
Fiat-Shamir Goes Tropical

RémiGéraud-Stewart1[0000−0001−8719−1724], DavidNaccache2, and
Ofer Yifrach-Stav2

1 Qualcomm Inc., San Diego, USA
2 Département d’informatique de l’ENS, École normale supérieure,

CNRS, PSL Research University, Paris, France
remi.geraud@ens.fr, david.naccache@ens.fr, ofer.friedman@ens.fr

Abstract. In a recent ePrint, Brown and Monico propose new attacks on
the tropical signature scheme of Chen, Grigoriev and Shpilrain. This note
provides a new countermeasure against those attacks. Thereby, we (tem-
porarily?) shift the fire from the signature algorithm to redirect attacks on
the key and on tropical polynomial factorization.

1 Introduction

This paper can be read a continuation of a thread of papers on a tropical sig-
nature scheme proposed by Chen, Grigoriev and Shpilrain (CGS) [2]. We refer
the readers to [2,5,7], for the previous episodes of this saga. Further useful ref-
erences on the topic are given in [6] and its bibliography.

In essence, the concerned signature scheme works as follows:
Denote by 𝒫𝑟,𝑑 the subset of 𝑆[𝑡] (the tropical polynomial semiring) with co-

efficients in [0, 𝑟] and degree 𝑑.
Key generation: The signer selects 𝑋, 𝑌 ∈𝑅 𝒫𝑟,𝑑. The public key is:

(𝑟, 𝑑,𝑀 = 𝑋 ⊗ 𝑌)

Signature: To sign 𝑚, the signer hashes 𝑚 into hash(𝑚) = 𝐻 ∈ 𝒫𝑟,𝑑.

The signer picks 𝑈,𝑉 ∈𝑅 𝒫𝑟,𝑑 and computes the signature:

𝜎 = (𝐻,𝐴, 𝐵,𝑁) = (𝐻,𝐻 ⊗ 𝑋 ⊗ 𝑈,𝐻 ⊗ 𝑌 ⊗ 𝑉,𝑈 ⊗ 𝑉)

Verification: To check 𝜎, ascertain that:

– V1: hash(𝑚) ?= 𝐻 ∈ 𝒫𝑟,𝑑

– V2: 𝐴, 𝐵
?
∈ 𝒫3𝑟,3𝑑

– V3: 𝑁
?
∈ 𝒫2𝑟,2𝑑

– V4: Neither 𝐴 nor 𝐵 is a constant tropical multiple of 𝐻 ⊗𝑀 or 𝐻 ⊗𝑁.
– V5: 𝐴 ⊗ 𝐵 ?= 𝐻 ⊗𝐻 ⊗𝑀 ⊗𝑁

The fixing strategy will consist in translating the Fiat-Shamir protocol into
the tropical realm (first fix) and by applying the Fiat-Shamir Transform (FST)
to CGS (second fix).

For the sake of convenience we will denote for any collection of objects 𝐿𝑖:

⃗𝐿 = (𝐿0, 𝐿1,… , 𝐿𝜏−1)

Any operation ⋆ between arrowed variables is to be understood component
wise, e.g.

⃗𝐿 ⋆ ⃗𝐿′ = (𝐿0 ⋆ 𝐿′
0, 𝐿1 ⋆ 𝐿′

1,… , 𝐿𝜏−1 ⋆ 𝐿′
𝜏−1)

We define an auxiliary selection function for 𝐿0, 𝐿1 ∈ 𝒫⋆,⋆ and 𝑏 ∈ {0, 1}:
Δ𝑏(𝐿0, 𝐿1) = 𝐿𝑏.

2 Tropicalized Fiat-Shamir

The first fix is interesting in that it translates directly a classical factoring-based
scheme into a similar (hopefully) post-quantum scheme.

We use here the standard notations of [3]. The problem with the classical
Fiat-Shamir is the fact that 𝑠2𝑣 = 1 mod 𝑛 which means that during key gener-
ation one needs to perform a modular division.

It is easy to work around this limitation by defining 𝑠2 = 𝑣 mod 𝑛 which
results in the following scheme:

– The prover starts by picking randomly an 𝑟 ∈𝑅 ℤ;
– The prover sends a commitment 𝑥 = 𝑟2 mod 𝑛;
– The verifier replies with a challenge bit 𝑏;
– The prover responds with 𝑦 = 𝑠𝑏𝑟 mod 𝑛;
– The verifier checks that 𝑦2 ?= 𝑣𝑏𝑥 mod 𝑛.

To tropicalize this scheme, the secret key will become 𝑆 ∈𝑅 𝒫𝑟,𝑑 and the pub-
lic key 𝑉 = 𝑆 ⊗ 𝑆 ∈ 𝒫2𝑟,2𝑑.

– The prover starts by picking randomly an 𝑅 ∈𝑅 𝒫𝑟,𝑑;
– The prover sends a commitment 𝑋 = 𝑅 ⊗ 𝑅;
– The verifier replies with a challenge bit 𝑏;
– The prover responds with 𝑌 = Δ𝑏(𝑅, 𝑆 ⊗ 𝑅);
– The verifier checks if 𝑌 ⊗ 𝑌 ?= Δ𝑏(𝑋, 𝑉 ⊗ 𝑋).

The verifier will also check that 𝑉,𝑋
?
∈ 𝒫2𝑟,2𝑑 and 𝑌

?
∈ 𝒫(1+𝑏)𝑟,(1+𝑏)𝑑.

To get a signature scheme from this zero-knowledge protocol one can just
apply the Fiat-Shamir transform.

We note that the Chen, Grigoriev and Shpilrain differs from the above pro-
tocol in two points: the first is that it corresponds to a tropicalized Fiat-Shamir

where the challenge 𝑏 is alwasys stuck to 1. The second is that squares are not
used but the operation 𝑟2 is replaced by 𝑟1𝑟2.

We do not know how to simulate the tropicalized Fiat-Shamir for the follow-
ing reason. Following the traditionalmodus operandi the case 𝑏 = 0 is trivial. For
𝑏 = 1 we would use 𝑋 = 𝑅 ⊗ 𝑅 ⊗ 𝑉 and 𝑌 = 𝑅 ⊗ 𝑉:

𝑌 ⊗ 𝑌 ?= 𝑉 ⊗ 𝑋

Indeed:
(𝑅 ⊗ 𝑉) ⊗ (𝑅 ⊗ 𝑉) = 𝑉 ⊗ (𝑅 ⊗ 𝑅 ⊗ 𝑉)

However, now 𝑋 ∈ 𝒫4𝑟,4𝑑 and 𝑌 ∈ 𝒫3𝑟,3𝑑 which violates the verification con-
ditions. This does not mean that the tropicalized Fiat-Shamir version is inse-
cure but only that, do date, we don’t know how to simulate it to prove its zero-
knwoledgeness.

A potential way to get around this problem might be to increase in the le-
gitimate protocol specifications to 𝑅 ∈ 𝒫2𝑟,2𝑑. In which case the simulator could
use “shorter than normal” 𝑅s and the situation will be:

Table 1. Protocol modification to accommodate simulation.

when the challenge is 𝑏 = 1 𝑆 𝑉 𝑅 𝑋 𝑌
legitimate protocol 𝒫𝑟,𝑑 𝒫2𝑟,2𝑑 𝒫2𝑟,2𝑑 𝒫4𝑟,4𝑑 𝒫3𝑟,3𝑑

simulator 𝒫𝑟,𝑑 𝒫2𝑟,2𝑑 𝒫𝑟,𝑑 𝒫4𝑟,4𝑑 𝒫3𝑟,3𝑑

Table 2. Protocol modification to accommodate simulation.

when the challenge is 𝑏 = 0 𝑆 𝑉 𝑅 𝑋 𝑌
legitimate protocol 𝒫𝑟,𝑑 𝒫2𝑟,2𝑑 𝒫2𝑟,2𝑑 𝒫4𝑟,4𝑑 𝒫2𝑟,2𝑑

simulator 𝒫𝑟,𝑑 𝒫2𝑟,2𝑑 𝒫2𝑟,2𝑑 𝒫4𝑟,4𝑑 𝒫2𝑟,2𝑑

While this fixes the size problem, nothing guarantees that the (𝑋, 𝑌) distri-
butions of the parties and of the simulator are strictly identical. Nonetheless this
gives hope to prove the protocol secure in the statistical zero-knowledge rather
than in the perfect zero-knowledge sense. We did not explore further this point.

Note that while CGS security relied on the conjectured hardness of factor-
ing polynomials in 𝑆[𝑡], the Fiat-Shamir variant relies on both the hardness of
factoring polynomials in 𝑆[𝑡] and on the conjectured hardness of computing
square roots in 𝑆[𝑡], a problem which might turn out to be easier than factoring
polynomials in 𝑆[𝑡] and which hardness we did not assess³.

³ Note, for instance that 2𝑃(0) = (𝑃 ⊗ 𝑃)(0) and that the same occurs on the leading
coefficients of both 𝑃 and 𝑃⊗𝑃. It is unclear if this can be used to unravel 𝑃 from 𝑃⊗𝑃.

3 Fiat-Shamirization of Chen, Grigoriev and Shpilrain

We denote hash(𝑚, 𝑖) = 𝐻𝑖 ∈ 𝒫𝑟,𝑑.
Key generation remains unchanged with respect to the original CGS.
To sign a message, generate �⃗�, �⃗� ∈𝑅 (𝒫𝑟,𝑑)𝜏 and compute (⃗𝐴, ⃗𝐵, �⃗�) as in the

original CGS. Let ⃗𝐶 = ⃗𝐴 ⊗ ⃗𝐵. Here ⃗𝐶 will act as a non-interactive commitment
on ⃗𝐴 and ⃗𝐵.

ℎ = hash(𝑟, 𝑑,𝑚,𝑀, ⃗𝐶, �⃗�) mod 2𝜏

We start by including in the signature �⃗�.
We now use the 𝜏 bits of ℎ as indicators pointing which commitments to

open.

{ if ℎ𝑖 = 0 add to the signature 𝑈𝑖, 𝑉𝑖, 𝐶𝑖
if ℎ𝑖 = 1 add to the signature 𝐴𝑖, 𝐵𝑖

The verifier can hence reconstruct ⃗𝐶 in full. Either they get 𝐴𝑖, 𝐵𝑖 and can
hence compute 𝐶𝑖 (case ℎ𝑖 = 1) or they get 𝐶𝑖 directly (case ℎ𝑖 = 0). The verifier
can hence recompute ℎ from the signature.

At each ℎ𝑖 = 1 coordinate the verifier performs tests V1,V2,V3,V4 and V5.
At each ℎ𝑖 = 0 coordinate the verifier checks that𝑈𝑖, 𝑉𝑖 ∈ 𝒫𝑟,𝑑 and𝑁𝑖 ∈ 𝒫2𝑟,2𝑑.
This idea can come in several flavors e.g. a different 𝑋𝑖, 𝑌𝑖 can be used per

coordinate. In a more daring variant we can aggregate the different signature
components.

In this variant we modify the definition of ℎ to:

ℎ = hash(𝑟, 𝑑,𝑚,𝑀, �̄�, �̄�) mod 2𝜏 where �̄� =
𝜏

⨂
𝑖=0

𝐶𝑖 and �̄� =
𝜏

⨂
𝑖=0

𝑁𝑖

Let:

̄𝐴1 = ⨂
ℎ𝑖=1

𝐴𝑖 and �̄�1 = ⨂
ℎ𝑖=1

𝐵𝑖 and �̄�0 = ⨂
ℎ𝑖=0

(𝐴𝑖 ⊗ 𝐵𝑖) = ⨂
ℎ𝑖=0

𝐶𝑖

�̄�0 = ⨂
ℎ𝑖=0

𝑁𝑖 and �̄�1 = ⨂
ℎ𝑖=1

𝑁𝑖 and 𝑀𝜏 =
𝜏−1

⨂
𝑖=0

𝑀

If the signature was correctly generated we should have:

̄𝐴1 ⊗ �̄�1 ⊗ �̄�0 = �̄� ⊗𝑀𝜏 ⊗
𝜏

⨂
𝑖=0

(𝐻𝑖 ⊗ 𝐻𝑖)

̄𝐴1 ⊗ �̄�1 ⊗ �̄�0 = �̄�0 ⊗ �̄�1 ⊗𝑀𝜏 ⊗
𝜏

⨂
𝑖=0

(𝐻𝑖 ⊗ 𝐻𝑖)

We can hence provide as a signature:

̄𝐴1, �̄�1, �̄�0, �̄�1, plus all the 𝑈𝑖, 𝑉𝑖 couples for which ℎ𝑖 = 0

How to generate 𝑈𝑖, 𝑉𝑖? In all the above we assumed for the sake of clarity that
�⃗�, �⃗� are randomly generated.

The second (aggregated) variant uses ⊗ as a hash function which is bad be-
cause ⊗ is commutative. We hence enforce an extra protection to thwart ele-
ment permutation attacks (see e.g. [1]). The protection consists in generating
each 𝑈𝑖, 𝑉𝑖 pair from a common random seed 𝜎𝑖 and by including in the process
transforming 𝜎𝑖 into 𝑈𝑖, 𝑉𝑖 both 𝜎𝑖 and the index 𝑖. To reveal a given 𝑈𝑖, 𝑉𝑖 pair
the signer reveals 𝜎𝑖. This protection ismandatory in the aggregated scheme and
recommended as an extra precaution for the non-aggregated version.

4 Tropicalizing other cryptosystems

The “tropicalization” strategy described for Fiat-Shamir case may apply to a
variety of classical cryptosystems as long as during all computations⁴ the fol-
lowing holds:

– There is no need to divide and;
– Multiplication depth remains reasonable.

The first condition stems from the (conjectured) absence of efficient tropical
division. The second is due to the fact that the degree and the coefficients of the
involved polynomials grows as we keep ⊗ing.

At a first glance those conditions do not seem to apply to schemes such as
Diffie-Hellman. Fortunately, two interesting observations may still still salvage
the situation.

First we observe that if 𝑃𝑖 ∈ 𝒫𝑟,𝑑 then:

ℓ−1

⨂
𝑖=0

𝑃𝑖 ∈ 𝒫ℓ𝑟,ℓ𝑑

It follows that even if multiplication depth is huge, e.g. in a tropical Diffie-
Helmanwith 1024-bit exponents, coefficients will be large butmanageable. The
degree of the resulting polynomial is however problematic as, in the example
given, we would end-up with polynomials of degree (ℓ𝑑)2 = 22048𝑑2.

The workaround may consist in reducing the resulting polynomials mod-
ulo 𝑥𝑞, i.e. working in 𝑆[𝑡]/(𝑡𝑞) chopping all terms whose degree exceeds 𝑞. e.g.,
one could consider 𝑞 = 10𝑑. Working modulo polynomials more complex than
𝑥𝑞 (e.g. 𝑆[𝑡]/(𝑡𝑞 ± 1)) is yet another option and has the advantage of recycling
the “most significant” information of the polynomials while preserving size.

⁴ Be it signature, verification, encryption or decryption.

Such approaches would allow tropicalizing cryptosystems with high multipli-
cation depth such as Diffie-Hellman. This rough and general blueprint requires
a deeper analysis because the coefficients of the polynomial 𝐺𝑥 in 𝑆[𝑥] are, in
essence, very close to a small constant times 𝑥. Reducing each coefficient mod-
ulo some small prime modulus 𝑒 seems to avoid this problem but might create
others.

The case of El-Gamal variants where division is not required is interesting.
Such variants exist (e.g. EG I.3 or EG I.4 in [4]) but now the 𝑠part of the signature
must be given in ℤ which might be vulnerable and deserves further investiga-
tions and/or new countermeasures.

5 Acknowledgments

We thank Dan Brown and Chris Monico on their great insight and pertinent
comments during the developments of the ideas listed in this paper.

References

1. F. Benhamouda, H. Ferradi, R. Géraud, and D. Naccache. Non-interactive provably
secure attestations for arbitrary rsa prime generation algorithms. Cryptology ePrint
Archive, Paper 2017/640, 2017. https://eprint.iacr.org/2017/640.

2. J. Chen, D. Grigoriev, and V. Shpilrain. Tropical cryptography iii: digital signatures.
Cryptology ePrint Archive, Paper 2023/1475, 2023. https://eprint.iacr.org/
2023/1475.

3. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Proceedings on Advances in Cryptology—CRYPTO ’86, page
186–194, Berlin, Heidelberg, 1987. Springer-Verlag.

4. P. Horster, H. Petersen, and M. Michels. Meta-elgamal signature schemes. In Proceed-
ings of the 2nd ACM Conference on Computer and Communications Security, CCS ’94,
page 96–107, New York, NY, USA, 1994. Association for Computing Machinery.

5. K. H. Kim and F. W. Roush. Factorization of polynomials in one variable over the
tropical semiring, 2005.

6. A. Muanalifah and S. Sergeev. On the tropical discrete logarithm problem and secu-
rity of a protocol based on tropical semidirect product. Communications in Algebra,
50(2):861–879, Sept. 2021.

7. L. Panny. Forging tropical signatures. Cryptology ePrint Archive, Paper 2023/1748,
2023. https://eprint.iacr.org/2023/1748.

https://eprint.iacr.org/2017/640
https://eprint.iacr.org/2023/1475
https://eprint.iacr.org/2023/1475
https://eprint.iacr.org/2023/1748

	Fiat-Shamir Goes Tropical

