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ] from the real world, gen-

erate elaborate decryption keys of uncorrupted candidates: By
LCH, LEH and LKH properties, the encryption key is 𝑒𝑒𝑘𝑘 ≔
∏ 𝑝𝑝𝑘𝑘𝑗𝑗

[ℂ]
𝑗𝑗 = �∑ 𝑠𝑠𝑘𝑘𝑗𝑗

[ℂ𝑐𝑐]
𝑗𝑗 +∑ 𝑠𝑠𝑘𝑘𝑗𝑗

[ℂ\ℂ𝑐𝑐]
𝑗𝑗 �, where we denote some math-

ematical operation by ′[]′, such as modular exponentiation oper-
ation, �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ\ℂ𝑐𝑐] is randomly chosen by the simulator 𝒮𝒮 . The

candidate 𝕔𝕔𝑗𝑗 ’s aggregated ciphertext is ��∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ𝑐𝑐]
𝑗𝑗′ +

∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 + 𝑡𝑡𝑗𝑗′� where 𝑡𝑡𝑗𝑗′ = ∑ 𝑣𝑣�𝑖𝑖,𝑗𝑗 ⋅ 𝑤𝑤�𝑖𝑖

[𝕍𝕍]
𝑖𝑖 is 𝕔𝕔𝑗𝑗 ’s tally

result in the ideal world. Then the simulator 𝒮𝒮 defines a function:

𝑓𝑓�𝑢𝑢𝑗𝑗� ≔ ��∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ𝑐𝑐]
𝑗𝑗′ + ∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅ 𝑡𝑡𝑗𝑗−1 − �∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅

∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ𝑐𝑐]
𝑗𝑗′ � + 𝑡𝑡𝑗𝑗′ ⋅ 𝑡𝑡𝑗𝑗−1� ⋅ 𝑢𝑢𝑗𝑗 and selects �𝑢𝑢𝑗𝑗�𝑗𝑗∈[ℂ\ℂ𝑐𝑐] making

∑ 𝑢𝑢𝑗𝑗
[ℂ\ℂ𝑐𝑐]
𝑗𝑗 ≡ 1 , generates partial decryption keys �𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′ ≔

�𝑓𝑓�𝑢𝑢𝑗𝑗′���𝑗𝑗′∈[ℂ\ℂ𝑐𝑐]
 for the candidate 𝕔𝕔𝑗𝑗 . In the tally phase, the cor-

rectness of decryption is as follows: (The other candidates’ partial
decryption keys can be created in the same way.)

𝐶𝐶𝐶𝐶𝑗𝑗1

𝐷𝐷𝐾𝐾𝑗𝑗
=
��∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 + 𝑡𝑡𝑗𝑗′�

�∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 ⋅ ∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ + ∑ 𝑓𝑓�𝑢𝑢𝑗𝑗′�

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ �

=
��∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 + 𝑡𝑡𝑗𝑗′�

�
∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅ ∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ + �∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅ 𝑡𝑡𝑗𝑗−1

− �∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 ⋅ ∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ � + 𝑡𝑡𝑗𝑗′ ⋅ 𝑡𝑡𝑗𝑗−1

�

=
��∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 + 𝑡𝑡𝑗𝑗′�

���∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ � ⋅ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅+𝑡𝑡𝑗𝑗′� ⋅ 𝑡𝑡𝑗𝑗−1�

= �𝑡𝑡𝑗𝑗�

To illustrate the point, we take the instantiation in Appendix
A.2 as an example.

According to the instantiation, the aggregated ciphertext is

𝑒𝑒𝑘𝑘∑ 𝑟𝑟𝑖𝑖 ,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 ⋅ 𝑔𝑔∑ 𝑠𝑠�𝑖𝑖,𝑗𝑗⋅𝑜𝑜�𝑖𝑖

[𝕍𝕍]
𝑖𝑖 = 𝑔𝑔�∑ 𝑠𝑠𝑘𝑘𝑗𝑗

[ℂ𝑐𝑐]
𝑗𝑗 +∑ 𝑠𝑠𝑘𝑘𝑗𝑗

[ℂ\ℂ𝑐𝑐]
𝑗𝑗 �⋅∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 ⋅ 𝑔𝑔∑ 𝑠𝑠�𝑖𝑖,𝑗𝑗⋅𝑜𝑜�𝑖𝑖

[𝕍𝕍]
𝑖𝑖 =

𝑔𝑔�∑ 𝑠𝑠𝑘𝑘𝑗𝑗′
[ℂ𝑐𝑐]
𝑗𝑗′ +∑ 𝑠𝑠𝑘𝑘𝑗𝑗′

[ℂ\ℂ𝑐𝑐]
𝑗𝑗′ �⋅∑ 𝑟𝑟𝑖𝑖,𝑗𝑗

[𝕍𝕍]
𝑖𝑖 +𝑡𝑡𝑗𝑗

′
. Due to the simulator 𝒮𝒮 knows all

the secret keys �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ], creating the decryption keys �𝑑𝑑𝑘𝑘𝑗𝑗,𝑗𝑗′ ≔

𝑔𝑔𝑓𝑓�𝑢𝑢𝑗𝑗′��
𝑗𝑗′∈[ℂ\ℂ𝑐𝑐]

 with 𝐶𝐶𝐶𝐶𝑗𝑗0 = 𝑔𝑔∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
[𝕍𝕍]
𝑖𝑖 is trivial. The correctness of

decryption is straightforward.
Next, according to our construction, the view of each malicious

candidate 𝕔𝕔𝑗𝑗 ∈ ℂ𝑐𝑐 (|ℂ𝑐𝑐| ≤ 𝛿𝛿𝑐𝑐) and semi-honest voter 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍𝑐𝑐
(|𝕍𝕍𝑐𝑐| ≤ 𝛿𝛿𝑠𝑠)in the real world is as follows:

REAL𝒜𝒜𝕍𝕍,ℂ(𝑧𝑧)
ΠSV �{𝕧𝕧𝑖𝑖: (𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖)}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗: 𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ𝑐𝑐],𝕒𝕒:⊥�

≔ {{(𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖)}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ],𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍], �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�𝑗𝑗∈[ℂ], �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]}
To simulate the view of the candidate and voter, the simula-

tor 𝒮𝒮𝕔𝕔 does the following:
1) Run the SV. Setup(1𝜆𝜆) → 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠� containing (𝑐𝑐𝑟𝑟𝑠𝑠� , 𝜏𝜏) ←
ΠNIZK. Setupsim(1𝜆𝜆), and initialize two sets ℂ𝕋𝕋� and 𝔻𝔻𝔻𝔻� , and a
list 𝐿𝐿𝑠𝑠 for storing secret ballots from 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍𝑐𝑐.
Generate random public keys for uncorrupted candidates

�𝑝𝑝𝑘𝑘�𝑗𝑗�𝑗𝑗∈[ℂ\ℂ𝑐𝑐] by random secret keys �𝑠𝑠𝑘𝑘�𝑗𝑗�𝑗𝑗∈[ℂ\ℂ𝑐𝑐].

2) On receiving 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 from the voter in 𝕍𝕍𝑐𝑐 , record them into 𝐿𝐿𝑠𝑠,
then update ℂ𝕋𝕋� .
3) Randomly select bogus ballot ciphertexts from ciphertext

space 𝒞𝒞, output �𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]
 and update ℂ𝕋𝕋� .

4) On receiving �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� from the candidate in ℂ𝑐𝑐, rewind and

extract the knowledge of 𝑠𝑠𝑘𝑘𝑗𝑗 , then update 𝔻𝔻𝔻𝔻� .

5) If the candidate is uncorrupted, generate 𝑑𝑑𝑘𝑘����⃗�𝑗𝑗 by the above-
described approach, run the zero-knowledge simulator to simu-

late a proof 𝜋𝜋�𝑗𝑗 ← ΠNIZK. Provesim(𝑐𝑐𝑟𝑟𝑠𝑠� ,𝜏𝜏,𝑑𝑑𝑘𝑘����⃗�𝑗𝑗), then update 𝔻𝔻𝔻𝔻� .
6) The subsequent process is consistent with the construction.
We now show that the simulator's view is indistinguishable

from that of the adversary via a series of hybrids. In both views,
the tally result part is identical.
𝐇𝐇0: This is the real world.
𝐇𝐇1: In this hybrid, we run the knowledge extractor when encoun-

tering the output of any corrupted candidates �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�, and abort
if the knowledge extractor fails. By Lemma A.1 we show that if

the proof extractor fails with negligible probability, then H0 ≈
c

H1.

𝐇𝐇2: In this hybrid, we replace all proofs �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�𝑗𝑗∈[ℂ𝐻𝐻] by uncor-

rupted candidates with simulated proofs �𝑑𝑑𝑘𝑘����⃗�𝑗𝑗,𝜋𝜋�𝑗𝑗�𝑗𝑗∈[ℂ𝐻𝐻]
. By

Lemma A.2, if the argument system is computational zero-

knowledge, then H1 ≈
c

H2.

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

19

𝐇𝐇3 : In this hybrid, we replace ciphertexts �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐] with

�𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]
. By Lemma A.3, if the encryption scheme is IND-

secure, then H2 ≈
c

H3.
𝐇𝐇4: The hybrid is the same as H3 except for the following collu-
sion attack. Malicious candidates in ℂ\ℂ𝐻𝐻 collude together to try
to decrypt a secret ballot 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖∗ = ��𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗

0 , 𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗
1 ��

𝑗𝑗∈[ℂ]
 output by a

voter 𝕧𝕧𝑖𝑖∗. Firstly, we observe that the encryption key 𝑒𝑒𝑘𝑘 derives
from the aggregation of public keys of all candidates in ℂ. Then,
according to the LKH property, to decrypt the target ciphertext
𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖∗, the collusive candidates need to generate partial decryption
keys of all the candidates in ℂ for �𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗

0 �
𝑗𝑗∈[ℂ]

, and combined them

together as the valid decryption keys for �𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗
1 �

𝑗𝑗∈[ℂ]
. By Lemma

A.4, if the encryption scheme is secure against bounded collusion

and |ℂ𝐻𝐻| ≥ 1, then H3 ≈
c

H4.
𝐇𝐇5: The hybrid is the same as H5 except for the following collu-
sion attack. Semi-honest voters in 𝕍𝕍𝑐𝑐 collude together to try to
learn the content of an encrypted target ballot 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖∗ =
��𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗

0 , 𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗
1 ��

𝑗𝑗∈[ℂ]
 from final tally result. We assumed that

|𝕍𝕍𝐻𝐻| = |𝕍𝕍\𝕍𝕍𝑐𝑐| ≥ 2 and at least two voters with the same weight
cast their ballots for different candidates. By Lemma A.7, if the
encryption scheme is BC-IND-secure and |𝕍𝕍𝐻𝐻| ≥ 2 , then

H3 ≈
c

H4.
Note that Hybrid 5 is identical to the simulation. By summation

over the previous hybrids we show that H0 ≈
c

H5. We conclude
our proof sketch by presenting the supporting lemmas.
Lemma A.1 For any PPT adversary 𝒜𝒜 , if simulation sound ex-
tractable NIZK argument systems exist, then advantage �𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻1

𝒜𝒜 −
𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻0

𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is the extraction failure probability.
Proof. The simulator operates in the same manner, but we now

extract when given �𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗� of corrupted candidates who want to
generate false decryption keys, i.e., invalid statements, to change
the tally result. By definition, the extractor will fail with at most
negligible probability 𝜖𝜖 because it deals solely with NIZKs, which
have efficient extractors. Therefore, our proofs have knowledge
extractors that succeed with probability 1 − negl(𝜆𝜆).
Lemma A.2 For any PPT adversaries 𝒜𝒜, if computational zero-
knowledge NIZK argument systems exist, then the advantage
�𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻2

𝒜𝒜 − 𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻1
𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is the simulation failure probabil-

ity.
Proof. The simulator operates in the same manner, but we now
simulate proofs for uncorrupted parties. By definition of NIZK ar-
gument systems, the simulator will fail with at most negligible
probability. Therefore, 𝜖𝜖 = negl(𝜆𝜆) is negligible.
Lemma A.3 For any PPT adversary 𝒜𝒜, if IND-secure encryption
schemes exist, then the advantage �𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻3

𝒜𝒜 − 𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻2
𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖

is negligible probability.
Proof. We replace the ballot ciphertexts �𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖�𝑖𝑖∈[𝕍𝕍] with random ci-

phertexts �𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖�𝑖𝑖∈[𝕍𝕍]
. By definition, the encryption scheme is IND-

secure. Therefore, the adversary 𝒜𝒜 can distinguish Hybrid 3 from
Hybrid 2 with negligible probability.
Lemma A.4 For any PPT adversary 𝒜𝒜, if bounded-collusion-se-
cure encryption schemes exist and |ℂ𝑐𝑐| ≤ 𝛿𝛿𝑐𝑐 , then the advantage
�𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻4

𝒜𝒜 − 𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻3
𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is negligible probability.

Proof. It’s not hard to find that if malicious candidates can create
the decryption keys of candidates in ℂ𝐻𝐻 in the real world with
non-negligible probability, then in the ideal world, a simulator
must exist that can solve the underlying hard problem of the BC-
secure encryption scheme with non-negligible probability. To fur-
ther illustrate the notion of bounded-collusion in our scheme, we
take the instantiation in Appendix A.2 as a proof example.

Proof Sketch. Assume that a PPT adversary 𝒜𝒜 who controls 𝛿𝛿𝑐𝑐 =
|ℂ| − 1 candidates break the security against bounded-collusion
to reveal a voter’s ciphertext with non-negligible advantage, there
exists a PPT simulator 𝒮𝒮′ can break the CDH problem with non-
negligible advantage. Given the simulator an instance of compu-
tational Diffie-Hellman problem, i.e., (𝑔𝑔,𝑔𝑔𝑎𝑎,𝑔𝑔𝑏𝑏). In the simula-
tion world, the simulator 𝒮𝒮′ does as follows:
1). Set the uncorrupted candidate 𝕔𝕔𝑗𝑗∗ ’s public key 𝑝𝑝𝑘𝑘𝑗𝑗∗ ≔ 𝑔𝑔𝑎𝑎.

2). Generate ballot ciphertexts �𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗�𝑗𝑗∈[ℂ], set one of the cipher-

texts to �𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗′
0 ≔ 𝑔𝑔𝑏𝑏 ,𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗′

1 ←𝑅𝑅 𝔾𝔾�, where 𝑗𝑗′ denotes the identity

of the candidate 𝕔𝕔𝑗𝑗′ . Thus, 𝒮𝒮′ implicitly defines 𝑣𝑣𝑖𝑖∗,𝑗𝑗′ = 𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗′
1 ⋅

�𝑔𝑔𝑏𝑏⋅∑ 𝑠𝑠𝑘𝑘𝑗𝑗
�ℂ\𝕔𝕔𝑗𝑗∗�
𝑗𝑗 ⋅ 𝑔𝑔𝑎𝑎𝑏𝑏�

−1

.

3). As in the OW-CPA security game[113], the simulator sends
�𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗�𝑗𝑗∈[ℂ] to the adversary 𝒜𝒜 and receives some ballot

plaintexts 𝑣𝑣�𝑖𝑖∗ containing 𝑣𝑣�𝑖𝑖∗,𝑗𝑗′ .

4). If 𝒜𝒜 ’s guess is correct, then it holds 𝑣𝑣𝑖𝑖∗,𝑗𝑗′ = 𝑣𝑣�𝑖𝑖∗,𝑗𝑗′ =

𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗′
1 �𝑔𝑔𝑏𝑏⋅∑ 𝑠𝑠𝑘𝑘𝑗𝑗

�ℂ\𝕔𝕔𝑗𝑗∗�
𝑗𝑗 ⋅ 𝑔𝑔𝑎𝑎𝑏𝑏�

−1

which implies 𝑔𝑔𝑎𝑎𝑏𝑏 = 𝑐𝑐𝑡𝑡𝑖𝑖∗,𝑗𝑗′
1 ⋅

�𝑣𝑣�𝑖𝑖∗,𝑗𝑗′ ⋅ 𝑔𝑔
𝑏𝑏⋅∑ 𝑠𝑠𝑘𝑘𝑗𝑗

�ℂ\𝕔𝕔𝑗𝑗∗�
𝑗𝑗 �

−1

. Since 𝒮𝒮 knows all �𝑠𝑠𝑘𝑘𝑗𝑗�𝑗𝑗∈�ℂ\𝕔𝕔𝑗𝑗∗�
(Thanks

to the Lemma A.1), then 𝑔𝑔𝑎𝑎𝑏𝑏 can be computed efficiently.
5). If 𝒜𝒜 wins, then also 𝒮𝒮′ succeeds in solving CDH.

Lemma A.5 For any PPT adversary 𝒜𝒜, if BC-IND-secure encryp-
tion schemes exist and |𝕍𝕍𝑐𝑐| ≤ 𝛿𝛿𝑠𝑠 , then the advantage �𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻4

𝒜𝒜 −
𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻3

𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is negligible probability.
Proof. Assuming that 𝛿𝛿𝑠𝑠 = |𝕍𝕍| − 2 voters with the same weight
cast their ballots for different candidates. Due to the indistinguish-
ability of the encryption scheme, if the adversary can distinguish,
with non-negligible probability, which candidate the target secret
ballot is cast for, then in the ideal world, a simulator must exist
that can solve the underlying hard problem of the BC-IND-secure
encryption scheme with non-negligible probability.

From all above, the views of these two worlds are indistin-
guishable.

CCS’23, 26-30 NOV., 2023, Copenhagen, Denmark Anon.

20

APPENDIX B

B.1 PROOF OF THEOREM 2.
Proof. We now show that under the assumption of computation-
ally simulation-knowledge-sound zkSNARKs, secure SemiVoting
construction, collision-resistant hash function in the Merkle tree,
perfect binding and computational hiding commitment scheme
and secure PRF scheme, then for every real-world adversary 𝒜𝒜
against our scheme ΠVV there exists an ideal-world simulator 𝒮𝒮
such that the view of the real-world and ideal-world adversaries
are computationally indistinguishable. We will now describe the
operation of the ideal-world simulator 𝒮𝒮, which runs 𝒜𝒜 internally
and interacts with the ideal functionality ℱVV.

We begin by sketching the operation of the ideal-world simu-
lator 𝒮𝒮. Due to the fact that VeriVoting is the extension of Semi-
Voting, only the corruption of dishonest voters is considered in
this proof.

According to our scheme, the view of each dishonest voter 𝕧𝕧𝑖𝑖 ∈
𝕍𝕍𝑐𝑐 in the real world is as follows:

REAL𝒜𝒜ℂ(𝑧𝑧)
ΠVV �{𝕧𝕧𝑖𝑖: (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑣𝑣𝑖𝑖,𝑤𝑤𝑖𝑖)}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝕔𝕔𝑗𝑗:⊥�𝑗𝑗∈[ℂ],𝒮𝒮𝒞𝒞:⊥�

= �
{(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖)}𝑖𝑖∈[𝕍𝕍𝑐𝑐], �𝑝𝑝𝑘𝑘𝑗𝑗�𝑗𝑗∈[ℂ],𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , 𝑐𝑐𝑟𝑟𝑠𝑠, {𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐, 𝑡𝑡𝑥𝑥𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟}𝑖𝑖∈[𝕍𝕍],

{𝑡𝑡𝑥𝑥𝑑𝑑𝑘𝑘}𝑗𝑗∈[ℂ], �𝑡𝑡𝑗𝑗�𝑗𝑗∈[ℂ]
�

To simulate the view of the candidate, the simulator 𝒮𝒮𝕔𝕔 does the
following:

1) Run the SV. Setup(1𝜆𝜆) → 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠� , and (𝑐𝑐𝑟𝑟𝑠𝑠� 𝑃𝑃𝑃𝑃, 𝑐𝑐𝑟𝑟𝑠𝑠� 𝑆𝑆𝑃𝑃, 𝜏𝜏) ←
ΠSNARK. Setupsim(1𝜆𝜆), and initialize two sets ℂ𝕋𝕋� and 𝔻𝔻𝔻𝔻� , and
a list 𝐿𝐿𝑠𝑠 for storing (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑣𝑣𝑖𝑖) from 𝕧𝕧𝑖𝑖 ∈ 𝕍𝕍𝑐𝑐 .
2) Generate random public keys for uncorrupted candidates
�𝑝𝑝𝑘𝑘�𝑗𝑗�𝑗𝑗∈[ℂ] by random secret keys �𝑠𝑠𝑘𝑘�𝑗𝑗�𝑗𝑗∈[ℂ].

On receiving (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,𝑠𝑠𝑖𝑖) from the voter in 𝕍𝕍𝑐𝑐 , append
(𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,⊥) into 𝐿𝐿𝑠𝑠.
3) If the voter is honest, randomly select 𝑣𝑣𝑠𝑠𝑘𝑘� 𝑖𝑖 to generate 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟�𝑖𝑖,
then create 𝑡𝑡𝑥𝑥� 𝑐𝑐𝑐𝑐 ≔ (𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟�𝑖𝑖 , 𝑐𝑐𝑚𝑚� 𝑖𝑖,𝑤𝑤�𝑖𝑖, �̃�𝑠𝑖𝑖) as it was in the normal
scheme.
4) On receiving �𝜋𝜋𝑖𝑖 ,𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 , 𝑠𝑠𝑛𝑛𝑖𝑖� from the voter in 𝕍𝕍𝑐𝑐 , run the
knowledge extractor on 𝜋𝜋𝑖𝑖 to obtain 𝑣𝑣𝑖𝑖 and 𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖, record them
into 𝐿𝐿𝑠𝑠, then update ℂ𝕋𝕋� .
5) Randomly select bogus ballot ciphertexts from ciphertext

space 𝒞𝒞 , output 𝑡𝑡𝑥𝑥� 𝑠𝑠𝑜𝑜𝑡𝑡𝑟𝑟 ≔ �𝜋𝜋�𝑖𝑖 , 𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖 , 𝑠𝑠𝑛𝑛�𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]
, where 𝜋𝜋�𝑖𝑖 ←

ΠSNARK. Provesim(𝑐𝑐𝑟𝑟𝑠𝑠� 𝑃𝑃𝑃𝑃, 𝜏𝜏, (𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖 , 𝑠𝑠𝑛𝑛�𝑖𝑖)), 𝑠𝑠𝑛𝑛�𝑖𝑖 is a random element
from the codomain of PRF, then update ℂ𝕋𝕋� .

6) Generate 𝑡𝑡𝑥𝑥� 𝑑𝑑𝑘𝑘 ≔ �𝑑𝑑𝑘𝑘����⃗�𝑗𝑗,𝜋𝜋�𝑗𝑗� as in the proof of Theorem 1., and

update 𝔻𝔻𝔻𝔻� .
7) The subsequent process is consistent with the scheme.
To prove indistinguishability of the real and ideal worlds from

the perspective of the adversary 𝒜𝒜, we will go through a sequence
of hybrid games. In both views, the tally result part is identical.
𝐇𝐇0: This is the real world.

𝐇𝐇1 : In this hybrid, we replace ciphertexts �𝜋𝜋𝑖𝑖 , 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 , 𝑠𝑠𝑛𝑛𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]

with �𝜋𝜋�𝑖𝑖 ,𝑐𝑐𝑡𝑡���⃗� 𝑖𝑖 , 𝑠𝑠𝑛𝑛�𝑖𝑖�𝑖𝑖∈[𝕍𝕍\𝕍𝕍𝑐𝑐]
. By Lemma B.1, if the zkSNARK argu-

ment system is computational zero-knowledge, the encryption
scheme is BC-IND-secure and PRF is a pseudorandom function,

then H0 ≈
c

H1.
𝐇𝐇2: In this hybrid, we run the knowledge extractor when encoun-
tering the output of any corrupted voters �𝜋𝜋𝑖𝑖 , 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 ,𝑠𝑠𝑛𝑛𝑖𝑖�, and abort
if the knowledge extractor fails. By Lemma B.2 we show that if

the proof extractor fails with negligible probability, then H1 ≈
c

H2.
𝐇𝐇𝟑𝟑: In this hybrid, we replace the uncorrupted votes’ 𝑡𝑡𝑥𝑥𝑐𝑐𝑐𝑐 with
𝑡𝑡𝑥𝑥� 𝑐𝑐𝑐𝑐 by running the normal scheme. Hybrid 3 is identical to Hy-
brid 2, then H2 = H3.
𝐇𝐇𝟒𝟒: In this hybrid, we replace all decryption keys and proofs

�𝑑𝑑𝑘𝑘����⃗ 𝑗𝑗,𝜋𝜋𝑗𝑗�𝑗𝑗∈[ℂ𝐻𝐻] with simulated proofs �𝑑𝑑𝑘𝑘����⃗�𝑗𝑗,𝜋𝜋�𝑗𝑗�𝑗𝑗∈[ℂ𝐻𝐻]
. By Lemma

B.3, if the NIZK argument system is computational zero-

knowledge, then H3 ≈
c

H4.
Note that Hybrid 4 is identical to the simulation. By summation

over the previous hybrids we show that H0 ≈
c

H4. We conclude
our proof sketch by presenting the supporting lemmas.
Lemma B.1 For any PPT adversaries 𝒜𝒜 , if computational zero-
knowledge SNARK systems, BC-IND-secure encryption schemes
and secure PRFs exist, then advantage �𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻1

𝒜𝒜 − 𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻0
𝒜𝒜 � ≤ 𝜖𝜖

where 𝜖𝜖 is negligible probability.
Proof. The simulator operates in the same manner, but we now
simulate proofs for uncorrupted parties. By definition of NIZK ar-
gument systems, the simulator will fail with at most negligible
probability. The ciphertexts 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 and serial number 𝑠𝑠𝑛𝑛𝑖𝑖 are ran-
domly chosen, then the probability that the adversary can distin-
guish them from the real world is also negligible.
Lemma B.2 For any PPT adversary 𝒜𝒜 , if simulation sound ex-
tractable zkSNARK systems exist, then advantage �𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻2

𝒜𝒜 −
𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻1

𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is the extraction failure probability.
Proof. The simulator operates in the same manner, but we now
extract when given �𝜋𝜋𝑖𝑖 , 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖 , 𝑠𝑠𝑛𝑛𝑖𝑖� of corrupted voters who want to

generate illegal encrypted ballots 𝑐𝑐𝑡𝑡���⃗ 𝑖𝑖, i.e., invalid statements, to
change the tally result. By definition, the extractor will fail with
at most negligible probability 𝜖𝜖 because it deals solely with
zkSNARKs, which have efficient extractors. Therefore, our proofs
have knowledge extractors that succeed with probability 1 −
1/negl(𝜆𝜆).
Lemma B.3 For any PPT adversaries 𝒜𝒜 , if computational zero-
knowledge NIZK argument systems ΠNIZK exist, then advantage
�𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻4

𝒜𝒜 − 𝑎𝑎𝑑𝑑𝑣𝑣𝐻𝐻3
𝒜𝒜 � ≤ 𝜖𝜖 where 𝜖𝜖 is the simulation failure probabil-

ity.
Proof. The simulator operates in the same manner, but we now
simulate proofs for uncorrupted candidates. By definition of the
NIZK argument ΠNIZK systems, the simulator will fail with at
most negligible probability. Therefore, 𝜖𝜖 = 1/negl(𝜆𝜆) is negligi-
ble.

From all above, the views of these two worlds are indistingui-
shable.

VeriVoting: A decentralized, verifiable and privacy-preserving scheme for weighted voting

21

B.2 Discussion (Cont.).
In Section 6, we mainly discussed decentralization, verifiability,
and privacy-preserving. In this section, we continue to discuss the
other properties that the scheme has.

Eligibility. It means that only permied voters can submit bal-
lots. In the registration phase of VeriVoting, the voter should pre-
sent his/her valid credential to ℰ𝒜𝒜 to identify himself/herself as a
valid voter. Aer confirming the legal identity of the voter in
online or offline ways, ℰ𝒜𝒜 issues a token to the voter by submit-
ting a transaction to the blockchain. en, the token denotes the
eligibility of the ballot the voter will cast. In VerVoting, the voter
can prove the possession of his/her token in zero-knowledge,
which makes the identity and the token unlinkable.

Transparency. It means that the outputs of voters and candi-
dates are transparent and verifiable for the public. With the block-
chain and smart contract’s transparency, external or internal ob-
servers can monitor the whole voting process in VeriVoting.

Fairness. It means that the tally results are not counted in real-
time. In other words, if some candidate knows the tally results
before the tallying phase, it will take some countermeasures to
undermine the election's fairness, such as vote buying, coercion,
etc. In VerVoting, we distribute the decryption power to all com-
petitors. Because of the competition, no one wants others to know
the results in advance. Moreover, VerVoting adopts (𝛿𝛿𝑐𝑐 ,𝛿𝛿𝑠𝑠)-se-
cure SemiVoting scheme, which guarantees ballot privacy so no
one can learn the ballot content.

Receipt-Freeness. It means that a voter cannot prove to anyone
how she voted. In our scheme, we ignore the case where voters
sell their voting eligibility to others, that is, to authorize the wallet
address to others, since this property cannot be satisfied by any
scheme in that case. rough the interaction with the contract, a
voter only knows that his ballot has been verified and aggregated
with other ballots. And with bidirectional unlinkability, no one
can determine which ballot is the voter’s ballot.

Duplicate Voting Detection. It means that each eligible voter is
allowed to vote only once. As discussed in the commitment and
voting phase in Section 3.4, as long as the serial number 𝑠𝑠𝑛𝑛 can
not be forged, there is no possibility of duplicate voting. e secu-
rity of PRFs guarantees this property.

Dispute-Freeness. It means that the tally result is publicly veri-
fiable. Transparency implies that anyone can compute the tally
result by verified decryption keys and ballot ciphertexts. ere-
fore, the property holds in VeriVoting.

	ABSTRACT
	1 Introduction
	2 SemiVoting Primitive
	2.1 Overview
	2.2 Security Requirements
	2.3 Building Blocks
	2.4 Our Construction
	2.5 Security Analysis

	3 VeriVoting Scheme
	3.1 Building Blocks
	3.2 Overview
	3.3 Security Requirements
	3.4 Our Construction
	3.5 Security Analysis

	4 Performance analysis on VeriVoting
	4.1 Analysis of Computation Complexity
	4.2 Performance Evaluation

	5 A distributed Voting Framework for the Large-Scale Election
	6 Discussion
	7 Related work
	8 Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	Appendix A
	A.1 Correctness
	A.2 Instantiation
	A.3 Proof of Theorem 1.

	Appendix B
	B.1 Proof of Theorem 2.
	B.2 Discussion (Cont.).

