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Abstract. We find an efficient method to solve the semidirect discrete
logarithm problem (SDLP) over finite nonabelian groups of order p3 and
exponent p2 for certain exponentially large parameters. This implies an
attack on SPDH-Sign, a signature scheme based on the SDLP, for such
parameters. We also take a step toward proving the quantum polynomial
time equivalence of SDLP and SCDH.
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1 Introduction

In [12], the authors introduced a key exchange protocol. The security of their
scheme was based on a discrete logarithm problem: given a group element g
which generates a finite group G, and the element gx for some x ∈ N, can one
recover x? Efficient classical solutions to the general discrete logarithm prob-
lem remain elusive, but Shor [22] gave an efficient quantum algorithm to solve
the above problem. Thus cryptography relying on the above assumption is not
quantum-secure.

The field of post-quantum cryptography comprises several distinct topics:
lattice, isogenies of elliptic curves, multivariate polynomials, and codes have all
been used to develop cryptosystems believed no more vulnerable to attack by
quantum adversaries than by classical adversaries. Another line of work refers
back to the discrete logarithm problem above, asking: can the discrete logarithm
problem be tweaked to yield a quantum-hard cryptographic problem?

One contribution to this is the semidirect discrete logarithm problem (SDLP).
Informally, for some finite group element g ∈ G and an element in the automor-
phism group of G, ϕ ∈ Aut(G), given the element

sg,ϕ(x) := ϕx−1(g) · ϕx−2(g) · ... · ϕ(g) · g

can an adversary recover x? Note when ϕ is the identity map we recover the
standard discrete logarithm problem.

⋆ Pronounced ‘SPUD-Sign’.
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This problem was recently analysed in [2] and [3]. In the former paper, the
authors gave a subexponential- (but not polynomial-) time algorithm for SDLP.
In the latter paper, the authors develop a signature scheme, SPDH-Sign, based
on the hardness of the SDLP problem. In particular, the authors use the group

G = Gp :=

{(
a b
0 1

)
: a, b ∈ Zp2 , a ≡ 1 mod p

}
to instantiate the SDLP problem. To ensure a suitable level of security, one takes
p to be a ‘cryptographic’-sized prime.

In the current paper, we contribute to the cryptanalysis of that scheme by
performing further analysis on the SDLP problem.

Contributions In this work we provide four contributions to the study of SDLP.
The first of these is to show that the structure of Gp enables an adversary to
recover x mod p− 1 from sg,ϕ(x) in SDLP instances defined on elements of Gp.
This allows one to recover x when x is defined modulo a small multiple of p.
This is because of the semidirect product isomorphism

Gp ∼= Z/p2Z ⋊ Z/pZ

which is efficiently computable. We obtain

Theorem 5. Let (g, ϕ) ∈ Gp ⋊ Aut(Gp), where g = (a, φ) ∈ Gp. Then there is
a quantum polynomial time algorithm to find x mod p− 1.

We then show that one can recover ϕx(g) from the available information, and
that this also leaks information on x due to the structure of the automorphisms
of Gp. In both of the above cases, we can recover x only when it is defined modulo
a small multiple of p. When the security parameter of a scheme is denoted by λ,
one has p = exp(λ); so our attacks hold against exponentially large parameter
sizes. However, since |Gp| = (p − 1)p6, one may take x to be defined at most
modulo (p − 1)p5 (see below for more details) and in these larger parameter
instances we do not currently see how to recover all of x.

After this we turn to abstract properties of the SDLP problem, which we
consider as a group action problem. We consider the ‘linear hidden shift’ (LHS)
problem, and find that, as a corollary to our cryptanalytic attack, we can solve
LHS in quantum polynomial time. The LHS problem, informally, is given (gi, ϕi),
xi ∈ (Z/nZ)m, and sg,ϕ(

∑
j sjxij ) where i = 1, ...,m, to recover s. We have

Theorem 6. Let g ∈ Gp and ϕ ∈ Aut(Gp), where g = (a, φ) ∈ Gp. Let m ≥ n.
Then there is a quantum polynomial time algorithm to solve LHSG,X,s.

We then turn to an open problem from [3]. In addition to SDLP, another prob-
lem, SCDH, was considered. This is the problem, given g, ϕ, sg,ϕ(x) and sg,ϕ(y),
of computing sg,ϕ(x+y). Of course, if one can solve SDLP, one may simply com-
pute x from sg,ϕ(x) and y from sg,ϕ(y) and then compute sg,ϕ(x + y) directly;
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but it is unknown if a solution to SCDH implies a solution to SDLP. We par-
tially resolve this problem by demonstrating a quantum algorithm which, given
an oracle for a particular form of SCDH which given sg,ϕ(a), returns sg,ϕ(2a)
for any a, reduces SDLP to a hidden subgroup problem instance which can be
efficiently solved with Shor’s period finding algorithm:

Theorem 7. There is a quantum polynomial-time reduction from SDLPg,ϕ,n,x
to SCDH2

g,ϕ,n.

We close by discussing the obstacles to a direct solution to SDLP via Shor’s
algorithm.

Prior Work There is a burgeoning literature on noncommutative variants of
the semidirect product discrete logarithm problem, or schemes based on similar
problems [19], [14], [16], [2], [3], [5]. Attacks on variants of this problem have been
given in [21], [4], [7]. The literature on cryptographic group actions includes [10],
[1], [13], [8], [11].

In a concurrent work (uploaded to the IACR Eprint server prior to our work),
the authors Imran and Ivanyos [15] also provided cryptanalysis of the SDLP
problem. We note the similarity to our work, and note the greater generality of
their approach, which applies to a variety of finite groups. However, our paper
includes results (on outer automorphisms, and relating SDLP and SCDH, for
example) not covered by [15], and we consider our methods tailored to the choice
of group suggested for SPDH-Sign a valuable contribution to the study of SDLP.

2 Preliminaries

Notations We may write [n] to denote the set {1, ..., n}. The arrow ‘←’ may
denote sampling from a set or sampling according to a distribution over a set;

context will make which clear. If we write ‘
$←’ we mean sampling uniformly at

random. The identity element of a group G will be denoted by e.

Group Endomorphisms To any finite group are attached endomorphisms:

Definition 1. An endomorphism ϕ : G→ G is a homomorphism of groups from
G to G.

If a group endomorphism ϕ is an isomorphism, we call ϕ an automorphism.
The collection of all automorphisms of a finite group G forms a group, denoted
Aut(G).

The Semidirect Product We define the semidirect prodcuct of two groups.

Definition 2. (semidirect product) Let G,H be finite groups. If there is an
injective homomorphism

ρ : H ↪→ Aut(G)
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then we can form a product of G and H, G ⋊ρ H, defined by the following
multiplication rule: for (g, ϕ), (h, ψ) ∈ G×H,

(g, ϕ) · (h, ψ) = (ψ(g)h, ϕψ)

Here ψ(·) is the action of the automorphism; this could be exponentiation
(gψ) or conjugation (ψgψ−1) or something more complicated. Note that this
new group is noncommutative - that is, swapping the order of multiplication can
change the resulting group element on the right hand side. If H ⊆ Aut(G), we
can take ρ as the identity map and write G⋊H. In the literature, the product
G⋊Aut(G) is sometimes called the holomorph of G, and denoted Hol(G). This
construction is called the external semidirect product ofG andH. It is a standard
fact that |G⋊H| = |G||H|.

Group Actions We define and give properties of group actions.

Definition 3. (group action) A group action of a finite group G on a set X
(sometimes called a G-set) is a map ⋆ : G×X → X satisfying

1. for any x ∈ X, e ⋆ x = x, and
2. for any g, h ∈ G and any x ∈ X, (gh) ⋆ x = g ⋆ (h ⋆ x).

A group action is effective if |G| < ∞ and standard group-theoretic operations
can be performed in polynomial time. The following are standard properties of
group actions:

Definition 4. A group action of G on X is

1. transitive, if for any x1, x2 ∈ X there exists a g ∈ G satisfying x2 = g ⋆ x1;
2. faithful, if one has g ⋆ x = x for all x ∈ X if and only if g = e;
3. free, if one has g = e if and only if there exists an x ∈ X such that x = g ⋆x.

A free and transitive group action is called regular.

SDLP and SCDH Recall the discrete logarithm problem in a finite abelian
group G. Fix g ∈ G, which we will consider to be public. A challenger selects
an integer x, computes h = gx, and gives h to an adversary. The adversary has
to recover x, which is defined modulo the order of g ∈ G. This can be solved
in quantum polynomial time via Shor’s algorithm [22], but is classically only
solvable in subexponential time.

The authors of [3] use a version when G is replaced with G ⋊ H. Let (g, ϕ) ∈
G⋊H. Select, for instance, x = 2, and compute

(g, ϕ)2 = (g, ϕ) · (g, ϕ) = (ϕ(g)g, ϕ2)

If a challenger gave an adversary the resulting group element, they could take
the second component ϕ2, solve the (abelian) discrete logarithm problem in H,
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and find that x = 2. Alternatively, they could solve a discrete logarithm problem
in the cyclic group generated by (g, ϕ), denoted ⟨(g, ϕ)⟩. More generally, for an
arbitrary choice of x, we have

(g, ϕ)x = (ϕx−1(g) · ... · ϕ(g)g, ϕx)

Clearly if x < |H|, an adversary could always solve an abelian discrete logarithm
problem to find x. If x ≥ |H|, they could solve an abelian discrete logarithm
to find x mod |H|. So one cannot release the second coordinate of (g, ϕ)x and
maintain secrecy of x. This leads to

Definition 5. (SDLP) The semidirect product discrete logarithm problem,
SDLPg,ϕ,x, is, given

sg,ϕ(x) := ϕx−1(g) · ... · ϕ(g)g
for some x ∈ Z+ and (g, ϕ) ∈ G⋊H, to find x.

One can see that x is only defined modulo |G ⋊H| = |G| × |H|. Moreover,
it is in fact only defined modulo the order of the group element chosen, o(g, ϕ),
since if x > o(g, ϕ) then (g, ϕ)x = (g, ϕ)x mod o(g,ϕ). As a consequence, we may
take x ∈ Z/nZ for some n | o(g, ϕ). We denote such a problem instance by
SDLPg,ϕ,n,x.

A related problem to SDLP is the semidirect computational Diffie-Hellman
(SCDH) problem:

Definition 6. (SCDH). Let G be a finite group, and let (g, ϕ) ∈ G⋊Aut(G). Let
x, y ∈ N and suppose we are given (g, ϕ), sg,ϕ(x), and sg,ϕ(y). The Semidirect
Computational Diffie-Hellman problem, SCDHg,ϕ,n,x,y, is to compute sg,ϕ(x+y).

In [2], a subexponential quantum algorithm was given for SDLP over semi-
groups. In the following, a family of (semi)groups indexed by κ is ‘easy’ if for
a fixed κ, pairs (g, ϕ), (g′, ϕ′) ∈ Gκ × End (Gκ), and values f(κ), f ′(κ) (resp.
g(κ), g′(κ)) denoting the number of operations required to solve SDLP (resp.
SCDH) for (g, ϕ) and (g′, ϕ′) respectively, then we have f(κ) = O (f ′(κ)) (resp.
g(κ) = O (g′(p))). Then:

Theorem 1. [2, Theorem 10] Let {Gκ}κ be an easy family of semigroups, and
fix κ. For any pair (g, ϕ) ∈ Gκ×End (Gκ), there is a quantum algorithm solving

SDLP with respect to (g, ϕ) with time and query complexity 2O(
√
log κ).

We also note a group action interpretation of SDLP. Define

Xg,ϕ := {sg,ϕ(i) : i ∈ Z/nZ}.

Then

Definition 7. Let (g, ϕ) ∈ G⋊H and n | o(g, ϕ). Define a group action of Z/nZ
on Xg,ϕ by

Z/nZ ⟳ Xg,ϕ : x ∗ (g, ϕ) = ϕx−1(g) · ... · ϕ(g)g

This group action is free and transitive. We call this group action the semi-
direct product group action (SDPGA).
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SPDH-Sign In [3], a signature scheme was designed based on SDLP. The key
generation and signing algorithms require multiple instances of SDLP to be pub-
lished; we denote the number of samples by N , and refer to SPDH−Signg,ϕ(N)
below. The key generation and signing algorithms are given by:

Algorithm 1 KeyGen Algorithm

KeyGen(N):
for i← 1, N do

Xi
$← Xg,ϕ

si
$← Zn

Yi ← si ⋆ Xi

end for
sk ← (s1, ..., sN )
pk ← ((X1, . . . , XN ) , (Y1, . . . , YN ))
return (sk, pk)

Algorithm 2 Signing Algorithm

Sg(m, (sk, pk)):
for i← 1, N do

ti
$← Zn

Ii ← ti ⋆ Xi

end for
I ← (I1, . . . , IN )
c← H(I,m)
for i← 1, N do

if ci = 0 then
pi ← ti

else
pi ← ti − si

end if
end for
p← (p1, . . . , pN )
(σ1, σ2)← (I, p)
return (σ1, σ2)

Note that it suffices to solve SDLP to break the scheme. Before we state the
hardness result of SPDH-Sign, we require some definitions. For the syntax of
signature schemes, see [3] or [17].

Definition 8. [3, Definition 8] (Chosen Message Attack) Let S = (KeyGen,Sg,Vf)
be a signature scheme and A an adversary. Consider the following game:

1. The challenger obtains (sk, pk)← KeyGen and passes pk to A.
2. The adversary enters into a ‘querying’ phase, whereby they can obtain sig-

natures σi = Sg (sk,mi) from the challenger, for the adversary’s choice of
message mi. The total number of messages queried is denoted Q.

3. The adversary submits their attempted forgery - a message-signature pair
(m∗, σ∗) - to the challenger. The challenger outputs Vf (pk, (m∗, σ∗)); the
adversary wins if this output is ’Accept’.

Denote the advantage of the adversary in this game with S as the challenger by
cma-adv(A,S).

Suppose an adversary A is given (g, ϕ) ∈ Hol(G) and sg,ϕ(x) for some x ∈ N.
Denote the advantage of A against SDLP by sdlp− adv(A, (g, ϕ)). The authors
of [3] prove

Theorem 2. [3, Theorem 7] Let G be a finite non-abelian group; (g, ϕ) ∈ G ⋉
Aut(G); and n ∈ N be the smallest integer such that sg,ϕ(n) = 1. Consider



Weak Instances of SPDH-Sign 7

the chosen message attack game in the random oracle model, where Qs is the
number of signing queries made and Qro is the number of random oracle queries.
For any efficient adversary A and N ∈ N, there exists an efficient adversary B
running A as a subroutine such that SPDH−Signg,ϕ(N) has

δ ≤ Qs
n

(Qs +Qro + 1) +
Qro
2N

+
√

(Qro + 1) sdlp− adv(B, (g, ϕ))

where δ = cma-advro
(
SPDH−Signg,ϕ(N),A

)
is the advantage of the signature

scheme in the random oracle model version of the chosen message attack game.

For the use of SPDH-Sign, one has to pick a particular group with which the
scheme will be instantiated; the authors propose the use of the group

G = Gp :=

{(
a b
0 1

)
: a, b ∈ Zp2 , a ≡ 1 mod p

}
We note that we have Gp ∼= Z/p2Z ⋊ Z/pZ, where Z/pZ acts on Z/p2Z via
a⋆b = b1+pa. This isomorphism and its inverse are plainly efficiently computable.

When using such a group, p would be chosen to be a cryptographic prime,
that is, p = exp(λ) where λ is the security parameter of a SLDP-based scheme,
such as SPDH-Sign.

Finally in this section, we note an incorrect statement in [3]. The authors
write:

Theorem 3. [3, Theorem 9] Let (g, ϕ) ∈ Gp ⋊ Aut(Gp), where p is an odd
prime. Suppose n is the smallest integer for which sg,ϕ(n) = 1. Then

n ∈
{
p, p2, p3, p4, p5, p6, (p− 1), p(p− 1), p2(p− 1), p3(p− 1), p4(p− 1), p5(p− 1)

}
The reasoning runs as follows. Since n | ord((g, ϕ)), and ord((g, ϕ)) | Gp ⋉

Aut(G), we must have n | (p − 1)p6 for some odd prime p, and n ̸= (p − 1)p6

since this would imply Gp ⋊Aut(Gp) were cyclic.
The reasoning is sound; the conclusion of the theorem statement, however,

is false when p ̸= 3: since p is prime, p − 1 is not prime, and thus the set of
possibilities for n includes all elements of the set of divisors of p− 1 multiplied
by powers of p, up to p6 - not just the twelve values stated above. For instance,
n = 2p is a possibility for all p. The statement should read:

Theorem 4. Let (g, ϕ) ∈ Gp ⋊ Aut(Gp), where p is an odd prime. Suppose n
is the smallest integer for which sg,ϕ(n) = 1. Let {p1, ..., pt} be a set of prime
divisors of p− 1. Then

n ∈

{
pj

∏
i∈S

pi

}
j,S

,

where S ⊂ [t] runs over multisets S such that
∏
i∈S pi denotes the products of

the pi indexed by a subset of possible indices such that
∏
i∈S pi | p − 1, and j

satisfies j ∈ [5] if S ̸= ∅ or j ∈ [6] if S = ∅.

We point this out for its relevance to our results in Section 4.
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3 On Gp and its Automorphisms

In this setion we discuss properties of Gp which we will exploit below, and in
particular give an explicit form for its automorphisms. Any finite group has a set
of automorphisms, denoted Aut(G), which form a group under composition. The
structure of Aut(G) comprises two factors: the inner and outer automorphisms.
These each form a subgroup of Aut(G).

Inner automorphisms are defined by conjugation: if g ∈ G is an arbitrary
group element, the map ch : g 7→ hgh−1 can be checked to be an automorphism.
The group formed by such maps is denoted Inn(G). Clearly if h commutes with
all other group elements, ch is the trivial map; thus when counting the number

of inner automorphisms, we find that there are | Inn(G)| = |G|
|Z(G)| of them, where

Z(G) denotes the center of the group.
The group of outer automorphisms, Out(G), is defined as

Out(G) := Aut(G)/ Inn(G)

Hence there are |Out(G)| = |Aut(G)|/| Inn(G)| outer automorphisms. We are
interested in determining explicit forms of elements of these groups, for our
subsequent cryptanalysis of SPDH-Sign. Below, we let g ∈ Gp and write g =(
1 + pm b

0 1

)
for some m ∈ Z/pZ and b ∈ Z/p2Z. As in [9], Gp is generated by

elements r, s where

r =

(
1 + p 0
0 1

)
and s =

(
1 1
0 1

)
So a generic group element g =

(
1 + pm b

0 1

)
may be written g = sbrm, and

group multiplication can be expressed

sbrm · sb
′
rm

′
= sb+b

′+pmb′rm+m′

Inner Automorphisms of Gp We first consider inner automorphisms. Note

that (scrn)−1 = rn
−1

sc
−1

= r−ns−c = spcns−cr−n, since spcns−cr−n · scrn =
spcns−pcnr0 = 1. The inner automorphisms act on sbrm by conjugation; that is,
if ϕ ∈ Inn(Gp), then

ϕ(sbrm) = (scrn)−1sbrm(scrn) = (scrn)−1sb+c+pmcrm+n

= spcny−cr−nsb+c+pmcrm+n = spcnsb+pmc−pn(b+c)rm

= spnc+b+pmc−pnb−pncrm = sb+p(mc−nb)rm

We summarise this as

Lemma 1. Let ϕ be an inner automorphism of Gp. Then the action of ϕ on a
generic group element g = sbrm is given by

ϕ(g) = sb+p(mc−nb)rm
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We note that there are | Inn(Gp)| = |Gp|
|Z(Gp)| =

p3

p = p2 inner automorphisms,

since the center of Gp is

Z(Gp) =
{(

1 b
0 1

)
: b ∈ Z/p2Z, b ≡ 0 mod p

}
=

〈(
1 p
0 1

)
mod p2

〉

Outer Automorphisms of Gp The form of the outer automorphisms is less
obvious than that of the inner automorphsims; we have

Proposition 1. The outer automorphisms of Gp are given by the maps

ϕ(sbrm) = sbw+pmurm

where ϕ corresponds to a pair (u,w) ∈ Z/pZ ⋊ Z/pZ×.

Proof. Clearly ϕ : Gp → Gp such that ϕ(e) = e. Observe

ϕ(gg′) = ϕ(sbrm · sb
′
rm

′
) = ϕ(sb+b

′+pmb′rm+m′
)

= sw(b+b′+pmb′)+p(m+m′)urm+m′

and

ϕ(g)ϕ(g′) = sbw+pmurmsb
′w+pm′urm

′

= sbw+pmu+b′w+pm′u+pm(b′w+pm′u)rm+m′

= sbw+pmu+b′w+pm′u+pmb′wrm+m′

So ϕ is indeed multiplicative. Moreover, these are not inner automorphisms,
which be seen by inspecting the ‘twist’ of b in the exponent by w. Note that
there are |Out(Gp)| = |Aut(Gp)|/| Inn(Gp)| = (p − 1)p3/p2 = (p − 1)p outer
automorphisms, and since the automorphisms above are obtained by pairs from
Z/pZ⋊Z/pZ×, and |Z/pZ⋊Z/pZ×| = p(p− 1), we conclude we have found all
the outer automorphisms.

We conclude this section with the important observation

Corollary 1. Let ϕ ∈ Aut(Gp). Then for any g = sbrm, we have ϕ(g) = sb
′
rm;

that is, ϕ leaves rm unchanged.

Proof. Observation of the results of Lemma 1 and Proposition 1.

4 Making ‘Mash’ when n ≤ poly(log p)p

Here we outline an attack on SPDH when n is ‘small’ (though still exponen-
tial in the security parameter). The attack uses the structure of Gp to extract
information on x from g, ϕ, sg,ϕ(x). We begin with a proposition:
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Proposition 2. Let G = M ⋊ N be a semidirect product of finite groups with
N acting on M via automorphisms. Consider the holomorph of G, (M ⋊N) ⋊
Aut(G). Then if N is simple, the maps induced on N by elements of Aut(G) are
either the constant map N → {e} or automorphisms.

Proof. Let ϕ ∈ Aut(G). Writing ϕ(m,n) = (m′, n′), consider the induced map
ψ : N → N,n 7→ n′. Since

ϕ((m,n))ϕ((m′, n′)) = ϕ((m,n)(m′, n′)) = ϕ((n′(m)m′, nn′))

we have ψ(n)ϕ′(n′) = ψ(nn′). Moreover,

ϕ((m, e))ϕ((m′, e)) = ϕ((m, e)(m′, e)) = ϕ(mm′, e)

so ψ(e)ψ(e) = ψ(e)2 = ψ(e) and ψ(e) is an idempotent in a finite group, hence
ψ(e) = e. Thus ψ is an endomorphism of N .

Since the image of a group under an endomorphism is a subgroup, we find
that either ψ(N) = N or ψ(N) = {e}. In the latter case every element is mapped
to e, and in the former we have a homomorphism between finite groups of trivial
kernel, and thus an automorphism.

We note that when N = Z/pZ, End(Z/pZ) = Z/pZ.

We now give a general method to recover x when n is at most a small multiple
of |Aut(N)|, subject to a constraint on the group element (g, ϕ) ∈ G⋊ Aut(G)
where G =M ⋊N is a semidirect product with M and N finite abelian, and N
simple as in the previous proposition, and g = (a, φ) ∈ G. We then specialise to
the particular case of Gp.

Theorem 5. Let G = M ⋊ N be a semidirect product with M and N finite
abelian, and N simple. Suppose |Aut(N)| =

∏
i pi for distinct primes pi. Let

(g, ϕ) ∈ G ⋊ Aut(G), where g = (a, φ) ∈ G. Suppose that ϕ acts on φ as an
automorphism ψ, sending φ 7→ φα for some α ̸= 0. Then there is a quantum
polynomial time algorithm to find x mod |Aut(N)|.

Proof. The SDLP instance is to recover x from sg,ϕ(g), which we may write
sg,ϕ(x) = ϕx−1((a, φ))ϕx−2((a, φ))...ϕ(a, φ)(a, φ) where g = (a, φ) ∈ M ⋊ N .
If ϕ acts as an induced automorphism ψ on φ sending φ to φα for some α,
since (g, ϕ) is public evaluating ϕ(g) for φα and appealing to an abelian discrete
logarithm oracle yields α. We can write sg,ϕ(x) as

ϕx−1((a, φ))ϕx−2((a, φ))...ϕ((a, φ))(a, φ) = (·, ψx−1(φ)ψx−2(φ)...ψ(φ)φ)

for some unspecified first entry. The second entry above can be rewritten

(φα
x−1

)(φα
x−2

)...(φα)φ = φα
x−1+αx−2+...+α+1

Another appeal to an abelian discrete logarithm oracle obtains the exponent
αx−1 + αx−2 + ...+ α+ 1 mod |Aut(N)|. We now split into two cases: if α = 1,
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then αx−1 + αx−2 + ...+ α+ 1 = x mod |Aut(N)| and we are done. So suppose
we are in the case of α ̸= 1.

By the CRT, it suffices to recover x mod pi from

b := αx−1 + αx−2 + ...+ α+ 1 mod pi

for all prime factors pi of |Aut(N)| (which can be found efficiently with a quan-
tum algorithm). To do this, rewrite

b = αx−1 + αx−2 + ...+ α+ 1 =
αx − 1

α− 1
mod pi

and rearrange for
αx = b(α− 1) + 1 mod pi,

which can be done since we assumed α ̸= 1. A third appeal to an abelian discrete
logarithm oracle gives x mod pi, and hence x mod |Aut(N)|.

Corollary 2. Let n = poly(log p)p and (g, ϕ) ∈ Gp ⋊Aut(Gp). Then there is a
quantum polynomial time algorithm to solve SDLPGp,g,ϕ,n.

Proof. We apply the theorem with M = Z/p2Z and N = Z/pZ, and note that
by Corollary 1 any automorphism leaves the r component of a group element
fixed, and so in the notation of the theorem, we always have α = 1. We then
obtain x mod |Aut(N)| = x mod p − 1 as in the proof of the theorem. From
this we can obtain x mod p. If n = poly(log p)p we can then find the true value
of x by exhaustion in polynomial time.

We note that such values for n are possible by Theorem 4.
The consequence of all this is that when instantiating SPDH-Sign with G =

Gp, one should choose n to be at least n ≈ p2.

5 An Attack in the Style of [7]

In [7], the scheme ‘MAKE’ [19] was cryptanalysed, and [18] extended the attack
to the scheme ‘MOBS’ [20]. The scheme uses square matrices whose entries are
bitstrings of k bits equipped with the logical operations of OR and AND. The au-
thors of [7] found (in the notation of [6]) that, given such a matrixM and an auto-
morphism h of the space of such matrices, and writing A := hx−1(M)...h(M)M ,
one could obtain h(A)M = hx(M)A. From this it was argued that MAKE and
MOBS were insecure, since by linear algebra hx(M), and then hx and finally x,
could be computed (though the efficacy of the attack was disputed in [6]).

We note that one can obtain ϕx(g) given g, ϕ and sg,ϕ(x), by computing

ϕx(g) = ϕ(sg,ϕ(x))g · sg,ϕ(x)−1,

somewhat in the style of the attacks on MAKE and MOBS. It was known prior
to this work that this element could be computed. Here, however, we observe
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that since we know g, one can then obtain further information on x.
In more detail and for G = Gp, suppose we have g ∈ Gp. Write g =(

1 + pa b
0 1

)
for some a ∈ Z/pZ and b ∈ Z/p2Z. We then compute ϕx(g) =(

1 + pa′ b′

0 1

)
for some a′ ∈ Z/pZ and b′ ∈ Z/p2Z. Here we will consider the case

of the inner automorphisms Inn(Gp), and of elements in Out(Gp) := Aut(Gp)/ Inn(Gp).
First consider inner automorphisms. Recall that the inner automorphisms act

on sbrm by conjugation, and that by Lemma 1 if ϕ ∈ Inn(Gp), then

ϕ(sbrm) = sb+p(mc−nb)rm

We then compute
ϕx(sbrm) = sb+xp(mc−nb)rm

We can multiply by r−m to obtain sb+xp(mc−nb), use a discrete logarithm oracle
to find b+ xp(mc− nb), and then use linear algebra to find x mod p.

In the case of outer automorphisms, we found in Proposition 1 that these are
given by the maps

ϕ(sbrm) = sbw+pmurm

where ϕ corresponds to a pair (u,w) ∈ Z/pZ ⋊ Z/pZ×. We then compute

ϕx(g) = sbw
x+pmu(wx−1+...+w+1)rm

We can cancel the rm, since it is public, for

sbw
x+pmu(wx−1+...+w+1)

and can hence recover bwx + pmu(wx−1 + ...+ w + 1) by solving the discrete
logarithm problem instance. If we compute

sbw
x+pmu(wx−1+...+w+1) · s−bw

x−1−pmu(wx−2+...+w+1)

= sbw
x−bw−1+pmu(wx−1+...+w+1)−pmu(wx−2+...+w+1)

= sbw
x−1(w−1)+pmuwx−1

,

we can then obtain bwx−1(w − 1) + pmuwx−1 = wx−1(b(w − 1) + pmu), and if
w ̸= 1 we can cancel the righthand factor for wx−1, and recover x − 1 mod p
from a discrete logarithm oracle.

Finally, we note all automorphisms are obtained from composing inner and
outer automorphisms.

6 SPDH and the Linear Hidden Shift Problem

In this section we show that Theorem 5 implies a solution to the linear hidden
shift (LHS) problem as defined in [1]. We begin by defining this problem formally.
Let ⟨gi, s⟩ :=

∏
j g

sj
ij
, where gij ∈ G and G is written multiplicatively.
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Definition 9. The search LHS problem LHSG,X,s is hard over a regular group
action (G,X, ⋆) if for any m = poly(λ), s← {0, 1}n, and for any PPT attacker
A, we have

Pr
[
A
(
{(xi,gi, (⟨gi, s⟩) ⋆ xi)}i∈[m]

)
outputs s

]
≤ negl(λ),

where gi ← Gn and xi ← X are sampled independently, over all random coins
in the experiment.

For SDPGA: the search LHS problem is hard over (Z/nZ, Gp ⋊ Aut(Gp), ⋆)
if for any m = poly(λ) and for any PPT attacker A, we have

Pr
[
A
(
{((gi, ϕi),xi, (⟨xi, s⟩) ⋆ (gi, ϕi))}i∈[m]

)
outputs s

]
≤ negl(λ),

where xi ← (Z/nZ)n, s ← {0, 1}n, (gi, ϕi) ← Gp ⋊ Aut(Gp) sampled indepen-
dently, over all random coins in the experiment. Note that additively

(⟨xi, s⟩) ⋆ (gi, ϕi) = (
∑
j

sjxij ) ⋆ (gi, ϕi) = sgi,ϕi

∑
j

sjxij


We now prove our result:

Theorem 6. Let (g, ϕ) ∈ Gp ⋊ Aut(Gp), where g = (a, φ) ∈ Gp. Let m ≥ n.
Then there is a quantum polynomial time algorithm to solve LHSG,X,s.

Proof. Write x′i =
∑
j sjxij . We are given the (gi, ϕi), xi, and sgi,ϕi

(x′i). We
therefore use the method of Theorem 5 to find bi := x′i mod p−1, for i = 1, ...,m.
This gives us the m equations

b1 =
∑
j

sjx1j mod p− 1

...

bm =
∑
j

sjxmj
mod p− 1

This is m equations in the n unknown values of s1, ..., sn with known coefficients
xij mod p−1. Since si ∈ {0, 1} the modulo operation leaves si unchanged. Thus
when m ≥ n we can solve this system of equations for the si, and so solve the
search LHS instance.

7 On the Equivalence of SCDH and SDLP

Here we reduce SDLP to the semidirect computational Diffie-Hellman (SCDH)
problem via an efficient quantum algorithm. Since SCDH reduces to SDLP triv-
ially, this establishes the quantum polynomial equivalence of the two problems,
stated as an open problem in [3]. We do this by transforming SDLP instances into
hidden subgroup problem (HSP) instances, assuming the presence of a SCDH
oracle. Recall:
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Definition 10. (Hidden subgroup problem) Let f : G→ S be a function from
finite group G to a set S that is constant on the cosets of some H ≤ G; i.e.
f(g) = f(g′) if and only if gH = g′H. Given f,G, S, find a generating set of H.

We refer below to SCDH2
g,ϕ,n, which is the general SCDH problem restricted

to the task of doubling in the argument of sg,ϕ(x); that is, one solves SCDH2
g,ϕ,n

if given g, ϕ, and sg,ϕ(x), one computes sg,ϕ(x+ x) = sg,ϕ(2x). Note that this is
weaker than a general SCDH oracle which returns sg,ϕ(a+ b) given sg,ϕ(a) and
sg,ϕ(b) for any a, b ∈ Z/nZ.

Theorem 7. There is a quantum polynomial-time reduction from SDLPg,ϕ,n,x
to SCDH 2

g,ϕ,n.

Proof. Let x ∈ Z/nZ, (g, ϕ) ∈ G⋊Aut(G), and suppose we are given sg,ϕ(x). We
assume that given (g, ϕ), sg,ϕ(x), and sg,ϕ(y), we are able to compute sg,ϕ(x+y)
in the case x = y. In particular, we can then compute sg,ϕ(ax) for any a in
(classical) polynomial time by computing sg,ϕ(2x) = sg,ϕ(x + x), writing a in
base 2, and then repeatedly doubling and adding in the argument of sg,ϕ(·)
appropriately.

We then define a map f : Z/nZ×Z/nZ→ Xg,ϕ, (a, b) 7→ ϕb(sg,ϕ(ax))sg,ϕ(b).
This can be rewritten f(a, b) = sg,ϕ(ax + b). Observe that if f(a, b) = f(a′, b′),
then we must have ax + b = a′x + b′ mod n, since the group action of Z/nZ
on G ⋊ Aut(G) is regular. We then find that f(a, b) = f(a′, b′) if and only if
(a, b) = (a′, b′) + λ(1,−x). This is an HSP instance, which can be solved in
quantum polynomial time via Shor.

8 Relation of SDLP to the Hidden Subgroup Problem

In this final section we explain why we could not solve the SDLP problem via
a reduction to a hidden subgroup problem instance in an analogous manner to
the abelian discrete logarithm problem (DLP).

DLP is reduced to HSP via the map f(a, b) = sagb where gx = s, with a, b ∈
Z/nZ. Then f(a, b) = gax+b, and f(a, b) = f(a′, b′) iff (a, b) = (a′, b′)+λ(1,−x).

In that spirit, one might try setting f(a, b, c) = (sg,ϕ(x), ϕ
a)c(g, ϕ)b. Then if

a = x, we have f(a, b, c) = (g, ϕ)cx+b and we would have defined a map from an
abelian group into the cyclic group ⟨(g, ϕ)⟩, as is done for DLP. The condition
a = x seems problematic, however. Note f(a, b, c) = f(a′, b′, c′) if (a, b, c) =
(x, b′, c′) + λ(0,−x, 1), as (some) solutions have the form (x, 0, 0) + ⟨(0,−x, 1)⟩,
which is an affine line in (Z/nZ)3. This however is not a ‘period’ in the sense of
Shor that Shor’s algorithm for the HSP requires. Thus an obstacle for defining
the required map is the ‘hiding’ of ϕx, which prevents an adversary for defining
a map into ⟨(g, ϕ)⟩.

One might observe that we are not given a group element, but merely an
element of the orbit Xg,ϕ of (g, ϕ) under the action of Z/nZ. This might prompt
one to attempt to define a map f : Z/nZ × Z/nZ → Xg,ϕ in the spirit of the
above map. This would seek to define a map f(a, b) = sg,ϕ(ax+b). Then since the
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group action is regular, f(a, b) = f(a′, b′) if and only if (a, b) = (a′, b′)+λ(1,−x)
and we could use Shor’s period finding algorithm. Since we can add b in the
argument, to define such a map one would first have to define a map f ′(a) =
sg,ϕ(ax). Referring to the previous section, one can see that this is in fact how
Theorem 7 was proved, since the possibility of defining such a map follows from
assuming SCDH. However, it seems that without the SCDH assumption, one
cannot compute sg,ϕ(ax) given the available information. This thus can be seen
as an obstacle to a complete quantum solution to SDLP.
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