
HELIOPOLIS: Verifiable Computation over
Homomorphically Encrypted Data from
Interactive Oracle Proofs is Practical

Diego F. Aranha1, Anamaria Costache2, Antonio Guimarães3, and
Eduardo Soria-Vazquez4

1 Aarhus University, Denmark. dfaranha@cs.au.dk
2 NTNU, Norway. anamaria.costache@ntnu.no

3 IMDEA Software Institute, Spain. antonio.guimaraes@imdea.org
4 Technology Innovation Institute, UAE. eduardo.soria-vazquez@tii.ae

Abstract. Homomorphic encryption (HE) enables computation on en-
crypted data, which in turn facilitates the outsourcing of computation on
private data. However, HE offers no guarantee that the returned result
was honestly computed by the cloud. In order to have such guarantee, it
is necessary to add verifiable computation (VC) into the system.
The most efficient recent works in VC over HE focus on verifying op-
erations on the ciphertext space of the HE scheme, which usually lacks
the algebraic structure that would make it compatible with existing VC
systems. For example, multiplication of ciphertexts in the current most
efficient HE schemes requires non-algebraic operations such as real di-
vision and rounding. Therefore, existing works for VC over HE have to
either give up on those efficient HE schemes, or incur a large overhead
(an amount of constraints proportional to the ciphertext ring’s size) in
order to emulate these non-algebraic operations.
In this work, we move away from that paradigm by placing the verifi-
cation checks in the plaintext space of HE, all while the prover remains
computing on ciphertexts. We achieve this by introducing a general trans-
formation for Interactive Oracle Proofs (IOPs) to work over HE, whose
result we denote as HE-IOPs. We apply this same transformation to the
FRI [Ben-Sasson et al., ICALP 2018] IOP of proximity and we show how
to compile HE-Reed Solomon-encoded IOPs and HE-δ-correlated-IOPs
with HE-FRI into HE-IOPs. Furthermore, our construction is compati-
ble with a prover that provides input in zero-knowledge, and only relies
on building blocks that are plausibly quantum-safe.
Aligning the security parameters of HE and FRI is a difficult task for
which we introduce several optimizations. We demonstrate their effi-
ciency with a proof-of-concept implementation in Python and show that,
for an encrypted Reed Solomon codeword with degree bound 211 and rate
1/16 in a (plaintext) field of size 2256, we can run FRI’s commit phase in
just 43 minutes on a single thread on a c6i.metal instance (which could
be reduced to less than a minute in a multi-threaded implementation in
a large server). Verification takes less than 0.2 seconds, and, based on
micro-benchmarks of the employed techniques, we show it could be up
to 100 times faster in a fully optimized implementation.

1 Introduction

Cloud computing has changed the way citizens and businesses store, access and
process their data, including very sensitive information. Whereas there are nu-
merous usability and economic benefits to the outsourcing of these tasks to
remote servers, this paradigm introduces significant integrity and privacy risks.

Homomorphic Encryption (HE) has been referred to by many as the “holy
grail” technology to address the privacy risks of outsourced computation. Since
the first scheme was introduced by Gentry in 2009 [Gen09b], numerous advances
and improvements have followed [BGV12, Bra12, FV12, CGGI20, CKKS17]. In
particular, a privacy-preserving variant of the use-case of Machine Learning as a
Service (MLaaS) has been shown to be particularly suitable for HE by a recent
line of work [BMMP18, BCCW19, BGBE19].

However, HE by itself does not guarantee the integrity of the computing
party. Dealing with this issue falls within the scope of Verifiable Computation
(VC). VC describes a collection of techniques ensuring that the output returned
by the cloud servers is indeed the honest result of applying the requested function
to the designated data. On the other hand, VC on its own does not protect the
privacy of the outsourced yet sensitive data from the clients.

Early on, the cryptographic community realized that VC and HE complement
each other very well, since the limitations of one technique are perfectly covered
by the features of the other. Combining the two techniques is often referred
to as “privacy-preserving verifiable computation" or “verifiable computation on
encrypted data". The first solution to this problem was proposed by Gennaro,
Gentry and Parno [GGP10] in 2010, and employs a heavy combination of Yao’s
garbled circuit for a one-time verifiable computation together with HE to reuse
the garbled circuit across many inputs.

The later work of [FGP14] is efficient, but very limited in expressiveness. The
use of homomorphic MACs limits the application to depth-1 circuits as well as
it introduces the need to keep a secret verification key hidden from the prover,
hence eliminating the possibility for public verifiability.

The work of [FNP20] improves the expressiveness of [FGP14], by allowing to
efficiently compute circuits of (arbitrary) constant depth. Nevertheless, they are
restricted to deal with a very narrow subset of inefficient HE schemes: a variant
of the BV [BV14] scheme, where the integer ciphertext modulus q has to match
the (prime) order of the source groups in the underlying pairing-based SNARK.

Both [GNS23] and [BCFK21] overcome the barrier on the limitation in the
selection of HE schemes in [FNP20] by supporting an arbitrary rather than a
prime ciphertext modulus q. Still, for both works, dealing with the more complex
HE operations such as modulo switching and key switching is very expensive.
This makes it unclear whether it would be more practical to support efficient but
complex schemes such as BGV and BFV, or BV with a potentially non-prime q.

The main problem for all those works is that they verify whether certain
operations are done on (simplified versions of) the ciphertext space. Furthermore,
they need to emulate the arithmetic of HE ciphertexts in one way or another,
which introduces large overheads. While the addition of ciphertexts can be easily

2

emulated (as an addition of elements in the ciphertext space R2
q), the product of

ciphertext is not as algebraically structured and becomes hard to emulate. This
is since it mixes a number of computational steps such as bit-wise operations,
real division, rounding, the product of elements in Rq and changing the value of
q during modulo switching operations.

As an example of how expensive these techniques were, consider trying to
emulate the HE arithmetic within Rq (as in [GNS23, FNP20]), which is arguably
the closest algebraic structure. Every bit-wise operation involved in the product
of ciphertexts, such as rounding (present in the HE.ModSwitch operation in BGV
and BFV), has the cost of one constraint5 per bit of the ciphertext ring Rq.

This cost quickly becomes prohibitive as the multiplicative depth of the cir-
cuit grows, not only because of the number of such operations but also because of
how the HE parameters (including ciphertext size) grow according to that. In the
BGV scheme (as well as the BFV and CKKS one), increasing the multiplicative
depth of the circuit by one usually requires to add a prime to the prime chain
that makes up the ciphertext modulus. In more practical terms, this corresponds
to increasing the ciphertext modulus by 30− 50 bits every time we increase the
multiplicative depth by one. This means that the ciphertext modulus will grow
exponentially with the depth d of the circuit that one wants to evaluate (this
takes the security level into account; see for example [APS15, CP19]). Alterna-
tively, works like [BCFK21] circumvent the issue of doing bit-wise operations
by using the BV scheme. In their work, the size of the ciphertext ring grows
exponentially with the number of ciphertext-ciphertext multiplications that one
wants to be able to evaluate.

In this work, we deviate from this paradigm by enabling the verification of
operations on the plaintext space of the HE scheme. At a high level, we show how
to adapt holographic IOP-based SNARKs so that, on the one hand, the prover
computes obliviously on the encrypted values while, on the other hand, the veri-
fier performs the verification checks on the plaintext space. We choose to focus on
holographic IOPs as a departure point for our verifiable computation protocol,
since the holography property is particularly well suited for outsourcing sce-
narios. Nevertheless, our techniques could easily be adapted to non-holographic
IOPs.

We call our overall framework HElIOPolis, since its central components are
homomorphic encryption (HE) and Interactive Oracle Proofs (IOPs).

1.1 Technical overview

We manage to move verification from the ciphertext to the plaintext space by
replacing the IOP oracles O with encrypted oracles OHE, which are oracles to
data that is homomorphically encrypted. While the prover P does not know
what are the actual plaintexts they are computing on, P knows how to arrange

5 The number of constraints in R1CS or other models of computation are the main
metric for the efficiency in SNARKs.

3

them into oracles (i.e. P can place HE.Enc(x) into an oracle OHE, rather than x
into O).

Whereas the modified IOP (which we refer to as HE-IOP) can now only be
verified by whoever has the HE decryption key6, this new abstraction is very
powerful: not only is the prover much more efficient, but it is also very simple to
reduce the security of an HE-IOP to that of its corresponding IOP (Theorem 2).
Furthermore, we also adapt several results in the literature compiling differ-
ent variants of (zk)IOPs into (zk)SNARKs [COS20, BGK+23]. Even more, our
resulting zkSNARKs are plausibly post-quantum, since so are the BCS transfor-
mation [BCS16, CMS19] and all the efficient HE schemes that we have today.

Once oracles are replaced with encrypted oracles, our approach is black box
on the different components of these compilers. A central part of these is the
use of an IOP of proximity to Reed-Solomon Codes, which is interpreted either
as a low degree test or a correlated agreement test [BCI+20, BGK+23]. As is
done in practice for unencrypted IOPs, we choose FRI [BBHR18] to instantiate
this IOPP component. FRI is, a priori, particularly HE-friendly, in the sense that
it only runs linear operations on the functions being tested, and products in
HE are particularly expensive. Nevertheless, there are several challenges when
trying to align the security parameters of HE schemes and FRI. This constitutes
a significant part of our work, for which we discuss trade-offs and optimizations
(Section 6) as well as provide experimental data (Section 7).

Aligning security parameters. The first obstacle that we encounter is how to en-
able FRI to work over a field of size |FpD | ≈ 2256, for some prime p. This ensures
that FRI remains secure when making it non-interactive through Fiat-Shamir
for any Reed-Solomon codeword we would encounter in practice when compil-
ing IOPs [BGK+23]. Using pD as a plaintext modulus for the HE scheme would
result in unmanageable parameters and significantly affect the performance. We
circumvent this by emulating the arithmetic of FpD from that of Fp by using D
ciphertexts, each of which encrypts elements from Fp.

Reducing depth and exploiting HE packing. A second challenge to the homomor-
phic evaluation of FRI is in the multiplicative depth of the standard techniques
used to implement it. Even though it only performs multiplications between
plaintexts and ciphertexts, the size of these plaintexts increases the noise almost
as much as a ciphertext multiplication for some choices of Fp. A typical imple-
mentation of FRI would have depth 2n for an input of size 2n, which represents
a challenge for HE schemes, as performance degrades quickly with the depth.
We solve this problem by introducing low-depth versions of every sub-routine
required to evaluate FRI. Particularly, we show how to perform Reed-Solomon
codeword encoding (RS encoding) with small fixed depth, as opposed to the
traditional methods that require depth n. We also propose a “Shallow Fold" al-
gorithm to replace FRI’s standard Fold operation, which reduces the depth to 1

6 In concurrent work on IOPs over encrypted data [GGW23], the authors discuss
the use of fully homomorphic commitments [GVW15] as a way to recover public
verifiability, but all constructions for such primitive are very inefficient.

4

(from n), at the cost of increasing the complexity to O(2n log(2n)) (from O(2n)),
which does not change the asymptotics of the overall procedure. Additionally,
we exploit the packing capabilities of the HE scheme to further reduce the cost
of the RS encoding. In more detail, we consider packing methods that trade off
memory consumption and execution time to accelerate both single and batched
polynomial commitments.

Minimizing HE overhead for the verifier. Finally, we take advantage of tech-
niques proposed in [CGGI20, CLOT21] to implement a repacking and recompos-
ing technique, which significantly reduces the overhead of ciphertext decryption
for the verifier. During the commit phase of FRI, the prover performs computa-
tions using RLWE samples of dimension N encrypting N messages in Fp. During
the query phase, however, the verifier only needs to learn two evaluation points in
FpD per round for each linearity check. Here, if the ciphertexts are fully packed,
an overhead of at least N/(2D) is introduced. In order to avoid this, we intro-
duce a repacking procedure that extracts the evaluation points from the RLWE
samples of dimension N and repacks them in another RLWE sample, but of a
much smaller dimension, reducing decryption costs in up to 128 times depending
on the selected parameters. One key observation is that at this point, we do not
need to preserve any homomorphic properties, as the verifier does not perform
any further operations on these. Indeed, once the commit phase is finished, we
can view the evaluation points as simply strings of bits, and our goal then be-
comes to encrypt them in the smallest possible ciphertext. This also makes the
HE parameters adopted by the verifier completely independent of the input size
2n or of the HE parameters adopted by the prover.

All our optimizations are specifically targeted for FRI. Whether other ex-
isting IOPs of proximity (e.g. [ACY23]) or new ones could be better aligned in
practice with HE schemes such as BGV and BFV is an interesting open work
that our theoretical machinery already supports.

Proof-of-Concept Implementation. To demonstrate the practicality of our con-
struction, we implement a proof-of-concept in Python over the FRI implemen-
tation of Szepieniec et al. [S+21]. We extend it to work over non-prime fields
and connect it to optimized FHE libraries implementing the BGV and TFHE
schemes. While we provide efficient implementations for the homomorphic evalu-
ated techniques, we maintain all the plaintext arithmetic as well as the high-level
procedures in Python. This gives our implementation flexibility and allows one
to easily extend and test our techniques. At the same time, however, it also
introduces a significant overhead compared to a dedicated (fully optimized) im-
plementation and limits our ability to control computational resources such as
memory and parallelization.

Even with these restrictions, our implementation runs FRI’s commit phase
in 43 minutes for encrypted codewords of size 215 with degree bound d = 211.
This execution time is, however, in a single-threaded execution, whereas all our
techniques enable trivial parallelization, which could lower the execution time
to less than a minute in a large server. Verification is much faster and takes only

5

0.2 seconds. In this case, we also show that the execution is dominated by the
(Python-implemented) plaintext arithmetic and that it could be accelerated by
up to two orders of magnitude in a dedicated fully optimized implementation.

1.2 Comparison with concurrent work

In concurrent work [GGW23], Garg, Goel and Wang provide a framework to
prove statements on values that are hidden from the prover. Their framework
is based on making FRI work over such hidden values, and they show how to
compile Polynomial IOPs into SNARKs given such a tool. Besides HE, their work
considers more general ways to hide these values from the prover, such as homo-
morphic commitments and group exponentiation. They group all of these hiding
mechanisms into the abstraction of Linearly-Homomorphic Encapsulations.

A formal issue in [GGW23] is that their notion of a decryptable (or that
of linearly-homomorphic w.r.t. randomness) Linearly-Homomorphic Encapsula-
tion is not sufficient when such an encapsulation is a building block of more
complex components such as FRI or polynomial commitments. Namely, their
notion only considers decryption of a freshly encrypted ciphertext on which no
operations have been performed. This overlooks the fact that the evaluation
correctness of HE schemes, which are based on (Ring) Learning with Errors, is
function-specific and needs to support the operations computed within those
components. Whereas FRI only requires to perform a series of linear combina-
tions on the ciphertexts, it turns out that the size of the coefficients in the linear
combination and the additive depth of FRI constitute a significant obstacle for
noise management in practice (see Section 6).

Whereas the focus of [GGW23] is more theoretical and does not include an
implementation, our work comes from a more practical stance in the current
state of the art for verifiable computation on encrypted data. Besides different
technical optimizations and trade-offs informed by our experimentation, there
are two important aspects that we consider and [GGW23] does not: our compilers
include scenarios where the prover provides some inputs in zero knowledge and
we use FRI more directly (e.g. by compiling δ-correlated IOPs into (zk)SNARKs
[BGK+23]) rather than by going through a polynomial commitment abstraction.
The former greatly improves the parameters of the HE scheme in several applica-
tions, such as Privacy-Preserving Machine Learning (where the prover provides
their model as a plaintext in zero-knowledge while the verifier’s input are HE
ciphertexts), whereas the latter improves FRI’s parameters by allowing to use a
proximity parameter up to the Johnson bound.

2 Preliminaries

2.1 Notation

Throughout this document, when we refer to a ring R, we assume that it is
finite, commutative and that it has a multiplicative identity element 1R ̸= 0R.

6

For ease of notation, we will write 1 to mean 1R, and 0 to mean 0R whenever the
context is clear. We use R[X]≤d to refer to polynomials with coefficients in R and
degree at most d. For an element a ∈ R, we write [a]q to denote the reduction of
a modulo q (coefficient-wise), with the set of representatives of coefficients lying
in {0, . . . , q− 1}. This should not be confused with [n], which we will sometimes
use to denote the set of integers {1, . . . , n}.

We use bold notation (e.g. b) to refer to vectors. We use y ← C to denote
that y is the output of a given computation C. We use a← A to denote sampling
an element a from a distribution A. When A is a set rather than a distribution,
we write a $← A to mean that we are sampling a uniformly at random in A.

We write JfK to denote an oracle to f , and Mf to denote that M has oracle
access to f . We use the abbreviation PPT for Probabilistic Polynomial Time.
We let λ denote a computational security parameter. We denote computational
indistinguishability by

c
≈ when no PPT algorithm can distinguish between two

distributions except with negligible probability.

2.2 Basic algebra and Galois theory

Next, we present some Number and Galois Theory facts that were noted in
the context of FHE in [SV14], but that are fairly standard. Let p be a prime,
F (x) ∈ Fp[x] be a polynomial, deg(F) = N , and assume that it factorises
(mod p) into ℓ factors, all of degree D, for D · ℓ = N , i.e.

F (x) =

ℓ∏
i=1

Fi(x) (mod p),

where deg(Fi) = D, ∀i ∈ [ℓ].
Then we can define Rp := Fp[x]/(F), and the following holds.

Rp
∼= Fp[x]/(F1)× . . .× Fp[x]/(Fℓ)
∼= FpD ⊗ . . .⊗ FpD . (1)

Let F = Φ2N be the 2N th cyclotomic polynomial, for N a power of two, and
deg(Φ2N) = N . We note in particular that the above implies that, if p is a prime
such that Fp contains a primitive 2ℓth root of unity, we have that

Φ2N (x) =
∏

i∈(Z/2ℓZ)×
(xD − ζi) (mod p).

In the fully-splitting case, we have that D = 1, and can therefore write

Rp
∼= Fp ⊗ . . .⊗ Fp︸ ︷︷ ︸

Ncopies

.

We refer to the cases where D is small with respect to N as almost-fully splitting.

7

2.3 Homomorphic Encryption

Definition 1. A public-key Homomorphic Encryption (HE) scheme HE over a
set of admissible circuits Ĉirc consists of the following algorithms.

– (pp, C)← HE.Setup(1λ,M, Ĉirc) : Given a message spaceM, a set of admis-
sible circuits Ĉirc, output the public parameters pp and the ciphertext space
C such that the scheme is semantically secure

– (sk, pk, evk) ← HE.KeyGen(1λ, C, pp) : Given the public parameters pp and
the ciphertext space C, output the secret key sk, the public key pk and the
evaluation key evk

– ct ← HE.Enc(pk,m) : Given a message m ∈ M, the public parameters pp
and the ciphertext space C, output an encryption ct of m

– m′ ← HE.Dec(sk, ct) : Given a ciphertext ct and its corresponding secret
key sk, output the decryption of ct, m′

– ct′ ← HE.Eval(evk, ct, Ĉ) : Given a circuit Ĉ ∈ Ĉirc, output the evaluation
of Ĉ on ct

When the context is clear, we will omit specifying the sk, pk, pp, C parameters.
We note that the above definition applies to both exact and approximate HE
schemes.

Definition 2. Let HE be a homomorphic scheme as in Definition 1. We say that
HE is correct if the following equation

HE.Dec(sk, HE.Eval(evk, HE.Enc(pk,m), Ĉ)) = C(m)

holds with overwhelming probability for all admissible circuits Ĉ ∈ Ĉirc.

We note that the set Ĉ refers to the set of circuits that the scheme can support
– for example, some HE schemes support non-linear operations such as ReLu,
and some do not. In particular, each circuit Ĉ ∈ Ĉirc has a corresponding circuit
C on the plaintext space. To give a concrete example, if we want to evaluate
the homomorphic multiplication of two ciphertexts, Ĉ could be a multiplication
followed by a bootstrapping, whereas C would simply be a multiplication.

Definition 3. (Semantic Security) Let HE = (HE.KeyGen, HE.Enc, HE.Dec, HE.Eval)
be a (public-key) homomorphic encryption scheme as defined above, let (pp, C)←
HE.Setup(1λ,M, Ĉirc), and let A be an adversary. The advantage of A with re-
spect to HE is defined as follows.

AdvHE
A (λ) :=

∣∣Pr[A(pk, ct) = 1 : (sk, pk, evk)← HE.KeyGen(1λ, C, pp), ct← HE.Enc(pk, 1)]

− Pr[A(pk, ct) = 1 : (sk, pk, evk)← HE.KeyGen(1λ, C, pp), ct← HE.Enc(pk, 0)]
∣∣.

We say that HE is semantically secure if AdvHE
A is negligible in λ, for every PPT

adversary A.

8

Finally, we define the phase function, defined in [CGGI20].

Definition 4. Let HE be a Homomorphic Encryption scheme as defined above.
For a concrete instantiation, that is to say, for a fixed key pair (sk, pk, evk),
and for a ciphertext ct = (ct0, ct1) that is the output of the HE.Enc algorithm
(and has possibly been computed on) defined modulo some q. We define the phase
function as

ψ(ct)sk = ct1 − sk · ct0 (mod q).

2.4 Reed Solomon Codes

Reed-Solomon (RS) codes are arguably the most common linear error correction
codes. Let us recall their definition and fix some notation relative to them. In this
work, we will parameterize them by a finite field F, a multiplicative subgroup
L ⊆ F∗ and a degree bound d. Hence, RS[F, L, d] is defined as follows:

RS[F, L, d] = {(f(x))x∈L ∈ F|L| : f ∈ F[X]<d}.

The code rate of RS[F, L, d] is ρ = d/|L|. Unless we state it otherwise, in this
work we will assume that |L| = 2k, ρ = 2−R and d = 2k−R.

For two vectors u,v ∈ Fn, we let ∆(u, v) denote the relative Hamming dis-
tance between u and v, defined as ∆(u,v) := |{ui ̸= vi|i ∈ {1, . . . , n}|/n. For a
set of vectors S ⊂ Fn and any vector u ∈ Fn, we define ∆(u, S) = ∆(S,u) :=
minv∈S{∆(u,v)}. For δ ∈ (0, 1), we say that u is δ-far from S if ∆(u, S) ≥ δ.
Otherwise, we say that u is δ-close to S. Equivalently, u is δ-far from S if
∆(u, S) ≥ δ for all v ∈ S, and u is δ-close to S if there exists v∗ ∈ S such that
∆(u,v∗) < δ. We refer to δ as the proximity parameter. When δ < (1− ρ)/2, we
refer to it as being within the unique decoding radius, and when δ < 1−√ρ, we
say that δ is within the Johnson bound.

Definition 5 (Correlated agreement). Let V = RS[F, L, d] and let W =
{w1, . . . , wk} ⊆ F|L|. Let δ ∈ (0, 1). We say W has δ-correlated agreement with
V on an agreement set S ⊆ L if |S|/|L| ≥ 1 − δ and there exist v1, . . . , vk ∈ V
such that, ∀x ∈ S, wi(x) = vi(x).

2.5 Interactive Oracle Proofs (of Proximity)

There are several variations of the IOP abstraction [BCS16]. Polynomial IOPs
(PIOPs) ask for the IOP oracles to be polynomials evaluated over the entire
field F, whereas for the weaker notion of Reed Solomon-encoded IOPs (RS-
IOPs) those are Reed-Solomon codewords (i.e. the evaluation of a polynomial
over some specific domain L ⊂ F). In this work, we focus on RS-encoded IOPs
and on δ-correlated IOPs, which were introduced in [BGK+23]. Our results could
nevertheless be easily adapted to other IOP flavors, e.g. to PIOPs as in [GGW23].
The main attractive of δ-correlated IOPs is that they allow for a better proximity

9

parameter δ (up to the Johnson bound, rather than within the unique decoding
radius) when they are compiled into SNARKs. When δ = 0, δ-correlated IOPs
can be seen as a subclass of RS-encoded IOPs [BCR+19, COS20]

Definition 6. An indexed relation R is a set of triples (i,x;w) ∈ {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗. The string x is the called input, statement or instance, the
string w is called the witness and the string i is an index. The index can be
thought as something that is fixed at setup time, and chooses among a universe
of binary relations Ri = {(x;w) : (i,x;w) ∈ R}.

A good example for indexed relations, in the setting of holographic proofs, is
an indexed relation for circuit satisfiability, where the index i is a description of
the circuit, the statement x contains the “public" values on some of the circuit’s
input wires and the witness w consists in the values taken by the remaining
“private" wires.

Definition 7 ([BGK+23]). Let H ⊆ F and d ≥ 0. An indexed (F, H, d)-
polynomial oracle relation R is an indexed relation where for each (i,x,w) ∈ R,
the index i and input x may contain oracles to codewords from RS[F, H, d] and
the actual codewords corresponding to these oracles are contained in w.

Definition 8. A µ-round holographic interactive oracle proof (hIOP) for an
indexed relation R is a tuple of PPT interactive algorithms Π = (P,V), together
with a deterministic polynomial-time algorithm Ind (the indexer). It proceeds in
two phases:

– In an offline phase, given an index i, the indexer Ind computes an encoding
of it, Ind(i).

– In an online phase, P(Ind(i),x,w) and VInd(i)(x) exchange 2µ+1 messages,
where P sends the fist and last message. V gets only oracle access to P’s
messages, and after P’s final message, V either accepts or rejects.

Furthermore, an hIOP has to satisfy the two following properties:

Completeness: For all (x,w) ∈ R, we have that

Pr[⟨P(Ind(i),w),VInd(i)⟩(x) = 1] ≥ γ,

where the probability is taken over the random coins of V. If, for all x, γ = 1,
then the hIOP has perfect completeness.

Soundness: For any x /∈ LR and any unbounded malicious P∗, we have that

Pr[⟨P∗(Ind(i),w),VInd(i)⟩(x) = 1] ≤ ϵ,

where the probability is taken over the random coins of V.

In δ-correlated hIOPs, the prover is supposed to send oracles to maps that
agree with low degree polynomials on a fraction of 1−δ points (see Definition 5).
On top of checking all the received oracles correspond indeed to δ-correlated
maps (which we capture by the relation in Definition 9), it is necessary to verify
some algebraic equalities involving some evaluations of those maps. These are
made concrete in Definition 10.

10

Definition 9 ([BGK+23]). Let 0 ≤ δ < 1. The δ-correlated agreement relation
for RS[F, L, d] is the following indexed (F, L, d)-polynomial oracle relation:

CoAgg =


ix
w

 =

(F, L, d, δ, r)
(JfiK)i∈[r]
(fi)i∈[r]

 :

r, δ ≥ 0, ρ = d/|L|
fi ∈ FL ∀i ∈ [r]

(fi)i∈[r] has δ-correlated agreement with
RS[F, L, d]


Definition 10 (δ-correlated hIOP, [BGK+23]). Let L = ⟨ω⟩ be a smooth
multiplicative subgroup of F∗ of order d = 2v/ρ for some v ≥ 1 and rate 0 < ρ < 1
and define the Reed-Solomon code RS[F, L, d]. Let 0 ≤ δ < 1 and let R be an
indexed (F, L, d)-polynomial oracle relation. Let Π be a hIOP for R. Given a
(possibly partial) transcript (x, τ) generated during Π, let Words(x, τ) be the
words from FL that fully describe the oracles appearing in (x, τ). We say that Π
is δ-correlated if:

– The verifier V has oracle access to the δ-correlated agreement relation CoAgg(δ).
– For all (i,x,w) ∈ R:
• In the last round of interaction between P(Ind(i),x,w) and VInd(i),CoAgg(δ)(x),

the verifier sends a field element z uniformly sampled from a subset of
(a field extension of) F and the honest prover replies with the values:

Evals(x, τ, z) = (w(ωkw,1z), . . . , w(ωkw,nw z) : w ∈ Words(x, τ))

where τ is the transcript so far and κ = {kw,i : w ∈ Words(x, τ), i ∈ [nw]}
is a fixed set of integers which are output by Ind.

• To decide whether to accept or reject a proof, VInd(i),CoAgg(δ)(x) makes
the two following checks:
Check 1 Assert whether the received values Evals(τ, z) are a root to

some multivariate polynomial Fi,x,τ depending on i, x and τ .
Check 2 Assert whether the maps

quotients(x, τ, z) =
{w(X)− w(ωkw,jz)

X− ωkw,jz
: w ∈ Words(x, τ), j ∈ [nw]

}
have δ-correlated agreement in RS[F, L, d− 1] by using the CoAgg(δ)
oracle on the oracles to such maps.

Next, we define the notions of round-by-round (RBR) soundness and knowl-
edge soundness [CCH+19] for holographic IOPs. Since those are a superset of
δ-correlated hIOPs, the same definition applies to the latter.

Definition 11. A holographic IOP for an indexed relation R has round-by-
round (RBR) soundness with error ϵ if for every index i there exists a “doomed
set" D(i) of partial and complete transcripts such that:

1. If x /∈ LRi
, then (x, ∅) ∈ D(i), where ∅ denotes the empty transcript.

11

2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then
VInd(i)(x, τ) = reject.

3. If i ∈ [µ] and (x, τ) is a (i − 1)-round partial transcript such that (x, τ) ∈
D(i), then Pr

c
$←Ci

[(x, τ,m, c) /∈ D(i)] ≤ ϵ(i) for every possible next prover
message m.

Definition 12. A holographic IOP for an indexed relation R has round-by-
round (RBR) knowledge soundness with error ϵk if there exists a polynomial
time extractor Ext and for every index i there exists a “doomed set" D(i) of
partial and complete transcripts such that:

1. For every possible input x (regardless of whether x /∈ LRi
or not), (x, ∅) /∈

D(i).
2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then
VInd(i)(x, τ) = reject.

3. Let i ∈ [µ] and (x, τ) be a (i− 1)-round partial transcript such that (x, τ) ∈
D(i). If for every possible next prover message m it holds that

Pr
c

$←Ci

[(x, τ,m, c) /∈ D(i)] > ϵk(i),

then Ext(i,x, τ,m) outputs a valid witness for x.

Finally, let us also discuss zero knowledge, which will be particularly inter-
esting in our work.

Definition 13. An hIOP Π for an indexed relation R has statistical zero knowl-
edge with query bound b if there exists a PPT simulator S such that for every
(i,x,w) ∈ R and any V∗ making less than b queries in total to its oracles, the
random variables View(P(i,x,w),V∗) and SV∗

(i,x), defined below, are statis-
tically indistinguishable

– View(P(i,x,w),V∗) is the view of V∗, i.e. the random variable (r, a1, . . . , aq)
where r is V∗ randomness and a1, . . . , aq are the responses to V∗’s queries
determined by the oracles sent by P.

– SV∗
(i,x) is the output of S(i,x) when given straightline (i,e, without rewind-

ing) access to V∗, prepended with V∗ randomness r.

Π is honest-verifier zero knowledge if the above holds with V∗ = VInd(i)(x).

Some examples of δ-correlated hIOPs are Plonky2, RISC Zero, ethSTARK,
Aurora and Fractal [COS20]. One particular advantage of hIOPs is how easy
it is to compile them into SNARKs through the so-called BCS transformation
[BCS16]. In a nutshell, this consists in replacing oracles sent by the prover with
Merkle-tree-based commitments and then removing interaction with the verifier
by applying the Fiat-Shamir transform. It has been proved that if an hIOP is
round-by-round sound, applying the BCS transformation results in a SNARK
that is adaptively knowledge sound versus both classic and quantum adversaries
in the random oracle model [CMS19, COS20].

12

A similar concept to the above one is that of an IOP of Proximity (IOPP),
which is an IOP to test proximity to a specific code. In this work, we restrict
ourselves to IOPPs for Reed Solomon Codes.

Definition 14. Let RS denote the family of Reed Solomon codes RS[F, L, d]. A
protocol between a pair of interactive machines ⟨P,V⟩ is an r-round interactive
oracle proof of δ-proximity for RS is an IOP with the following modifications

– Input format: The first message from P is f0 : L → F, allegedly a RS

codeword.
– Completeness: Pr[⟨P,V⟩ = 1 : ∆(f0, RS) = 0] = 1− θ for a negligible θ. If
θ = 0 we refer to this as perfect completeness.

– ϵ-soundness: For any unbounded P∗, Pr[⟨P∗,V⟩ = 1 : ∆(f0, RS) ≥ δ] ≤ ϵ.

The following theorem summarizes the compilation results of [BGK+23]. In-
formally, given a δ-correlated hIOP, it suffices to analyse its RBR knowledge
soundness when δ = 0 and replace oracles with a δ-correlation check (such
as batched FRI) to produce a RBR knowledge sound hIOP as a result. This
hIOP can then be turned into a SNARK through the usual BCS transforma-
tion [BCS16]. Interestingly, having δ ̸= 0 (and actually up to the Johnson
bound!) does not affect knowledge soundness when following the [BGK+23]
recipe, whereas previous compilers [CMS19, COS20] were restricted to the unique
decoding regime, i.e. δ < (1− ρ)/2.

Theorem 1 ([BGK+23]). Let ΠOδ be a δ-correlated hIOP, where O is an ora-
cle for δ-correlated agreement. Let 0 < η ≤ 1 and ρ > 0 be such that δ = 1−√ρ−η
is strictly positive. Assume ΠO0 has RBR knowledge soundness with error ϵ.
Then, ΠOδ has RBR knowledge soundness with error ϵ/(2η√ρ).

Moreover if ΠCA is an IOPP for δ-correlated agreement in RS[F, L, d] with
RBR soundness error ϵCA, then the protocol ΠΠCA

δ obtained by replacing O with
ΠCA in ΠOδ has RBR knowledge soundness error ϵ1 = max{ϵ/(2η√ρ), ϵCA}.

Furthermore, given a random oracle with λ-bit output and a query bound Q,
compiling Π

ΠCA
δ with the BCS transformation [BCS16] yields a SNARK with

knowledge error Q ·max{ϵ/(2η√ρ), ϵCA}+O(Q2/2λ).

3 Verifiable Computation over encrypted data

The notion of verifiable computation (VC) proposed by Gennaro et al. in [GGP10]
tries to better capture the way in which proof and argument systems are intended
to be used in practice. In the following (Definition 15), we tweak their definition
and syntax to one which will better capture our constructions. In particular, we
allow for the verification algorithm to be interactive, since we will often discuss
at the IOP rather than SNARK level of abstraction.

Furthermore, we would like to support circuits of the form C(x,wP) where
(the homomorphic encryption of) the input x is provided by the verifier, while
wP is an input to be specified by the prover. Notice that wP could consist of any

13

combination of plaintexts and ciphertexts, which would be revealed to V during
verification. Unless there is some threshold decryption method to stop V from
performing unspecified decryptions during the protocol execution, this means
that all values within wP are learned by V. Hence, the most sensible approach
for an outsourcing scenario with a single client would be to have wP consist only
of plaintexts.

If wP has to remain hidden, we can instead think about it as some private
witness, which we want to mix with the encryptions of x in a zero-knowledge
fashion. For example, one could think about a private Machine-Learning-as-
a-Service, where the client sends encrypted queries HE.Enc(x) to the server,
who applies their private model wP . This approach, which was also pursued
in [BCFK21, GNS23], has the advantage that the product between plaintexts
(such as the values within wP) and ciphertexts (the encryptions of x and the
outputs that result from operating on them) is much cheaper than the product
of ciphertexts.

Definition 15 (Verifiable Computation). A verifiable computation scheme
VC is a tuple of polynomial time algorithms (VC.Setup,VC.ProbGen,VC.Compute,
VC.Ver) defined as follows.
– (SK,PK) ← VC.Setup(1λ, C): A randomized key generation algorithm takes

a circuit C as input and outputs a secret key SK and a public key PK.
– (σx,VKx) ← VC.ProbGen(PK,x): A randomized problem generation algo-

rithm (to be run by V) takes the public key PK, an input x, and outputs a
public encoding σx of x, together with a private verification key VKx.

– ηy ← VC.Compute(PK,σx,w, C): Given a public key PK for a circuit C,
the encoded input σx and input w, P computes ηy, which consists of an
encoded version σy of the circuit’s output y = C(x,w) and data to answer
challenges about that statement.

– (acc,σy) ← VC.Ver⟨P(PK,ηy),V(SK,VKx)⟩(C) : The interactive verifica-
tion algorithm uses the input-specific verification key VKx, the setup secret
key SK and a proof ηy to return σy together with a bit acc ∈ {0, 1} such
that acc = 1 if VC.Decode(σy,SK) = C(x,w) or acc = 0 otherwise.

– y ← VC.Decode(σy,SK): Using the secret key, the decoding algorithm out-
puts the value y behind the public encoding σy.

A verifiable computation scheme can satisfy a range of properties which we
next define. We omit the VC. prefix in the different algorithms for ease of read-
ability. In our work, we will always be interested in all of the following ones
whenever w does not need to be kept private.
– Correctness. Correctness guarantees that if P is honest, the verification test

will pass. That is, for all C, and for all valid inputs x,w of C the following
probability equals 1− negl(λ).

Pr

 acc = 1
Decode(σy,SK) = C(x,w)

:

(SK,PK)← Setup(1λ, C)
(σx,VKx)← ProbGen(PK,x)
ηy ← Compute(PK,σx,w, C)

(acc,σy)← Ver⟨P(PK,ηy),V(SK,VKx)⟩(C)


14

– Outsourceability. A VC scheme is outsourceable if for any x and any ηy, the
time required by V to run ProbGen(x), Ver⟨P(PK,ηy),V(SK,VKx)⟩(C) and
Decode(σy,SK) is o(T), where T is the time required to compute C(x,w).

– ϵ-Soundness. A VC scheme is ϵ-sound if a malicious P cannot make the
verification algorithm accept an incorrect answer for any valid circuit C.
That is, a scheme is sound if the advantage of any PPT adversary A in the
game ExpV er

A defined as Pr
(
ExpV er
A [V C,C, λ] = 1

)
is ϵ.

procedure Game ExpV er
A (V C,C, λ)

(SK,PK)← Setup(1λ, C)
x← A(PK, C)
(σx,VKx)← ProbGen(PK,x)
ηy ← A(PK,σx, C)
(acc,σy)← Ver⟨P(PK,ηy),V(SK,VKx)⟩(C)
y ← Decode(σy, SK)
If acc = 1∧ ̸ ∃w : C(x,w) = y, return 1
Else return 0.

end procedure

– Verifier-Privacy. For any valid circuit C, Pr
[
ExpV.Priv
A [V C,C, λ] = 1

]
≤

1/2 + negl(λ).

procedure Game ExpV.Priv
A (V C,C, λ)

b
$← {0, 1}

(SK,PK)← Setup(1λ, C)
(x0,x1, state)← A(PK, C)
(σxb ,VKxb)← ProbGen(PK,xb)

b̂← A(state,σxb ,VKxb)

return b
?
= b̂

end procedure

In previous works on verifiable computation over encrypted data, the goal of
keeping wP private was modeled as a context-hiding property of the VC scheme
[BCFK21, GNS23]. This is a reminiscence of a similar notion in the setting where
wP did not exist, but the parties running VC.ProbGen and VC.Ver were different
[FNP20]. In our following sections we will deviate from that modeling and hence
refrain from the context-hiding property. We do this not only because we focus
on the more common scenario where the verifier is running both VC.ProbGen
and VC.Ver, but also because context-hiding would not be able to model e.g. the
interactivity of VC.Ver. We believe that our new security modeling will be useful
for future work in this area.

15

We formalize the notion of honest-verifier prover privacy (HVPP) by showing
that whatever a semi-honest V can compute by participating in the protocol, V
could compute merely from its input and prescribed output. Our definition is in
the simulation paradigm and thus we have a stateful simulator S that generates
V’s view given its input and output. We remark that, since V is semi-honest,
it is guaranteed that it uses its actual input and random tapes. In particular,
S can furthermore generate V’s random tape and, at that point, generate the
whole protocol transcript on its own without ever needing to interact with V.

Definition 16. We say that a VC protocol is honest-verifier prover-private(HVPP)
if there exists a PPT simulator S such that for every admissible circuit C:

{S(1λ,PK,x, C(x,wP))}x,wP ,λ,PK
c
≈ {ViewV(SK,PK,x,wP , λ)}x,y,λ,SK,PK

where (SK,PK) ← VC.Setup(1λ, C) and ViewV(SK,PK,x,wP , λ) denotes the
view of V during an execution of the protocol on inputs (x,wP) and security
parameter λ, that is (SK,PK,x, r;m1, . . . ,me, out) where r is V’s random tape,
each mi value is the i-th message V receives and out denotes V’s output, which
is computed from all other values in its own view of the execution.

In Figure 1, we provide our general recipe for a correct, sound and verifier-
private Verifiable Computation scheme. Verifier-privacy follows from the use of
encryption within the ProbGen step, and correctness from the fact that such
encryption is homomorphic. Soundness is less immediate, since it requires to
have an HE-IOP at hand, which is an object we define and construct in Section 4.

4 Compiling Interactive Oracle Proofs to work over HE

Given an IOP which was not conceived to work over encrypted data, we show
how to adapt it to work with homomorphic encryption in Definition 17.

Definition 17 (HE-transformation). Let ⟨P(w,x),V(x)⟩ be an IOP, where
the elements of x and w belong to a finite field F. We define its encrypted version
HE-IOP, for some HE scheme as follows:

– There is a trusted setup (pp, C) ← HE.Setup(1λ, Rp, Ĉirc), where Rp splits
into copies of F and Ĉirc is a family of circuits that captures all necessary
computation within the IOP as well as any preceding/posterior one (such as
e.g. coming up with parts of the witness, or using an IOPP and the BCS
transformation to compile into a SNARK).

– V has an additional input sk← HE.KeyGen(1λ, C, pp), where C ∈ Ĉirc.
– P’s input x is replaced with its encryption HE.Enc(x). Parts of w could be

equally replaced by their homomorphic encryption.
– As a result, some oracles in the HE-IOP might now contain ciphertexts. We

refer to then as HE-oracles or encrypted oracles. V has to decrypt the ci-
phertexts obtained through HE-oracles and perform the same checks it would
have done in F.

16

Verifiable Computation over encrypted data

Let IOP be an holographic Interactive Oracle Proof. Let HE be an exact homomorphic
encryption scheme with plaintext space Rp. Let ϕ : Rp →

⊗ℓ
i=1 FpD be the CRT

isomorphism. Let C : Finp
p × Fwit

p → Fout
p be an arithmetic circuit that we want to

verify. Let Lx = ⌈inp/ℓ⌉, Lw = ⌈wit/ℓ⌉.

(pk, evk, sk,K)← Setup(1λ, C) : Run HE setup:
1. V determines a set of admissible circuits Ĉirc which contains a circuit Ĉ

that homomorphically computes C.
2. V runs (pp, R2

q)← HE.Setup(1λ, Rp, Ĉirc).
3. V runs (pk, sk, evk)← HE.KeyGen(1λ, C, pp).
4. Given an index i for the circuit C, the indexer Ind computes an encoding

of it, Ind(i).
σx ← ProbGen(x, pk) : V parses x = (x0, . . . , xinp−1) ∈ Finp

p . For i = 0, . . . , Lx −
1, let mx,i = ϕ−1(xiℓ, . . . , x(i+1)ℓ−1). Encrypt these inputs as σx =

{HE.Enc(pk,mx,i)}Lx−1
i=0 . Set vkx = sk.

(w,y)← Compute(Ĉ, evk,σx,wP) : P parses σx and evaluates Ĉ(σx,wP), by
which he obtains the rest of the witness: the values on intermediate wires
wC and the circuit output y. Notice that the whole witness becomes w =
(wP ,wC ,y), which is a mix of plaintext values (such as wP) and ciphertext
values (those depending on any input σx).

acc← Ver⟨P(Ind(i),w,σx),VInd(i)(sk, (x,y))⟩ : P and V run the HE-IOP corre-
sponding to the IOP for the plaintext circuit C. P claims that C(x,wP) =
HE.Dec(sk,y).

y ← Decode(y, sk) : V outputs y = HE.Dec(sk,y).

Fig. 1: Verifiable Computation over Encrypted Data through HE-IOPs.

17

If we need to refer explicitly to the HE-IOP, we denote it as ⟨P(HE.Enc(x),w),
V(sk,x)⟩, as a slight abuse of notation of the original P and V. The different
properties of IOPs (completeness, soundness, round-by-round soundness, round-
by-round knowledge soundness) can be trivially redefined for HE-IOPs.

One of the main interests of our HE-transformation, besides its simplicity, is
that it preserves most parameters of the original IOP, only with some negligible
degradation due to the use of homomorphic encryption.

Theorem 2. Let IOP be an ϵk RBR knowledge sound, ϵrbr RBR sound, ϵ-sound,
complete IOP. It’s encrypted version HE-IOP is ϵk + negl(λ) RBR knowledge
sound, ϵrbr + negl(λ) RBR sound, ϵ+ negl(λ)-sound and complete.

Proof. Completeness follows from the evaluation correctness of the HE scheme
and the way the circuit family Ĉirc was chosen. There is only a negligible loss in
γ due to the way evaluation correctness is defined (Definition 2).

The soundness, RBR soundness and RBR (knowledge) soundness of an HE-IOP
can be reduced to that of IOP as follows. Let A be an adversary against HE-IOP
which an advantage bigger than an adding a factor negl(λ) to the one for the
corresponding notion of the IOP (ϵ, ϵrbr, ϵk respectively). We will build an ad-
versary A′ against IOP with the same such greater advantage and hence reach a
contradiction. A′ runs (sk, pk, evk) ← HE.KeyGen(1λ, C, pp) for the relevant HE
scheme, obtaining in particular sk. Given any input, A′ encrypts it under pk and
forwards it to A. For every message received from V, A′ directly forwards it to
A. In order to reply to those, A′ queries the encrypted oracles JfKHE he receives
from A at every point, decrypts the answers using sk so as to recover f , and
then sends the oracle JfK to V. Clearly, if A succeeds, then so does A′.

The HE-transformation applies to all variants of IOPs presented in this paper,
such as holographic IOPs, RS-encoded hIOPs, δ-correlated hIOPs and IOPs of
proximity. In order to denote this transformation, we will also add the HE prefix
to those (HE-hIOPs, δ-correlated HE-hIOPs, HE-IOPP, etc).

The upcoming subsections are organized as follows. In Section 4.1, we discuss
how to keep w hidden from the verifier through zero knowledge. Sections 4.2
and 4.3 show how to compile these HE-IOPs into HE-friendly SNARKs using an
HE-friendly low degree test (such as the HE transformation of the Batched FRI
protocol, which we will show in Section 5.1).

4.1 Achieving prover-privacy from ZK-IOPs

We first consider the case of honest-verifier prover-privacy (HVPP, see Defini-
tion 16), since it allows for a more practical construction and it also acts as a
stepping stone towards understanding the malicious case. There are three main
aspects to consider when compiling using IOPs for a prover-private version of
Figure 1, which we describe next. Two of them (Consideration #1 and #3) are
specific to the use of homomorphic encryption.

18

Consideration #1: Circuit privacy. A requirement for prover-private construc-
tions is the fact that the HE scheme needs to support circuit-privacy. Namely,
all the ciphertexts of the HE-IOP that are exposed to the verifier need to be
re-randomized, since their noise carries information about the circuit that was
computed on them and hence7 about wP . We provide our own definition of the
circuit-privacy notion that is best aligned with our HVPP goal.

Definition 18. A homomorphic encryption scheme HE (see Definition 1) is
circuit-private if there exists a rerandomization algorithm HE.Rerand(evk, pk,
C, ct) and a simulator SHE such that, for any admissible circuit C with inputs
HE.Enc(x1), . . . , HE.Enc(xn) and outputs cty1

, . . . , ctym
, it holds that (some in-

puts omitted for simplicity):

(sk, HE.Rerand(cty1
), . . . , HE.Rerand(ctym

))
c
≈ (sk,SHE(pk, C(x1, . . . , xn))).

One of the standard ways that the above definition can be achieved is by
employing noise flooding to instantiate HE.Rerand, as done in [Gen09a]. In more
detail, we add to the verifier-exposed ciphertexts an encryption of 0 with large
enough noise to statistically hide the noise of the circuit that led to the produc-
tion of that specific ciphertext. We will denote byΩ0,C the set of such encryptions
of zero. Notice that since all messages within an encrypted oracle are susceptible
of being queried, we need to add such an encryption of zero to each of them
before putting them within the oracle.

Consideration #2: Combining zkIOPs with LDTs. Assume to be given either a
zero-knowledge RS-hIOP or a δ-correlated hIOP. In order to compile it into a
zk-IOP while making black-box use of a pre-existing Low Degree Test (in the
form of an IOPP such as FRI), it is necessary for the prover to additionally send
a random codeword r ahead of time, which is added to the linear combination
of functions that are being tested for low-degreeness. Adding such an r does
not reduce the degree of the linear combination (since the coefficients of it are
sampled afterwards), so this does not hurt soundness. On the other hand, the
input to the LDT is now a random codeword, so we do not need to worry about its
internals beyond what are the amount of queries made to the random codeword
(which links with Consideration #3). For a more detailed leakage analysis when
using FRI, see [Hab22].

Consideration #3: Combining zkIOPs with LDTs – query blow-up from packing.
Compilers, such as the ones we discussed in Consideration #2 and the one we will
present in Section 4.2, incur losses in several parameters of the resulting output
IOP according to the number of queries to the LDT. This includes soundness,
which in turn also loops into increasing the size of the underlying field in order to
compensate for it. But, most importantly, the increase in the amount of queries

7 Notice that one can think about the circuit evaluation C(x,wP) with a private wP
as providing the evaluation of some unspecified circuit from the family {CwP (x)}wP .

19

through the introduction of the LDT also degrades the query bound for zero
knowledge (see Definition 13). As an example, see [COS20, Theorem 8.1.]

To make things worse, the HE-transformation of these protocols replaces ora-
cles with encrypted oracles, where ciphertexts (rather than plaintexts) are placed
within them. This means that, if the chosen HE scheme supports plaintext pack-
ing and we are exploiting such property, whenever the verifier V would need to
query only one of the plaintexts mi on the ciphertext ct = HE.Enc(m1, . . . ,ml)
behind the oracle, V also learns every other plaintext mj , j ̸= i within it. Effec-
tively, this blows-up the query loss for zero knowledge by a factor of up to l.8
Packing becomes then as devastating (or even more) for zero knowledge as it is
an improvement for computational efficiency, which is a very problematic tension
in practice. Hence, it is paramount to reduce the packing-induced multiplicative
loss while maintaining efficiency. We provide a practical solution for this issue
in Section 6.5.

Malicious verifier We will only briefly mention how to deal with a malicious
verifier. At this point, rather than coming up with an ad-hoc “malicious-verifier
prover-private" notion it would be best to model overall security as maliciously
secure 2-party computation protocol, for which we refer to reader to e.g. [CCL15].
Besides all of the cautions that we employed for the honest verifier case, we need
to ensure honest behaviour in the Setup and ProbGen steps. We can either assume
a trusted setup or, otherwise, enforce the right behavior of the establishing party
through the use of zero-knowledge proofs. That is also what we will do for the
ProbGen step, and one can think about this solution as a GMW-style compiler
[GMW87] from passive to active security.

In particular, for the ProbGen step, it is necessary to ensure that the verifier is
providing valid ciphertexts, which in the context of lattice-based HE means that
the noise must be within bounds. Using a zero-knowledge proof of knowledge
(ZKPoK) ensures the right bounds for the cleartext and encryption randomness
(see [DPSZ12, Figure 9] for an example).

4.2 A compiler for RS-encoded IOPs

Our first compiler is for Reed-Solomon encoded IOPs, and is a result of adapting
the works of Aurora [BCR+19] and Fractal [COS20].

Protocol 1 (Aurora/Fractal) Let (PR(x,w),VR(x)) be an RS-encoded hIOP
over L ⊆ F, with maximum degree (dc, de) for an indexed relation R. Let HE-IOP
be its HE-transformation. Let (PLDT,VLDT) be an IOPP for the RS code RS[F, L, dc]
with proximity parameter δ < min(1−2ρc

2 , 1−ρc

3 , 1 − ρe) where ρc = (dc + 1)/|L|
and ρe = (de + 1)/|L|. Let HE-IOPP be its HE-transformation.

Proceed as follows:

8 It could be that V sometimes happens to query values that happen to be packed
within the same ciphertext, slightly reducing the blow-up in this case.

20

1. Masking codeword for low-degree test: P sends V an oracle to a random
r ∈ RS[F, L, dc]. This step can be skipped when not interested in obtaining a
zk-HE-hIOP.

2. RS-encoded HE-IOP for R: In parallel to the above, P and V simulate
(PR(HE.Enc(x),w),VR(x)). Over the course of this protocol, the prover sends
encrypted oracles containing codewords π1 ∈ RS[F, L,d1], . . . , πkR ∈ RS[F, L,dkR],
and the verifier specifies a set of rational constraints C [COS20, Definition
4.1]. Let l :=

∑kR

i=1 li + |C|.
3. Random linear combination: V samples v ∈ F2l uniformly at random

and sends it to P
4. Low-degree test through HE-IOPP: P and V simulate (PLDT(v⊤Π+r),Vv⊤Π+r

LDT),
where Π :=

(
Π0

Π1

)
∈ F2l×L is defined as in [BCR+19, Protocol 8.2].

5. V accepts if and only if VLDT accepts

Theorem 3. Protocol 1 is an HE-hIOP for R with the following parameters,
where the R (resp. LDT) superscript denotes the parameters of the RS-encoded
IOPP (resp. IOPP):

– Round complexity: kR + kLDT.
– Query complexity: qLDTπ + qLDT

w
(kR + 1).

– Proof length HE.Expand(LR + LLDT), where HE.Expand is a ciphertext expan-
sion function that depends on the specific HE scheme and how the different
intermediate values are computed.

– Round-by-round soundness error: ϵ1 = max(ϵRrbr, ϵ
LDT
rbr, |L|/|F|).

– Round-by-round knowledge error: ϵ2 = max(ϵRknw, ϵ
LDT
rbr, |L|/|F|).

Furthermore, if the RS-encoded IOP is zero-knowledge, then so is Protocol 1,
with the same query bound.

Proof. All the claimed parameters can be reduced to the ones claimed in [COS20,
Theorem 8.2]. The round and query complexity clearly remain the same as in
there, and the proof length is only affected by the ciphertext expansion of the HE
scheme. Completeness and RBR (knowledge) soundness follow from Theorem 2
and [COS20, Theorem 8.2].

4.3 A correlated-agreement-based compiler

Our following compiler allows to set the proximity parameter up to the Johnson
bound, which improves its practical efficiency. It is the result of adapting one of
the central theorems in [BGK+23] through the application of the HE transforma-
tion (Definition 17). The overall compiler that would use this theorem appears
in Figure 2.

Theorem 4. Let ΠOδ be a δ-correlated HE-hIOP, where O is an HE-oracle for
δ-correlated agreement in RS[F, L, d]. Let 0 < η ≤ 1 and ρ > 0 be such that

21

RBR knowledge sound
0-correlated IOP

RBR knowledge sound
δ-correlated IOP

RBR knowledge sound
δ-correlated HE-IOP

RBR sound HE-IOPP for
δ-correlated agreement

RBR knowledge
sound HE-IOP

HE-SNARK

Theorem 4

[BGK+23]

HE-transformation
Definition 17

[BCS16]

Fig. 2: Summary of our compilation flow for δ-correlated IOPs.

δ = 1 −√ρ − η is strictly positive. Assume ΠO0 has RBR knowledge soundness
with error ϵ. Then, ΠOδ has RBR knowledge soundness with error ϵ/(2η√ρ).

Let HE be an homomorphic encryption scheme whose plaintext space Rp

splits into copies of F. If ΠHE-CA is an HE-IOPP for δ-correlated agreement in
RS[F, L, d] with RBR soundness error ϵCA, then the protocol ΠΠHE-CA

δ obtained
by replacing O with ΠHE-CA in ΠOδ has RBR knowledge soundness error ϵ1 =
max{ϵ/(2η√ρ), ϵCA}.

Furthermore, given a random oracle with λ-bit output and a query bound
Q, compiling ΠΠHE-CA

δ with the BCS transformation [BCS16] yields an SNARK
(over encrypted data) with knowledge error Q ·max{ϵ/(2η√ρ), ϵCA}+O(Q2/2λ).

Proof. This is a consequence of combining Theorem 2 and Theorem 1.

5 Low Degree Tests for encrypted polynomials

The compilers from Section 4 need to eventually test whether the oracles sent by
the IOP prover correspond to low-degree polynomials or not, with different vari-
ations of what such test should exactly verify (δ-correlated agreement or merely
closeness to a RS code). First of all, we need to think about how polynomials
mix with HE. For example, the following map

f : Rp → Rp

a 7→ HE.Dec(
d∑

i=0

cti · ai), cti = HE.Enc(fi)

22

only corresponds to a degree-d polynomial f ∈ Rp[X] as long as f(a) =
∑d

i=0 fia
i

∀a ∈ Rp, i.e. as long as it preserves evaluation correctness9.
In this work, as it is common in the IOP literature, we think about polynomi-

als as being given in a point-value representation, which matches the definition
of a Reed Solomon codeword. There are a series of operations that both the
prover and verifier will have to perform on the ciphertexts within those oracles,
so we also need to make sure to preserve evaluation correctness when presented
with such a representation. In order to achieve this, we introduce the notion of
encrypted polynomials.

Definition 19. Let HE be a homomorphic encryption scheme with plaintext space
Rp
∼=

∏ℓ
j=1 FpD and ciphertext space R2

q. Let HE-IOPP be an HE-IOP of proxim-
ity.

Let L = {xi,j}i∈[d],j∈[ℓ], L ⊆ FpD and let ct1, . . . , ctd ∈ R2
q be alleged ci-

phertexts such that HE.Dec(cti) = (mi,1, . . . ,mi,ℓ) ∈
∏ℓ

j=1 FpD . Finally, let
f ∈ FpD [X]<|L| be the polynomial such that f(xi,j) = mi,j ∈ FpD for every
xi,j ∈ L. We say that ct1, . . . , ctd ∈ R2

q define an encrypted polynomial (of f ,
at L) if there exist admissible circuits such that,

– On input ct1, . . . , ctd ∈ R2
q and any (α1, . . . , αℓ) ∈

∏ℓ
j=1 FpD , it returns a

ciphertext ct′ such that, with overwhelming probability,

HE.Dec(ct′) = (f(α1), . . . , f(αℓ)) ∈
ℓ∏

j=1

FpD .

– On input ct1, . . . , ctd ∈ R2
q to the HE-IOPP, all honestly produced messages

within it decrypt correctly (with overwhelming probability).

When we want to make the plaintext polynomial and evaluation domain ex-
plicit, we write (ct1, . . . , ctd) ∈ EncPoly(f, L).

In other words, (ct1, . . . , ctd) ∈ EncPoly(f, L) if, given those ciphertexts, it
is possible both to compute EncPoly(f,FpD) and to show within the HE-IOPP
that there exists such f .

5.1 The HE-Batched-FRI protocol

The specific HE-IOPP we will employ is the HE transformation (see Defini-
tion 17) of the (Batched) FRI protocol. The batched FRI protocol allows a
prover to prove the δ-correlated agreement of f1, . . . , ft by running the FRI pro-
tocol on f =

∑t
i=1 βifi for i.i.d. uniformly random10 βi. In fact, replacing FRI

9 It could happen, for a malicious choice of the cti ∈ R2
q , that f(a) =

∑d
i=0 gia

i ∀a ∈
Rp for some gi ̸= fi. In practice, this does not give any power to the adversary: it
would be equivalent to putting a wrong polynomial of the right degree within the
oracle, which should be caught by the IOP.

10 We use i.i.d uniformly random coefficients, rather than powers of a single β, since
otherwise we would incur an O(n) soundness loss, see [BCI+20, BGK+23].

23

with another IOPP would still result in a δ-correlated agreement test and as we
showed before (Theorems 3 and 4), we could use any other IOPP, to which we
would previously apply our HE-transformation (Definition 17).

Whereas there are new, concretely more efficient IOPs for circuit satisfiability
every year [BCR+19, COS20], a series of variants of the FRI protocol have
remained as the most practical choice for an IOPP until this day. Since this is
seemingly the most stable component of our overall compilers, we provide our
HE-Batched-FRI protocol in Figure 3. We also adapt the results of [BGK+23]
concerning round-by-round soundness of FRI to HE-Batched-FRI. Notice that
we only need to consider RBR soundness, rather than RBR knowledge soundness,
since the former is enough for their δ-correlated hIOP-to-SNARK compiler.

Theorem 5. Let F be a finite field, L0 ⊆ F∗ a smooth multiplicative subgroup
of size 2n, d0 = 2k, ρ = d0/|L0| = 2k−n and ℓ a positive integer. For any integer
m ≥ 3, η ∈ (0,

√
ρ/(2m)), relative distance δ ∈ (0, 1 − √ρ − η) and functions

f
(0)
1 , . . . , f

(0)
t : L0 → F for t ≥ 2 such that at least one of them is δ-far from

RS(0), the HE-Batched-FRI protocol (Figure 3) has round-by-round soundness
error

ϵ = max
{ (m+ 1/2)7 · |L0|2

3ρ3/2|F|
, (1− δ)ℓ

}
Furthermore, under Conjecture 1 (see Appendix A), the error can be further
reduced to

ϵ = max
{ |L0|c2
(ρη)c1 |F|

, (1− δ)ℓ
}
.

Proof. We will reduce the security of our protocol to that of batched FRI. Let A
be an adversary who can break the round-by-round knowledge soundness of the
HE-Batched-FRI (Figure 3). We define an adversary A′ who breaks the security
of Batched FRI as follows. A′ runs (sk, pk, evk)← HE.KeyGen(1λ, C, pp) for the
relevant HE scheme, and in particular recovers sk. Given any input, A′ encrypts
it under pk and forwards it to A. For every message received from V, A′ directly
forwards it to A. In order to reply to those, A′ queries the oracles JfKHE he
receives from A at every point, decrypts the answers using sk so as to recover
f , and then sends the oracle JfK to V.

As long as the parameters of the HE scheme provide evaluation correctness
for all the operations that A has to perform, the above strategy implies that
if A breaks the round-by-round knowledge soundness of the HE-Batched-FRI
(Figure 3), then so does A′ for batched FRI. The security of the latter, under
the same RBR soundness error, was shown in [BGK+23, Theorem 4.2].

6 Optimisations

In order to make our construction practical, we introduce a number of opti-
misations. We note that these may be of independent interest, and may have
applications outside of what is presented in this work.

24

The HE-Batched-FRI protocol

Setup: Agree on the following:
– A HE scheme with ciphertext space R2

q and plaintext space Rp
∼=∏ℓ

j=1 FpD , p ̸= 2, satisfying 2n|(pD − 1) for some positive integer n.
– A multiplicative group L0 = {ω, . . . , ω2n} ⊆ F∗

pD of order 2n, i.e. L0 = ⟨ω⟩.
– The rate of the Reed-Solomon code, ρ = 2−R for a positive integer R.
– A number of rounds r < n − R, each of which will use a domain Li+1 =

{x2 | x ∈ Li}, i.e. Li+1 = ⟨ω2i⟩.
Input: For i = 1, . . . , t, alleged ciphertexts (ci,1, . . . , ci,2n/ℓ) ∈ R2

q which allegedly
satisfy (ci,1, . . . , ci,2n/ℓ) ∈ EncPoly(fi, L0) for some fi(X) ∈ FpD [X]<2n−R .
In other words, it should be that fi

∣∣
L0

∈ RS[FpD , L0, 2
n−R]. V has

oracles {JEncPoly(fi, L0)K}ti=1, whereas P has the underlying ciphertexts
{EncPoly(fi, L0)}ti=1.

Commit phase: P batches the encryptions of functions f1, . . . , ft into a single
encryption of a function f . Afterwards, it sequentially constructs a series of
oracles to “foldings” of encryptions of that function.

1. Obtain challenges β1, . . . , βt
$← FpD from the verifier. Implicitly define the

oracle Jf
∣∣
L0

KHE =
∑t

i=1 βi · Jfi
∣∣
L0

KHE from the oracles to the encrypted
polynomials {EncPoly(fi, L0)}ti=1.

2. For 0 ≤ i < r :

– Obtain a challenge αi
$← FpD from the verifier.

– P computes and sends the oracle JEncPoly(f (i+1), Li+1)K, where Li+1 =

⟨ω2i+1

⟩ and f (i+1) : Li+1 → FpD is allegedly such that (for j ∈ [2n−i]):

f (i+1)(ω2i+1j) =
f (i)(ω2ij) + f (i)(−ω2ij)

2
+αi·

f (i)(ω2ij)− f (i)(−ω2ij)

2 · ω2ij

3. The last oracle (to an encryption of) f (r) : Lr → FpD , Lr = ⟨ω2r−1

⟩ is
allegedly an encryption of a polynomial of degree strictly less than ρ · |Lr|,
so P can just directly send it as EncPoly(f (r), Lr) to V.

Query phase: V, using the HE secret key sk in order to decrypt the encrypted
polynomials within the oracles, checks the consistency of the messages sent by
the prover.
1. For 0 ≤ ℓ < m, V does the following in parallel:

– Sample a random µℓ
$← L0.

– For 0 ≤ i < r, using the oracles {JEncPoly(f (j), Lj)K}rj=0 and challenges
{αj}r−1

j=0 from the commit phase, check whether:

f (i+1)(µ2i+1

ℓ)
?
=

f (i)(µ2i

ℓ) + f (i)(−µ2i

ℓ)

2
+ αi ·

f (i)(µ2i

ℓ)− f (i)(−µ2i

ℓ)

2 · µ2i
ℓ

Notice that the verifier needs to decrypt the values f (i+1)(µ2i+1

ℓ),
f (i)(µ2i

ℓ) and f (i)(−µ2i

ℓ) inside the oracles in order to do this.

2. Decrypt EncPoly(f (r), Lr) and check whether f (r)
∣∣∣
Lr

?
∈ RS[FpD , Lr, d]. If

this or any of the previous checks fail, reject and abort. Otherwise, accept.

Fig. 3: The HE-Batched-FRI protocol.

25

6.1 On the choice of the HE scheme

At its core, our construction only requires an HE scheme supporting prime fields
as the plaintext space, which makes it compatible with nearly all modern HE
schemes, such as TFHE [CGGI20], BGV [BGV12], and BFV [Bra12, FV12].
The notable exception here is CKKS [CKKS17]. The reason for this is twofold:
first of all, CKKS doesn’t have a plaintext space in the “traditional" way, as the
other schemes mentioned above do. Secondly, the CKKS scheme is, by nature,
approximate – this means that, even for a fresh encryption, we always have
HE.Dec(HE.Enc(pk,m), sk) ≈ m and never HE.Dec(HE.Enc(pk,m), sk) = m.
This makes it incompatible with our verification approach, since IOPs work with
exact arithmetic. This leaves us with the choices of BGV/ BFV and TFHE, and
this choice is mostly guided by practical performance and availability of imple-
mentations, as we further detail in Section 7.

6.2 Tensoring

Recall the structure of the HE plaintext space as shown in Section 2, in Equa-
tion 1. Ideally, we would want the plaintext ring Rp to split into ℓ copies of FpD ,
where D would satisfy the FRI security requirements, i.e. such that |FpD | ≈ 2256.
For this to happen, we would need Fp to contain roots of unity of order at most
2N/D, where N is the degree of the cyclotomic ring. Given the requirements of
the HE scheme, i.e. that log(N) ∈ {11, . . . , 17}, this would restrict the value of
p to be smaller than 2N/D. On the other hand, FRI also requires FpD to have
an 2n-th root of unity, which therefore requires pD > 2n. In practice, we would
prefer to further restrict this and only use roots of unity in Fp (which requires
p > 2n), as it enables some procedures (e.g., the NTT in Section 6.3) to run
D times faster while only slightly reducing the maximum order of the roots of
unity.

Therefore, once we factor in all the requirements (FRI, HE and implemen-
tation), we have that 2n = dρ−1 < p < 2N/D, which restricts the size of the
input polynomial to d < 2Nρ/D. This is doable in practice if we consider some
of our most comprehensive parameter sets. For example, with (log(N), ρ,D) =
(17, 1/2, 6), we could have d to be at most 214. More often, however, we would
prefer better-performing parameters, such as (log(N), ρ,D) = (14, 1/16, 12),
which restricts d to just around 26, which would almost entirely restrict the
use of FRI.

To circumvent this, we use the following trick. For our HE-FRI protocol, we
will make use of a field extension FpD of Fp. Whenever we want to evaluate an
encrypted evaluation map on an element of FpD , we emulate the arithmetic of
the field extension FpD of Fp as a homomorphic circuit. This results in D HE
ciphertexts, which we interpret as (together) encrypting a single value in FpD .
Any further evaluation proceeds as an emulation of the arithmetic of FpD via an
HE circuit. Alternatively, one can also choose a “halfway" approach: instead of
using D ciphertexts encrypting values in Fpto emulate the arithmetic of FpD , one
can pick an intermediate value d′. Then, the plaintext space of the HE scheme

26

can be Fpd′ , and from there we emulate the arithmetic of FpD , this time only
with D/d′ ciphertexts. The ideal value of d′ will typically depend on the exact
application; as mentioned above, increasing the plaintext modulus will incur an
increase in all remaining HE parameters, and this needs to be carefully balanced.

6.3 Shallow Reed-Solomon encoding

Encoding a Reed-Solomon codeword consists of interpreting the input data as a
polynomial of degree (d− 1) and evaluating it at 2n = dρ−1 independent points.
Polynomial evaluation is a linear procedure and simply evaluating it 2n times
would result in quadratic performance. The Fast Fourier Transform is a staple
solution for this problem, enabling the evaluation in O(2n log 2n) operations. In
its original format, however, it is typically implemented as a circuit with depth
log 2n, which poses some challenges for its homomorphic evaluation. Fortunately,
FFTs, and, more specifically, Number-Theoretic Transforms (NTTs), their gen-
eralization to finite fields, are ubiquitous in the FHE literature, and solutions for
evaluating them with small depth are very well established [CG99, GPvL23]. In
this work, we adopt a radix-k NTT of parametrizable depth for some k ∈ [[2,

√
2n]]

optimized based on practical performance.
The NTT can be the most expensive procedure of FRI in general, but it

is especially costly when running batched polynomial commitments, as the RS
codeword needs to be calculated for each polynomial individually. This cost can
be minimized by exploiting the HE scheme packing to perform the NTT over
several polynomials at once. We consider the following strategies for packing.

– Single polynomial packing: Let k be a single polynomial k =
∑d−1

i=0 kiX
i ∈

Fp[X]. We encrypt k in an array of d/N ciphertexts ct, such that cti en-
crypts

∑d−1
j=0 ki·N+jX

j . The main advantage of this approach is the signif-
icantly reduced memory usage, as we process one polynomial at a time.
Conversely, evaluating the NTT algorithm with this packing requires per-
forming permutations within each ciphertext [CG99], which is an expensive
process compared to the other operations needed for evaluating the NTT.

– Batched polynomial packing: Let k be an N -sized list of polynomials
with maximum degree (d − 1), and ki,j be the coefficient of degree j of
the i-th polynomial. We encrypt k in an array of d ciphertexts cti, such
that the j-th slot of cti encrypts kj,i. The main advantage of this approach
is avoiding the previously mentioned permutations, as each coefficient of a
polynomial would be in different ciphertexts. For large polynomials, however,
the memory requirements to run the NTT with this packing might make it
impractical.

Notice that, in both cases, even though FRI is defined over FpD , we perform
the entire NTT in Fp by selecting roots of unity in Fp, as roots of unity in
FpD would bring negligible advantage compared to the size of p (as discussed in
Section 6.2). Notice further that the goal of the NTT is to create a redundant
representation of the polynomial (i.e., the RS codeword), which will take more

27

memory to be stored. In this way, storing the codewords could represent a prob-
lem even if storing the original polynomials was not one. This is the main aspect
we consider when choosing which type of packing we adopt. Mixed packing ap-
proaches could likely be a better solution for this problem, but developing them
is not within our scope.

6.4 FOLD optimisation

Recall the commit phase of our HE-FRI presented in Section 5.1. The complexity
of the folding algorithm is O(2n) and the depth is n11. In order to decrease the
depth, we will evaluate the Fold function in a DFT-like manner. Instead of
evaluating the protocol as presented, we will express each Fold(f (i), αi) as a
function of the first Jf (0)KHE.

In particular, on the Prover side, we will replace the FFT-like algorithm with
a DFT-like algorithm, thereby reducing the depth to 1. We compute the first
layer of the Fold operation as is, and then for the following layers, we proceed as
follows. We first pre-compute the constants, then express all the following layers
as the composition Fold ◦ . . . ◦ Fold. It follows that each layer is represented as
several inner products of the original polynomial, as Algorithm 1 shows. This
reduces the depth to 1, at the cost of increasing the complexity to O(2n log(2n)),
which does not change the overall complexity of FRI (dominated by the NTT).
Nothing is changed on the Verifier’s side.

6.5 Repacking and Recomposing

Repacking In RLWE-based cryptography, decrypting small amounts of data
may incur a significant overhead depending on the adopted parameters. An
RLWE sample of dimension N may encrypt up to N messages in Fp, which
can all be decrypted at once with cost O(N logN). However, if one wants to
decrypt just a single message in Fp, the cost would be at least O(N), which rep-
resents a performance overhead of N/ log(N) times compared to the amortized
cost of decrypting all messages at once.

During the commit phase of FRI, the prover performs computation using
RLWE samples of dimension N encrypting N messages in Fp. During the query
phase, however, the verifier only needs to learn two evaluation points in FpD

per round for each linearity check. In this way, if the prover provides these
points packed in a ciphertext of dimension N , it would impose a performance
overhead of at least N/(2D) times for the verifier compared to an optimal RLWE
decryption (i.e., it would be decrypting at least N/(2D) more messages than
necessary).

To avoid this, we introduce a repacking procedure that extracts the evaluation
points from the RLWE samples of dimension N and repacks them in RLWE
samples of much smaller dimensions. Since the verifier does not compute any
11 Remember that n is the logarithm of the size of the codeword. The folding is a linear

algorithm.

28

Algorithm 1 Shallow Fold

Input: n′ = 2n, r, f (0), ω
Output codewords f (i), for i ∈ [[0, r − 1]].

c← [0, . . . , 0]
for k ← 0 to r − 1 do

▷ First we pre-compute the constants
for i← 0 to n′/2− 1 do

for j ← 0 to 2k+1 − 1 do
ci+jn′/2 ← ci+jn′/2 · 12 ·

(
1 +

(−1)jαj

ωi

)
end for

end for
▷ Now we compute the Fold

for i← 0 to n′/2− 1 do
f
(k)
i ← 0

for j ← 0 to 2k+1 − 1 do
f (k)(ωi)← f (k)(ωi) + ci+j·(n′/2) · f(ωi+j·(n′/2))(0)

end for
end for
n′ ← n′/2
ω ← ω2

end for

homomorphic operation over the ciphertext, we do not need to preserve any
homomorphisms. In fact, once the commit phase is finished, the evaluation points
can be treated as just strings of bits, and our goal becomes to encrypt them in the
smallest possible ciphertext. Algorithm 2 shows the repacking procedure, which
requires the subprocedures listed in the following. We use techniques introduced
in [CLOT21] for the decomposition and described in [CGGI20] for the other
procedures. We note that, although most of these subprocedures are often used
with the TFHE scheme [CGGI20] in previous literature, they are generic for
RLWE-based FHE, and we do not rely on any specific property of TFHE.

– ExtractLWE: Given an RLWE sample c encrypting a polynomial m =∑N−1
i=0 miX

i under key s, ExtractLWE(c, i) produces an LWE sample
encrypting mi under key s′, where s′ is the vector interpretation (i.e. the
array of coefficients) of s.

– Decompose: Given an LWE sample c encrypting a message m ∈ Zp with
ciphertext modulus q, the procedure Decomposep,q (c, i) decomposes the
message in base p and produces an LWE sample encrypting its i-th most
significant digit with ciphertext modulus q < q. This procedure is imple-
mented as modular reduction followed by a real division (ModDown), as
shown in Equation 2:

Decomposep,q (c, i) 7→
[⌈

[c](q/pi) ·
q

(q/pi)

⌋]
q

. (2)

29

Algorithm 2 Repacking
Input: Two vectors of RLWE samples x = [x0, x1, . . . , xd−1] and y =

[y0, y1, . . . , yd−1], encrypting N evaluation points in FpD each;
Input: indices ix, iy ∈ {0, . . . , N − 1} indicating the position of two evaluation

points within each element of x and y, respectively;
Input: input and output parameter sets (p, q,N) and (p, q,N);
Input decomposition base b = log(p); and
Input: a packing key switching key ksk
Output Repacked ciphertext

▷ Extract the evaluation points to LWE samples
for j ← 0 to d do

x̂j ← ExtractLWE(xj , ix)
ŷj ← ExtractLWE(yj , iy)

end for
▷ Decompose each LWE sample in k new samples, each encrypting log(p) bits of

the evaluation points
k ←

⌈
log (p) /2b

⌉
for j ← 0 to D − 1 do

for i← 0 to k − 1 do
c̃kj+i ← Decomposep,q (x̂j , i)
c̃k(j+D)+i ← Decomposep,q (ŷj , i)

end for
end for

▷ Pack all LWE samples in a single RLWE
return PackingKeySwitching ([c̃0, c̃1, . . . , c̃2Dk], ksk)

– PackingKeySwitching: Given a list of LWE samples ci encrypting mes-
sages mi, respectively, for i ∈ [[0, N − 1]] and a key switching key ksk, the
PackingKeySwitching produces an RLWE sample C encrypting the poly-
nomial m =

∑N−1
i=0 miX

i. In this process, the dimension of C is defined by
ksk.

We select p and its associated dimension N as the smallest possible values
that allow the encryption of a string of 2 log(|FpD |) bits while providing a 128-bit
security level. Additionally, the decomposition algorithm requires the ciphertext
modulus q to be divisible by p, which, for simplicity, we achieve by mod-switching
the ciphertext to a power-of-two modulus before the repacking. Table 1 presents
the main practical choices for these parameters. We note that, depending on the
size of p, some of them may not require decomposition but would still benefit
from the repacking.

To minimize the noise generated by the repacking, we always run the Pack-
ingKeySwitching with a larger parameter set and perform another key switch-
ing to reduce dimension at the end. For example, in our practical instantiation
(Section 7), we first perform the folding using P5; then, the repacking extracts
and decomposes the samples still using P5, and the PackingKeySwitching
repacks them using P1. Finally, before committing to the codeword, the prover

30

Table 1: Practical choices for FHE parameters for the repacking procedure. In
this table, k is the module-LWE dimension and q is the ciphertext modulus. All
parameters are estimated for the 128-bit security level, and the decryption cost
is measured in the number of multiplications.

Parameter Set k N log2(q) Size (bytes) Decryption Cost

P0 1 512 12 8192 5120
P1 2 512 25 12288 5632
P2 1 1024 16384 11264
P3 4 512

52
20480 6656

P4 2 1024 24576 12288
P5 1 2048 32768 24576

runs another key switching to reduce from P1 to P0. This final reduction may
not improve performance considerably (as decryption in P1 is only 10% slower
than in P0), but it reduces the size of the ciphertext in 33%.

Recomposition The repacking process is fundamental for minimizing the im-
pact of the HE overhead on FRI, but it also introduces some challenges for the
verifier to recover the evaluation points in FpD . Algorithm 3 shows the full re-
composition process, and the following paragraphs describe the main challenges
it addresses.

Message recomposition. During the repacking process, we extract digits relying
on the fact that p divides q. Our plaintext space, on the other hand, is defined
by a prime modulus p following FRI requirements, which is not divisible by p.
Therefore, we will interpret the extracted digits not as digits of the message,
but as digits of the phase function (Definition 4). Recall that the phase function
is computed modulo q, and we have that p | q. At the time of decryption, the
verifier needs therefore to first remove the noise and recompose the phase before
dividing by the scaling factor ∆.

Digit decomposition noise. Considering the decomposition process presented in
Equation 2, at the extraction of the i-th digit, the (i + 1)-th digit remains in
the sample and is treated as noise. This noise increases the probability of a
decryption error significantly once added to the key-switching noise. To avoid
this problem, we select parameters that allow us to encrypt at least two extra
bits. To give a concrete example, if p = 28, we select the HE parameters to
encrypt a 10-bit message, so that we also preserve the bits following the least
significant bit (LSB) of our message, as illustrated in Figure 4). At a high level,
one can view these two extra bits as “redundant" bits, that allow for a higher
noise growth, without causing a decryption error. Notice that, for the (k− 1)-th
digit, these redundant bits will be zero, as there is no k-th digit, counting from
zero. For all other digits, the redundant bits of the i-th digit should be the two

31

Algorithm 3 Recomposition
Input Repacked RLWE ciphertext ct = (ct0, ct1)
Input Secret key sk
Input Decomposition base b = log(p), and message scaling factor ∆
Output An array of points v̂ ∈ F2D

p

▷ Calculate the phase
v ← ct1−ct0·sk

2b+2

▷ Recompose each point in Fp

k ←
⌈
log (p) /2b

⌉
for j ← 0 to 2D − 1 do

v̂j ←
⌈ vkj+k−1

4

⌋
x←

⌊
v̂j

2b−2

⌋
for i← k − 2 to 0 step − 1 do

▷ Calculate the noise propagated by the previous digit
c← SignExtend (x− [vkj+i]4)

▷ Remove the noise and scale
v̂j ← v̂j +

⌊
vkj+i+c

4

⌋
· 2b(k−1−i)

▷ Extract the two most significant bits to x
x←

⌊
(vkj+i+c)

2b

⌋
end for
v̂j ←

⌊
v̂j
∆

⌉
end for
return v̂

Procedure SignExtend(x) :
if x = 3 then

return − 1
else if x = 1 then

return 1
else

return 0
end if

most significant bits (MSBs) of the (i+1)-th digit. Considering this, the verifier
decrypts the digits sequentially from the least to the most significant and uses
the MSBs of the previous digit and the redundant bits to correct for possibly
propagated errors. Notice that these bits are supposed to be the same, and hence
this process will not change the redundant bits if there is no propagated noise.
Otherwise, if the noise propagates up to the redundant bits (also illustrated in
Figure 4), it will correct the message to its original value.

Using bootstrapping Besides reducing costs for the verifier, the repacking
technique also allows us to produce ciphertexts with a small plaintext modulus,
regardless of the size of the base field we adopt for FRI. This in turn makes it

32

Message Noise

Correct

Redundancy Bits

i = 0

i = 1

i = 2

i = 3

i-th Digit

Redundancy Bits

i = 0

i = 1

i = 2

i = 3

i-th Digit

Decompose

Fig. 4: Example of decomposition and error correction. Notice that the process
for correcting using the redundant bit only occurs after the decryption.

possible to bootstrap these ciphertexts, which would otherwise be prohibitively
expensive for some of the sizes of base fields we consider for FRI (we consider
|Fp| ranging from 216 up to 250). Bootstrappings are particularly useful for our
construction in two ways. First, they enable the prover to remove the digit
decomposition noise, which leads to better parameters and hence better per-
formance for the verifier. Bootstrapping also makes the error correction part of
Algorithm 3 unnecessary. Second, it can also enable us to achieve the notion of
Circuit Privacy defined in Definition 18. In particular, we know that we can use
bootstrapping as a rerandomization algorithm [DS16].

7 Experimental Results

Operating over the plaintext space enables our construction to work with nearly
all modern HE schemes (CKKS being the notable exception). Considering this,
we evaluate the practical impact of our proposals based on two performance
metrics. First, we provide a full performance characterization of HE-FRI based
on the number of basic arithmetic operations executed by each party with and
without the optimizations and designing choices described in Section 6. This
evaluation model allows us to present a broader view of HE-FRI performance
behavior, clearly defining the impact of each of our proposals independently of
the HE scheme. It also enables one to easily estimate practical performance for
different schemes and parameter choices.

Then, based on conclusions from our operation counting, we instantiate the
construction using implementations of the BGV and TFHE schemes, both in

33

leveled mode. This proof-of-concept implementation not only serves to validate
our estimates but also to address practical implementation aspects.

7.1 Practical Parameters

For the security of FRI, we consider parameters established by previous litera-
ture [BGK+23] and reproduced in Table 2. There are also practical parameters
that are required for functionality. For example, as we discussed in Section 6.2,
Fp needs to provide a root of unity of order 2n, which limits the maximum size of
the input polynomial based on the value of n. Considering this, Table 3 presents
the main choices of parameters according to the maximum size of the input
polynomial that they support. We note that, for every parameter in Table 3, the
maximum size of the input polynomial can be increased by up to D times at the
cost of D times more expensive NTT (as also discussed in Section 6.2).

Table 2: Security parameters we adopt for FRI, based on the security estimates of
[BGK+23] using Conjecture 1. We approximate the size of the field for practical
reasons.

Parameter |Fpd | ρ m δ

FRI0

251-269

1/2 102 0.5
FRI1 1/4 51 0.75
FRI2 1/8 34 0.875
FRI3 1/16 26 0.937

Table 3: Practical parameters for FRI based on the maximum size of the input
polynomial d.

Maximum input size log2(d) D p log2(p) log2(|FpD |)

15 16 65537 16.0 256.0
20 11 23068673 24.5 269.1
25 9 469762049 28.8 259.3
30 7 75161927681 36.1 252.9
35 7 206158430209 37.6 263.1
40 6 6597069766657 42.6 255.5
45 5 1337006139375617 50.2 251.2

34

7.2 Number of Operations

We start building HE-FRI over the FRI implementation of Szepieniec et al. [S+21],
which we extend with our proposals and instrument to measure the number of
operations. We only consider the number of cost-dominant operations in FpD ,
and we measure them for each level of depth of the algorithm individually. We
evaluate each phase of the protocol separately, leaving the tradeoffs between
them to be addressed when considering the practical instantiation. Table 4 sum-
marizes our results.

Table 4: Cost and depth comparison between FRI and HE-FRI. We only consider
the number of cost-dominant operations, which is the multiplication in FpD for
all procedures except for the Merkle Tree and query phases, where the cost
of committing and verifying the Merkle tree dominates. For HE-FRI, we also
include the overhead of RLWE encryption and decryption operations, given by
the factors P0 and P1 which refer to the decryption costs presented in Table 1.
In turn, P′i = Pi log2(p

D)/b is the amortized cost of decrypting each element in
FpD using the repacking method (Section 6.5), where b is the number of bits this
parameter set can encrypt. Finally, to simplify notation, let m′ = ⌈log2(m)⌉,
where m is the number of linearity checks defined by the security parameters of
FRI.

Procedure Cost Depth
FRI [BBHR18] HE-FRI FRI [BBHR18] HE-FRI

RS encode 2n (n) 2n+1
√
2n n 2

Folding 2n+1 − 2m
′+1 2n (n−m′) (n−m′) 1

Merkle Tree 2n+1 − 2m
′+1

(
2n+1 − 2m

′+1
)
P1 0 1

Query 2m (n−m′) m (n−m′)P0/D 0 0
RS decode 2m

′
m′ 2m

′
(m′ +P′

1) 0 0

Verifier Performance Figure 5-a presents the number of elements in FpD

received by the verifier during the execution of FRI. We take this number as
representative of FRI’s performance, as each element needs to be checked in the
Merkle Tree, which is the most expensive operation for the verifier. In the case of
HE-FRI, each element also needs to be decrypted, which introduces a significant
overhead leading to the results presented in Figure 5-b.

We define our comparison baseline based on two scenarios:

– Outsourcing: A client (the verifier) wants to outsource a polynomial eval-
uation to a (usually more powerful) server. In this case, the baseline for
comparison is a local evaluation, i.e., one in which the verifier receives the
entire polynomial encrypted from the server, decrypts it and evaluates it

35

8 10 12 14

Polynomial size (log2)

103

104

E
le

m
en

ts
in
F p

D

FRI0 m = 102, ρ = 1/2

FRI1 m = 51, ρ = 1/4

FRI2 m = 34, ρ = 1/8

FRI3 m = 26, ρ = 1/16

Local Evaluation

(a)

16 18 20 22

Polynomial size (log2)

106

107

108

D
ec

ry
p

ti
o
n

co
st

FRI0 m = 102, ρ = 1/2

FRI1 m = 51, ρ = 1/4

FRI2 m = 34, ρ = 1/8

FRI3 m = 26, ρ = 1/16

Local Evaluation

(b)

Fig. 5: Estimated cost for the Verifier in HE-FRI (a) in the number of elements
in FpD received and (b) in the number of multiplications required to decrypt
them.

themselves. For this scenario, HE-FRI provides gains for polynomials larger
than 217, as Figure 5-b shows.

– Zero-Knowledge: A client (verifier) wants to know the evaluation of a poly-
nomial P at some points x, but the server does not want to reveal any
information about P besides its evaluation at x. In this scenario, local eval-
uation is not an option, and HE-FRI, or some other verifiable polynomial
evaluation method over encrypted data, must be used.

Prover Performance Once we establish the minimum size for which gains
with HE-FRI are possible, our goal becomes minimizing the cost for the prover.
Taking, for example, a polynomial of size 217 and ρ = 1/2, the RS encoding
and the folding algorithm would have depths 18 and 17, respectively in the the
original implementation of FRI. Even for a small value of p, let us suppose
p = 220, depth (18 + 17) = 35 would require a ciphertext modulus with at the
least 20 · 35 = 700 bits. In turn, this modulus would require dimension N = 215,
and each ciphertext would weigh at least 7 megabytes (MB). If we consider a
batched polynomial commitment, memory could already be a problem for this
size of ciphertext depending on the number of input polynomials. Nonetheless,
even in a non-batched scenario (or one with a small number of polynomials),
increasing the ciphertext modulus has a typically quadratic impact on the HE
evaluation performance.

In Section 6, we showed how to solve this problem with a series of optimiza-
tions that enable FRI to be evaluated with a significantly smaller fixed depth. In
principle, we could evaluate FRI at depth only 1, but decreasing depth comes at

36

the expense of increasing the total number of operations. Considering this, we
address several trade-offs between depth, performance, and memory use enabled
by our techniques. We present several options of depth that should suit most
applications, but choosing among them is ultimately an application-dependent
choice.

For the Folding, as we discussed in Section 6, minimizing depth to 1 only in-
creases complexity from O(2n) to O(2n log 2n), preserving the overall complexity
of FRI. In practice, this increment is also negligible for the prover as the cost
of the folding is dominated by the number of executions of the repacking, which
remains linear in the input size. Therefore, for practical purposes, we always
implement folding with depth 1 and focus our efforts on the trade-offs enabled
by the shallow NTT during the RS encoding phase.

Reed-Solomon code encoding Increasing arity is a standard way of enabling
shallower NTT circuits. Finding the optimal arity, however, depends both on
the general goal as well as on the adopted cost model. For HE-FRI, while we
want to minimize depth, we only use multiplications by constants, a procedure
in which performance is linear in the depth. Therefore, we model the cost of our
NTT as the number of multiplications weighted according to the depth in which
they occur in the algorithm. Specifically, a multiplication at depth k′ has cost
(k−k′), where k is the total depth of HE-FRI. Notice that operations happening
at a higher depth are considered linearly less expensive, as the ciphertext levels
were already consumed by operations from shallower levels.

2 4 6 8

Depth

107

108

Number of Operations

Expected cost

(a) NTT for an input of size 218

10 12 14 16 18 20

Polynomial size (log2)

105

106

107

108

109
E

x
p

ec
te

d
co

st

Depth 2

Depth 3

Depth 4

Depth 6

Depth n

(b) Optimal expected cost

Fig. 6: Expected cost of our NTT implementation.

37

Figure 6-a shows the results for an NTT with an input of size 218. For each
value of maximum depth, we choose arity to minimize the expected cost (even
if it would increase the number of operations). While the cost decreases quickly
with the depth at first, it stabilizes with depth as low as just 6. Based on this,
we selected a few different values for the maximum depth and extended this
analysis to different sizes of polynomials. Figure 6-b shows the results as well as
the estimated cost for a standard depth-n (radix-2) NTT, using the same cost
model. This second result explains depth 6 as a stability point for the cost since
it reaches essentially the same performance level provided by the depth-n NTT.

7.3 Proof-of-concept Implementation

When designing a proof-of-concept implementation, most of our project deci-
sions (including, e.g., the choice of HE libraries and schemes) were taken aim-
ing at convenience and applicability rather than specific requirements from our
construction. As in Section 7.2, we also start by building over the FRI imple-
mentation of [S+21], which is a Python-implemented version of FRI for prime
fields. We extend it to work over the extension field FpD and connect it to FHE
libraries to implement the encrypted arithmetic. More precisely, all cleartext op-
erations are run using SageMath [The22] while operations over ciphertexts are
delegated to the FHE libraries HELib [HS20] and MOSFHET [GBA22] using
Python Ctypes. We also evaluate a cleartext version of our encrypted operations
(also using SageMath and Python’s standard libraries) to validate the correct-
ness of our implementation at every step. We include the execution time of all
these operations in the results presented in this section, as one would expect the
homomorphic libraries to dominate the cost in all procedures.

For the purposes of this proof-of-concept, we consider only the smallest pa-
rameter set of Table 3, as we are limited by specific aspects of our current
implementation. We note that in a dedicated (fully optimized) implementation,
larger values of p would have only a minor impact on the prover’s performance
while almost not changing performance at all for the verifier. We further dis-
cuss the limitations of our current implementation in Section 7.4. We run all the
experiments in a c6i.metal instance (Intel Xeon 8375C at 3.5 GHz with 256
GiB of RAM) on AWS. We measure time using the standard time library from
Python, and we report both measured results (solid curves) as well as curve
fitting estimates (dashed curves) based on the asymptotic complexity of each
specific operation.

Reed-Solomon code encoding Based on the results of our estimates (Sec-
tion 7.2), we consider NTTs of depth up to 6 for encoding RS codewords. In
conjunction with the size of our plaintext space (which varies from 16 up to 50
bits), this requires us to use a large ciphertext modulus and, hence, a multi-
precision implementation of the RLWE scheme. Considering this, we adopt the
RNS-based implementations of the BGV scheme for evaluating this part. Fig-
ure 7-a shows the performance results for our proof-of-concept implementation.

38

8 10 12 14

Polynomial Size (log2)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

)

Depth 2

Depth 4

Depth 6

(a) NTT

6 8 10 12 14

Polynomial Size (log2)

0

10000

20000

30000

40000

50000

T
im

e
(s

)

(b) Folding

Fig. 7: Performance of HE-FRI for the prover using the parameter set FRI3 for
D = 16.

Folding Contrary to the NTT, the folding procedure has a fixed multiplicative
depth equal to 1 (thanks to the optimizations we introduce in Section 6.4) and
is the last procedure to be run before decryption. As such, it requires a much
smaller ciphertext modulus and, for some of our parameter sets, can be evaluated
using single-precision (non-RNS) implementations. In this way, whenever it is
possible, we evaluate it using implementation techniques from TFHE. Figure 7-b
presents its performance.

Verification Figure 8-a shows the execution time for the verification procedure.
In this procedure, while the performance achieved by our proof-of-concept im-
plementation is already good, we note it should be significantly better in a fully
optimized implementation. As we mentioned at the beginning of Section 7.3, we
would at first expect the cost of homomorphic operations to prevail in all pro-
cedures, but this was not the case in the verification. By micro-benchmarking
the operations evaluated by the FHE library, we noticed the execution time of
the full verification is two orders of magnitude higher than all the time spent
by the FHE library. Specifically, the decryption and recomposition operations
(Algorithm 3) take just 200 microseconds per round of FRI while the hash op-
erations take only 60 microseconds, both for m = 26 and including the cost of
calling a shared library from the Python code. Considering that the cost of these
operations per round of FRI is independent of the size of the input polynomial,
we estimate the full cost of these operations in Figure 8-b.

The rest of the cost of our current implementation of the verification process
arises from the SageMath-implemented arithmetic for the linearity checks, which
could be significantly accelerated in a fully optimized implementation. Partic-

39

6 8 10 12 14

Polynomial Size (log2)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

T
im

e
(s

)

(a) Full verification

6 8 10 12 14

Polynomial Size (log2)

0.0005

0.0010

0.0015

0.0020

0.0025

T
im

e
(s

)

Recomposion

Hash

(b) HE operations

Fig. 8: Performance of HE-FRI for the verifier using the parameter set FRI3 for
D = 16.

ularly, in terms of asymptotic complexity, the linearity checks should be much
faster than the decryption process, which enables us to conclude that a fully
optimized implementation could achieve gains of up to 100 times over the cur-
rent one. It is also important to note that the performance of the recomposition
procedure (Algorithm 3) only depends on the size of the field FpD , but not on
the values of p or n, which makes the results of this section also valid for other
parameter sets.

7.4 Further improvements

Two main aspects limit the results our proof-of-concept implementation is ca-
pable of providing. First, while we use optimized libraries for the FHE part of
the protocol, our plaintext arithmetic and the integration between parts are still
entirely implemented in Python, which not only adds significant overhead but
also restricts our ability to control aspects such as memory usage, which become
very important for larger parameters. It also introduces some challenges for ef-
ficiently parallelizing the procedures, which could greatly improve the overall
performance, as most of our algorithms are trivially parallelizable.

The second aspect is the integration between cryptosystems themselves. As
it stands, our implementation does not rely on specific properties of any HE
scheme (other than providing a prime plaintext space). Our only motivation
to work with implementations of different schemes (a BGV implementation for
the NTT and a TFHE one for the folding) is the convenience of using already
optimized implementations that fit well in the procedures we want to evaluate.
Integrating these two schemes, however, would require complex scheme-switching

40

techniques, which are outside of our scope in this work. Instead, the ideal solu-
tion for integrating these two parts is simply to extend one of the implementa-
tions with the techniques from the other. Notice that all procedures we use in
this work are fully compatible with both schemes, and this extension is only a
matter of implementation (we do not need, for example, ciphertext-ciphertext
multiplications, which could require changes to the encoding adopted by each
scheme). For the final version of this paper, we plan to implement this extension
in a dedicated fully optimized implementation of HE-FRI, which we expect to
achieve much better performance compared to our current results.

Acknowledgements

We would like to thank Zvika Brakerski for comments about our repacking op-
timization for the HE-Batched-FRI protocol. We also want to thank Alexander
R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Ti-
wari and Michał Zajac for a useful conversation about their work [BGK+23] and
confirming that their analysis does not require finite fields to be prime.

This work was partly done while A. Guimarães was a Ph.D. student at Uni-
versity of Campinas, Brazil. He was supported by the São Paulo Research Foun-
dation under grants 2013/08293-7, 2019/12783-6, and 2021/09849-5. This work
is partially funded by the European Union (GA 101096435). Views and opin-
ions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Commission. Neither the
European Union nor the European Commission can be held responsible for them.

References

ACY23. Gal Arnon, Alessandro Chiesa, and Eylon Yogev. IOPs with inverse poly-
nomial soundness error. Cryptology ePrint Archive, 2023.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018.

BCCW19. Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. nGraph-HE2: A high-throughput framework for neural net-
work inference on encrypted data. In Proceedings of the 7th ACM Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, pages 45–
56, 2019.

BCFK21. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible
and efficient verifiable computation on encrypted data. In Juan Garay,
editor, PKC 2021, Part II, volume 12711 of LNCS, pages 528–558. Springer,
Heidelberg, May 2021.

41

BCI+20. Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shub-
hangi Saraf. Proximity gaps for reed-solomon codes. In 61st FOCS, pages
900–909. IEEE Computer Society Press, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive or-
acle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg, Octo-
ber / November 2016.

BGBE19. Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy
preserving inference. In International Conference on Machine Learning,
pages 812–821. PMLR, 2019.

BGK+23. Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler,
Pratyush Ranjan Tiwari, and Michał Zając. Fiat-Shamir Security of FRI
and Related SNARKs. In Jian Guo and Ron Steinfeld, editors, Advances
in Cryptology – ASIACRYPT 2023, pages 3–40, Singapore, 2023. Springer
Nature Singapore.

BGKS20. Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf.
DEEP-FRI: Sampling outside the box improves soundness. In Thomas
Vidick, editor, ITCS 2020, volume 151, pages 5:1–5:32. LIPIcs, January
2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012, pages 309–325. ACM, January 2012.

BKS18. Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to av-
erage case reductions for the distance to a code. In 33rd Computational
Complexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

BMMP18. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
Fast homomorphic evaluation of deep discretized neural networks. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 483–512. Springer, Heidelberg, August 2018.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Heidelberg, August 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. SIAM Journal on computing, 43(2):831–
871, 2014.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice
to theory. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC,
pages 1082–1090. ACM Press, June 2019.

CCL15. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

42

CG99. Eleanor Chu and Alan George. Inside the FFT Black Box: Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, November 1999.
Google-Books-ID: 30S3kRiX4xgC.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, January 2020.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of
LNCS, pages 409–437. Springer, Heidelberg, December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 670–
699. Springer, Heidelberg, December 2021.

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct argu-
ments in the quantum random oracle model. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 1–29.
Springer, Heidelberg, December 2019.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

CP19. Benjamin R Curtis and Rachel Player. On the feasibility and impact of
standardising sparse-secret LWE parameter sets for homomorphic encryp-
tion. In Proceedings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 1–10, 2019.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 294–310. Springer, Heidelberg, May 2016.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable
computation on encrypted data. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 2014, pages 844–855. ACM Press, November 2014.

FNP20. Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable
computation on encrypted data. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 124–154. Springer, Heidelberg, May 2020.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

GBA22. Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: Opti-
mized software for FHE over the torus. Cryptology ePrint Archive, Report
2022/515, 2022. https://eprint.iacr.org/2022/515.

Gen09a. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

43

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/515
crypto.stanford.edu/craig

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers. In Tal Ra-
bin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer,
Heidelberg, August 2010.

GGW23. Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements
obliviously? Cryptology ePrint Archive, Paper 2023/1609, 2023. https:
//eprint.iacr.org/2023/1609.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GNS23. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio:
SNARKs for ring arithmetic. Journal of Cryptology, 36(4):41, October
2023.

GPvL23. Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen. Amor-
tized bootstrapping revisited: Simpler, asymptotically-faster, implemented.
In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASI-
ACRYPT 2023, pages 3–35, Singapore, 2023. Springer Nature Singapore.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press,
June 2015.

Hab22. Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint
Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.

HS20. Shai Halevi and Victor Shoup. Design and implementation of HElib:
a homomorphic encryption library. Cryptology ePrint Archive, Report
2020/1481, 2020. https://eprint.iacr.org/2020/1481.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

S+21. Szepieniec et al. Anatomy of a stark - tutorial for starks with support-
ing code in python, November 2021. https://github.com/aszepieniec/stark-
anatomy.

SV14. Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd opera-
tions. Designs, codes and cryptography, 71:57–81, 2014.

The22. The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.5), 2022. https://www.sagemath.org.

A A conjecture on FRI

Our implementation makes use of the following Conjecture (Conjecture 5.12
from [BGK+23]). Before presenting it, we introduce the following notation. For
an index i ∈ {0, . . . , k}, we let RS(i) := RS[F, Li, di], where L0 ⊂ F∗ is a smooth
multiplicative subgroup of size 2n, d0 = 2n−R, Li := {z2 : z ∈ Li−1}, and
di = di−1/2. Note that this implies that for every i ∈ {0, . . . , n − R}, Li is a

44

https://eprint.iacr.org/2023/1609
https://eprint.iacr.org/2023/1609
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2020/1481

smooth multiplicative subgroup of size 2n−i. For a function f : Li → F and
x ∈ F, we define an “algebraic hash function" [BKS18] as follows:

Hx[f] : Li+1 → F

Hx[s] :=
x− s′

s′′ − s′
· f(s′′) + x− s′′

s′ − s′′
· f(s′)

s, s′ ∈ Li, s
′ ̸= s′′, (s′)2 = (s′′)2 = s ∈ Li+1.

This hash function Hx has the property that if f ∈ RS(i), then Hx[f] ∈ RS(i+1)

for any x. Additionally, for arbitrary Gi : Li → F and Gi+1 = Hx[Gi], then
Gi and Gi+1 will pass all verifier checks during the Query Phase of the FRI
protocol, so long as di+1 > 1.

Conjecture 1. Let F be a finite field, L0 ⊂ F∗ a smooth multiplicative subgroup
of size 2n, d0 = 2n−R and ρ = 2−R. There exist constants c1 and c2 such that
for all ν > 0 and any δ ≤ 1− ρν, for any function Gi : Li → F that is δ-far from
RS(i) we have that

Pr
x

$←−F

[
∆(Hx[Gi], RS

(i)) ≤ δ
]
≤ |L0|c2

(νρ)c1 · |F|
.

Moreover, for any f1, . . . , ft : L0 → F such that at least one fi is δ-far from
RS(0), we have

Pr
α1,...,αt

$←−F

[
∆(G0, RS

(0)) ≤ δ|G0 =
∑
i

αifi

]
≤ |L0|c2

(νρ)c1 · |F|
,

Pr
α

$←−F

[
∆(G0, RS

(0)) ≤ δ|G0 =
∑
i

αi−1fi

]
≤ t · |L0|c2

(νρ)c1 · |F|
.

In their work, Ben-Sasson et al. [BCI+20] state the following: “To the best
of our knowledge, nothing contradicts setting c1 = c2 = 2", and when the
characteristic of F is greayer than d0 state that they “are not aware of anything
contradicting c1 = c2 = 1". Finally, they do note that if F has characteristic 2,
then c1 = c2 = 1 is impossible, due to an attack of [BGKS20].

B The BGV Scheme

Following [HS20], we define the BGV scheme [BGV12] as a levelled FHE scheme
based on the RLWE problem [LPR10]. The ciphertext space is Rq = Zq[x]/(x

n+
1), where q is the ciphertext modulus. The plaintext space isRt = Zt[x]/(x

n+1),
where t is the plaintext modulus. Messages and ciphertexts will be considered
as polynomials in Rt and Rq, respectively.

The BGV scheme is parametrised by the following:

45

– The length L of the moduli chain QL ≫ . . . ≫ Q0, where Qi|Qi+1 for
i ∈ {0, . . . , L− 1}

– The decomposition base D = {D⋆
1 , . . . , D

⋆
L}, with D⋆

j =
j−1∏
h=1

Dh, where the

Dh are such that Qi =
ℓ∏

h=1

, for a decomposition parameter ℓ

– The secret key distribution S, typically ternary with a specified Hamming
weight

– The error distribution χ, typically a discrete Gaussian of small standard
deviation

BGV consists of the algorithms HE.KeyGen, HE.Enc, HE.Dec, HE.Add, HE.PreMult,
HE.Relinearize, HE.KeySwitch and HE.ModSwitch, defined as follows. Below,
we assume that a fresh encryption will be “at the top" modulus L, but note that
HE.Enc can be defined at any level i.

HE.KeyGen(1λ): Draw s ← S and set (1, s) := sk as the secret key. Sample
a ← RQL

and e ← χ. Set pk = (pk[0], pk[1]) := ([−as − te]QL
, a) as the

public key. Let sk′ = (s′0, . . . , s
′
k) be another secret key. The evaluation key

for switching a ciphertext with respect to sk′ to a ciphertext with respect to
sk = (1, s) is defined as follows. For j ∈ {0, . . . , k} and i ∈ {0, . . . , ℓ} sample
aij ← RQL

and eij ← χ and set evkj := ([−aijs − teij + D⋆
i s
′
i]QL

, aij).
Return (sk, pk, evk).

HE.Enc(pk, m): Let m ∈ Rt be a message. Let Qi, i ∈ {0, . . . , L} be the modu-
lus in the moduli chain of the current level. Sample u ← S and e1, e2 ← χ.
Return ct = (ct[0], ct[1]) := ([m+ pk[0]u+ te1]Qi , [pk[1]u+ te2]Qi).

HE.Dec(sk,ct): Return m′ = [[< ct, sk >]Qi
]t.

HE.ModSwitch((ct,Qi),Qj): Let ct = (ct[0], ct[1]) be at level i. Return ctms :=(⌊
Qj

Qi
ct[0]

⌉
t
,
⌊
Qj

Qi
ct[1]

⌉
t

)
.

HE.KeySwitch(ct, sk′, evk): Let ct′ be a ciphertext with respect to sk′ = (s0, . . . , sk).
Recall sk = (1, s). Define T ⊆ {1, . . . , k} to be the set such that for i ∈ T
s′i = 1 or s′i = s. Define ct′j [i] via

ct′[i] =
ℓ∑

j=1

ct′j [i]D
⋆
j .

For i ∈ {0, . . . , k} \ T compute

(ct(i)[0], ct(i)[1]) =

 ℓ∑
j=1

(ct′j [i]evkj [i][0], ct
′
j [i]evkj [i][1])


kQi

.

For i ∈ T compute

46

(ct(i)[0], ct(i)[1]) = (kct′[i], 0) if s′i = 1

(ct(i)[0], ct(i)[1]) = (0, kct′[i]) if s′i = s.

Return (ct[0], ct[1]) =
[(

k∑
i=0

ct(i)[0], ct(i)[1]
)]

kQi

.

HE.Add(ct0, ct1): Bring ct0, ct1 to the same level by modulus switching the
ciphertext at the higher level to the lower level. Return ct := ([ct0[0] +
ct1[0]]Qi , [ct0[1] + ct1[1]]Qi).

HE.Mult(ct0, ct1, evk): Bring ct0, ct1 to the same level by modulus switching
the ciphertext at the higher level to the lower level.
Calculate ctpre-mult = (ctpre-mult[0], ctpre-mult[1], ctpre-mult[2]) :=

([ct0[0]ct1[0]]Qi
, [ct0[0]ct1[1]+ct0[1]ct1[0]]Qi

, [ct0[1]ct1[1]]Qi
).Define ctpre-mult

j [2]
such that

ctpre-mult[2] =

ℓ∑
j=1

ctpre-mult
j [2]D⋆

j .

Compute

ct := k(ctpre-mult[0], ctpre-mult[1])+

ℓ∑
j=1

(ctpre-mult
j [2]evk2[j][0], ct

pre-mult
j [2]evk2[j][1]).

Output
ctmult = HE.ModSwitch((ct, Qsp), Qi−1).

47

	HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical

