
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 1

Proteus: A Pipelined NTT Architecture Generator
Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Abstract—Number Theoretic Transform (NTT) is a funda-
mental building block in emerging cryptographic constructions
like fully homomorphic encryption, post-quantum cryptography
and zero-knowledge proof. In this work, we introduce Proteus,
an open-source parametric hardware to generate pipelined ar-
chitectures for the NTT. For a given parameter set including
the polynomial degree and size of the coefficient modulus,
Proteus can generate Radix-2 NTT architectures using Single-
path Delay Feedback (SDF) and Multi-path Delay Commutator
(MDC) approaches. We also present a detailed analysis of NTT
implementation approaches and use several optimizations to
achieve the best NTT configuration. Our evaluations demonstrate
performance gain up to 1.8× compared to SDF and MDC-based
NTT implementations in the literature. Our SDF and MDC
architectures use 1.75× and 6.5× less DSPs, and 3× and 10.5×
less BRAMs, respectively, compared to state-of-the-art SDF and
MDC-based NTT implementations.

Index Terms—Parametric, Pipelined, NTT, FHE, ZKP.

I. INTRODUCTION

Various advancements have emerged in modern cryptogra-
phy, like fully homomorphic encryption (FHE), post-quantum
cryptography (PQC), and zero-knowledge proofs (ZKP). All
of these constructions heavily rely on polynomial arithmetic,
particularly polynomial multiplication. However, this process
can become computationally expensive when dealing with
large polynomials. Number Theoretic Transform (NTT) re-
duces the polynomial multiplication complexity from O(n2) to
O(n log2 n). Thus, NTT plays a crucial role in constructing
modern cryptographic schemes, enhancing the efficiency of
polynomial arithmetic, especially for large polynomials.

The cryptographic schemes mentioned earlier rely on di-
verse parameter sets, including polynomial degree and coef-
ficient size. However, this diversity poses a challenge when
designing a configurable hardware architecture.

Most of the existing solutions in hardware, like [1]–[10],
are designed and optimized to support specific parameter
sets. There are also some efforts in literature targeting con-
figurable NTT hardware [9], [10] that can support multiple
parameters at run-time. Although run-time flexibility enables
support for multiple parameters, it subsequently makes the
hardware design inefficient due to the area overhead of extra
reconfigurability. Therefore, certain works in the literature
propose design-time (or compile-time) flexible architectures,
where the design parameters are given before synthesis to gen-
erate hardware tailored to the given parameters. Design-time
configurable architectures have shown better area efficiency
compared to run-time flexible hardware. However, the limited

F. Hirner, A. C. Mert, S. S. Roy are with Institute of Applied Information
Processing and Communications, Graz University of Technology, 8010 Graz,
Austria (e-mail: {florian.hirner, ahmet.mert, sujoy.sinharoy}@iaik.tugraz.at).

This work was supported in part by the State Government of Styria, Austria
– Department Zukunftsfonds Steiermark.

number of works targeting design-time flexibility, either target
high-bandwidth designs [8]–[12] or do not make the source
code available [1]–[4], [6], [8]–[10]. This work aims to
develop an open-source and bandwidth-efficient design-time
flexible architecture for NTT.

Several approaches for designing and implementing NTT in
hardware include hierarchical, iterative, and pipelined meth-
ods. The hierarchical approach involves dividing a large NTT
operation into smaller parts, reducing the overall implemen-
tation cost. The iterative approach is scalable regarding area
and performance but has high implementation complexity for
large polynomials. On the other hand, the pipelined approach
uses Single-path Delay Feedback (SDF) or Multi-path De-
lay Commutator (MDC) architectures to provide bandwidth-
efficient and resource-aware implementations with comparable
performance. However, in the existing literature, there are
only a few works that specifically target the pipelined NTT
approach using SDF and MDC architectures [1]–[4], [9], [10]
(discussed in Sec. III-D).

In this paper, we present Proteus, open-source and paramet-
ric hardware that generates bandwidth-efficient, pipelined, and
synthesizable Radix-2 NTT architectures using SDF and MDC
approaches, for given polynomial size, coefficient modulus
size, and NTT configuration at design-time. This versatile
hardware supports several parameters of NTT configurations
and features many low-level optimizations to achieve op-
timal architecture. Compared to state-of-the-art SDF/MDC
NTT implementations, Proteus significantly reduces resource
consumption while improving performance. One of Proteus’s
primary benefits is that it saves a hardware designer’s precious
design time and effort by generating efficient and synthesizable
Radix-2 NTT architecture for a given parameter set, thus
streamlining the process. The key contributions of our work
are summarized as:

• We first present a comprehensive analysis of different
configurations for NTT with several optimization tech-
niques to reduce the hardware implementation cost.

• Our analysis shows that it is possible to reduce the imple-
mentation complexity of the pipelined NTT architectures
without sacrificing performance by combining different
configurations and optimization techniques. Although
some low-level optimizations are already present in the
literature [13], [14], we are the first work to combine
these optimizations with different NTT configurations,
present an analysis and show that these can be used to
improve the area cost of the pipelined NTT architectures.

• We propose and implement Proteus, design-time flexible
and parametric hardware that can generate synthesizable
Radix-2 SDF/MDC-based pipelined NTT architectures
for a given parameter set and configuration. Proteus
supports various NTT configurations and incorporates

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 2

numerous optimizations that effectively minimize area
consumption.

• We propose parametric implementations for low-level
arithmetic units, integer multiplication, modular reduc-
tion, and compact butterfly units. Specifically, we adopt
the word-level Montgomery reduction for NTT-friendly
primes approach [15] and propose an algorithm that effec-
tively maps it into FPGA using DSP units. Furthermore,
we incorporated several low-level optimizations [13], [14]
to achieve an efficient design.

• Compared to the state-of-the-art SDF-based NTT imple-
mentation [1], our implementation uses up to 1.75× and
3× less DSPs and BRAMs, respectively, while showing
a similar performance. Furthermore, our implementation
supports multiple NTT configurations while [1] supports
a single configuration.

• We have made our source code available at https://
github.com/florianhirner/proteus. It is worth noting that
open-source NTT hardware solutions are relatively scarce
within the existing literature. Furthermore, to the best of
our knowledge, we present the first open-source para-
metric implementation of SDF/MDC-based NTT archi-
tecture.

The paper is organized as follows. In Sec. II, we present
the necessary background, and Sec. III introduces SDF/MDC-
based NTT architectures. Sec. IV provides a detailed analysis
of different NTT configurations and optimizations. Sec. V
illustrates our proposed hardware design, Proteus. In Sec. VI,
we report evaluation results, and Sec. VII concludes the paper.

II. PRELIMINARIES

A. Notations

The ring of integers modulo q is represented as Zq . Let
Rq = Zq[x]/⟨xn + 1⟩ be the polynomial ring that consists
of polynomials reduced by the polynomial xn + 1 with
coefficients in Zq . In this paper, q is a prime, and n is a
power-of-2. The prime q is either congruent to 1 modulo n or
2n. We use lowercase letters and lowercase bold font letters
to represent integers (e.g., a ∈ Zq) and polynomials (e.g.,
a ∈ Rq), respectively. The ith coefficient of a polynomial
a is denoted as ai or a[i]. Therefore, the polynomial a is
represented as a =

∑n−1
i=0 x

iai or a =
∑n−1

i=0 x
ia[i]. The

NTT of a polynomial a ∈ Rq is denoted as â. Let ·, ×,
and ⊙ represent the integer, polynomial and coefficient-wise
multiplications, respectively.

B. Number Theoretic Transformation (NTT)

The NTT is used as a fundamental building block in modern
cryptographic schemes. NTT is a generalization of the Fast
Fourier Transform (FFT) over Zq where q ≡ 1 (mod n). An
n-pt NTT takes an input polynomial a ∈ Rq and outputs the
evaluation â where âi =

∑n−1
j=0 ai·ωij (mod q) for i ∈ [0, n).

The NTT uses the constant ω called twiddle factor, which
is an nth primitive root of the unity (i.e., ωn ≡ 1 (mod q)
and ωi ̸= 1 (mod q) ∀i < n). The inverse NTT (INTT)
transforms an NTT-output into a polynomial representation as
ai = n−1

∑n−1
j=0 âi · ωij (mod q) for i ∈ [0, n).

Algorithm 1 DIF NTT with GS Butterfly [18]
Input: a ∈ Rq (in normal order), ω (powers of ω in normal order)
Output: â← NTT(a) ∈ Rq (in bit-reversed order)

1: m← 1
2: for (y = n; y > 1; y = y/2) do
3: for (k = 0; k < m; k = k + 1) do
4: j1 ← k · y, j2 ← j1 + (y/2)− 1, j3 ← 0
5: for (j = j1; j ≤ j2; j = j + 1) do
6: w ← ω[j3], u← a[j], v ← a[j + y/2]
7: a[j]← (u+ v), a[j + y/2]← (u− v) · w
8: j3 ← j3 +m
9: end for

10: m← 2 ·m, y ← y/2
11: end for
12: end for
13: return a

There are two approaches [16] to compute an NTT, namely,
decimation-in-time (DIT) and decimation-in-frequency (DIF).
The DIT approach of NTT uses the Cooley-Tukey (CT) but-
terfly, and the DIF approach uses the Gentleman-Sande (GS)
butterfly. For a given input coefficient pair (a, b) and a constant
ωi, the CT and GS butterflies output the coefficient pairs
{a+b·ωi, a−b·ωi} and {a+b, (a−b)·ωi} respectively. These
approaches enable different NTT configurations (Sec. IV).

In the NTT domain, polynomial multiplication is a simple
coefficient-wise operation [17]. An NTT-based polynomial
multiplication of two n coefficient polynomials first zero pads
each polynomial into 2n-coefficients, then computes 2n-pt
NTTs of the two polynomials, then multiplies them coefficient-
wise, and finally computes one 2n-pt INTT to obtain the
result of the polynomial multiplication. If the polynomial
multiplication is performed in a polynomial ring, a modular
reduction by the irreducible polynomial is performed.

When working in Rq = Zq[x]/x
n + 1 with n a power-

of-2, a special optimization known as the negative wrapped
convolution (NWC) could be used to reduce the computation
overhead as only n-pt NTT/INTT are required instead of 2n-
pt NTT/INTT. NWC requires the existence of a 2nth root of
the unity, say ψ ∈ Zq , which is possible only when q ≡ 1
(mod 2n). For computing c = a × b in Rq using NWC,
the input polynomials a and b are first scaled by the powers
of ψ to obtain a′ = (a0,a1, . . . ,an−1)⊙ (ψ0, ψ1, . . . , ψn−1)
and b′ = (b0, b1, . . . , bn−1)⊙(ψ0, ψ1, . . . , ψn−1) respectively,
which we refer to as the pre-processing. Then, the standard n-
pt NTT-based polynomial multiplication is used to obtain c′ =
INTT

(
NTT(a′)⊙NTT(b′)

)
. Finally, the coefficients of c′ are

multiplied by the powers of ψ−1 to obtain the original result
c = (c′0, . . . , c

′
n−2, c

′
n−1)⊙(ψ0, ψ−1, . . . , ψ−(n−1)). The final

scaling step is called post-processing in our paper.
It is possible to combine the pre- and post-processing with

NTT and INTT, respectively [19], [20]. This requires using the
DIT approach for NTT with ψ and the DIF approach for INTT
with ψ−1. In this paper, we refer to these NTT and INTT as
merged NTT (MNTT) and merged INTT (MINTT), respec-
tively. The algorithm for Radix-2 Iterative DIF-based NTT
is given in Algorithm 1. Note that FHE/PQC generally uses
MNTT/MINTT, while ZKP protocols use NTT/INTT. Proteus
provides support for both NTT/INTT and MNTT/MINTT.

Order of input and output coefficients: In-place NTT and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 3

Fig. 1. Configurations for NTT/INTT.

Fig. 2. Configurations for MNTT/MINTT.

MNTT operations change the order of the coefficient after the
transformations. A DIF NTT takes a polynomial in the normal
order (i.e., a0,a1, . . . ,an−1) and generates a polynomial in
the bit-reversed order (i.e., abr(0),abr(1), . . . ,abr(n−1)) where
br(·) represents bit-reverse of log2(n)-bit integer. It is pos-
sible to derive various configurations [21] for DIF and DIT
approaches such as normal to bit-reversed order (N) R or
N-to-R) and bit-reversed to normal order (R) N or R-to-
N). We summarize all possible DIT and DIF configurations
for NTT/INTT and MNTT/MINTT in Fig. 1 and Fig. 2,
respectively.

We use superscript and subscript to represent the DIT/DIF
type and input polynomial order change for an NTT/MNTT
operation, respectively. We also use ω and ω−1 to repre-
sent NTT or INTT, respectively. For example, NTTDIT

N)R, ω
represents a DIT NTT that takes the input polynomial in
the normal order and generates the output polynomial in bit
reversed order. In Fig. 1 and Fig. 2, the boxes with ψ, ψ−1 and
n−1 represent the pre-processing, post-processing and scalar
multiplication by n−1 operations, respectively.

III. SDF AND MDC ARCHITECTURES FOR NTT

Choosing an appropriate NTT architecture in hardware de-
pends on the platform and application constraints. The n-point
in-place Radix-2 DIF NTT in Algorithm 1 has log2(n) stages
where each stage performs n

2 butterfly operations (steps 7-8 of
Algorithm 1). An iterative NTT implementation may use one
or several butterfly units to compute the butterfly operations in
all stages. Therefore, the iterative NTT can scale the latency
and on-chip memory bandwidth. However, it requires high
memory bandwidth and implementation complexity when the
polynomials have large degrees [12], [15]. A fully or partially
unrolled NTT architecture unrolls the NTT stages (step 2
of Algorithm 1) by instantiating many butterfly cores for
each stage. Such an unrolled architecture can be pipelined to
achieve high throughput. However, the area requirement of an
unrolled NTT will be substantial when the polynomial degree
is large [22].

SDF and MDC architectures, also called pipelined architec-
tures, use only one butterfly unit for each NTT stage. Hence,
they instantiate only log2(n) butterfly cores for implementing
an n-pt NTT unit. Each butterfly core is exclusive to a

BFU

MEM
depth: n/2

BFU

MEM
depth: n/4

BFU

MEM
depth: 2

BFU

MEM
depth: 1

Fig. 3. Radix-2 SDF architecture. BFU and MEM are butterfly and memory.

BFU
MEM

SW

MEM

depth: n/4

depth: n/4 BFUBFU
MEM

SW

MEM

depth: 1

depth: 1

Fig. 4. Radix-2 MDC architecture. SW is a commuter switch.

specific NTT stage, performing n/2 butterfly operations of
the corresponding stage. The pipelined architectures provide
comparable throughput and performance with low bandwidth
requirements [2]. In this work, we target SDF and MDC
Radix-2 NTT implementations.It is worth noting that both it-
erative and SDF/MDC NTT architectures implement the same
algorithm (e.g., Algorithm 1) and have the same functionality.
They only differ in implementation approach.

A. Single-path Delay Feedback (SDF) Architecture

The Radix-2 SDF architecture takes one input coefficient
per cycle and generates one output coefficient per cycle after
filling the internal pipeline stages. It uses one butterfly unit for
each stage, and each butterfly unit is coupled with one memory
for temporarily storing several coefficients. Fig. 3 shows a
high-level view of an SDF-NTT architecture.

A butterfly computation requires two coefficients where the
coefficient indices are separated by an offset dependent on the
stage. For example, a 256-pt DIF NTT (Algorithm 1) of a
polynomial a takes coefficients whose indices are separated
by an offset of 128 (e.g., (ai, ai+128) for i = 0, . . . , 127)
in the first stage. In the second stage, the butterfly unit takes
coefficients separated by an offset of 64 (e.g., (ai, ai+64) for
i = 0, . . . , 63 and i = 128, . . . , 191). This pattern continues
until the last stage, which requires coefficients separated by
an offset of just 1.

The SDF architecture couples each butterfly unit with a
memory to provide inputs to the butterfly units with the proper
offset. For 256-pt DIF NTT, the first stage is coupled with a
memory of depth 128 as the coefficients in the butterfly are
separated by an offset of 128. The SDF architecture takes
and stores the first 128 input coefficients in the memory in
the first 128 cycles. Then, it takes the following 128 inputs
from the external source one-by-one while reading the first
128 coefficients from its own memory one-by-one, and sends
the coefficient pairs to the butterfly unit during the subsequent
128 cycles one-by-one. In this way, the butterfly unit receives
coefficient pairs in the correct order. The first output of each
butterfly operation in the first stage (e.g., a0 to a127) is sent
to the next stage while the second output (e.g., a128 to a255)
is stored inside the memory to be sent to the next stage later.
The next stage processes the polynomial in two parts, meaning
that it separates the coefficients of each part by an offset of
64 (e.g., (ai, ai+64) for i = 0, . . . , 63 and i = 128, . . . , 191).
It first processes the first part, then reads the second part
from the memory of the first stage (e.g., a128 to a255) and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 4

processes it. Each stage employs this technique to perform an
NTT operation, yet with another offset.

B. Multi-path Delay Commutator (MDC) Architecture

An MDC architecture takes two coefficients per cycle as
input and generates two outputs every cycle after filling the
pipeline. It uses one butterfly unit, two memory units for
reordering the data, and a switch commuter for each NTT
stage, as shown in Fig. 4. Similar to the SDF architecture,
a butterfly operation during NTT/INTT takes two coefficients
where the two coefficient indices are separated by an offset
dependent on the stages. Each stage is coupled with two
memories of depth d for preparing its output (i.e., reorder) for
the next NTT stage. The depth d of the memory units depends
on the size of the input polynomial n and the stage. It can be
calculated as d = n

2s+2 where s = 0, 1, . . . , log2(n)− 1 is the
stage number. In the case of 256-pt DIF NTT, each memory
in the first stage has a depth of 64. Inside each stage, the
butterfly outputs are reordered for the next stage using two
memories and one switch. The switch can change the order
of two coefficients depending on the required offset pattern of
the next stage.

C. Using SDF/MDC architectures with large polynomials

Implementing NTT of a large-degree polynomial in hard-
ware is not an easy task and it is even more challenging
when high performance is targeted. Iterative and unrolled
NTT architectures can achieve high performance by employing
several butterfly units running in parallel. However, their
implementation complexity will be very high for a large
degree polynomial. In contrast to iterative and unrolled NTT,
the hierarchical NTT approach divides a large-degree NTT
operation into multiple smaller-degree NTTs [2], [12]. The
separation into smaller NTT operations makes it easier to
implement and parallelize operations due to the smaller NTT
size. An SDF and MDC-based architecture, like Proteus,
can implement these smaller NTT operations requiring low
bandwidth. Furthermore, it is possible to instantiate multiple
SDF/MDC architectures to perform multiple smaller-sized
NTTs at the same time [2].

D. Related Works

There are a plethora of works in the literature targeting
efficient NTT hardware architectures. Most of these works
target iterative NTT implementations with fixed parameters
or minimal run-time configurability. However, only a few
works are targeting SDF or MDC pipelined architectures with
and without design-time configurability [1]–[4], [9], [10]. In
Table I, we list all related NTT architectures in the literature
targeting either a pipelined approach or supporting design-
time configurability. We also report their NTT architecture
method, the largest reported parameter, and the availability
of their source code. It is worth mentioning that only [5]
and [7] make their source code available. In [5], the authors
present design-time configurable iterative NTT architectures.
Their architecture takes the polynomial degree, coefficient

TABLE I
RELATED WORKS IN THE LITERATURE

Work NTT Arc. Largest Parameters Param.? Open?
[5] Iterative n = 212, log2(q) = 60 ✓ ✓

[7] Iterative n = 211, log2(q) = 31 ✓ ✓

[6] Iterative n = 212, log2(q) = 60 ✓

[8] Iterative n = 213, log2(q) = 52 ✓

[1] SDF n = 212, log2(q) = 60 ✓

[2] SDF n = 210, log2(q) = 768
[3] MDC n = 210

[4] MDC n = 28, q = 3329
[10] MDC n = 214, log2(q) = 52 ✓

[9] MDC n = 212, log2(q) = 28 ✓

Our SDF/MDC n = 216, log2(q) = 256 ✓ ✓

modulus size, and the number of processing elements as
inputs and generates a synthesizable iterative NTT architecture
for these parameters. Their architectures use only the DIF
NTT approach with N-to-R ordering. Thus, their architectures
require costly bit-reversal operations between NTT and INTT.
Similarly, since they only employ DIF NTT architecture, their
implementation cannot be used for MNTT/MINTT operations.
Mu et al. presented a parametric NTT architecture for iterative
design approach [6], eliminating bit-reversal operation by
employing DIT and DIF approaches. They use CT and GS
butterfly configurations for NTT and INTT operations. Also,
they present formal proof for conflict-free memory access. The
works in [7], [8] present iterative NTT architectures with run-
time and design-time configurability.

In [1], the authors present SDF-based NTT architectures for
a limited parameter set. Their implementation does not support
MNTT/MINTT, which limits its usability. Furthermore, their
code is not open-source. PipeZK [2] proposes an SDF architec-
ture as a part of a large hierarchical NTT architecture. Their
work targets the ASIC platform and is optimized for fixed
parameters. Furthermore, their design does not provide support
for MNTT/MINTT. Works in [3], [4] propose high through-
put oriented Radix-2 MDC NTT architectures. Their design
mainly targets post-quantum cryptographic schemes with small
parameter sets (i.e., n = 256) and they use fixed parameters.
In [9], [10], a parametric architecture for Radix-2 MDC NTT
is presented. Their architecture can support different levels
of parallelism and uses a streaming permutation network for
implementing the complex access pattern of NTT operation.
Our work, Proteus, is the only open-source parametric design
supporting several parameters for SDF- and MDC-based NTT
architectures.

IV. SELECTION OF PROPER NTT CONFIGURATION

The proper NTT configuration has a significant impact on
implementation complexity and performance. The configura-
tion selection depends on the target application and platform.
As explained in Sec. II, DIT and DIF are two approaches
to implement NTT and MNTT efficiently in hardware and
software platforms, and various configurations for the order of
input and output coefficients exist. Table II lists 8 different DIT
and DIF options (denoted as OPi) with different coefficient
orders. The table will help us to select the best NTT/INTT
configuration for a targeted application or platform.

The first option (OP1) uses DIT NTT with N) R ordering
and DIF INTT with R) N ordering. This approach does

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 5

not require any extra bit-reversal operation since the output
order of the NTT is the same as the input order of the INTT.
However, it requires two different butterfly configurations: CT
for DIT and GS for DIF. This approach can also be used
for MNTT and MINTT operations by simply changing ω and
ω−1 to ψ and ψ−1 respectively as shown in Fig. 2. The exact
alternative option is OP2, which uses DIF NTT and DIT INTT
to avoid bit-reversal. When the target application requires only
NTT/INTT and not MNTT/MINTT, then OP1 and OP2 are not
optimal as they require two butterfly configurations. It is pos-
sible to eliminate using two types of butterfly configuration by
employing DIT-only or DIF-only NTT/INTT with a different
ordering as seen in OP3 and OP4 methods.

Having two different ordering (e.g., N) R and R) N)
configurations for NTT and INTT operations complicates im-
plementation and increases resource usage. In Fig. 5, we visu-
alize configurations of six NTT/MNTT approaches (NTTDIT

N)R,
NTTDIF

N)R, NTTDIT
R)N , NTTDIF

R)N , MNTTDIT
N)R, MINTTDIF

R)N) for
n = 16. The white boxes show offset between coefficients
while the yellow boxes show ω/ψ powers used in a stage.
NTTDIT

N)R and NTTDIT
R)N use the same butterfly type; however,

they use different orderings (as shown in Fig. 5). Due to
ordering difference, NTTDIT

N)R and NTTDIT
R)N have different

coefficient offsets in each stage. In SDF and MDC archi-
tectures, this will create a huge burden on implementation
as the memory depth of each stage depends on the offset
between input coefficients. This can be solved either by (i)
using memory units large enough for both configurations in
each stage or by (ii) making the data flow order configurable
using multiplexers. Both approaches will increase the imple-
mentation complexity significantly.

The NTT configurations OP5 and OP6 methods in Table II
use the bit-reverse operation to eliminate having two different
ordering for NTT and INTT operations. Bit-reverse is expen-
sive in hardware, especially for iterative NTT architectures that
generate multiple coefficients in each cycle. On the other hand,
SDF and MDC architectures generate 1 and 2 coefficients per
cycle, respectively. Thus, the bit-reverse operation can easily
be implemented almost free of cost by writing the output
coefficients into the memory in the correct order.

In [14], the authors show that using the same twiddle factors
for both forward and inverse NTTs is possible. This unique
optimization requires reordering the input coefficients from
(a0,a1, . . . ,an−2,an−1) to (a0,an−1, . . . ,a2,a1). The OP7
and OP8 options in Table II show the NTT/INTT config-
urations that use the same twiddle factors for computing
both NTT and INTT by employing bit-reverse (BR) and
reorder (RO) operations. Similar to OP5 and OP6, SDF and
MDC architectures enable the implementation of BR and RO
operations without any extra implementation cost. Proteus can
generate hardware for all options listed in Table II.

Reducing memory for twiddle factors: An NTT operation
requires n/2 different powers of twiddle factor ω, as men-
tioned in Sec. II-B. Similarly, INTT requires n/2 different
powers of ω−1. Each NTT/INTT stage uses a part of twiddle
factor powers during computations. For example, the first
stage of NTTDIF

N)R uses all n/2 powers of ω, the second
stage uses only half of the powers (n/4 powers), and so on.

TABLE II
VARIOUS OPTIONS TO PERFORM NTT/INTT

Option NTT BR? RO? INTT BR?

OP1 NTTDIT
N)R, w NTTDIF

R)N , w−1

OP2 NTTDIF
N)R, w NTTDIT

R)N , w−1

OP3 NTTDIT
N)R, w NTTDIT

R)N , w−1

OP4 NTTDIF
N)R, w NTTDIF

R)N , w−1

OP5 NTTDIT
N)R, w ✓ NTTDIT

N)R, w−1 ✓

OP6 NTTDIF
N)R, w ✓ NTTDIF

N)R, w−1 ✓

OP7 NTTDIT
N)R, w ✓ ✓ NTTDIT

N)R, w ✓

OP8 NTTDIF
N)R, w ✓ ✓ NTTDIF

N)R, w ✓
BR: Bit-reverse, RO: Reorder.

Fig. 5. Offset between coefficients and twiddle factor powers used in each
stage of six different NTT/MNTT configurations for n = 16.

Therefore, an NTT/INTT implementation should store at least
n = n/2+n/2 twiddle factor powers. We used this approach
and exploited the mathematical properties of the twiddle factor
that ωn ≡ 1 (mod q) and ωn/2 ≡ −1 (mod q) to halve the
total number of twiddles factors that need to be stored in the
form ω−i = ωn · ω−i = ωn/2 · ωn/2 · ω−i = −ωn/2−i. This
implies that the twiddle factor powers of NTT (ωi) will be
used to calculate the twiddle factor powers of INTT (ω−i). A
specific ω−i can be written as ωn · ω−i. If we split the term
ωn into ωn/2 · ωn/2, then we can write the formula ωn · ω−i

as ωn/2 · ωn/2−i. The property of ωn/2 allows us to write
it as −1 which leads to ωn/2 · ωn/2−i becoming −ωn/2−i.
This means that ω−i can be computed by using −ωn/2−i

and this is quite cheap in hardware since it just requires an
additional subtraction circuit to get the modular inverse of
a twiddle factor power during INTT from a twiddle factor
power. In our work, we used this optimization and reduced
the required twiddle factor storage by 50% in exchange for
log2(n) additional subtraction units. Note that this also applies
to MNTT/MINTT since ψ−i = −ψn−i.

Eliminating the multiplication with n−1: INTT and
MINTT require the coefficients of the resultant polynomial
to be scaled by n−1 in Zq . Although this scaling operation is
straightforward and has a linear time cost, it still requires n
extra operations. This extra latency for the scaling operation
can skipped by merging the scaling with the post-processing
operation in NWC, as shown in Fig. 2. In [13], the authors
proposed a technique to replace the multiplication by n−1 at
the end of INTT with the multiplication by 2−1 at the end of
each INTT butterfly operation. This is implementation friendly
because for an odd prime q, a/2 in Zq can easily be computed
as (a ≫ 1) + a[0] · (q+1

2). Thus, the extra n multiplication
operation can be eliminated using two extra adders in the
butterfly unit. In our work, we used this technique to reduce
the latency of INTT/MINTT operations.

Bit-reverse and reorder operations: As shown in Table II,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 6

options OP5, OP6, OP7, and OP8 require bit-reverse or reorder
operations, which could have high implementation costs in
hardware, for iterative NTT architectures in particular. Since
SDF-based NTT architectures read one coefficient from input
memory and write one coefficient to the output memory per
cycle, bit-reverse and reorder operations can be performed
costlessly by reading and writing coefficients with proper
addressing. The same approach can be applied to the MDC-
based NTT architecture as well. Our work used this method
to implement bit-reverse and reorder operations without any
performance and area costs.

V. THE PROPOSED ARCHITECTURE

In this section, we explain Proteus’s proposed architecture
top-down. We explain the required parameters and their effects
on the architectural design. Then, we explain SDF and MDC
Radix-2 NTT architectures. Finally, we explain low-level arith-
metic units, parametric integer multipliers, parametric word-
level Montgomery reduction units, and parametric butterfly.

A. Overall design of Proteus

Proteus is an all-in-one solution that generates SDF and
MDC Radix-2 NTT/MNTT architectures for FPGA, offering
various configurable options (Sec. IV). Proteus takes its param-
eters before synthesizing the target architecture. Specifically,
for SDF and MDC architectures, it takes i) polynomial param-
eters (polynomial size n and coefficient modulus size log2 q),
ii) type of butterfly unit (CT, GS or unified) that enables NTT
configurations OP1 to OP8, iii) type of modular reduction
method (parametric Montgomery unit or user-defined add-shift
based unit for constant prime). For a given parameter set, it
generates a synthesizable NTT architecture.

The performance and implementation complexity of
SDF/MDC-based NTT depends on the polynomial-size n and
the modulus size log2 q. The Radix-2 DIF or DIT NTT
algorithms perform the NTT of a polynomial in s stages where
s = log2(n) as explained in detail in Sec. III. In SDF and
MDC, s determines the number of instantiated butterfly units,
affecting the overall design’s cost and structure. We propose
a design-time flexible architectural design that can configure
itself through n. Consider the NTT of a polynomial with
n = 210 = 1024 coefficients for simplicity. There will be
s = 10 stages denote as s0, s1, ..., s9 to represent the data flow
of the Radix-2 NTT. Coefficients of the polynomial will move
through the cascaded stages, starting with stage s0. To develop
the automatic architecture generator, Proteus, it is crucial to
understand how a change in the parameter n affects the data
flow. For example, changing the parameter n from 210 to 211

leads to an increase in the number of NTT stages from 10
to 11. Hence, Proteus must add a new stage in the pipelined
NTT architecture when n increases from 210 to 211. Besides
adding the new stage, there will be a change in the data flow,
meaning that the output of s9 now gets forwarded to the new
stage s10 and the output of s10 becomes the new final result.

Besides the number of total stages, the parameter n also
changes the total resource utilization. Each stage of the SDF
Radix-2 NTT consists of only one butterfly unit (BFU) and

one FIFO. Meanwhile, in the MDC Radix-2 NTT, each stage
consists of one BFU, two FIFOs, and one commuter switch. In
both architectures, each stage processes the whole polynomial
of size n in ns chunks where ns = n/2s. Therefore, the FIFO
depth fs in each stage depends on the size of each input chunk
ns. In SDF architecture, FIFO depth in stage s will be ns/2.
In MDC architecture, the depth of FIFOs is ns/4. The size of
coefficient modulus, log2(q), determines the size of arithmetic
units, data width of FIFO units, and configurations of integer
multiplier and reduction units.

B. High-level Architecture

1) Radix-2 NTT in the SDF configuration: Radix-2 NTT
in the SDF configuration has one input and output port. If
combined with a fully pipelined architecture, this limited I/O
bandwidth leads to a data collision. The data collision happens
when the computation process of a BFU takes more than one
cycle (which is the case in a pipelined BFU). The timing
diagram in Fig. 6 explains how a data collision occurs when
the BFU has a latency of 2 cycles, and the input polynomial is
of size 8 coefficients. At the initial stage of the computation,
the first half of the input polynomial (four coefficients 0, 1,
2, 3 in STAGE_IN) is sent into the FIFO (FIFO_IN). Then,
the FIFO delays the first half of the input polynomial by 4
cycles to align it with the second half of the polynomial (four
coefficients 4, 5, 6, 7 in STAGE_IN). When the second half
of the polynomial arrives, it is sent directly to the BFU unit.
The BFU unit now receives the first half of the polynomial (0,
1, 2, 3 in BFU_IN_0) as the first input and the second half
of the polynomial (4, 5, 6, 7 in BFU_IN_1) as the second
input. After a computation latency of 2 cycles, the first output
of the BFU unit (a, b, c, d in BFU_OUT_0) proceeds directly
to the stage output. The second output of the BFU (e, f, g, h in
BFU_OUT_1) is sent back into the FIFO to be delayed until
the output port of the stage is available again. However, this
causes a data collision in FIFO_IN because the new input
of the stage (two new coefficients 0, 1 in STAGE_IN) and
the second output of the BFU unit (two coefficients g, h in
BFU_OUT_1) need to be stored in FIFO. The data collision
on the input of the FIFO is shown in red ((g, 0), (h, 1) in
FIFO_IN) in Fig. 6.

A method to solve the data collision issue is to adjust
the data flow of each stage. An in-depth analysis reveals a
dependency between the data flow and the size ns of the
input polynomial in combination with the latency l of the
BFU unit. Our solution is to denote two different dataflows
depending on the input size and the BFU latency. The latency
l of the BFU can be either smaller-equal or greater than ns/2.
In case where the latency is smaller-equal than the polynomial
input size (l ≤ ns

2), the dataflow inside the stage needs to be
implemented as displayed on the left side of Fig. 8 and in the
timing diagram in Fig 7. Again, we will use an example where
the BFU has a latency of 2 cycles, and the input polynomial is
of size 8 coefficients. At the initial stage of the computation,
the first half of the input polynomial (four coefficients 0, 1,
2, 3 in STAGE_IN) is sent to the first input of the BFU
(BFU_IN_0). The BFU unit performs no computations since

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 7

Fig. 6. A scenario within a Radix-2 SDF stage where data collision happens

Fig. 7. A scenario within a Radix-2 SDF stage where data collision is avoided.

the second input (BFU_IN_0) is empty. The BFU delays the
first half of the polynomial by 2 cycles and passes it to the
FIFO (shown with red arrows in Fig. 7). This time, the FIFO
delays the first half of the input polynomial by 2 cycles to align
it with the second half of the polynomial (four coefficients 4, 5,
6, 7 in STAGE_IN). Now that both halves of the polynomial
are aligned, the BFU unit performs the butterfly operation.
After a computation latency of 2 cycles, the first output of
the BFU unit (a, b, c, d in BFU_OUT_0) proceeds directly
to the stage output. The second output of the BFU (e, f, g, h
in BFU_OUT_1) is sent as input to the FIFO. Yet, this time,
the second output (e, f, g, h) is sent to an additional buffer
(registers at the base of blue arrows in Fig. 7) after passing
through the FIFO. Finally, the additional buffer passes FIFO
outputs to the stage output (shown with blue arrows in Fig. 7).
This procedure guarantees a total delay of 4 cycles to buffer
(e, f, g, h) until the output port of the stage is available again.
This also guarantees no data collision since the first half of
the new polynomial inputs (0, 1, 2, 3) is not passed directly to
the FIFO. Instead, it first passes through the BFU unit, which
delays it by 2 cycles. This modification in the dataflow solves
the data collision at the input of the FIFO.

In the case where the latency is greater than the polynomial
input size (l > ns

2), the dataflow inside the stage changes as
displayed on the right side of Fig. 8. However, in this case,
the dataflow is much simpler than the other case where l is
smaller-equal ns

2 . The first half of the input polynomial (four
coefficients 0, 1, 2, 3 in STAGE_IN) is sent into the FIFO
(FIFO_IN). Then, the FIFO delays the first half of the input
polynomial by 4 cycles to align it with the second half of
the polynomial (four coefficients 4, 5, 6, 7 in STAGE_IN).
After a computation latency of 2 cycles, the first output of the
BFU unit (a, b, c, d in BFU_OUT_0) proceeds directly to the
stage output while the second output of the BFU (e, f, g, h in
BFU_OUT_1) is sent to a small buffer. This buffer delays (e,
f, g, h) until the output port of the stage is available again.

Proteus generates parametric hardware for Radix-2 SDF
NTT architectures through a given polynomial size n and a
BFU computation latency l. The generated hardware consumes
a total number of log2(q) ·

∑log2(n)−1
s=0 fs bits in terms of total

storage. The overall latency of one NTT with SDF architecture
is approximately 2n+ log2(n) · l.

BFU

FIFO

BFU

FIFO

Stage

Stage

Stage

Stage

Stage

Stage
 - 1- 2- 3

Stage

Stage
 - 4

Fig. 8. Overview of our changed Radix-2 SDF configuration and its stages.

2) Radix-2 NTT in the MDC configuration: Radix-2 NTT
in the MDC configuration requires two inputs per cycle, which
doubles the required bandwidth compared to the Radix-2 SDF.
In contrast to a stage of the SDF architecture, a stage s in the
MDC architecture consists of one butterfly unit, a switch unit,
and two ns/4 deep FIFOs.

In Radix-2 MDC, the inputs and outputs can be fed directly
into and out of the stage. The stage input is passed to the
butterfly unit first. After computation, the output is either sent
to a FIFO or directly into a switch unit. The switch unit swaps
two input data depending on a selection signal. This signal is
either high or low for ns/2 cycles where ns is the length of
the stage chunk input (see Sec. V-A). In combination with
FIFOs before and after the switch, it is possible to mimic the
required transformation pattern. The logic of Radix-2 MDC is
much simpler when compared to Radix-2 SDF since it does
not reuse its FIFOs for input and output storing.

Proteus generates parametric hardware for Radix-2 MDC
NTT architectures through a given polynomial size n and
a BFU computation latency l. In the generated MDC archi-
tecture, the total number of bits consumed by the hardware
is around log2(q) ·

∑log2(n)−1
s=0 fs. In contrast, the overall

latency of one NTT with MDC architecture is approximately
n+ log2(n) · l.

C. Low-level Arithmetic Units

In contrast to the high-level architectural design that de-
pends on the polynomial-size n, the hardware of low-level
arithmetic units depends on the coefficient modulus size,
which is log2(q).

1) Parametric Integer Multiplier: The structure of the
integer multiplier is crucial for the entire design since
NTT requires multiplication for each butterfly operation per
NTT/INTT stage. Xilinx Vivado has an integrated IP generator
that can generate integer multiplier circuits, which support
inputs of up to 64 bits. Vivado-generated multipliers have
high utilization of DSP units, and the recommended number
of pipeline stages is high for large input sizes. We designed
and implemented a parametric integer multiplier unit that uses
a divide-and-conquer approach splitting a multiplication into
smaller ones via standard tiling [23] to reduce the requirement
of DSP slice. Note that the smaller computations are calculated
in parallel to reduce the overall latency. The outputs of the
DSPs are accumulated using a parametric carry-save-adder
(CSA) tree. The multiplier unit is fully pipelined, and its
latency is the sum of the latency of one DSP and CSA tree.

2) Parametric Word-level Montgomery Reduction Unit:
Each integer multiplication unit requires an additional modulo
reduction to keep the result within the modulo ring of q.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 8

Algorithm 2 Word-level Montgomery Algorithm [15]

Input: d, q = qH · 2w + 1, w (word size), L = ⌈ log2 q

w
⌉ (iterations)

Output: c = d ·R−1 (mod q) where R = 2w·L

1: T ← d
2: for (i = 0; i < L; i = i+ 1) do
3: TH ← T ≫ w, TL ← T (mod 2w)
4: T2← −TL (mod 2w)
5: cin← T2[w − 1] ∨ TL[w − 1]
6: T ← (qH · T2) + TH + cin
7: end for
8: return c = (T ≥ q) ? T − q : T

Algorithm 3 Mapping Word-level Montgomery Red. to FPGA
1: s← 24 or 26 (based on the DSP architecture of target FPGA)
2: if (log2(TH) ≤ 47) then
3: if (log2(qH) ≤ s) then
4: Implement T ← (qH ·T2)+TH +cin using one DSP unit.
5: else
6: Instantiate v = ⌈ log2(qH)

s
⌉ DSP units. The first DSP unit

implements (qH [s−1 : 0] ·T2)+TH +cin. The other DSP
units implement (qH [si+ s−1 : si] ·T2), i ∈ [1, v−1]. If
3 or more DSPs are instantiated, DSP outputs are reduced
to 2 using one CSA tree; then, the final result is computed
using one adder. Otherwise, the final result is computed
using one adder.

7: end if
8: else
9: if (log2(qH) ≤ s) then

10: Implement r ← (qH · T2) + cin using one DSP unit.
11: Implement T ← r + TH using one adder.
12: else
13: Instantiate v = ⌈ log2(qH)

s
⌉ DSP units. The first DSP unit

implements (qH [s−1 : 0] ·T2)+cin. The other DSP units
implement (qH [si + s − 1 : si] · T2), i ∈ [1, v − 1]. DSP
outputs and TH are reduced to 2 using one CSA tree, then
the final result is computed using one adder.

14: end if
15: end if

There are several techniques to perform a modulo reduction.
Barrett [24] and Montgomery [25] are two well-known tech-
niques for modular reduction for a generic modulus q. Add-
shift-based approaches [14], [26], [27] can also be utilized
when a sparse prime such as a Solinas or Mersenne is used
as the modulus. There are also lazy reduction methods [28]
and techniques targeting modulus of certain form [15], [29].
In this work, we adopted a word-level Montgomery reduction
algorithm tailored for NTT-friendly primes, proposed in [15],
and mapped it into FPGA efficiently in a parametric design
setting. The algorithm divides a modular reduction operation
into smaller chunks, and it uses the form of NTT-friendly
primes, q = qH · 2w + 1 where w ≤ log2(n), to simplify the
reduction operation. The word-level Montgomery reduction
algorithm for NTT-friendly primes is shown in Algorithm 2.

The algorithm takes d = a · b and prime modulus q =
qH · 2w + 1 as inputs and performs reduction operation in
L = ⌈log2(q)/w⌉ steps where w-bit (word size) reduction
is performed in each step (lines 2-7 in Algorithm 2). Fi-
nally, a reduction operation is performed at the end (line 8
in Algorithm 2). The word-level Montgomery algorithm is
scalable, enabling efficient utilization of DSP units in FPGA.
As shown in line 7 of Algorithm 2, the algorithm performs
T ← (qH · T2) + TH + cin in each reduction step which

:MSB

Fig. 9. WL Montgomery reduction circuit for log2 q = 32 and w = 12.

Fig. 10. Overview of CT, GS, and Unified butterfly units used in Proteus

involves one (log2(q) − w)-bit × w-bit multiplication, and
additions with (2 · log2(q) − i · w)-bit and 1-bit integers.
Based on the parameter selection (e.g., log2(q) and w), this
operation can be implemented using a single Xilinx DSP unit,
which can perform A · B + C + carry for 25/27-bit A, 18-
bit B, 48-bit C and 1-bit carry. In Algorithm 3, we present
a method to map this operation into FPGA using DSP units
efficiently. When log2(TH) is less than 48, the addition of
TH and cin can be implemented using DSP without any
extra fabric LUTs. If log2(qH) is larger than the DSP input
operand size, then it is divided into smaller parts using the
divide-and-conquer approach, as explained in Sec. V-C1, and
log2(qH) · T2 multiplication is implemented using multiple
DSPs. Finally, DSP results are accumulated using one CSA
tree. When log2(TH) is equal to or greater than 48, adding
TH is also implemented using adders. The proposed mapping
algorithm uses L · ⌈log2(qH)/s⌉ DSPs where s is 24 or 26,
depending on the FPGA platform.

The proposed parametric modular reduction unit takes the
bit-size of modulus (log2(q)), word size (w), and the number
of reduction steps (L) as input and generates the corresponding
reduction circuit. Fig. 9 shows the implementation of modular
reduction circuit for parameters log2(q) = 32, w = 12 and
L = 3, where 2s and ∨ represent two’s complement and
logical OR operations.

It should be noted that the Algorithm 2 introduces an extra
term at the output, R−1 where R is 2w·L. To eliminate this
extra constant, either the output of the reduction operation
or one of the input operands should be multiplied with R.
Since one operand is always constant (ωi or ψi) during
NTT/MNTT operation, we multiply all precomputed constants
by R before loading them to the hardware. Since this operation
is performed offline and once for each parameter, it adds no
extra latency.

3) Parametric CT, GS, and Unified Butterfly Units: Two
approaches, DIT and DIF, to constructing efficient NTT algo-
rithms require so-called CT and GS butterfly configurations, as
described in Sec. II-B. Depending on Proteus’s configuration,
we require a CT, GS, or both butterflies combined. This
reliance leads to the necessity of three different units. We
present a different design for a unified butterfly that fits nicely
into a pipelined architecture like Proteus, which requires both

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 9

Fig. 11. Radix-2 SDF NTT architecture with OP1 (left) and OP7 (right) for n = 16. Yellow and red boxes represent data and twiddle factor memories.

butterfly operations during NTT computation. The dataflow
inside our unified butterfly redirects via MUXes to either
produce CT or GS outputs as shown on the left side of Fig. 10.

D. Comparison of different NTT Architectures

Proteus can generate two different NTT architectures,
Radix-2 SDF and Radix-2 MDC. Each architecture supports 18
configurations described in Sec. IV. We illustrate the flexibility
and efficiency of Proteus by comparing two Proteus-generated
NTT architectures. The first one is Radix-2 SDF with OP1,
which is more oriented towards flexibility, while the other
one is Radix-2 SDF with OP7, which is more focused on
minimizing resource utilization.

Fig. 11 illustrates both architectures with a polynomial of
size n = 24. The figure shows that the design of OP1 is much
more complex than OP7. This complexity is due to the bidirec-
tional data flow that is required to support all configurations
in one architecture, such as NTTDIT

N)R, NTTDIT
R)N , NTTDIF

N)R,
and NTTDIF

R)N . This requires extra logic to route data and
twiddle factors to different stages as needed. It also requires a
unified butterfly core that can perform CT and GS. Compared
to OP1, OP7 does not support all transformation types since
it is more streamlined towards a specific scenario, namely
NTTDIT

N)R. This pivoting towards a single transformation type
reduces resource utilization significantly regarding LUTs. In
addition to this, it also allows for more optimization, such as
using a more straightforward butterfly design and NTT twiddle
factor re-usage for INTT. This not only halves the required
memory but also simplifies routing due to less logic involved.

The required NTT configuration depends on the target
application. In the case of ZKPs systems, mostly NTT/INTT
is required [2] while FHE and PQC use MNTT/MINTT. If
an implementation targets support for several cryptosystems,
it would be best for a designer to adopt OP1. If a single
scenario is targeted (e.g., server-side FHE computations),
then flexibility can be sacrificed for lower implementation
complexity by adopting configurations such as OP5, OP6,
OP7, or OP8. To that end, Proteus provides designer freedom
when selecting an NTT configuration for a particular use case.

VI. EVALUATIONS

This section presents the area and performance results of
hardware architectures generated for several parameters and
configurations using Proteus. Then, we compare our results
with related works in the literature. We coded the architectural
units of Proteus using Verilog/SystemVerilog and verified their
functionality using RTL simulations. As described in Sec. V-A,
the proposed hardware takes polynomial size (n), coefficient

modulus size (log2 q), NTT/MNTT configuration (OP1 to
OP8), and modular reduction type for SDF or MDC archi-
tectures as inputs, and generates the corresponding hardware.
We obtained area and performance results using Xilinx Vivado
2019.1 for Xilinx Virtex-7 XCVX485T FPGA with 150 MHz
target frequency and default synthesis/implementation settings.
As a proof of concept, we also generated, implemented, and
verified all possible NTT configurations for the polynomial
sizes 24 to 210 and modulus sizes 32-bit and 64-bit using the
Montgomery reduction algorithm on an actual Xilinx PYNQ
FPGA board. We use Python models to generate test vectors
for verification. These models are also included within our
GitHub repository.

A. Evaluation of NTT configuration and parameter selection

This section presents the area and performance results of
Proteus-generated NTT architectures for various configura-
tions. Proteus provides several options for different configu-
rations and lets the user choose the proper NTT hardware.
In Table III, we present area utilization, latency (in clock
cycles), and an average latency of 100 operations for SDF and
MDC NTT architectures with different configurations (OP1 to
OP8) and modular reduction circuits. MDC architecture shows
almost 2× better performance than SDF architecture at the
expense of slightly larger LUT and DFF utilization. Further, it
requires 2× bandwidth compared to SDF. Proteus generates a
parametric word-level Montgomery reduction unit for a given
parameter set. It also lets the user replace it with a custom
modular reduction unit. We evaluated all configurations for
two different modular reduction units, (a) a custom add-shift-
based reduction unit for a constant modulus and (b) word-
level Montgomery reduction unit presented in Sec. V-C2. As
shown in Table III, Montgomery reduction uses 1.6× more
DSP units with similar LUT and DFF utilization than add-
shift-based reduction for a large NTT parameter. However,
the add-shift-based reduction unit supports only one modulus,
while the Montgomery reduction unit supports a wide range
of moduli for a given parameter set.

As explained in Sec. IV, NTT configuration significantly
impacts implementation complexity. Table III shows that OP1
and OP2 configurations have the highest LUT and DFF
utilization compared to other configurations because they use
a unified butterfly configuration. The configurations OP3 and
OP4 do not use unified butterfly units; however, they still
have high implementation complexity due to different NTT
and INTT orderings, as explained in Sec. IV. Hence, OP3 and
OP4 configurations outperform only OP1 and OP2 configura-
tions. The OP5, OP6, OP7, and OP8 configurations eliminate

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 10

TABLE III
IMPLEMENTATION AND PERFORMANCE RESULTS FOR SDF AND MDC

NTT ARCHITECTURES FOR DIFFERENT CONFIGURATIONS

Design (n, log2(q)) = (212, 64) (n, log2(q)) = (210, 28)
LUT/FF/DSP/BR Lat./Avg.∗ LUT/FF/DSP/BR Lat./Avg.∗

SDF
OP1/2a 23.6k/11.8k/144/16 8298/4138 8.7k/3.9k/20/2 2118/1035
OP3/4a 21.1k/11.8k/144/16 8298/4138 7.8k/4.0k/20/2 2118/1035
OP5/6a 17.6k/11.3k/132/16 8293/4138 6.4k/3.7k/18/2 2113/1035
OP7/8a 16.6k/10.6k/132/16 8293/4138 6.0k/3.5k/18/2 2113/1035
OP1a,c 22.5k/12.7k/144/24 8310/4138 8.7k/4.5k/20/3 2118/1035
OP1/2b 26.0k/18.5k/240/16 8370/4138 7.5k/3.2k/40/2 2128/1035
OP3/4b 23.6k/18.5k/240/16 8359/4138 7.3k/3.3k/40/2 2128/1035
OP5/6b 19.9k/17.5k/220/16 8359/4138 5.7k/3.0k/36/2 2123/1035
OP7/8b 18.9k/16.8k/220/16 8382/4138 5.2k/2.8k/36/2 2123/1035
OP1b,c 25.0k/19.5k/220/24 8391/4138 7.4k/3.6k/40/3 2128/1035

MDC
OP1/2a 25.7k/15.7k/144/16 4214/2070 9.7k/5.4k/20/2 1114/518
OP3/4a 21.8k/12.5k/144/16 4190/2069 8.0k/4.2k/20/2 1114/518
OP5/6a 19.7k/11.8k/132/16 4185/2069 7.2k/3.9k/18/2 1090/518
OP7/8a 20.2k/11.8k/132/16 4185/2069 7.4k/3.9k/18/2 1090/518
OP1a,c 24.9k/15.7k/144/24 4214/2070 9.5k/5.5k/20/3 1114/518
OP1/2b 28.1k/22.3k/240/16 4262/2070 10.1k/4.6k/40/2 1124/518
OP3/4b 24.3k/19.2k/240/16 4251/2070 7.3k/3.4k/40/2 1124/518
OP5/6b 21.9k/18.0k/220/16 4251/2070 6.7k/3.2k/36/2 1100/518
OP7/8b 22.5k/18.0k/220/16 4286/2070 6.9k/3.2k/36/2 1100/518
OP1b,c 27.5k/22.5k/240/24 4214/2070 9.8k/4.7k/40/3 1124/518
∗: Latency/Average latency for 100 operation. a: Using add-shift based
reduction for constant prime modulus. b: Using word-level Montgomery
based reduction for variable prime modulus. c: Uses NWC technique.

different orderings of NTT and INTT and show better area
performance than the OP1, OP2, OP3, and OP4 configurations.
Compared to OP1/OP2, OP7/OP8 configurations use up to
31% less LUT. The configurations with the NWC technique
also show high resource usage as they use a unified butterfly
unit and have different orderings for NTT and INTT. As
shown in Table III, they use 50% more BRAMs compared
to NTT/INTT configurations since they need to store pre-
processing and post-processing constants (see Sec. II-B).

We also visualize the change in the area utilization for
different parameters and configurations in Fig. 12 and Fig. 13,
that show Proteus can generate different NTT architectures
that cover a wide range of parameters, area utilization, and
performance, efficiently by just changing a few parameters.

B. Comparison with the literature

In this section, we present the comparisons between Proteus-
generated NTT architectures and related works in the litera-
ture [1], [2], [5], [8]–[12]. In Table IV, we present resource
utilization, performance, architecture and level of parallelism
(e.g., number of butterfly units running in parallel) results of
Proteus-generated and related works.

Parametric iterative NTT architectures can set the level
of parallelism by changing the number of butterfly units.
Compared to the low-cost iterative NTT architectures with one
butterfly unit, our SDF and MDC NTT architectures perform
much better. For parameters n = 212 and log2(q) = 64,
our SDF and MDC NTT architectures with OP7 configuration
show 6.1/9.1× and 7.1/10.4× speedup (in terms of cycles),
respectively, compared to the low-cost NTT architectures
in [5], [8]. Compared to a balanced iterative NTT architecture
with eight butterfly cores [5], our SDF and MDC architectures
show similar performance while using 11× less BRAM. High-
performance iterative NTT architectures [5], [8], [11], [12]

Fig. 12. LUT/DFF utilization of SDF and MDC NTT architectures for
log2(q) = 64 and n = 210 to n = 216 with Montgomery reduction.

Fig. 13. DSP/BRAM utilization of SDF and MDC NTT architectures for
log2(q) = 64 and n = 210 to n = 216 with Montgomery reduction.

show better performance than our SDF and MDC architec-
tures. However, they use significantly more resources and
require high bandwidth. For example, the work in [12] shows
8.5× better performance compared to our MDC architecture
for parameter n = 210 at the expense of 14.8/11.2× more
LUT, 26× more DSP and 162× more BRAM. Although
iterative NTT architectures in [6], [7] are parametric, they
target small parameter sets. Hence, they are not included in
the comparison table.

There are only a few works in the literature for MDC
NTT architectures [3], [4], [9], [10]. In [3], [4], MDC NTT
architectures for small parameters without any flexibility are
presented. Thus, they are not compared with our work. The
works in [9], [10] can change their levels of parallelism and
increase their performance at the expense of more resources
and bandwidth. Compared to the MDC architecture with four
parallel butterfly units [10], our MDC NTT architecture still
shows 1.8× better performance while using fewer resources.

PipeNTT [1] is the current state-of-the-art work for paramet-
ric SDF Radix-2 NTT architecture. In Table IV, we compare
our SDF and MDC NTT architectures with PipeNTT for
parameters n = 212, log2(q) = 64 and n = 210, log2(q) = 28.
Compared to our SDF architecture, PipeNTT performs simi-
larly, using up to 1.75× more DSP and 3× more BRAM. Our
MDC architecture outperforms PipeNTT by up to 2.0× while
using less DSP and BRAM. PipeNTT requires many BRAM
units because their implementation does not use twiddle factor
optimization presented in Sec. IV. Thus, they must employ
extra BRAMs to store twiddle factors for INTT. Our archi-
tecture performs better for DSP utilization than PipeNTT due
to our optimized word-level Montgomery modular reduction

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. 18, FEB 2024 11

TABLE IV
COMPARISON TABLE

Work Plt. LUT/FF/DSP/BR Frq. Latency∗ NTT LP
‡ (in µs) (in cc) Arc. †

n = 210, log2(q) = 28− 32 bits

[9]a V7 95k/104k/640/80 215 0.9/- -/- MDC 32
187k/205k/1280/128 212 0.75/- -/- MDC 64

[10]a V7 206k/159k/640/80 210 1.1/- -/- MDC 32
[12]b V7 77k/-/952/325.5 200 0.4/- 80/80 Iter. 32
[11]b V7 39.6k/-/224/96 150 1.66/- 250/250 Iter. 32
[1] V7 3.4k/3.1k/63/6 175 12.1/6 2.1k/- SDF 1

OP71,b V7 5.2k/2.8k/36/2 150 14.1/6.9 2.1k/1.0k SDF 1
OP72,b V7 6.9k/3.2k/36/2 150 7.3/3.5 1.1k/0.5k MDC 1

n = 212, log2(q) = 28− 32 bits

[8] A7 2.7k/2.4k/6/8 435 28.2/- 12.3k/- Iter. 2
11.8k/8.9k/24/16 379 8.15/- 3.0k/- Iter. 8

[11]b V7 39.6k/-/224/96 150 5.84/- 876/- Iter. 32
[10]a AU 54.1k/56.2k/288/84 250 24.7/- -/- MDC 4

OP71,b V7 6.3k/3.4k/44/8 150 55.8/27.5 8.3k/4.1k SDF 1
OP72,b V7 8.4k/4.0k/44/8 150 28.5/13.8 4.2k/2.0k MDC 1

n = 212, log2(q) = 60− 64 bits

[8] A7 2.6k/2.5k/26/21 144 172/- 24.5k/- Iter. 1
90k/77k/832/160 130 6.0/- 782/- Iter. 32

[5]b V7
2.7k/-/31/180 125 198/- 24.7k/- Iter. 1

23.2k/-/248/176 125 26/- 3.2k/- Iter. 8
99.3k/-/992/176 125 7.77/- 972/- Iter. 32

[1] V7 17.0k/11.0k/286/24.5 150 55.2/27.5 8.2k/- SDF 1
OP71,b V7 18.9k/16.8k/220/16 150 55.8/27.5 8.3k/4.1k SDF 1
OP72,b V7 22.6k/18.0k/220/16 150 28.5/13.8 4.2k/2.0k MDC 1
∗: Latency/Avg. latency for 100 operations. †: Level of parallelism. ‡: Freq. in MHz.
1: Radix-2 SDF. 2: Radix-2 MDC. V7: Virtex-7. A7: Artix-7. AU: Alveo U200.
a: Using add-shift based reduction for constant prime modulus.
b: Using word-level Montgomery based reduction for variable prime modulus.

unit. When we use their area metric for comparison (LUT
+ 100×DSP + 300×BRAM in Table 1 of [1]), we show up
to 35% better performance for various configurations. Their
design provides limited reconfigurability. They only support
configuration OP1 for SDF, while we support SDF and MDC
architectures for several configurations.

VII. CONCLUSIONS

This paper introduces Proteus, a parametric hardware that
can generate bandwidth-efficient SDF and MDC Radix-2 NTT
architectures. Proteus supports configurable parameters and
incorporates algorithmic and architectural optimizations to re-
duce memory requirements and improve performance. Experi-
mental results demonstrate that Proteus outperforms the state-
of-the-art regarding resource utilization while reducing the
overall NTT latency. Proteus’s design-time flexibility makes
it suitable as a fundamental building block for FHE, PQC,
and ZKP systems. Future work includes extending Proteus
for different Radix configurations and implementing on-the-fly
twiddle factor generation for memory-constrained platforms.

REFERENCES

[1] Z. Ye, R. C. Cheung, and K. Huang, “Pipentt: A pipelined number
theoretic transform architecture,” IEEE Transactions on Circuits and
Systems II: Express Briefs, pp. 1–1, 2022.

[2] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “Pipezk: Accelerating zero-knowledge
proof with a pipelined architecture,” in 48th IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2021.

[3] W. Tan, A. Wang, Y. Lao, X. Zhang, and K. K. Parhi, “Pipelined high-
throughput ntt architecture for lattice-based cryptography,” in 2021 Asian
Hardware Oriented Security and Trust Symposium, 2021, pp. 1–4.

[4] Z. Ni, A. Khalid, D. Kundi, M. O’Neill, and W. Liu, “Efficient pipelining
exploration for A high-performance crystals-kyber accelerator,” IACR
Cryptol. ePrint Arch., p. 1093, 2022.

[5] A. C. Mert, E. Karabulut, E. Ozturk, E. Savas, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Transactions on Computers, pp. 1–1, 2020.

[6] J. Mu, Y. Ren, W. Wang, Y. Hu, S. Chen, C.-H. Chang, J. Fan, J. Ye,
Y. Cao, H. Li, and X. Li, “Scalable and conflict-free ntt hardware
accelerator design: Methodology, proof and implementation,” IEEE
Trans. on Computer-Aided Design of Int. Cir. and Sys., pp. 1–1, 2022.

[7] K. Derya, A. C. Mert, E. Öztürk, and E. Savaş, “Coha-ntt: A config-
urable hardware accelerator for ntt-based polynomial multiplication,”
Microprocessors and Microsystems, vol. 89, p. 104451, 2022.

[8] X. Hu, J. Tian, M. Li, and Z. Wang, “Ac-pm: An area-efficient and
configurable polynomial multiplier for lattice based cryptography,” IEEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1–14, 2022.

[9] T. Ye, Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Fpga acceleration of number theoretic transform,” in High Performance
Computing. Springer International Publishing, 2021, pp. 98–117.

[10] Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Nttgen:
A framework for generating low latency ntt implementations on fpga,”
in Proceedings of the 19th ACM International Conference on Computing
Frontiers, ser. CF ’22, 2022, p. 30–39.

[11] A. C. Mert, E. Öztürk, and E. Savaş, “Fpga implementation of a
run-time configurable ntt-based polynomial multiplication hardware,”
Microprocessors and Microsystems, vol. 78, p. 103219, 2020.

[12] ——, “Design and implementation of encryption/decryption architec-
tures for bfv homomorphic encryption scheme,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, pp. 353–362, 2019.

[13] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly efficient
architecture of newhope-nist on fpga using low-complexity ntt/intt,”
IACR Transactions on CHES, vol. 2020, no. 2, p. 49–72, 3 2020.

[14] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator
library.” Springer, 2016, pp. 169–186.

[15] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture,” in 2019
22nd Euromicro Conf. on Digital System Design, 2019, pp. 253–260.

[16] M. Scott, “A note on the implementation of the number theoretic
transform,” in Cryptography and Coding - 16th IMA International
Conference, IMACC 2017. Springer, 2017.

[17] F. Winkler, Polynomial algorithms in computer algebra. Springer
Science & Business Media, 1996.

[18] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” Cryptology ePrint Archive,
Paper 2016/504, 2016.

[19] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor,” in Cryptographic Hardware and
Embedded Systems – CHES 2014, L. Batina and M. Robshaw, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 371–391.

[20] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal
lattice-based cryptography on 8-bit atxmega microcontrollers,” in
Progress in Cryptology – LATINCRYPT 2015, 2015, pp. 346–365.

[21] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[22] R. Geelen, M. Van Beirendonck, H. V. Pereira, B. Huffman, T. McAuley,
B. Selfridge, D. Wagner, G. Dimou, I. Verbauwhede, F. Vercauteren
et al., “Basalisc: Flexible asynchronous hardware accelerator for fully
homomorphic encryption,” arXiv preprint arXiv:2205.14017, 2022.

[23] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile
before multiplication: An efficient strategy to optimize dsp multiplier
for accelerating prime field ecc for nist curves.”

[24] P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology - CRYPTO ’86, vol. 263, 1986, pp. 311–323.

[25] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, pp. 519–521, 1985.

[26] Z. Liu, H. Seo, S. Sinha Roy, J. Großschädl, H. Kim, and I. Ver-
bauwhede, “Efficient ring-lwe encryption on 8-bit avr processors.”
Springer, 2015, pp. 663–682.

[27] C. P. Renteria-Mejia and J. Velasco-Medina, “High-throughput ring-lwe
cryptoprocessors,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 8, pp. 2332–2345, 2017.

[28] S. Streit and F. De Santis, “Post-quantum key exchange on armv8-a:
A new hope for neon made simple,” IEEE Transactions on Computers,
vol. 67, no. 11, pp. 1651–1662, 2017.

[29] F. Yaman, A. C. Mert, E. Öztürk, and E. Savaş, “A hardware accelerator
for polynomial multiplication operation of crystals-kyber pqc scheme,”
in 2021 DATE. IEEE, 2021, pp. 1020–1025.

