
How to Make Rational Arguments
Practical and Extractable

Matteo Campanelli , Chaya Ganesh and Rosario Gennaro
1 Protocol Labs

2 Indian Institute of Science, Bangalore
3 The City University of New York

Abstract. We investigate proof systems where security holds against rational parties
instead of malicious ones. Our starting point is the notion of rational arguments, a
variant of rational proofs (Azar and Micali, STOC 2012) where security holds against
rational adversaries that are also computationally bounded.
Rational arguments are an interesting primitive because they generally allow for very
efficient protocols, and in particular sublinear verification (i.e. where the Verifier
does not have to read the entire input). In this paper we aim at narrowing the gap
between literature on rational schemes and real world applications. Our contribution
is two-fold.
We provide the first construction of rational arguments for the class of polynomial
computations that is practical (i.e., it can be applied to real-world computations on
reasonably common hardware) and with logarithmic communication. Techniques-wise,
we obtain this result through a compiler from information-theoretic protocols and
rational proofs for polynomial evaluation. The latter could be of independent interest.
As a second contribution, we propose a new notion of extractability for rational
arguments. Through this notion we can obtain arguments where knowledge of a
witness is incentivized (rather than incentivizing mere soundness). We show how our
aforementioned compiler can also be applied to obtain efficient extractable rational
arguments for NP.

https://orcid.org/{0000-0001-8184-4704}, inst
https://orcid.org/{0000-0002-2909-9177}, inst
https://orcid.org/{0000-0002-3297-3750}, inst

2 How to Make Rational Arguments Practical and Extractable

Contents
1 Introduction 3

1.1 Our Contributions. 5
1.2 Technical Overview . 6
1.3 Discussion: Alternative Sublinear Verifiers; Applications 8
1.4 Related Work . 10

2 Preliminaries 11
2.1 Modelling Access to Inputs . 11
2.2 Rational Proofs and Arguments . 11
2.3 Interactive Proofs . 12
2.4 Polynomial Commitment Scheme . 13
2.5 Algebraic Holographic Proof . 14

3 Definitions and Building Blocks 15
3.1 Rational Arguments with Indexing . 15
3.2 Efficient Rational Proofs for Polynomial Evaluation 16

4 Our Compiler: AHP to Rational Argument for P 17
4.1 A Formal Description of our Compiler from AHP to Rational Argument . 18
4.2 Instantiating Our Compiler . 21

5 Rational Proofs and Arguments of Knowledge for NP 21
5.1 Succinct Rational Arguments of Knowledge for NP 21
5.2 Our Compiler: AHP to Rational AoK for NP 22

References 24

A Uniform Families of Circuits 29

B The Rational Proof from [CG15] 29

C Discussion on Incentives in Rational Arguments with Extraction 29
C.1 Parties for whom searching for a witness is feasible 30
C.2 Parties for whom searching for a witness is unfeasible 30

D Reducing the Reward Gap without Losing Sublinearity 31

E Additional Proofs 32
E.1 Proof of Lemma 1 . 32
E.2 Proof of Theorem 3 . 32
E.3 Proof of Theorem 4 . 33

F Candidate AHPs 33
F.1 Rational proof for polynomial evaluation in Lagrange basis 34
F.2 Marlin AHP . 35
F.3 PLONK AHP . 38
F.4 Sonic AHP . 39

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 3

1 Introduction
We study the problem of verifying that a statement is correct without having to re-
execute the computation associated to it. In cryptographic literature a common primitive
applied to this problem is a (cryptographic) argument. For deterministic (polynomial-time)
computations, through an argument, we can convince a weak verifier, holding data D as
input that f(D) = y for some computation f . We can apply arguments to non-deterministic
computations as well: a party holding a witness w can convince the verifier that it knows
a witness such that R(D, w) = 1 for some NP relation R. This last type of arguments is
also called an argument of knowledge (or extractable argument, since their “knowledge” is
technically defined in terms of the existence of an extractor).

Arguments have become more and more practical. There is a long line of work
spanning now more than a decade that has produced schemes that are extremely efficient
in several dimensions (e.g. [BCG+13, WTs+18, CFQ19, MBKM19, CHM+20, CFF+21,
ABC+22,LSTW21,KPV22] for a partial list). The most notable of their improvements
is fast verification. They are able to achieve this by obtaining a proof size substantially
smaller than the witness (resp. the execution trace) of the relation (resp. computation).
At the same time they feature very performant proving algorithms. From now on we will
refer to the arguments from this line of work as very succinct arguments for short.

Our goal: in this work we are interested in improving on very succinct arguments by
keeping succinctness and the practicality of the prover and making the verifier even faster.
In particular, we will aim for obtaining a sublinear verifier (the verifier does not even need
to read the whole public input). Next, we shall motivate this problem and then describe
the model in which we aim at achieving this.

Motivating sublinear verification.1

• Motivation 1: overhead in verification from public input preprocessing. In very
succinct arguments, the efficiency of the verifier is often a consequence of how simple
checking the proof is. Let us consider for example Groth16, currently one of the
schemes with the “most minimalistic” proof and verifier [Gro16]. Consider a data
string D (the public input) on which we want to verify property P . No matter the
size of D or the complexity of the property P , a Groth16 proof consists of three
group elements (A, B, C) and the verifier checks an equation of the form

e(A, B) ?= YD · e(C, Z)

where Z is a constant in the SRS (structured reference string) and YD is computed
from the public input D. The verification check is as simple as it can get—at its core
it involves two pairings only. However, for large public inputs, the bottleneck is from
computing the element YD, which is defined as

∏
i gDi

i for public generators gi. For
data as small as 220 this computation can already be three orders of magnitude
more expensive than the pairings themselves2.

• Motivation 2: lightweight access to data. Processing a large public input may not be
a bottleneck in all succinct arguments as it is in Groth16. Nonetheless, sublinear
verification may still be advantageous in settings where it is impractical or strongly
undesirable to access the whole public input. As a first example, a public input for
a proof may be stored on the cloud, a fairly common practice for data in general.
Downloading the whole input to verify a proof may be impractical when only a slow
network is available (large parts of the world do not have access to fast internet).
As another example, consider light clients in a blockchain. These are clients who
do not intend to download the whole history of the chain but are still supposed to

1See also further discussion on sublinear verifier in Section 1.3.
2These estimates refer to the commonly used curve BLS12-381 [ECK+23].

4 How to Make Rational Arguments Practical and Extractable

retrieve information about it. In order to verify statements about the chain they
could instead access only parts of it rather than the chain in its entirety.

We have so far motivated designing proof schemes with a sublinear verifier. Nevertheless,
it is apparent that achieving such schemes within the standard model of security of
interactive proofs/arguments is infeasible3. Sublinear verification has been achieved in only
two models. One is that of proofs of proximity [RVW13] where the prover only certifies a
close approximation to the exact value of the computation. One drawback of this model,
is that efficiency of the protocol requires trading against correctness: this is no longer
guaranteed to hold for instances that are only close to being in the language. For this
reason and because we believe in the importance of modeling incentives explicitly, we will
instead use the rational model of security described below.

Security against malicious rational provers. The standard notion of security in
interactive proofs considers a malicious adversary who should not be able to convince the
verifier of a false statement. In [AM12] Azar and Micali propose a variant of interactive
proof where the prover is not considered honest or malicious but simply rational—i.e.,
choosing the strategy that will maximize their reward. In a rational security model, a
verifier may in principle accept proofs of false statements. However, at the same time, a
“rationally secure” scheme is designed so that it would be irrational for a prover to do so.

This model is applicable, for example, in settings where the prover has incentives to act
honestly. These settings include cloud computing—where a server executes a computation
and is going to be rewarded for its services—and blockchains—where it is easy to embed
incentives in different layers of the system.

Protocols within the rational framework tend to have some intriguing features, including:
simplicity, efficiency and the (already mentioned) possibility of a verifier which needs to
query only a sublinear number of input positions. As an example, the protocol in [CG15]
obtains a protocol for NC1 with a verifier running in logarithmic time and querying a
constant number of input bits; the interaction transcript has logarithmic size. The prover
has essentially no overhead on top of performing the computation (it just needs to send
certain sub-portions of the circuit evaluation).

From Proofs to Arguments. Not only rational proofs can give us light-weight
verification protocols, but they may achieve all that without requiring any cryptographic
assumption—the aforementioned protocol in [CG15] works even if it turns out that P = NP.
But by introducing assumptions we can achieve even more: a line of work starting
in [GHRV14] and [GHRV16] explores the additional benefits of applying cryptographic
assumptions to verifiable computation in a rational model (this will be our focus). For
example, in [GHRV14] Guo et al. show how to obtain two-message rational arguments (as
opposed to proofs, which use no cryptographic assumption) for NC1 with polylogarithmic
verification. Later work has improved this result obtaining schemes with two messages for
polynomial-time computations [GHRV16]. This last work uses relatively strong assumptions
(subexponential FHE) and is arguably not concretely practical.

In this work we extend rational arguments to the realm of concrete practicality consid-
ering both deterministic and non-deterministic computations.

3Take the simple relation for parity where given a string x ∈ {0, 1}n we say it has parity 1 iff
∑

i
xi ≡ 1

(mod 2). Intuitively, we cannot convince a verifier of this without them reading the entire string. Why?
Because by completeness of the proof system a string x1 with parity 1 will have a high probability of being
accepted by the verifier. But—and here is the absurd—so must be the accepting probability of an input
x0 identical to x1 except in one position i where we flipped x1[i]: since we are querying only a fraction of
the input bits, the queries from x0 and x1 will be similarly distributed.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 5

1.1 Our Contributions.
We continue the study of rational arguments. The scope of our contributions is (i)
practical—we construct rational arguments for P more efficient than the state-of-the-art;
(ii) foundational—we advance the theory of rational arguments by putting forth a new
notion—extractable rational arguments—we build them for NP and argue their usefulness.
Rational Argument for P. We substantially improve the efficiency of rational arguments
for polynomial computations. This work’s starting point is the question:

Can we obtain rational arguments with (1) a sublinear verifier; and (2) whose prover is as
efficient as some of the best available SNARKs?

We answer this question in the positive and construct the first rational argument for
the class of polynomial computations that is practical (i.e., it can be applied to real-world
computations on reasonably common hardware) and with logarithmic communication
(see also Table 1). Our results provide improvements compared to both the rational and
cryptographic arguments literature.

In comparison to prior rational arguments we obtain the first rational argument for
deterministic computation that has a concretely efficient prover, has a logarithmic verifier
using only public coin and is provably secure from simple assumptions (see Table 1). The
only prior work on rational arguments for P ([GHRV16]) uses expensive primitive under
the hood, required a polynomial blow-up of the prover time and had a polylogarithmic
verifier. We note that our results require a higher number of messages: logarithmic instead
of constant as in [GHRV16]. From a technical standpoint, we obtain our results from a very
different blueprint. We show how to leverage the efficient modular constructions of recent
SNARKs modeled as Algebraic Holographic Proofs4 (or AHP [CHM+20]) and exploit
techniques for rational arguments of polynomial evaluation, which may be of independent
interest. The work in [GHRV16] instead closely follows the techniques from the delegation
scheme of Kalai et al. [KRR14]: they construct δ-no-signaling rational multi-prover proofs
(RMIPs). They then apply sub-exponentially secure Fully Homomorphic Encryption (FHE)
scheme to transform no-signaling RMIPs into two-message rational arguments. Compared
to other rational arguments for subclasses of P—e.g., the construction for NC circuits
in [GHRV16]—ours removes the dependency of communication stemming from the depth of
the circuit (logarithmic instead of polylogarithmic for a circuit of polylogarithmic depth).

In comparison to prior cryptographic arguments our constructions have several ad-
vantages. First, we are able to achieve a sublinear verifier. Second, our construction
concretely improves on the efficiency of the prover by not requiring any cryptographic
operations on what are usually called “computation commitments”. A computation com-
mitment is a commitment to a polynomial describing the computation. A significant
amount of the prover’s time is used to prove evaluations of these polynomials. This may
require a significant number of cryptographic operations (usually consisting of several
multi-scalar exponentiations in the size of the computations) and for some proof schemes
this may be a source of efficiency bottleneck (see, e.g., Section 7.5 in [CGG+23]). See
our instantiations for more details (Section 4.2). Finally, our constructions substantially
simplify the “offline” stage (also called indexing) that is common in several cryptographic
arguments (e.g., [CFF+21,CHM+20]). In this stage, the verifier is required to do a one-time
preprocessing of the description of the computation. Intuitively, from the description of a
computation C one can derive a key that can be to verify a proof on C efficiently. This
process usually involves several multi-scalar exponentiations of a potentially large size (as
large as the computation). This cost can be amortized over several proofs. However, it
may still be infeasible for very weak devices wanting to verify large computations. Our
construction allows verifier not to have to perform any cryptographic operations on the

4We note that our results could be easily adapted to the similar framework of PIOP [BFS20] and the
more general framework of PHP [CFF+21].

6 How to Make Rational Arguments Practical and Extractable

Table 1: Comparison between this work and previous work on rational arguments for P.
The parameter n is the instance size; T is the size of the computation. All asymptotic
quantities implicitly contain a multiplicative factor polynomial in λ.

Scheme Assumptions Communication P time V time Messages Concretely
efficient?

public
coin?

[GHRV16] subexp FHE O (polylog(n)) poly(T) O (polylog(n)) 2 ✗ ✗

This work SXDH5 O (log(n)) O(T log T) O (log(n)) O (log(n)) ✓ ✓

description of the computation. Instead it just needs to be able to have RAM (or network)
access to its encoding and query a few of its points at verification time.
Rational Argument for NP. We show that rational proofs that are succinct with
noticeable reward gap6 are impossible for NP. This completes the landscape of results in
succinct proofs for NP strengthening the impossibility results in [GHRV14] and [CG17].

The impossibility of succinct proofs motivates us to study succinct rational arguments
for NP. We put forth the notion of rational argument of knowledge, and construct a rational
argument of knowledge for NP. Our new notion models schemes where knowledge of a
witness is incentivized (rather than incentivizing mere soundness). Our construction offers
several advantages over succinct cryptographic arguments. First, the prover’s cryptographic
operations grows only with the size of the witness, and not with the input. This is useful for
proving computations over large public data. Second, since our construction is essentially
the same as our construction for P, we also get a verifier that is sublinear in the public
data, and only has oracle access to it.
Rational Proof for Polynomial Evaluation. As a tool of independent interest, we
construct a rational proof for polynomial evaluation, which we think of as a rational analog
of a cryptographic polynomial commitment scheme. This allows outsourcing polynomial
evaluation to the prover where the verifier only has oracle access to the description of the
polynomial (either as a vector of coefficients or as tuple of point-evaluation pairs). Thus,
this rational proof for polynomial evaluation is a rational analogue of a cryptographic
polynomial commitment scheme, where the verifier is sublinear in the degree of the
polynomial by virtue of having oracle access to the polynomial (and querying few places).
This is in constrast to a verifier being sublinear in the degree of the polynomial since
the cryptographic commitment being succinct in the degree. Indeed, we use this rational
proof in our construction in lieu of a polynomial commitment scheme, for polynomials that
encode public values (description of the function to be computed, public input).

1.2 Technical Overview
Recent constructions of zkSNARKs [CHM+20,RZ21,CFF+21,GWC19] follow a modular
approach where an information-theoretic protocol is constructed in an abstract model like
Probabilistically Checkable Proof (PCP), Interactive Oracle Proof (IOP) etc., and then the
information-theoretic protocol is compiled into an argument system via a cryptographic
compiler. Our construction is modular: starting from an information-theoretic protocol,
our compiler uses cryptographic and rational proofs in order to compile into a rational
argument.
AHP to SNARK. We use the formalization of Algebraic Holographic Proofs (AHP)
from [CHM+20]. In an AHP the prover receives as inputs a statement x and a witness w.
In each round of interaction with the verifier, it sends oracle polynomials and the verifier
responds with a random challenge. Then, in a query phase, the verifier queries the oracle
polynomials at evaluation point. For oracle p and evaluation query z, it obtains v = p(z).

5This assumption is used when we instantiate our construction with the Dory polynomial commit-
ment [Lee21]. See also Section 4.2. For a formal definition of SXDH, see Definition 1 in [Lee21].

6The reward gap bounds the difference between the reward of the honest and dishonest provers.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 7

Finally, based on the result of these evaluation queries the verifier outputs a bit indicating
“accept" or “reject". An AHP can be turned into an argument system by replacing the
oracles and the query phase with a polynomial commitment scheme (PCS) [KZG10]. In the
argument, the prover commits to the polynomials obtained from the information-theoretic
prover, and then upon receiving an evaluation point z, the prover uses the evaluation proof
of the PCS to to convince the verifier that the claimed evaluation v is indeed v = p(z)
given a commitment to p.
Our main idea. Typically, the oracles sent by an AHP prover consist of the following:
witness-carrying polynomials (WCP) (polynomials that encode the witness vector w) and
index polynomials or computation commitments (which encode the description of the
computation or the index i). The AHP verifier encodes the public input x into a polynomial
and makes queries to the WCP and index polynomials. When compiled into an argument,
the prover performs cryptographic work for the PCS to commit to WCP and index
polynomials. Our first idea is to move the index polynomials from being cryptographically
committed with a PCS to being available to the verifier as an “oracle” and providing
rational proofs about evaluations. While typically, oracle access to the verifier is an
“intermediate” model and oracles have to be realized in the real-world, our oracle model of
index polynomials/computation commitments is limited to processing the index and storing
a certain encoding in memory. This is part of the verifier’s preprocessing (which is anyway
done in cryptographic arguments too), but our oracle modeling is to capture the property
that the verifier does not read the entire preprocessed material. Cryptographic arguments
achieve sublinearity of the verifier in the index i by preprocessing the computation into a
short cryptographic commitment, with respect to which the prover gives evaluation proofs
of the PCS. We achieve sublinearity of the verifier in the index i by preprocessing the
computation into an encoding; the verifier only queries this encoding at a few points. This
makes the verifier sublinear in the size of the computation, but we also need to achieve
sublinearity in the public input x. Here too, the verifier has oracle access to x and queries
it a few points during verification. Our idea to achieve sublinearity in x is as follows. First,
we observe that the computation that makes the verifier linear in x in the underlying
AHP is in evaluating a polynomial encoding of x at a random point. We outsource this
computation to the prover, so the prover provides this evaluation together with a rational
proof of correct evaluation. Crucially, this rational proof can be verified given just oracle
access to x. We note that x need not be preprocessed in any way, it is assumed to be
stored in the cloud and the verifier accesses it by querying at certain positions. A key
technical tool towards our construction is a rational proof for polynomial evaluation which
we describe next.
Rational proofs for polynomial evaluation. Given a computation described as an
arithmetic circuit of size n and depth d, the protocol of [CG15] works as follows. On
input x, the prover sends the claimed output y to the verifier, and then they engage in
a recursive protocol. The prover sends the two input value yL, yR to the output gate
g, the verifier checks that g(yL, yR) = y, and then chooses one of yL and yR at random
to recurse on. For uniform circuits, the verifier complexity is O(d). We then describe
polynomial evaluation as a parallel circuit that has depth that is logarithmic in the degree.
Now, invoking the above protocol on this circuit, we obtain a rational proof with O(log d)
verification where the verifier only needs oracle access to the polynomial, for example as a
vector of d coefficients.
Defining rational arguments with extractable properties. In classical arguments
of knowledge we require that “if the verifier accepts a proof with a reasonable probability,
then we are able to (efficiently) extract a valid witness by interacting with the prover”.
Translating this notion into the rational setting requires care.

First, it does not seem possible to have a meaningful notion for instances not in the
language (this is not the problem in the standard notion). Here is why: Recall that the

8 How to Make Rational Arguments Practical and Extractable

goal of designing a rational protocol is to incentivize parties towards the “right” choice, but
for an input x ̸∈ L there is no way of incentivizing them in such a manner. This is because
if x ̸∈ L then the only rational strategy of any prover is to just run the protocol (earning a
possibly meager reward) even if it doesn’t know the witness (a witness the prover cannot
possibly know). For this reason a meaningful definition can only make guarantees about
instances x ∈ L7, e.g., discrete logarithm.

Also, the notion should link the capability of the extractor of outputting a witness
to the reward of the prover. Intuitively, we would like to guarantee that only a prover
who knows the witness should obtain the highest reward. This notion is hard to capture
directly. Our definition tries to instead capture this intuition:

A prover not knowing the witness is incentivized to search for it and only then run the
protocol.

When is it reasonable to ask for the prover to search for a witness? Whenever the witness
is moderately hard to find or hard to find for the verifier (but not for the prover). For
example, maybe there is a (quasi-polynomial time or high-degree polynomial time) search
algorithm that a prover with lots of computational power could run. Or, the witness could
be moderately hard to find in a non-complexity theoretic sense (it may require for example
downloading and scanning the whole history of a blockchain or the Wikipedia corpus).
Naturally, this is meaningful if the cost of the resources required for such provers to search
for the witness is compensated by the received reward. See Section 1.3 and Appendix C for
further discussion. We provide more details and intuitions on our definition for extractable
rational arguments in Section 5.1.
Our final constructions. Our construction works as follows. We look at the polynomial
oracles sent by the AHP prover that “encode” the witness, called the witness-carrying
polynomials (WCP), and polynomial oracles arising from the indexer (preprocessing),
that encode the computation (index). The prover in the compiled argument will treat
the encodings of index and witness differently. The argumenting indexer runs the AHP
indexer and outputs these index polynomials as oracles for the verifier. Then the argument
prover commits to the WCPs sent by the AHP prover using a polynomial commitment
scheme (PCS) and sends this commitment to the argument verifier. Now, (i) queries to
WCP are answered by giving a PCS evaluation proof; (ii) queries to index polynomials
are answered by giving a rational proof; (iii) the verifier’s linear step in the AHP decision
algorithm is outsourced to the prover who provides a rational proof of correct evaluation
of the encoding of the input. This construction (which is essentially a compiler) works for
both P and NP. For NP, this also satisfies our notion of proof of knowledge. We extract
WCPs from the knowledge soundness of the PCS and decode the witness from it. We
show that this is a valid witness with respect to the oracle index and oracle input by
relying on the guarantees of the rational proof. Assuming that PCS is knowledge sound, if
extraction fails, then the prover gave an inconsistent answer in the rational proof. Now, if
the rational proof for polynomial evaluation has a noticeable reward gap, then, we show
that the probability of extraction failure affects the reward gap of the final prover.

1.3 Discussion: Alternative Sublinear Verifiers; Applications
On other approaches for large public inputs

There exist other techniques to let the verifier not read the whole public input in the context
of arguments. They can be used as a way to achieve a sublinear verifier. These approaches,
however, have some drawbacks which justify the alternative framework proposed in this
paper. One folklore approach, for example, is to let the verifier preprocess the public input

7The cryptographic literature has precedents for definitions with “one-sided” guarantees, i.e. for either
yes or no instances only. Such an example is semantic security in witness encryption [GGSW13].

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 9

D and keep only its digest h = H(D), where H is some collision-resistant hash function that
is fast to compute, such as SHA256. Now, instead of providing a proof for just the statement
“f(D) = y” the prover will certify the augmented statement “f(D) = y ∧ H(D) = h”.

One problem with this approach is that it substantially increases the proving time
because hash functions commonly tend to be expensive when used proof systems (see,
e.g., discussion in [WYX+21]). This problem can be mitigated using Hash-and-Prove
schemes [FFG+16] but this requires strong assumptions on the hash function. The latter
also needs to be “algebraic”, hence orders-of-magnitude slower to compute for the verifier.

Another limitation of the digest-based approach arises in settings where the data are
dynamic. If the data change, then the digest h will change as well. Also, depending on
the hash function used, the digest will plausibly need to be recomputed from scratch after
each update. Rational arguments can arguably provide a simpler approach since they do
not require processing again the input after an update.

Application scenarios for the rational model

Applications for rational arguments for deterministic computations:
• Outsourced computations (cloud and volunteer computing): In cloud com-

puting businesses buy computing time from a service, rather than maintain their
own computing resources . In volunteer computing systems (such as SETI@Home
or Folding@Home [KWA+01,P+10]), where the rewards are non-fungible “points”.
Rational arguments are suitable to both of these settings since the computing parties
have an incentive through the payment (resp. reward points) they earn.

• Smart contract execution: Smart contracts are programs running on a blockchain8.
Since it is costly to run them on chain, a common desideratum on contracts is for
them to be as simple as possible. The sublinearity of the verification algorithm in
rational arguments is an attractive feature because it may allow a smart contract
not to even read its whole input to perform an action. As an example, consider a
contract that releases some funds to a user if they provide y such that y = f(x)
where x is some value stored in the contract. The contract could be, e.g., enforcing
the “incentives for an outsourced computation f” as outlined above or representing a
transition function of its own state through f (in this case the reward is tantamount
to some form of mining). A party could now provide y to the contract together with
a proof π9. The contract would then query the required positions of x (a sublinear
amount) and then release the funds depending on the reward function of the rational
argument.

Applications for rational arguments of knowledge: in general, rational arguments of knowl-
edge are a natural primitive for the following problem: party A is interested in rewarding
someone (party B) if they know data with a specific feature. Party A does not necessarily
need to see the data, it just need to be persuaded that they are “extractable” from someone.
Some examples are: a foundation willing to reward someone for finding a proof of the
Riemann Hypothesis, or private individuals willing to reward anyone storing specific parts
of Wikipedia or the Internet Archive on a decentralized network for storage (see Section
7.2 in [CFK22] for more discussion of these and other examples).

We also provide one more application for extractable rational arguments that is specific
to blockchains, in particular for the problem of data availability. In blockchains like
Ethereum not all nodes have access to the full data of the chain. Nodes that are not
expected to store the full data, light nodes, may verify that others do store them by

8See, e.g., https://ethereum.org/en/developers/docs/smart-contracts.
9Here we assume a non-interactive rational arguments. Our arguments are interactive, but public-coin.

We leave it as an open problem to which extent rational arguments can be made non-interactive through
Fiat-Shamir.

https://ethereum.org/en/developers/docs/smart-contracts

10 How to Make Rational Arguments Practical and Extractable

downloading very small random chunks of such data (data availability sampling). The
more assurance we want to have that someone is storing those data, the more light nodes
need to query overall. Rational arguments of knowledge may provide a different approach
to the problem where full nodes are provided incentives for storing the full data through
a rational argument for the statement “I know (specific positions) of data D that is the
opening of this public Merkle Tree root”.

Understanding the advantages the solutions above in the applications we mentioned
(as well others) may require a game-theoretic analysis of the specific setting, which is out
of the scope of this paper. In Appendix C, however, we provide some general observations
for when this approach may be viable, its limitations and heuristic mitigations.

1.4 Related Work

Interactive Proofs and Arguments. Interactive proofs allow a powerful prover to
convince a computationally bounded verifier of the correctness of a computational statement
via the power of interaction and randomness. These proofs allow delegation of computation
where a computationally weak client to delegate computation tasks to a powerful server in
a verifiable way – the server returns the result of the computation together with a proof,
and the client can then verify that the output returned by the server is indeed correct while
performing work less than what is necessary for computing the function itself. Soundness
property of the proof system guarantees that no matter what the prover does, it cannot
make the verifier accept a false claim. Many applications also require succinct verification,
where the verifier is able to check a nondeterministic polynomial-time computation in
time that is much shorter than the time required to run the computation given a the
NP witness. In interactive arguments, soundness is guaranteed only against provers that
are computationally bounded, and argument systems allow us to circumvent efficiency
shortcomings of proofs. Interactive succinct arguments were constructed by Kilian [Kil92],
and was made non-interactive by Micali [Mic94] soon after, in the random oracle model.
Delegation of Computation—Proofs for P. Real world problems common in the
delegation of compuration scenario often correspond to complexity classes lower than NP.
The work of Goldwasser, Kalai and Rothblum [GKR08] gave a single-round argument
to verifiably delegate any bounded depth computation where the verifier is quasi-linear.
The work of Kalai, Raz and Rothblum [KRR14] achieves a single-round argument with
quasi-linear verification time for any language in P. The latter result is under standard
assumptions, in contrast to non-standard assumptions that are known to be necessary for
single round succinct arguments for NP.
Rational Proofs and Arguments. Rational proofs, introduced by Azar and Mi-
cali [AM13] are a framework of interactive proofs where the prover is relaxed to be rational
rather than malicious. In a rational proof, the prover is incentivized: the verifier pays the
prover according to the quality of the result provided, and this reward is set up so that it
is irrational for the prover to return the result of the computation incorrectly. Azar and
Micali also illustrated the power of rational proofs by constructing a single-round rational
proof for all of #P. The work of Campanelli and Gennaro [CG15,CG17] constructs rational
proofs with composition properties (e.g., that are reusable for multiple executions) for
bounded-depth circuits and bounded-space computations. The work of Guo, Hubacek,
Rosen and Vald [GHRV14] restrict the rational prover to be computationally bounded,
obtaining the notion of rational arguments. The advantage of rational arguments over
their classical counterparts is that they allow for low communication and a sublinear
verifier. [GHRV14] construct sublinear verifier rational arguments for class NC1. The
work of [GHRV16] extends this result by constructing a single-round rational argument
with sublinear verification for class P.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 11

Another line of work achieves verifiable computation against rational parties in an
indirect manner through approaches based on fine-grained cryptographic primitives [CG18].

2 Preliminaries

Notation. We denote a finite field by F. We denote by λ a security parameter. We
consider interactive arguments for relations, where a prover P convinces the verifier that
it knows a witness w such that for a public statement x, (x, w) ∈ R. For a pair of PPT
interactive algorithms P, V , we denote a protocol by (P, V) and by (P (w), V)(x), the
random variable representing the transcript between P and V when interacting where w is
(an optional) P ’s private input and x is a common input. We denote by out((P (w), V)(x))
the output of V after interacting with P on input x. We denote a negligible function,
a function that vanishes faster than the inverse of any polynomial in λ by negl(λ). A
noticeable function is the inverse of a polynomial.

2.1 Modelling Access to Inputs
Given algorithm A, we write A(x) (as it is standard) to denote that the string x is written
on the input tape of A. This implies in particular that A will have to run at least in time
|x|. Some of the algorithms in this paper will require only oracle access to inputs. We
denote them through the following superscript notation as in the following:

A[u](x)

Above A has oracle access to input u but “standard” (tape) access to input x. Algorithms
may have oracle and standard access to more than one input like in the following example:

A[u],[v](x, y)

where the algorithm A has oracle access to inputs u, v and standard access to inputs x, y.

2.2 Rational Proofs and Arguments
We give the definition of Rational Proofs from [AM12]. Let rew(·) denote a randomized
function computed by V on the transcript. The goal of a rational P is to maximize the
expected value of reward rew, while the goal of V is to learn the correct evaluation of the
function f on x.

Definition 1 (Rational Proof). A circuit F : {0, 1}n → {0, 1}∗ admits a rational proof if
there exists an interactive proof (P, V) and a randomized reward function rew : {0, 1}∗ →
R≥0 such that

1. For any input x ∈ {0, 1}n, Pr[out((P (x), V [x])) = F (x)] ≥ 1− negl(n).
2. For every prover P̃ , and for any input x ∈ {0, 1}n there exists a δ

P̃
(x) ≥ 0 such that

E[rew((P̃ (x), V [x]))] + δ
P̃

(x) ≤ E[rew((P (x), V [x]))].
The expectations and probabilities are taken over the coins of both prover and verifier.

Rational arguments introduced in [GHRV14] capture a rational prover that is restricted
to computationally bounded strategies.

Definition 2 (Rational Argument [GHRV14]). A circuit F : {0, 1}n → {0, 1}∗ admits a
rational argument if there exists an interactive protocol (P, V) and a randomized reward
function rew : {0, 1}∗ → R≥0 such that for any input x ∈ {0, 1}n, any prover P̃ of size
≤ 2λ(n):

12 How to Make Rational Arguments Practical and Extractable

1. Pr[out((P, V)(x)) = F (x)] ≥ 1− negl(λ)
2. E[rew((P̃ (x), V [x]))] ≤ E[rew((P (x), V [x]))] + negl(λ)
3. If Pr[out((P, V)(x)) ̸= F (x)] ≥ 1/p(n) for some polynomial p(·), then there exists a

polynomial q(·) such that E[rew((P̃ (x), V [x]))] + 1/q(n) ≤ E[rew((P (x), V [x]))]
The expectations and the probabilities are taken over the random coins of the prover and
verifier. The rational argument is efficient if the verifier runs in time o(n).

Property 1 corresponds to the notion of completeness, Property 2 guarantees that the
gain attained by deviating from the prescribed strategy in a computationally bounded way
is at most negligible. Property 3 guarantees that not reporting the correct output with
noticeable probability results in a noticeable loss in reward.

Reward gap measures how big the loss of a prover that always reports F (x) incorrectly
is. A noticeable gap in expectation between such a prover and the prescribed behavior
guarantees that it is beneficial for the prover to act honestly to significantly increase its
utility, allowing us to argue for rationality in the presence of computational cost.

Definition 3 (Reward Gap [GHRV14]). Let (P, V) be a rational argument for a function
f : {0, 1}n → {0, 1}∗ with reward function rew. Let ϵ

P̃
= Pr[out((P̃ , V)(x)) ̸= F (x)],

and δP ∗(x) = E[rew((P (x), V [x]))] − E[rew((P̃ (x), V [x]))]. The reward gap is a function
∆ : N→ R such that for every n ∈ N,

∆(n) = min
x

min
P ∗:ϵP ∗ =1

[δP ∗(x)]

For an arbitrary prover P̃ we have δ
P̃

(x) ≥ ϵ
P̃
·∆(x).

Examples of Rational Proofs. For concreteness here we show the protocol for a
single threshold gate (readers are referred to [AM12,AM13,GHRV14] for more examples).
Let Gn,k(x1, . . . , xn) be a threshold gate with n Boolean inputs, that evaluates to 1 if at
least k of the input bits are 1. The protocol in [AM13] to evaluate this gate goes as follows.
The Prover announces the number m̃ of input bits equal to 1, which allows the Verifier to
compute Gn,k(x1, . . . , xn). The Verifier select a random index i ∈ [1..n] and looks at input
bit b = xi and rewards the Prover using Brier’s Rule BSR(p̃, b) where p̃ = m̃/n i.e. the
probability claimed by the Prover that a randomly selected input bit be 1. Then

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)
Let m be the true number of input bits equal to 1, and p = m/n the corresponding
probability, then the expected reward of the Prover is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover announces the correct
result. Moreover one can see that when the Prover announces a wrong m̃ his reward goes
down by 2(p− p̃)2 ≥ 2/n2. In other words for all n-bit input x, we have ∆(x) = 2/n2 and
if a dishonest Prover P̃ cheats with probability ϵ

P̃
then δ

P̃
> 2ϵ

P̃
/n2.

2.3 Interactive Proofs

Indexed Relations. In order to achieve a succinct verifier, we model relations as triples
instead of pairs; this allows us to split the verifier’s input into one part for the offline phase
and one part for the online phase. The offline input, called the index, is encoded by an
indexer algorithm, and this encoding can be reused for proofs over different instances for

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 13

the same index. Additionally, the encoded index allows verifier efficiency – in cryptographic
protocols the encoding is a cryptographic digest and reading it is more effcieint than reading
the index; in rational protocols, the encoding once generated and stored, is accessed as an
oracle at very few locations.

Definition 4 (Indexed relation [CHM+20]). An indexed relation R is given by a set
of triples (i, x, w) where i is the index, x is the instance, and w is the witness. The
corresponding indexed language LR is the set of pairs (i, x) for which there exists a witness
w such that (i, x, w) ∈ R.

Rank-1 Constraint Systems (R1CS). Rank-1 Constrained Systems (R1CS) are a
popular way to encode computations to be proven via a SNARK. R1CS were implicitly
defined as Quadratic Arithmetic Programs in [GGPR13] where it is proven that they
are NP-complete (and therefore can express any arbitrary non-deterministic polynomial
computation).

An R1CS instance is a tuple (F, A, B, C, x, N, m) where x denotes the public input of
the instance, A, B, C ∈ FN×N are matrices defined over a field F, with N ≥ |x|+ 1, and
there are at most m non-zero entries in each matrix.

An R1CS instance (F, A, B, C, x, N, m) is satisfiable if there exists a witness w ∈
FN−|x|−1 such that

(A · z) ◦ (B · z) = (C · z)

where z = (x, 1, w), · is the matrix-vector product, and ◦ is the Hadamard product.
R1CS for deterministic computations. The above Indexed relation definition is
for NP, can be used to capture P as well. A tuple (i, x, w) corresponds to (f, (x, y), z)
where f(x) = y and z consists of all intermediate values in computing f(x). Now, R1CS
representation for this tuple is well-defined.

A proof/argument system for a language L allows a prover P to convince a verifier V
that x ∈ L for a common input x. A proof of knowledge intuitively captures not only the
truth of a statement x ∈ L, but also that the prover is in “possession” of a witness w.

2.4 Polynomial Commitment Scheme
A polynomial commitment scheme [KZG10] allows a prover to open evaluations of the
committed polynomial succinctly. A polynomial commitment scheme over F is given by a
tuple PC = (setup, commit, open, eval) where:

• setup(1λ, D)→ pppc. On input security parameter λ, and an upper bound D ∈ N on
the degree, setup generates public parameters pppc.

• commit(pppc, f(X), d) → (C, c̃). On input the public parameters pppc, and a uni-
variate polynomial f(X) ∈ F[X] with degree at most d ≤ D, commit outputs a
commitment to the polynomial C, and additionally an opening hint c̃.

• open(pppc, f(X), d, C, c̃)→ b. On input the public parameters pppc, the commitment
C and the opening hint c̃, a polynomial f(X) of degree d ≤ D, open outputs a bit
indicating accept or reject.

• eval(pppc, C, d, x, v; f(X))→ b. A public coin interactive protocol
⟨Peval(f(X)), Veval⟩(pppc, C, d, z, v) between a PPT prover and a PPT verifier. The
parties have as common input public parameters pppc, commitment C, degree d,
evaluation point x, and claimed evaluation v. The prover has, in addition, the
opening f(X) of C, with deg(f) ≤ d. At the end of the protocol, the verifier outputs
1 indicating accepting the proof that f(x) = v, or outputs 0 indicating rejection.

A polynomial commitment scheme must satisfy completeness, commitment binding, evalu-
ation binding. It may also satisfy stronger properties like extractability and hiding.

14 How to Make Rational Arguments Practical and Extractable

Definition 5 (Completeness). For all polynomials f(X) ∈ F[X] of degree d ≤ D, for all
x ∈ F,

Pr

b = 1 :

pppc ← setup(1λ, D)
(C, c̃)← commit(pppc, f(X), d)

v ← f(x)
b← eval(pppc, C, d, x, v; f(X))

 = 1.

Definition 6 (Commitment Binding). A polynomial commitment scheme PC is binding if
for all PPT A, the following probability is negligible in λ:

Pr

open(pppc, f0, d, C, c̃0) = 1∧
open(pppc, f1, d, C, c̃1) = 1∧

f0 ̸= f1

: pppc ← setup(1λ, D)
(C, f0, f1, c̃0, c̃1, d)← A(pppc)

 .

Definition 7 (Extractability). For any PPT adversary A = (A1,A2), there exists a PPT
algorithm E such that the following probability is negligible in λ:

Pr

b = 1 ∧Reval(pppc, C, x, v; f̃ , c̃) = 0 :

pppc ← setup(1λ, D)
(C, d, x, v, st)← A1(pppc)

(f̃ , c̃)← EA2(pppc)
b← ⟨A2(st), Veval⟩(pppc, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {
(
(pppc, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)

)
: (open(pppc, f, d, C, c̃) = 1) ∧ v = f(x)}

Definition 8 (Succinctness). The scheme is proof succinct if the commitments and the
evaluation proofs are of size independent of the degree of the polynomial, |C| is poly(λ),
|π| is poly(λ) where π is the transcript obtained by applying FS to eval. Additionally, the
scheme is verifier succinct if eval runs in time poly(λ) · log(d) for the verifier.

2.5 Algebraic Holographic Proof
Definition 9 (AHP [CHM+20]). An Algebraic Holographic Proof (AHP) over a field
family F for an indexed relation R is given by the following tuple:

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions; I,P,V are the
indexer , prover , and verifier algorithms; k denotes the number of rounds, s denotes the
number of polynomials in each round, and d specifies degree bounds on these polynomials.
The protocol proceeds as follows:

• Indexing phase The indexer I receives as input a field F ∈ F , index i for R, and
outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . ,
d(|i|, 0, s(0)) respectively. This phase does not depend on the public input or witness
and simply consists of encoding the given index i.

• Online phase The prover P receives10 (i, x, w), for an instance x and witness w
such that (i, x, w) ∈ R. The verifier V receives x and oracle access to the polynomials
output by I(F, i). The prover P and the verifier V interact over k = k(|i|) rounds. In
the i-th round, i ∈ [k], the verifier V sends a message ρi ∈ F∗ to the prover P; the
prover P responds with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. At the end of
k rounds, the verifier outputs additional randomness ρk+1 ∈ F∗ which is an auxiliary
input to V in subsequent phases.

10F is an implicit input to all algorithms, and omitted for brevity.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 15

• Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all the polynomials
sent by the prover P . The verifier V executes a subroutine QV that receives (x; ρ1, . . . ,
ρk+1) and outputs a query set Q consisting of tuples ((i, j), z) that are interpreted
as “query pi,j at z ∈ F". We denote a vector consisting of query answers by p(Q).

• Decision phase The verifier outputs accept or reject based on the answers received
to the queries and its randomness. That is, V executes a subroutine DV that receives
(x, p(Q); ρ1, . . . , ρk+1) as input, and outputs a decision bit.

The function d determines what kind of provers are considered for the completeness and
soundness properties of the proof system. A (potentially malicious) prover P̃ is considered
admissible for AHP if, in an interaction with the verifier V, it holds that for every round
i ∈ [k] and oracle index j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P
is required to be admissible under this definition. An AHP satisfies completeness and
soundness as defined below.

• Completeness: An AHP is complete if for all F ∈ F and any (i, x, w) ∈ R, the decision
bit returned by VI(F,i)(x) after interacting with an honest P(i, x, w) is 1.

• Soundness: An AHP is ϵ-sound if for any prover P∗, field F ∈ F , for every (i, x) ̸∈ LR,
and auxiliary input z:

Pr[⟨P∗(i, x, z),VI(F,i)(x)⟩=1] ≤ ϵ

Using the compilation process in [BFS20, CHM+20], AHP = (I,P,V) for R can be
turned into a preprocessing argument, denoted by AoK = (S, I, P, V) for R.

3 Definitions and Building Blocks
3.1 Rational Arguments with Indexing
We now formalize preprocessing the function so that a rational verifier can be sublinear
in the size of the function representation (for instance, sublinear in the size of the circuit
computing f). Once the preprocessing is done, the verifier has oracle access to preprocessed
information and can then engage in multiple proofs for the same function by using the same
oracles. We call this model rational argument with indexing to indicate that the function
is preprocessed or indexed and the verifier only needs this indexed material in order to
compute the reward. Crucially, accessing this indexed material is via oracle queries, and
the verifier only makes sublinear number of queries.

Definition 10 (Rational Argument with Indexing). A Rational Argument with Indexing
for a function f : {0, 1}n → {0, 1}∗ is a tuple of four algorithms (Setup, idx, Prv, V, rew).
Setup is a probabilistic polynomial-time setup algorithm that samples public parameters
pprat. The indexer algorithm idx is a deterministic algorithm that takes pprat, f , and
outputs ϕ ∈ {0, 1}∗ that is used as an oracle by V . (Prv, V [ϕ], rew) is a rational argument
for f where the reward function rew[ϕ](pprat, x, (Prv, V)(x))→ R≥0 can be computed with
oracle access to ϕ.

In our constructions, the verifier needs to do no preprocessing for a function being
indexed except saving a representation of the function f . In particular, when the function
is polynomial evaluation, the verifier just needs to store the polynomial (for example, as a
vector of coefficients) and make few oracle accesses to it during verification.
A note on input access. The standard verifier in interactive proofs needs to read the
whole public input (i.e., the input is written on an input tape and read sequentially by a
Turing machine). Works on rational proofs [AM12] model the verifier’s access to input
differently. As in proofs of proximity [RVW13], we do not require the verifier to read all

16 How to Make Rational Arguments Practical and Extractable

of it, but only to query specific indices (usually randomly sampled). In this work, we
exploit this fact plus more: we explicitly model the fact that the verifier may also have
oracle access to (some description of) the function and oracle access to the input. This
provides efficiency of the verifier when combined with the fact that, in the online stage,
the verifier needs to query very few points in the representation of f . (Prv, V [ϕ],[x], rew) is
a rational argument for f with both function and input indexing where the reward function
rew[ϕ],[x](pprat, x, (Prv, V)(x))→ R≥0 can be computed with oracle access to ϕ and x.11

Definition 11 (Rational Argument with Full Indexing). A Rational Argument with Full In-
dexing for a function f : {0, 1}n → {0, 1}∗ is a tuple of four algorithms (Setup, idx, Prv, V, rew).
Setup is a probabilistic polynomial-time setup algorithm that samples public parameters
pprat. The indexer algorithm idx is a deterministic algorithm that takes pprat, f , and out-
puts ϕ ∈ {0, 1}∗ that is used as an oracle by V . (Prv, V [ϕ],[x], rew) is a rational argument
for f where the reward function rew[ϕ],[x](pprat, x, (Prv, V)(x)) → R≥0 can be computed
with oracle access to ϕ and x.

3.2 Efficient Rational Proofs for Polynomial Evaluation

Let f ∈ F[X] be a univariate polynomial of degree d, f(X) =
d∑

i=0
aiX

i. We now consider

rational proofs for polynomial evaluation. That is for the function

Fpoly,f (t) := f(t)

In order to construct efficient rational proofs for polynomial evaluation we exploit
parallel circuits as much as possible proceed as follows:

• We describe a highly parallel circuit for Fpoly,f (see PolyEvalPreproc in Fig. 1) which
works by requiring a small preprocessing by the verifier. This preprocessing requires
logarithmic steps in the degree of the polynomial. Its output is described as the
vector u in Fig. 2.

• We then apply a rational proof for highly parallel arithmetic circuits from [CG15]
(see also Lemma 2) to PolyEvalPreproc.

Theorem 1. There exists a rational proof for polynomial evaluation where:
• the verifier runs in time O(log(d));
• the query and the round complexity is O(log(d));
• the prover runs in time O(d);
• the reward gap is noticeable.

Proof. Completeness and rationality properties of the protocol follow by applying Lemma 2
and Lemma 1 to the protocol in Fig. 2.

The efficiency of the protocol follows from these observations: In order to evaluate f
at point t, the sum consists of d + 1 terms where each term can be computed using O(d)
multiplications in the circuits after a preprocessing. This results into an arithmetic circuit
of depth O(log d) as described in Fig. 1. We can thus obtain a rational proof that runs in
logarithmic rounds and communication and with a logarithmic verifier (Theorem 1).

In the previous theorem we used the following lemma, which we prove in Appendix E.1.

Lemma 1. The following properties hold for the circuit PolyEvalPreproc in Fig. 1:
11See also Section 2.1.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 17

PolyEvalPreproc(f, u)

Parse u as (u1, . . . , uℓ)

Parse f as a tuple of coefficients s.t. f(X) =
2ℓ∑

i=0

aiX
i, deg(f) = 2ℓ

for i = 1, . . . , 2ℓ (in parallel)

yi ←
∏

j∈[ℓ]:bj (i)=1

uj (where bj(i) is the j-th bit of i for each j)

si ← ai · yi

endfor

z ← a0 +
∑

i∈[2ℓ]

si

return z

Figure 1: An arithmetic circuit with logarithmic depth for polynomial evaluation.

Rational proof for Fpoly,f (t):
• Setup:

• Do nothing
• idx(f):

• return a description of f as a tuple of coefficients
• Protocol P (f, t)↔ V [f](t):

• P and V compute u = (t, t2, t4, . . . , t2ℓ−1
, t2ℓ) by repeated squaring where deg(f) = 2ℓ

• The two parties then proceed by running RPPar.PF ↔ RPPar.V [x]
F where the circuit

F := PolyEvalPreproc and input x := (f, u).
• Reward:

• Return reward from RPPar.rew[x]

Figure 2: Rational proof for polynomial evaluation. The protocol RPPar is from the
statement of Lemma 2.

• if f is a polynomial and t ∈ F then PolyEvalPreproc
(

f,
(

t, t2, t4, . . . , t2ℓ−1
, t2ℓ

))
outputs f(t);

• the circuit wiring can be decided in time logarithmic in the degree of the polynomial.

A description of the protocol RPPar used in Fig. 2 is in the appendix (Appendix B).

Lemma 2 ([CG15]). Let F be a field and F be a logtime-uniform arithmetic circuit of
logarithmic depth then there exists a rational proof RPPar for F . For an input x of size n,
the verifier runs in logarithmic time in n, the query and the round complexity is logarithmic
in n. Its reward gap is noticeable.

4 Our Compiler: AHP to Rational Argument for P
Consider the indexed relation R given by triples (i, x, w) that represent (f, (x, y), w) such
that f(x) = y and w consists of all intermediate values in computing f(x). We now

18 How to Make Rational Arguments Practical and Extractable

construct a compiler that transforms an AHP into a rational argument for deterministic
computations.

The high-level idea behind our compiler is along the lines of the AHP to succinct
argument compiler [BFS20, CHM+20]. In an AHP, the prover and the verifier interact
where the prover sends polynomial oracles, and the verifier sends random challenges.
Then, the verifier queries the polynomials at some challenge points for evaluation, and
finally accepts or rejects. Existing compilers use a polynomial commitment scheme as a
cryptographic object to realize the polynomial oracle. The prover in the compiled argument
commits to the polynomials and then provides evaluations together with proofs of correct
evaluation. The argument verifier accepts if both the PCS verifier and the AHP verifier
accept. Our key idea is to separate the queries, and have the prover answer some of them
with a cryptographic proof and the rest with a rational proof.

• Queries to index polynomials p0,j : on query z, prover responds with y and a rational
proof for the statement “p0,j(z) = y”.

• Queries to witness polynomials: pi,j : on query z, prover responds with y together with
an evaluation proof of a polynomial commitment scheme for “pi,j(z) = y AND Ci,j =
Commit(pi,j)”

Our compiler removes cryptographic operations in the indexing step and the prover
performs cryptographic operations that grows only with the input and not the circuit. The
resulting argument is a rational argument. Now, in order to make the verifier sublinear in
the public input, we outsource the computation involving the public input to the prover,
and have the prover provide a rational proof.
Additional properties of AHP. We use the definition of witness-carrying polynomials
(WCPs) [ABC+22] that identify a minimum set of polynomials containing enough in-
formation about the whole witness, with which auxiliary commitments are shown to be
consistent. We also restrict the AHP extractor to be straightline and deterministic so that
it is essentially a witness decoding algorithm that works for both honest and malicious
provers. Additionally, we assume that the public input access in the computation of the
AHP verifier is restricted to querying a polynomial encoding of it. We note that the AHPs
of PLONK, Marlin and Sonic already satisfy these properties in Appendix F.

4.1 A Formal Description of our Compiler from AHP to Rational
Argument

Let AHP = (I,P,V) be an AHP for R. Let PC = (setup, commit, open, eval) be a polyno-
mial commitment scheme. and rat-pc = (idx, P ↔ V, rew) be a rational argument system
for polynomial evaluations. We assume that V has a query algorithm QV and a decision
algorithm DV . Furthermore, whenever DV uses the statement x, it is for the computation of
a polynomial encoding x̂ and therefore giving oracle access to x̂ suffices to correctly run the
decision algorithm DV . We therefore think of DV(x, v; ρ1, . . . , ρk+1) as Dx̂

V(v; ρ1, . . . , ρk+1).
This is without loss of generality for AHPs of interest (Appendix F). The rational argument
with full indexing (Setup, idx, P, V, rew) for R is described in Fig. 3.

Theorem 2. Let R be the relation (i, x, w) that represents (f, (x, y), w) Let AHP be an
AHP for R with soundness error ϵ1, let PC be a polynomial commitment scheme with
extractability error ϵ2, and rat-pc be a rational proof for polynomial evaluation with reward
gap ∆. The, the compiled system is a rational argument for R with reward gap ∆(1−ϵ1−ϵ2).
The verifier runs in time O(|y|+ log |f |+ log |x|) given oracle access to x, where |f | is the
R1CS complexity of f .

12Here, we assume that the AHP encodes the input as a polynomial in monomial basis. The compiler
extends to AHPs that encode input as a polynomial in Lagrange basis as well, by simply using a rational
proof for evaluating a polynomial given point-evaluation pairs. We elaborate in Appendix F.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 19

Let AHP = (I,P,V) be an AHP for R. Let PC = (setup, commit, open, eval) be a polynomial
commitment scheme. Let rat-pc = (idx, P ↔ V, rew) be a rational argument system for polynomial
evaluations.

• Setup Setup(1λ): Run pppc ← setup(1λ), pprat ← Setup(N). Output srs := (pppc, pprat).

• Preprocessing idx: On input i:

1. Run the AHP indexer I on i to obtain polynomials (p0,j)s(0)
j=1 ∈ F[X].

2. For j ∈ [s(0)], invoke the rational argument indexer to preprocess p0,j ; ϕj ← idx(p0,j).
3. Input indexing: Run the rational argument indexer idx on x; ϕv ← idx(x).

Output ipk := (ϕv , (ϕj)s(0)
j=1).

• Prover P and Verifier V: In every round i ∈ [k], P and V simulate the interaction between the
AHP prover P(i, x, w) and verifier V(x). In round i:

1. V interacts with P and internally runs V. V receives ρi ∈ F from V, and forwards it to P.
2. P interacts with V and internally runs P. P forwards the received ρi to P, and receives

s(i) polynomials pi,1, . . . , pi,s(i) ∈ F[X]. P invokes the polynomial commitment scheme
to commit to each of these polynomials.

Ci,j = commit(pi,j), for j = 1, . . . , s(i)

P sends the vector of commitments C = {Ci,j} to V.
• P and V simulate the query phase of the AHP.

1. Let p = (pi,j)i∈[k],j∈[s(i)] denote the vector consisting of all the polynomials sent by
P, and C the vector of commitments to p. V executes Qx̂

V (ρ1, . . . , ρk+1) and outputs
a query set Q consisting of tuples (pi,j , z). V separates the set of query points (pi,j , z)
into rational queries Qr (that are to index polynomials, that is, i = 0), and crytographic
queries Qc (i ̸= 0) and forwards (Qc, Qr) to P.

2. • Rational queries (i = 0): For (p0,j , zj) ∈ Qr, P and V run a rational argument
for polynomial evaluation. For each (fj , zj) ∈ Qr, execute rational proof for
Fpoly,fj

(zj): P (fj , zj)↔ V [ϕj](zj).

• Cryptographic queries (i > 0): For (pi,j , z) ∈ Qc, P and V run eval(pppc, C,
d, z, v; p) where z is the vector of all query points in Qc and v is vector of all
claimed evaluations. In the above, eval is the batched evaluation protocol of the
polynomial commitment scheme that proves the evaluation of multiple polynomial
commitments.

• Reward phase:

1. V runs V’s decision algorithm Dx̂
V (v; ρ1, . . . , ρk+1). Whenever DV queries x̂ on α, P and

V run a rational argument for polynomial evaluation. For each (x̂, αj), execute rational
proof for Fpoly,x̂(αj): P (x̂, αj)↔ V [x̂](αj)12.
V receives a decision bit b1 from DV .

2. Let b2 be the decision bit of V from the execution of eval.
3. If (b1 = 1 ∧ b2 = 1), for each (p0,j , zj) ∈ Qr, V computes rewj ← rew[ϕj](pprat, zj , (P,

V)(zj)), and sets rew← minj{rewj}.

Figure 3: Our compiler from AHP to rational arguments.

20 How to Make Rational Arguments Practical and Extractable

Proof. Let AHP{pi,j} be the starting AHP with polynomial oracles. We first consider a
hybrid intermediate oracle argument system AHP{p0,j} where the polynomial oracles of
{pi,j}, for i ̸= 0 are realized via a cyptographic PCS PC, and the polynomials {p0,j} are
still available as oracles. Suppose prover P̃ of AHP{p0,j} convinces V of instance (f, x, ỹ) in
LR. We construct an adversary Apc against the extractability game of PC. APC receives
the commitment key ck, and random coins and internally invokes P̃ to obtain a set of
commitments {Ci,j}i∈[k],j∈[s(i)]. We now invoke the extractor EPC, which given the same
input as APC outputs a set of polynomials p̃ = {pi,j}i∈[k],j∈[s(i)]. If Epc fails, that is the
extracted polynomials are inconsistent with the alleged evaluations (p̃(z) ̸= v), then APC
wins the extractability game, which happens with probability ϵ2. Hence, except with
probability ϵ2, p̃(z) = v. Given that the evaluations are valid w.r.t the set of polynomials
p̃, V accepts when AHP verifier accepts. Since the soundness error of the AHP is ϵ1, the
probability that V accepts (f, x, ỹ) /∈ LR is ϵ1 + ϵ2.

Now, we replace oracle calls to {p0,j} polynomials with rational proofs for polynomial
evaluation. The hybrid protocol AHP{p0,j} is compiled into a rational argument Π where
p0,j and x̂ are realized via a rational proof system. To show the reward gap of Π, we
consider the following events:

• Event A: V accepts, that is, b1 = 1∧b2 = 1, and the rational prover correctly answers
all queries to p0,j), x̂, that is, for all j, out((P ∗, V)(z)) = p0,j(z), for every query z
to p0,j , and out((P ∗, V)(z)) = x̂(z), for every query z to x̂.

• Event B: V accepts, that is, b1 = 1 ∧ b2 = 1, and the rational prover incorrectly
answers queries, that is, for some j, out((P ∗, V)(z)) ̸= p0,j(z).

• Event C: V rejects, that is b1 = 0 ∨ b2 = 0
Now, the expected reward is

E[rew((P̃ (x), V [x]))] = Pr[A] · E[rew((P̃ , V)(xA))|A]+
Pr[B] · E[rew((P̃ , V)(xB))|B] + Pr[C] · E[rew((P̃ , V)(xC))|C] (2)

where xE denotes the distribution of the instance for the rational argument given the
occurance of event E. When event C occurs, by construction, the reward is 0, therefore,

E[rew((P̃ (x), V [x]))] = Pr[A] · E[rew((P̃ , V)(xA))|A] + Pr[B] · E[rew((P̃ , V)(xB))|B]
Now, we bound the probability of event A.

Pr[A] ≤ ϵ1 + ϵ2

This is because in the hybrid world where only rational proofs are oracles and others
are cryptographically realized, the soundness error is ϵ1 + ϵ2, and when event A occurs,
the prover gives correct answers to all ratuonal queries (and therefore behave ideally).
Moreover, the prover in the compiled argument does not learn anything more from the
query itself since in a public-coin AHP, the queries are independent of the rest of the
communication. Now, we have

E[rew((P̃ (x), V [x]))] ≤ Pr[A]·E[rew((P̃ , V)(xA))|A]+(1−Pr[A])·(E[rew((P, V)(xB))]−∆)
In a public-coin AHP, the verifier queries to the statement polynomials are from tossing

public coins, the distribution of queries to polynomials of rational proof is independent of
the transcript and instance. Thus, xA and xB are distributed identically. Therefore,

E[rew((P̃ (x), V [x]))] ≤ Pr[A] · E[rew((P, V)(x))] + (1− Pr[A]) · (E[rew((P, V)(x))]−∆)

E[rew((P̃ (x), V [x]))] ≤ E[rew((P, V)(x))]− (1− Pr[A]) ·∆

E[rew((P̃ (x), V [x]))] ≤ E[rew((P, V)(x))]− (1− ϵ1 − ϵ2) ·∆

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 21

4.2 Instantiating Our Compiler
Instantiating our compiler requires selecting an AHP (with a decision algorithm with
specific properties), a polynomial commitment scheme and a rational argument system for
polynomial evaluation. The last can be instantiated through the construction described
in Section 3.2. Below we discuss AHP and polynomial commitment candidates. These
instantiations are also suitable for our construction in Section 5.2.

We show how to make the decision algorithm DV sublinear in the statement x by
realizing Dx̂

V(v; ρ1, . . . , ρk+1) for candidate AHPs: Marlin in Appendix F.2, PLONK in
Appendix F.3, and Sonic in Appendix F.4.

For polynomial commitments, example candidate constructions are Dory [Lee21] (prov-
ably extractable under the SXDH assumption, with transparent setup, logarithmic commu-
nication/rounds/verification) and KZG [KZG10] (non-interactive, with trusted setup, con-
stant communication and verification but with extraction provable in the AGM [FKL18]).

5 Rational Proofs and Arguments of Knowledge for
NP

The work of [GHRV14] showed how to downscale rational proofs for #P of Azar and Micali
to NP. They give a succinct (what they call extremely laconic) rational proof for any
language in NP where the communication is one bit. However, there are two downsides:
(i) the verifier is not succinct, and (ii) the reward gap is negligible. We begin by exploring
the possibility of succinct rational proofs for NP with noticeable reward gap.
Succinct Rational Proofs for NP. [GHRV14] also shows that such succinct rational
proofs for NP cannot have non-negligible reward gap when the proof is public coin and non-
interactive. We show that we cannot have rational proofs for NP that have communication
complexity logarithmic in the size of the witness, even when interaction is allowed.13

We prove the following theorem in Appendix E.2.

Theorem 3 (Impossibility of succinct rational proofs for NP). Let (P, V) be a public coin
interactive rational proof for a language L with perfect completeness. Let rew be the reward
function, log(n) and poly(n) be the communication complexity and verification complexity
respectively. If the reward gap ∆ is a noticeable function, then L is decidable poly(n) time.

This theorem shows that even in the rational setting (as in the classical setting), we
cannot have succinctness by increasing the number of rounds if we want a proof system.
We therefore relax the soundness requirement from proof to argument just as in the
classical setting to achieve succinctness. Most languages that show up in practice need the
guarantee of knowledge of a witness: for instance proof of discrete logarithm of a public
value or preimage of a compressing function do not guarantee much since they always
exist. Instead, what is meaningful is if the prover actually knows the discrete logarithm or
the preimage. In the classical setting, this is captured by proofs/arguments of knowledge.
We now define rational arguments of knowledge for NP.

5.1 Succinct Rational Arguments of Knowledge for NP
We now define rational arguments of knowledge where probability of the extractor out-
putting a witness is tied to the reward of the prover (see also discussion in Section 1.2).

13Theorem 16 of [GHRV14] shows that rational proofs with one round and logarithmic communication
for NP are impossible, assuming NP ̸⊆ BPP. The theorem we show extends the impossibility even for
rational proofs with logarithmically many rounds. Theorem 5 of [CG17] shows that rational proofs with
polylog rounds and communication complexity for NP are impossible, assuming NP ̸⊆ BPQP. Our theorem
is under the weaker assumption that NP ̸⊆ BPP.

22 How to Make Rational Arguments Practical and Extractable

Intuitions on our notion

Recall from Section 1.2 that our notion is silent on the case x ̸∈ L. An informal version of
our definition is as follows:

For every x ∈ L :
1. the honest prover (running the protocol with some valid witness as input) will

earn the highest reward;
2. a prover not knowing the witness should earn a “low” amount.

The two requirements together capture the intuition discussed in Section 1.2, i.e. that a
prover not knowing a witness will be incentivized to search for it before protocol execution:

• Requirement 2 implies that not knowing the witness (as in “acting in a way that
makes the extractor fail”) gives a low reward.

• By requirement 1, there is at least one strategy that provides the high reward (the
honest prover’s strategy).

• Note that requirement 1 and 2 together prevent the extractor from being trivial
(never returning valid witnesses for statements in the language).

The two requirements are formalized in Definition 12. See further discussion in Appendix C.

Definition 12 (Rational AoK). A Rational AoK Π for L ∈ NP is given by a tuple
(Setup, idx, P, V, rew): Setup is a probabilistic polynomial-time setup algorithm that samples
public parameters pprat. The indexer algorithm idx is a deterministic algorithm that takes
pprat,R, and outputs ϕ ∈ {0, 1}∗ that is used as an oracle by V , where R(x, ·) = 1 iff
x ∈ L. The reward function rew[ϕ],[x](pprat, x, (P, V)(x)) → R≥0 can be computed with
oracle access to ϕ and x. Π is said to have reward gap ∆ if for any PPT prover P̃ , any
input x ∈ L, the following hold:

1. (Completeness) rew(P, V)(x) > 0
2. (Knowledge soundness) There exists a PPT extractor E such that if Pr[w ← E P̃ (x) :
R(x, w) = 0] ≥ 1/q(n) for some polynomial q(·), then there exists a polynomial p(·)
such that E[rew((P̃ (x), V [x]))] + ∆ ≤ E[rew((P (x), V [x]))], for ∆ = 1/p(n).

5.2 Our Compiler: AHP to Rational AoK for NP

Consider the indexed relation R given by triples (i, x, w) where the circuit for the relation
is given by the index i, x is the instance, and w is the witness. The corresponding indexed
language L(R) is the set of pairs (i, x) for which there exists a witness w s.t. (i, x, w) ∈ R.
We construct a compiler that transforms an AHP into a rational argument for NP.

Our compiler is the same as the compiler for P in Section 4. Here, we show that the
compiler yields an argument of knowledge for NP, by showing an extractor that satisfies
Definition 12. The resulting rational AoK does not perform any cryptographic operations
in the indexing step and the prover performs cryptographic operations that grows only
with the witness and not the circuit.

Theorem 4. Let R be an NP relation. Let AHP be an AHP for R with soundness error
ϵ1, let PC be a polynomial commitment scheme with extractability error ϵ2, and rat-pc be a
rational proof for polynomial evaluation with reward gap ∆. Then, the compiled system is
a rational argument of knowledge for R with reward gap ∆(1− ϵ1 − ϵ2).

A proof of the above theorem is in Appendix E.3.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 23

Acknowledgements
The authors thank Mahak Pancholi and Nicola Greco for helpful feedback on early versions
of this document. Chaya Ganesh was funded by Protocol Labs through grant 4029342296
(RFP-013). Part of this work was done by Rosario Gennaro while affiliated with Protocol
Labs.

24 How to Make Rational Arguments Practical and Extractable

References
[ABC+22] Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya

Ganesh, Claudio Orlandi, and Akira Takahashi. ECLIPSE: Enhanced com-
piling method for pedersen-committed zkSNARK engines. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I,
volume 13177 of LNCS, pages 584–614. Springer, Heidelberg, March 2022.
doi:10.1007/978-3-030-97121-2_21.

[AM12] Pablo Daniel Azar and Silvio Micali. Rational proofs. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 1017–1028.
ACM, 2012.

[AM13] Pablo Daniel Azar and Silvio Micali. Super-efficient rational proofs. In
Proceedings of the fourteenth ACM conference on Electronic commerce, pages
29–30. ACM, 2013.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August
2013. doi:10.1007/978-3-642-40084-1_6.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_24.

[BIS90] David A Mix Barrington, Neil Immerman, and Howard Straubing. On unifor-
mity within NC1. Journal of Computer and System Sciences, 41(3):274–306,
1990.

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián
Rodríguez. Lunar: A toolbox for more efficient universal and updatable zk-
SNARKs and commit-and-prove extensions. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 3–33.
Springer, Heidelberg, December 2021. doi:10.1007/978-3-030-92078-4_1.

[CFK22] Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Witness
encryption for succinct functional commitments and applications. Cryptology
ePrint Archive, Paper 2022/1510, 2022. https://eprint.iacr.org/2022/
1510. URL: https://eprint.iacr.org/2022/1510.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular
design and composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 2075–2092. ACM Press, November 2019. doi:10.1145/3319535.
3339820.

[CG15] Matteo Campanelli and Rosario Gennaro. Sequentially composable rational
proofs. In Decision and Game Theory for Security: 6th International Confer-
ence, GameSec 2015, London, UK, November 4-5, 2015, Proceedings 6, pages
270–288. Springer, 2015.

[CG17] Matteo Campanelli and Rosario Gennaro. Efficient rational proofs for space
bounded computations. In Stefan Rass, Bo An, Christopher Kiekintveld, Fei

https://doi.org/10.1007/978-3-030-97121-2_21
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_1
https://eprint.iacr.org/2022/1510
https://eprint.iacr.org/2022/1510
https://eprint.iacr.org/2022/1510
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 25

Fang, and Stefan Schauer, editors, Decision and Game Theory for Security,
pages 53–73, Cham, 2017. Springer International Publishing.

[CG18] Matteo Campanelli and Rosario Gennaro. Fine-grained secure computation.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume
11240 of LNCS, pages 66–97. Springer, Heidelberg, November 2018. doi:
10.1007/978-3-030-03810-6_3.

[CGG+23] Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara
Mihali, and Justin Thaler. Testudo: Linear time prover snarks with constant
size proofs and square root size universal setup. In Progress in Cryptology–
LATINCRYPT 2023: 8th International Conference on Cryptology and In-
formation Security in Latin America, LATINCRYPT 2023, Quito, Ecuador,
October 3–6, 2023, Proceedings, pages 331–351. Springer, 2023.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and up-
datable SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45721-1_26.

[ECK+23] Jens Ernstberger, Stefanos Chaliasos, George Kadianakis, Sebastian Steinhorst,
Philipp Jovanovic, Arthur Gervais, Benjamin Livshits, and Michele Orrù. zk-
bench: A toolset for comparative evaluation and performance benchmarking of
snarks. Cryptology ePrint Archive, Paper 2023/1503, 2023. https://eprint.
iacr.org/2023/1503. URL: https://eprint.iacr.org/2023/1503.

[FFG+16] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko,
and Bryan Parno. Hash first, argue later: Adaptive verifiable computations
on outsourced data. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
1304–1316. ACM Press, October 2016. doi:10.1145/2976749.2978368.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 152–168. Springer, Heidelberg, August 2005. doi:10.1007/
11535218_10.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Hei-
delberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013. doi:10.1007/978-3-642-38348-9_
37.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,

https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2023/1503
https://eprint.iacr.org/2023/1503
https://eprint.iacr.org/2023/1503
https://doi.org/10.1145/2976749.2978368
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

26 How to Make Rational Arguments Practical and Extractable

editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013. doi:
10.1145/2488608.2488667.

[GHRV14] Siyao Guo, Pavel Hubácek, Alon Rosen, and Margarita Vald. Rational argu-
ments: single round delegation with sublinear verification. In Moni Naor, edi-
tor, ITCS 2014, pages 523–540. ACM, January 2014. doi:10.1145/2554797.
2554845.

[GHRV16] Siyao Guo, Pavel Hubácek, Alon Rosen, and Margarita Vald. Rational sum-
checks. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II,
volume 9563 of LNCS, pages 319–351. Springer, Heidelberg, January 2016.
doi:10.1007/978-3-662-49099-0_12.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press, May
2008. doi:10.1145/1374376.1374396.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. doi:
10.1007/978-3-662-49896-5_11.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992. doi:
10.1145/129712.129782.

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift:
Transparent SNARKs from list polynomial commitments. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1725–
1737. ACM Press, November 2022. doi:10.1145/3548606.3560657.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In David B. Shmoys, editor,
46th ACM STOC, pages 485–494. ACM Press, May / June 2014. doi:10.
1145/2591796.2591809.

[KWA+01] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Leboisky.
Seti@ home-massively distributed computing for seti. Computing in science &
engineering, 3(1):78–83, 2001.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010. doi:10.1007/978-3-642-17373-8_11.

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner
products and polynomial commitments. In Kobbi Nissim and Brent Waters,
editors, TCC 2021, Part II, volume 13043 of LNCS, pages 1–34. Springer,
Heidelberg, November 2021. doi:10.1007/978-3-030-90453-1_1.

https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2554797.2554845
https://doi.org/10.1145/2554797.2554845
https://doi.org/10.1007/978-3-662-49099-0_12
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/2591796.2591809
https://doi.org/10.1145/2591796.2591809
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 27

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time and
post-quantum zero-knowledge SNARKs for R1CS. Cryptology ePrint Archive,
Report 2021/030, 2021. https://eprint.iacr.org/2021/030.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press,
November 2019. doi:10.1145/3319535.3339817.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453.
IEEE Computer Society Press, November 1994. doi:10.1109/SFCS.1994.
365746.

[P+10] Vijay Pande et al. Folding@ home. Distributed Computing, 2010.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs
of proximity: delegating computation in sublinear time. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 793–802.
ACM Press, June 2013. doi:10.1145/2488608.2488709.

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and
updatable SNARKs. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 774–804, Virtual Event, August 2021.
Springer, Heidelberg. doi:10.1007/978-3-030-84242-0_27.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium
on Security and Privacy, pages 926–943. IEEE Computer Society Press, May
2018. doi:10.1109/SP.2018.00060.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang.
Mystique: Efficient conversions for zero-knowledge proofs with applications to
machine learning. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 501–518. USENIX Association, August 2021.

https://eprint.iacr.org/2021/030
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1109/SP.2018.00060

28 How to Make Rational Arguments Practical and Extractable

Supplementary Material

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 29

A Uniform Families of Circuits
Definition 13 ([BIS90]). A circuit family is said to be DLOGTIME-uniform if the
connection language

{(1n, g, h, i) : h is the ith input gate to g in Cn} ∪ {(1n, g, t) : g is a gate of type t in Cn}

is computable in logarithmic time.

B The Rational Proof from [CG15]
The following protocol works for functions f : {0, 1}n → {0, 1}n expressed by an arithmetic
circuit C of size C and depth d and fan-in 2, given as a common input to both Prover and
Verifier together with the input x.

Intuitively the idea is for the Prover to provide the Verifier with the output value y
and its two “children” yL, yR in the gate, i.e. the two input values of the last output gate
G. The Verifier checks that G(yL, yR) = y, and then asks the Prover to verify that yL or
yR (chosen a random) is correct, by recursing on the above test. The protocol description
follows.

1. The Prover evaluates the circuit on x and send the output value y1 to the Verifier.
2. The Verifier identifies the root gate g1 and then invokes Round(1, g1, y1).

The procedure Round(i, gi, yi) is defined for 1 ≤ i ≤ d as follows:
1. The Prover sends the value of the input wires z0

i and z1
i of gi to the Verifier.

2. The Verifiers performs the following
• Check that yi is the result of the operation of gate gi on inputs z0

i and z1
i . If

not STOP and pay a reward of 0.
• If i = d (i.e. if the inputs to gi are input wires), check that the values of z0

i and
z1

i are equal to the corresponding bits of x. Pay reward R to Merlin if this is
the case, nothing otherwise.

• If i < d, choose a random bit b, send it to Merlin and invoke Round(i+1, gb
i+1, zb

i)
where gb

i+1 is the child gate of gi whose output is zb
i .

Efficiency The protocol runs at most in d rounds. In each round, the Prover sends
a constant number of bits representing the values of specific input and output wires;
The Verifier sends at most one bit per round, the choice of the child gate. Thus the
communication complexity is O(d) bits.

The computation of the Verifier in each round is: (i) computing the result of a gate
and checking for bit equality; (ii) sampling a child. Gate operations and equality are O(1)
per round. We assume our circuits are T -uniform, which allows the Verifier to select the
correct gate in time T (n) Thus the Verifier runs in O(r · T (n)) with r = O(log C).

C Discussion on Incentives in Rational Arguments with
Extraction

Our notion of rational arguments with extraction is meant to incentivize a party to know a
witness before engaging in the protocol (for example by searching for it). There are some
points of care when applying this notion. For parties to be incentivized to search for a
witness, it should not be too costly to do so. Naturally, it should somewhat be feasible for
them to search the witness. This is not the case for all parties. For parties, for whom it is

30 How to Make Rational Arguments Practical and Extractable

simply infeasible to search for a witness, the protocol should incentivize them simply not
to run the protocol.

In this section we discuss these scenarios more in detail and give an intuition of how
they could be dealt with. We will distinguish between two types of parties.

C.1 Parties for whom searching for a witness is feasible
For some of the parties searching for a witness will be feasible, although at some cost.
We envision these parties to have significant hardware and bandwidth resources. The
witness may be one for a moderately hard NP relation or may require some work that is
not strictly computational in flavor, e.g. it may be easy to find once downloaded the whole
history of a blockchain.

For this type of parties we need to ensure that incentives are such that it should be
more profitable to be honest rather than not:

rew(honest)− cost(search)− cost(honest_run) > rew(dishonest)− cost(dishonest_run)

The honest reward/costs involve:
• rew(honest): the reward earned by the honest party using a valid witness;
• cost(search): the cost for a party to search for valid witness;
• cost(honest_run): the cost of running the protocol honestly.

The dishonest reward/costs involve:
• rew(dishonest): the reward earned by a party not using a valid witness;
• cost(dishonest_run): the cost of running the protocol not using a valid witness.
In the inequality above, the cost of searching for the witness is application-dependent

and in general it cannot be controlled. The rewards (honest and dishonest) can be
controlled in several ways. The reward for the honest prover can be increased as needed in
the building blocks in the construction in Section 5.2. The reward gap (how much loss
the dishonest prover is incurring reward-wise) depends on the underlying building blocks
but can be increased for example as described in Appendix D. The remaining costs are
those for running the protocol (honestly or dishonestly). The dishonest cost should be
high enough so to disincentivize parties to execute the protocol without a witness. See
next section for some approaches for increasing the costs of running the protocol.

C.2 Parties for whom searching for a witness is unfeasible
The second set of parties we consider are those for whom it may be too costly to search for
the witness. For these type of parties we may want to disincentivize running the protocol
altogether. This is incentive is outside the model we formalized in Definition 12. It can,
however, be captured by the following inequality:

rew(dishonest)− cost(dishonest_run) < 0

The above can be read as: it should be unprofitable for a party to run the protocol if they
do not expect any reward.

In order for the inequality above to true, we may have to increase the cost of running
the protocol. We believe that outer applications can handle disincentivizing provers who
do not know the witness.

A heuristic approach to this may for example come from a proof-of-work-like approach,
for instance from Fischlin’s transform [Fis05]. The latter allows to compile public-coin
protocols into non-interactive ones. An intuition about how Fischlin’s transform works is
that it requires the prover to compute a challenge c applying the random oracle on several

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 31

inputs until a certain number of leading zeros is obtained (this number depends on a
chosen hardness parameter). More specifically, if t is the transcript so far and r is a string
on which the prover is iterating then a challenge can be obtained by computing H(t||r).
Since this requires several attempts, this increases the cost of executing the protocol (for
both honest and dishonest parties). This can be a heuristic approach to disincentivizing
parties without the witness. We stress that the security of applying Fischlin’s transform
to produce non-interactive rational arguments is still an open problem.

Other approaches are possible, of course. Emulating proofs of work to increase the
work of the prover has been used for example in Starkware14.

D Reducing the Reward Gap without Losing Sublin-
earity

It is possible to improve the space gap of a rational proof/argument by parallel composition.
Here we discuss how to reduce the reward without losing the verifier’s sublinearity. In
particular we discuss how to achieve this for reward gaps of the form 1

k√
T

where k is a
constant and T is roughly the size of the computation. What does this mean concretely?
It means that, for example, for a computation with T ≈ 220 constraints and for k = 3 we
can make a cheating prover lose at least 1

3√
T
≈ 5% of the honest reward in expectation.

Below we discuss the parameters for which this is possible.
It is possible to show that for the instantiation of our constructions that we consider

(which use [CG15]) the reward gap is at least

1−
(

1− 1
T

)r

where r is the number of repetitions. Now suppose we want to make sure that this reward
gap is at least ϵ. We want to find a lower bound for r for which this is possible. At the
same time, to preserve sublinearity, we will make sure that r = o(n) where n is the size of
the public input. We set the inequality

1−
(

1− 1
T

)r

≥ ϵ

and by simple algebraic manipulations we obtain that this is true for

r ≥ log (1− ϵ)
log
(
1− 1

T

)
.

By using Maclaurin expansion we can apply the approximation log(1 − x) ≈ x and
obtain r ≈ ϵ·T . In order to obtain a sublinear r we need to consider non-constant ϵ-s. Thus,
let k = O(1) such that ϵ = 1

k√
T

. Let us assume that our (polynomial-time) computation is
of size nc for a constant c. Then, fixed such a computation, we can obtain r = o(n) if we
choose k such that c < k

k−1 .
What this means is that, for example, we can obtain a sublinear number of repetitions

for a reward gap 1
3√

T
for any computation of size at most n1.5.

14See https://a16zcrypto.com/posts/article/snark-security-and-performance/.

https://a16zcrypto.com/posts/article/snark-security-and-performance/

32 How to Make Rational Arguments Practical and Extractable

E Additional Proofs
E.1 Proof of Lemma 1
Proof. To see why the first property holds, consider z the output of the circuit. We can
observe that:

z =a0 +
∑

i∈[2ℓ]

si

=a0 +
∑

i∈[2ℓ]

ai · yi

=a0 +
∑

i∈[2ℓ]

ai ·
∏

j∈[ℓ]:bj(i)=1

t2j

=a0 +
∑

i∈[2ℓ]

ai · ti

=f(t)

We provide an intuition of why the second property holds. What we need to show is
that the wiring of the circuit can be decided in logarithmic time (or, in time linear in the
size of the wire indices). Let us observe the structure of the circuit. It is composed of
trees of addition gates (computation of z) or multiplication gates (computation of yi-s and
computation of si-s, which can be seen as a multiplication tree of size 1). We observe that
the wiring structure of trees is very easy to decide (we give more details below) and that
these trees are arranged homogeneously around the circuit and thus there is little overhead
besides deciding their internal structure. To see why they are distributed “homogeneously”,
notice that we have: 2ℓ parallel multiplication trees, each with a multiplication gate on
top; the results of these are then aggregated through a final addition tree on top.

To see why the internal structure of trees can be decided in logarithmic time, given
(a, b, c):

• wire a is the left sibling of wire b iff their bit representation is such that a = X0,
b = X1 where X is a bitstring prefix.

• wire c is the child of a and b iff the bit representation of c is X (for X defined as in
the previous item, i.e. the right shift by one of the bit representation of a and b).

The only additional point for deciding wiring is for the product tree when computing yi,
in particular the condition bj(i) = 1 in the product. This is required only for the leaves of
said tree can easily be decided in logarithmic time given the definition of the predicate bj

(if such predicate holds the leaf should correspond to the respective input wire, otherwise
it should correspond to an input wire for the constant 1).

E.2 Proof of Theorem 3
Proof. Since the reward gap is noticeable, we have that ∆(n) > 1/p(n) for some polynomial
p(·) for large enough n. We show how to transform (P, V) for L with noticeable ∆(n)
into an interactive proof for L with noticeable completeness-soundness gap. Let x be an
instance to be decided. The following procedure M decides x: Evaluate rew(x, π) where π
is the transcript for all possible 2log n values of π. Repeat this k times to estimate expected
values. Let πacc ∈ {0, 1}log n be the set of transcripts π where the prover sends 1 that is,
such that out((P, V)(x) = 1 and πrej be the set of transcripts such that out((P, V)(x) = 0.
If maxπ∈πacc E[rew(x, π)] > maxπ∈πrej E[rew(x, π)], then output 1, otherwise output 0. If
we set k = poly(p), by Hoeffding’s inequality, we can show that E[rew(x, π)] for each π
is estimated within ε = ∆/3 with high probability, so that M decides x correctly with

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 33

probability > 2/3. Finally, note that M is randomized and runs in polynomial time. Thus,
L is decided by a PPT machine.

E.3 Proof of Theorem 4
Proof. Let AHP{pi,j} be the starting AHP with polynomial oracles. Consider a hybrid
intermediate oracle argument system AHP{p0,j} where the polynomial oracles of {pi,j},
for i ̸= 0 are realized via a cyptographic PCS PC, and the polynomials {p0,j} are still
available as oracles. Suppose prover P̃ of AHP{p0,j} convinces V of instance (i, x) in LR.
We construct an adversary Apc against the extractability game of PC. APC receives
the commitment key ck, and random coins and internally invokes P̃ to obtain a set of
commitments {Ci,j}i∈[k],j∈[s(i)]. We now invoke the extractor EPC, which given the same
input as APC outputs a set of polynomials p̃ = {pi,j}i∈[k],j∈[s(i)]. Decode the witness ŵ
from the witness-carrying polynomial and output ŵ.

We now argue that (i, x, ŵ) ∈ R. If Epc fails (in the hybrid argument system AHP{p0,j}),
then the extracted polynomials are inconsistent with the alleged evaluations (p̃(z) ̸= v), and
APC wins the extractability game, which happens with probability ϵ2. Hence, except with
probability ϵ2, p̃(z) = v. Given that the evaluations are valid w.r.t the set of polynomials
p̃, V accepts when AHP verifier accepts. Since the soundness error of the AHP is ϵ1, the
probability that V accepts (f, x, ỹ) /∈ LR is ϵ1 + ϵ2, which is negligible.

Now consider the argument system where rat-pc is used to instantiate the oracles {p0,j}.
The output of Epc is not a valid witness if P̃ lies in rat-pc and therefore the extracted
witness from Epc is not a witness consistent with the input/index polynomial in {p0,j}.
Let ϵP̃ be the probability with which P̃ cheats in rat-pc. The expected reward gap of P̃
is ≥ ϵP̃ ·∆. Therefore, if the extractor succeeds with probablity at most 1− (ϵP̃ + negl),
the reward gap of the prover P̃ is ≥ ϵP̃ ·∆. Since ∆ is noticeable, when extraction fails
with probability ≥ 1/poly, that is, ϵP̃ ≥ 1/poly, then the reward gap of the prover is
≥ 1/poly.

F Candidate AHPs
We state as corollaries concrete instantiataions obtained by applying our compiler from
Figure 3.

Corollary 1. For an NP relation with arithmetic complexity n, public input size |x|,
Figure 3 instantiated with Dory PCS and PLONK’s AHP yields a rational argument of
knowledge with full indexing as per Definition 12 and satisfies the following properties:

• Preprocessing complexity: Õ(n) non-cryptographic operations
• Communication complexity: O(log n)
• Verification complexity: O(log n) cryptographic + O(|x|) non-cryptographic
• Prover complexity: O(n log n) cryptographic + O(|x|) non-cryptographic

Corollary 2. For an NP relation with R1CS complexity n, public input size |x|, Figure 3
instantiated with Dory PCS and Marlin’s AHP yields a rational argument of knowledge
with full indexing as per Definition 12 and satisfies the following properties:

• Preprocessing complexity: Õ(n) non-cryptographic operations
• Communication complexity: O(log n)
• Verification complexity: O(log n) cryptographic + O(|x|) non-cryptographic
• Prover complexity: O(n log n) cryptographic + O(|x|) non-cryptographic

34 How to Make Rational Arguments Practical and Extractable

PolyEvalPreprocLag(f ′, u)

Parse u as (u1, . . . , uℓ)
Parse f ′ as a tuple of (x, v) pairs such that x = x1|| · · · ||xd for xi ∈ H

Compute f(X) =
∑

viLxi (X) =
d∑

i=0

fiX
i, where d = 2ℓ

for i = 1, . . . , 2ℓ (in parallel)

yi ←
∏

j∈[ℓ]:bj (i)=1

uj

where bj(i) is the j-th bit of i for each j

si ← fi · yi

endfor

z ← a0 +
∑

i∈[2ℓ]

si

return z

Figure 4: An arithmetic circuit with logarithmic depth for polynomial evaluation given
input in Lagrange basis

We now give a rational proof for polynomial evaluation where the polynomial is given
in Lagrange basis instead of monomial basis (Section F.1). This is a straightforward
adaptation of the protocol in Section 3.2. Then, in subsequent sections, we show how
to apply our compiler to Marlin, PLONK and Sonic AHPs. For the sake of completeness,
we present the AHPs (the underlying AHPs of Marlin, PLONK and Sonic are abstracted
out in [ABC+22], which we reproduce). We then observe that it satisfies the properties
required by our compiler – the decision algorithm of the AHP verifier uses the public input
only by accessing an encoding of it. This encoding is compatible with the oracle input of
the verifier in our rational proof for polynomial evaluation. That is, the public input is
encoded either as a coefficient vector (Sonic) of a polynomial or as point-value pairs that
intrepolates a polynomial (Marlin and PLONK).

F.1 Rational proof for polynomial evaluation in Lagrange basis

Let H be some domain, {La(X)}a∈H be the Lagrange basis polynomials of degree less than
d such that La(a) = 1 and La(a′) = 1 for a′ ∈ H \ {a}.

The circuit PolyEvalPreprocLag (Figure 4) first interpolates a polynomial given its
evaluation at d−1 points in the domain, and then performs evaluation as in PolyEvalPreproc.
We now note that this is a highly parallel arithmetic circuit since interpolation via the
butterfly network is parallel. The sub-circuit that converts point-value representation to
coefficient representation has depth log d and size d log d, and the sub-circuit for evaluation
given coefficient representation has depth O(log d) as in Section 3.2. We can apply the
rational proof for parallel circuits from [CG15]. Therefore, Theorem 1 (there exists a
rational proof for polynomial evaluation where the verifier runs in time O(log(d)), and
the reward gap is noticeable) holds when the polynomial is given in Lagrange basis. The
rational proof for polynomial evaluation given a polynomial in point-value representation
is in Figure 5.

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 35

Rational proof for Fpoly-Lag,f (t):
• Setup:

• Do nothing
• idx(f):

• return a description of f as a tuple of point-value pairs {(yi, vi)}i∈[d] where
each yi is in some known domain H, and vi = f(yi). f := (y, v).

• Protocol P (f, t)↔ V [f](t):

• Both parties compute u = (t, t2, t4, . . . , t2ℓ−1
, t2ℓ) by repeated squaring

where deg(f) = 2ℓ

• The two parties then proceed by running RPPar.PF ↔ RPPar.V [x]
F where

the circuit F := PolyEvalPreprocLag and input x := (f, u).
• Reward:

• Return reward from RPPar.rew[x]

Figure 5: Rational proof for polynomial evaluation given polynomial in Lagrange basis.
The protocol RPPar is from the statement of Lemma 2.

F.2 Marlin AHP
In this section we show how to apply our compiler to Marlin. We show how to achieve a
sublinear decision algorithm for the verifier, identify the WCPs and show how it encodes
the witness vector in the AHP.
Notation. For a finite field F and a subset S ⊆ F, vS(X) denotes the vanishing polynomial
of S that is the unique non-zero monic polynomial of degree at most |S| that is zero
everywhere on S. FS denotes the set of vectors indexed by elements in a finite set S. For
a function f : S→ F, we denote by f̂ , the univariate polynomial over F with degree less
than |S| that agrees with f , that is, f̂(a) = f(a) for all a ∈ S. The polynomial f̂ can be
expressed as

f̂(X) =
∑
a∈S

f(a) · La,S(X)

where {La,S(X)}a∈S are the Lagrange basis polynomials of degree less than |S| such that
La,S(a) = 1 and La,S(a′) = 1 for a′ ∈ S \ {a}. For an n× n matrix M with rows/columns
indexed by elements of S, M̂(X, Y) denotes the polynomial of individual degree less than
n, where M̂(s, t) is the (s, t)th entry of M for all s, t ∈ S.

Consider the bivariate polynomial uS(X, Y)

uS(X, Y) := vS(X)− vS(Y)
X − Y

such that uS(X, X) = |S|X |S|−1 is the formal derivative of the vanishing polynomial vS(X).
uS(X, Y) vanishes on the square S× S, except on the diagonal, where it takes uS(a, a)a∈S.
R1CS Constraint system. R1CS (Rank-1 constraint satisfiability) indexed relation
defined by the set of tuples (i, x, w) =

(
(F,H,K, A, B, C), x, w

)
, where F is a finite field, H

and K are subsets of F, such that n = |H| and m = |K|, A, B, C are H×H matrices over F
with |K| ≥ max{∥A∥, ∥B∥, ∥C∥}, and z := (x, w) is a vector in FH such that Az ◦Bz = Cz.

As in Marlin [CHM+20], let H and K be multiplicative subgroups of F. We assume
efficiently computable bijections ϕH : H → [n] and ϕK : K → [m], and denote the first l

36 How to Make Rational Arguments Practical and Extractable

elements in H and the remaining elements, via sets H[≤ l] :=
{

a ∈ H : 1 ≤ ϕH(a) ≤ l
}

and H[> l] :=
{

a ∈ H : l < ϕH(a) ≤ n
}

respectively. We then denote the first part of the
vector z as the public component x ∈ FH[≤l] and the second part as witness component
w ∈ FH[>l].
AHP Marlin’s AHP is formally described in Fig. 6. In the preprocessing phase, the indexer
I receives as input a field F, subsets H,K of F, and matrices A, B, C ∈ FH×H representing
the R1CS instance. The output of the preprocessing phase is three univariate polynomials
{ ˆrowM , ĉolM , v̂alM} of degree less than |K| for each matrix M ∈ {A, B, C}, such that the
following polynomial is a low-degree extension of M .

M̂(X, Y) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

The polynomials ˆrowM , ĉolM , v̂alM are the unique low-degree extensions of the functions
rowM , colM , valM : K → F that denote the row index, column index and value of the
non-zero entries of the matrix M respectively. Let M̂(X, Y) be the unique low-degree
extension of M that agrees with the matrix M everywhere on the domain H × H. The
prover P receives as input the instance x ∈ FH[≤l], a witness w ∈ FH[>l]. The verifier V
receives as input x, and obtains oracle access to the nine polynomials output at the end of
the preprocessing phase.

Let x̂(X) ∈ F<l[X] and ŵ(X) ∈ F≤n−l[X] be polynomials that agree with the statement
x on H[≤ l], and with the shifted witness on H[> l] respectively. These polynomials are
defined as follows:

x̂(X) :=
∑

a∈H[≤l]

x(a) · La,H[≤l](X)

ŵ(X) :=
∑

a∈H[>l]

(
w(a)− x̂(a)

vH[≤l](a)

)
· La,H[>l](X)

Let z := (x, w) denote the full assignment. Then the polynomial

ẑ(X) := ŵ(X) · vH[≤l](X) + x̂(X)

agrees with z on H. The prover computes the linear combinations zA := Az, zB := Bz,
zC := Cz, and sets polynomials ẑA(X), ẑB(X), ẑC(X) ∈ F≤n[X].
Sublinear Decision algorithm and WCP. In AHPMarlin(Fig. 6), the prover P receives
as input the instance x ∈ FH[≤l], a witness w ∈ FH[>l]. Note that the verifier V receives
as input x, and obtains oracle access to the nine polynomials output at the end of the
preprocessing phase.
V evaluates ẑ at point γ using O(|x|) operations by querying ŵ at γ and computing the

expression ŵ(γ) · vH[≤l](γ) + x̂(γ). In our compiled argument, this O(|x|) computation is
done by the prover, and the verifier only checks a rational proof of this computation. Note
that in the Marlin AHP decision algorithm, the only step that needs O(|x|) computation is
step 3 reproduced below:

s(β1) + uH(α, β1)(
∑
M

ηM ẑM (β1))− σ2ẑ(β1) = h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

Here, DV needs to evaluate uH at (α, β1), and vH and ẑ at β1. uH and vH can be
evaluated in O(log |H|) operations. ẑ which is the only online linear operation can be
evaluated given oracle access to x̂ (as point-value pairs (a, x(a)a∈H)) by querying ŵ, x̂ and
vH at γ and computing ẑ(γ) = ŵ(γ) · vH[≤l](γ) + x̂(γ).

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 37

Protocol 1: Protocol AHPMarlin

Offline phase. The indexer I is given as input a field F ∈ F , subsets H,K of F,
and matrices A, B, C ∈ Fn×n representing the R1CS instance, and outputs three
univariate polynomial oracles { ˆrowM , ĉolM , v̂alM} of degree less than |K| for each
matrix M ∈ A, B, C, such that the following polynomial is a low-degree extension of
M .

M̂(X, Y) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

Input. P receives (F,H,K, A, B, C, i, x, w), and V receives (F,H,K, x) and oracle access
to the nine polynomials output by I(F, i).

Online phase: round 1. P sends the oracle polynomials ŵ(X) ∈ F≤n−l[X], h0(X), ẑA(X),
ẑB(X), ẑC(X) ∈ F≤n[X]. It samples a random s(X) ∈ F<2n[X] and sends polynomial
oracle s(X) together with σ1 ∈ F where σ1 :=

∑
a∈H

s(a), and ẑA(X)ẑB(X)− ẑC(X) =

h0(X)vH(X).
Online phase: round 2. On receiving challenges α, ηA, ηB , ηC ∈ F from V, P sends

oracle polynomials g1(X) ∈ F<n−1[X], h1(X) ∈ F<n[X] to V, where

s(X) + uH(α, X)
(∑

M∈{A,B,C}

ηM ẑM (X)
)
−
(∑

M∈{A,B,C}

ηM rM (α, X)
)

ẑ(X)

= h1(X)vH(X) + Xg1(X) + σ1/|H|

Online phase: round 3. On receiving challenge β1 ∈ F from the V, P sends oracle
polynomials g2(X), h2(X) ∈ F<n−1[X] and σ2 ∈ F to V, where

σ2 :=
∑
k∈H

uH(α, k)
∑

M∈{A,B,C}

ηM M̂(k, β1)

uH(α, X)
∑

M∈{A,B,C}

ηM M̂(X, β1) = h2(X)vH(X) + Xg2(X) + σ2/|H|

Online phase: round 4. On receiving challenge β2 ∈ F from V, P sends oracle polynomials
g3(X) ∈ F<m−1[X] h3(X) ∈ F<6m−6[X] and σ3 ∈ F to V, where where

σ3 :=
∑
k∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (k)

(β2 − ˆrowM (k))(β1 − ĉolM (k))

h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

a(X) =
∑

M∈{A,B,C}

ηM vH(β2)vH(β1)v̂alM (X)
∏

L∈{A,B,C}\{M}

(β2− ˆrowL(X))(β1−ĉolL(X))

b(X) =
∏

M∈{A,B,C}

(β2 − ˆrowM (X))(β1 − ĉolM (X))

Query phase. V queries the oracles ŵ(X), ẑA(X), ẑB(X), ẑC(X), h0(X), s(X), h1(X),
g1(X) at β1; h2(X), g2(X) at β2; h3(X), g3(X) and all offline oracles { ˆrowM , ĉolM ,
v̂alM} for each M ∈ A, B, C at a random query point β3 ∈ F.

Decision phase DV . V accepts if the following tests pass:
1. h3(β3)vK(β3) = a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
2. h2(β2)vH(β2) + β2g2(β2) + σ2/|H| = uH(α, β2)σ3

3. s(β1)+uH(α, β1)(
∑

M
ηM ẑM (β1))−σ2ẑ(β1) = h1(β1)vH(β1)+β1g1(β1)+σ1/|H|

4. ẑA(β1)ẑB(β1)− ẑC(β1) = h0(β1)vH(β1)

Figure 6: AHP for RR1CS

38 How to Make Rational Arguments Practical and Extractable

F.3 PLONK AHP

Constraint System and AHP. Consider an arithmetic circuit with fan-in two over
F, consisting of n gates. The PLONK AHP proves knowledge of left, right and output
wire values for every gate i ∈ [n] in the circuit, such that they are consistent with the
constraints determined by the circuit topology. The per-gate constraints are specified by
selector vectors qL, qR, qO, qM , qC ∈ Fn. We call C = (n, m, L, R, O, qL, qR, qO, qM , qC)
constraint systems. w ∈ Fm is said to satisfy the constraint systems C if for each gate
i ∈ [n]

(qL)i · wLi
+ (qR)i · wRi

+ (qO)i · wOi
+ (qM)i · wLi

wRi
+ (qC)i = 0. (3)

For the wire values w ∈ Fm, (wj)j∈[l] denote the public input and (wj)j∈[l+1,m] the
private input respectively. We say C is prepared for l public inputs if for each i ∈ [l], Li = i,
(qL)i = 1, (qR)i = (qM)i = (qR)i = (qC)i = 0, i.e., each gate i ∈ [l] is dedicated for
the input wire j = i ∈ [l] of w. The constraint for an input gate i ∈ [l] is satisfied by
subtracting wj from the above equation. The relation wrt C is defined below.

Definition 14 (PLONK indexed relation). The indexed relation RPLONK is the set of all
triples

((F, n, m, l, L, R, O, qL, qR, qO, qM , qC), (wj)j∈[l], (wj)j∈[l+1,m])
such that

∀i ∈ [l],(qL)i · wLi
+ (qR)i · wRi

+ (qO)i · wOi
+ (qM)i · wLi

wRi
+ (qC)i − wi = 0

∀i ∈ [l + 1, n],(qL)i · wLi
+ (qR)i · wRi

+ (qO)i · wOi
+ (qM)i · wLi

wRi
+ (qC)i = 0

PLONK AHP relies on a multiplicative subgroup H =
{

ζ, ζ2, . . . , ζn
}
⊂ F∗ generated by

the nth primitive root of unity ζ ∈ F∗. vH(X) = Xn−1, an associated vanishing polynomial,
splits completely in F[X], i.e., Xn−1 =

∏n
i=1(X−ζi). We have the corresponding Lagrange

basis Li(X) ∈ F<n[X] for i ∈ [n] such that Li(ζi) = 1 and Li(ζj) = 0 for j ̸= i.
The selector vectors define polynomials in F<n[X]:

qL(X) =
∑
i∈[n]

(qL)i · Li(X) qR(X) =
∑
i∈[n]

(qR)i · Li(X) qO(X) =
∑
i∈[n]

(qO)i · Li(X)

(4)

qM (X) =
∑
i∈[n]

(qM)i · Li(X) qC(X) =
∑
i∈[n]

(qC)i · Li(X) (5)

So qL(ζi) = (qL)i, qR(ζi) = (qR)i and so on. Now we can define the following polynomials.

fpub(X) =
∑
i∈[l]

−wiLi(X) fL(X) =
∑
i∈[n]

wLi
Li(X) fR(X) =

∑
i∈[n]

wRi
Li(X) fO(X) =

∑
i∈[n]

wOi
Li(X)

(6)

The gate-by-gate constraint of Eq. (3) can be checked as follows:

FC(X) := qL(X)fL(X) + qRfR(X) + qO(X)fO(X) + qM (X)fL(X)fR(X) + qC(X) + fpub(X)
(7)

vanishes at ζi for all i ∈ [n].
The PLONK AHP is shown in Fig. 7 [ABC+22].

Sublinear Decision algorithm and WCP. During the first round of AHPPLONK,
the prover sends the following WCPs encoding both statement and witness ((wi)i∈[l],
(wi)i∈[l+1,3n]):

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 39

fL(X) =
∑
i∈[n]

wiLi(X) fR(X) =
∑
i∈[n]

wn+iLi(X) fO(X) =
∑
i∈[n]

w2n+iLi(X) (14)

Note that in the PLONK AHP decision algorithm, the only step that needs O(|x|)
computation is in computing fpub(X) at z: fpub(X) =

∑
i∈[l]−wiLi(X) In our compiled

argument, this is done by the prover and the verifier only checks a rational proof of
evaluation given oracle access to (wi, xi) pairs for xi ∈ H.

F.4 Sonic AHP
Vectors a, b, c each of length n represent left inputs, right inputs and outputs respectively
of the multiplication gates.

a ⊙ b = c

Let uq, vq, wq ∈ Fn be fixed vectors for the qth linear constraint with instance values
kq ∈ F. There are Q linear constraints of the form,

a · uq + b · vq + c ·wq = kq

The n multiplication constraints are compressed into one equation by introducing a
formal indeterminate Y .

n∑
i=1

(aibi − ci)Y i = 0
n∑

i=1
(aibi − ci)Y −i = 0

The Q linear constraints are compressed,

Q∑
q=1

(a · uq + b · vq + c ·wq − kq)Y q+n = 0

Define polynomials

ui(Y) =
Q∑

q=1
Y q+nuq,i vi(Y) =

Q∑
q=1

Y q+nvq,i

wi(Y) = −Y i − Y −i +
Q∑

q=1
Y q+nwq,i k(Y) =

Q∑
q=1

Y q+nkq

Combining the multiplicative and linear constraints,

a · u(Y) + b · v(Y) + c ·w(Y) +
n∑

i=1
aibi(Y i + Y −i)− k(Y) = 0 (15)

Sublinear Decision algorithm and WCP. During the first round of AHPSonic, the
prover sends r(X) =

∑n
−D riX

i from which witness vectors (a, b, c) such that ai := ri,
bi := r−i and ci := r−n−i for every i ∈ [n] can be extracted.

Note that in the Sonic AHP decision algorithm, the only step that needs O(|x|)
computation is in computing the instance polynomial k(Y) =

∑Q
q=1 Y q+nkq in order to

evaluate it at y.
In our compiled argument, this is done by the prover and the verifier only checks a

rational proof of evaluation given oracle access to the coefficient vector of k(Y).

40 How to Make Rational Arguments Practical and Extractable

Protocol 2: AHPPLONK

Offline phase. The indexer I receives as input F ∈ F and i = (F, n, m, l, qL, qR, qO, qM ,
qC , σ, TC), and computes the following polynomial oracles as described before: selector
polynomials (qL, qR, qO, qM , qC); preprocessed polynomials for permutation argument
(SL,ID, SR,ID, SO,ID, SL,σ, SR,σ, SO,σ); vanishing polynomial of H, vH(X) = Xn − 1.

SL,ID =
∑
i∈[n]

i · Li(X) SL,σ =
∑
i∈[n]

σ(i) · Li(X)

SR,ID =
∑
i∈[n]

(n + i) · Li(X) SR,σ =
∑
i∈[n]

σ(n + i) · Li(X)

SO,ID =
∑
i∈[n]

(2n + i) · Li(X) SO,σ =
∑
i∈[n]

σ(2n + i) · Li(X)

Input. P receives (F, i, (wi)i∈[l], (wi)i∈[l+1,3n]) and V receives (F, (wi)i∈[l]) and oracle access
to the polynomials output by I(F, i).

Online phase: round 1. P computes fpub(X), fL(X), fR(X), fO(X) as described below
and sends (fL(X), fR(X), fO(X)) to V.

fL(X) =
∑
i∈[n]

wiLi(X) fR(X) =
∑
i∈[n]

wn+iLi(X) fO(X) =
∑
i∈[n]

w2n+iLi(X) (8)

Online phase: round 2. On receiving challenges β, γ ∈ F from the V, P computes
hID(X), hσ(X) and a permutation polynomial s(X) as described below.

hL,ID = fL + β · SL,ID + γ hL,σ = fL + β · SL,σ + γ (9)
hR,ID = fR + β · SR,ID + γ hR,σ = fR + β · SR,σ + γ (10)
hO,ID = fO + β · SO,ID + γ hO,σ = fO + β · SO,σ + γ (11)

hID = hL,ID · hR,ID · hO,ID hσ = hL,σ · hR,σ · hO,σ (12)

s(X) = L1(X) +
∑

i∈[2,n]

(
Li(X) ·

∏
1≤j<i

hID(ζj)
hσ(ζj)

)
. (13)

Then P sends an oracle polynomial s(X) to V.
Online phase: round 3. On receiving challenge α ∈ F from the V, P computes

FC(X) = qL(X)fL(X) + qR(X)fR(X) + qO(X)fO(X)
+ qM (X)fL(X)fR(X) + qC(X) + fpub(X)

F1(X) = hID(X)s(X)− hσ(X)s(ζX)
F2(X) = L1(X)(s(X)− 1)

T (X) = FC(X) + F1(X) · α + F2(X) · α2

vH(X)

and sends an oracle polynomial T (X) to V.
Query phase. V queries online oracles (fL(X), fR(X), fO(X), s(X), T (X)) and all offline

oracles with a random query point z ∈ F. Moreover, it makes an additional query to
the permutation polynomial s(X) with ζz.

Decision phase. V first computes fpub(X) as described: fpub(X) =
∑

i∈[l]−wiLi(X).
Then V computes FC(z) (as in (7)), F1(z) and F2(z) based on the outputs of polynomial
oracles. It then checks that (FC(z) + F1(z) · α + F2(z) · α2) = T (z) · vH(z).

Figure 7: AHP for R′
PLONK

Matteo Campanelli, Chaya Ganesh and Rosario Gennaro 41

Protocol 3: AHPSonic

Offline phase. The indexer I receives as input F ∈ F and i = (F, n, Q, (uq)q∈[Q], (vq)q∈[Q],
(wq)q∈[Q]), and computes the polynomial oracle s(X, Y) as described below.

r(X, Y) =
n∑

i=1

(aiX
iY i + biX

−iY −i + ciX
−n−iY −n−i) (16)

s(X, Y) =
n∑

i=1

(
ui(Y)X−i + vi(Y)Xi + wi(Y)Xi+n

)
(17)

t(X, Y) = r(X, 1)(r(X, Y) + s(X, Y))− k(Y) (18)

Input. P receives (F, i, (kq)q∈[Q], (a, b, c)) and V receives (F, (kq)q∈[Q]) and oracle access
to the polynomials output by I(F, i).

Online phase: first round. P computes r(X, Y) and t(X, Y) as described in Eq. (18).
Mask r(X, Y) as r(X, Y) := r(X, Y) +

∑4
i=1 cn+iX

−2n−iY −2n−i with random cn+i ∈
F and send an oracle polynomial r(X, 1) to V.

Online phase: second round. Upon receiving challenges y ∈ F from the V, P sends an
oracle polynomial t(X, y) to V.

Query phase. V queries online oracles r(X, 1) and t(X, y) with a random query point
z ∈ F. Moreover, it makes additional queries to r(X, 1) with yz and to s(X, Y) with
(z, y).

Decision phase. V first computes an instance polynomial k(Y) as described in the text.
Then V checks that

t(z, y) = r(z, 1)(r(yz, 1) + s(z, y))− k(y).

Figure 8: AHP for RSonic

	Introduction
	Our Contributions.
	Technical Overview
	Discussion: Alternative Sublinear Verifiers; Applications
	Related Work

	Preliminaries
	Modelling Access to Inputs
	Rational Proofs and Arguments
	Interactive Proofs
	Polynomial Commitment Scheme
	Algebraic Holographic Proof

	Definitions and Building Blocks
	Rational Arguments with Indexing
	Efficient Rational Proofs for Polynomial Evaluation

	Our Compiler: AHP to Rational Argument for P
	A Formal Description of our Compiler from AHP to Rational Argument
	Instantiating Our Compiler

	Rational Proofs and Arguments of Knowledge for NP
	Succinct Rational Arguments of Knowledge for NP
	Our Compiler: AHP to Rational AoK for NP

	References
	Uniform Families of Circuits
	The Rational Proof from cg15
	Discussion on Incentives in Rational Arguments with Extraction
	Parties for whom searching for a witness is feasible
	Parties for whom searching for a witness is unfeasible

	Reducing the Reward Gap without Losing Sublinearity
	Additional Proofs
	Proof of lemma:polyeval
	Proof of thm:impos-np
	Proof of thm:compiler-extr

	Candidate AHPs
	Rational proof for polynomial evaluation in Lagrange basis
	Marlin AHP
	PLONK AHP
	Sonic AHP

