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Abstract. The privacy-preserving machine learning (PPML) has gained
growing importance over the last few years. One of the biggest challenges
is to improve the efficiency of PPML so that the communication and
computation costs of PPML are affordable for large machine learning
models such as deep learning. As we know, linear algebra such as ma-
trix multiplication occupies a significant part of the computation in the
deep learning such as deep convolutional neural networks (CNN). Thus,
it is desirable to propose the MPC protocol specialized for the matrix
operations. In this work, we propose a dishonest majority MPC proto-
col over matrix rings which supports matrix multiplication and addition.
Our MPC protocol can be seen as a variant of SPDZ protocol, i.e., the
MAC and global key of our protocol are vectors of length m and the se-
cret of our protocol is an m×m matrix. Compared to the classic SPDZ
protocol, our MPC protocol reduces the communication complexity by
at least m times. We also show that our MPC protocol is as efficient as
[11] which also presented a dishonest majority MPC protocol specialized
for matrix operations. The MPC protocol [11] resorts to the homomor-
phic encryption scheme (BFV scheme) to produce the matrix triples in
the preprocessing phase. This implies that their protocol only supports
the matrix operations over integer rings or prime fields of large size. On
the contrary, we resort to vector oblivious linear evaluations and random
vector oblivious linear evaluations to generate correlated randomness in
the preprocessing phase. Thus, the matrices of our MPC protocol can
be defined over any finite field or integer ring. Due to the small size of
our MAC, the communication complexity of our MPC protocol remains
almost the same regardless of the size of the field or the ring.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful par-
ties P1, · · · , Pn to jointly compute a public function f with their private inputs,
and reveals nothing except the final output. The adversary could corrupt at
most t of n parties to gain the private information of honest parties by either
inspecting the transcripts between parties (semi-honest adversary) or arbitrarily
deviating the protocol (malicious adversary). According to the number of cor-
rupted parties t, MPC protocols can be classified into two categories: honest
majority (t ≤ n

2 ) and dishonest majority (t < n). The honest majority MPC



protocol can achieve information-theoretic security while the dishonest majority
MPC protocol can only achieve computational security.

In MPC protocols, the public function f is generally modeled as an arithmetic
circuit over a finite field or a ring, which consists of addition and multiplication
gates. The computation over a ring is usually more complicated than the com-
putation over a field. Before the advent of privacy preserving machine learning
(PPML), most of the MPC protocols were only restricted to the computation
over finite fields. The use of integer rings is well-motivated in practice due to
their direct compatibility with hardware. In view of this practical application,
a line of works [12,25,2,1,18] proposed the MPC protocol over Z2k . Recently,
Escudero and Soria-Vazquez [17] considered the non-commutative ring in the
honest majority setting. They constructed an unconditionally secure MPC over
non-commutative rings with black-box access to a ring containing an exceptional
set1, whose size is at least the number of parties. They also proposed an honest
majority MPC protocol over the matrix ring Mm×m(Z2k).

Inspired by [17], a natural question is can we design an MPC protocol over a
non-commutative ring with only black-box access to the ring in the presence of
t ≥ n

2 corrupted parties? The answer is probably negative as the dishonest ma-
jority MPC protocols rely on some cryptographic assumptions. Moreover, while
honest majority MPC protocols use the error-correction algorithm of Shamir se-
cret sharing to detect and even correct the corruptions, the dishonest majority
MPC protocols have to rely on the additive secret sharing scheme to protect
the privacy of the data which has no room to detect the corruptions. Therefore,
message authenticate codes (MACs) are commonly attached to the additive se-
cret sharing scheme to detect the corruptions, which are highly related to the
concrete structure of the non-commutative ring.

In view of the above reasons, we aim to construct a dishonest majority MPC
over a specific family of the non-commutative ring, the matrix ring. Matrix
plays an essential role in PPML, which allows distrustful parties to train and
evaluate different machine learning models [24,22,19,23]. It was observed in [11]
that securely multiplying two m × m matrices in SPDZ protocol requires at
least O(m2.8) authenticated Beaver triples, which is prohibitively expensive if a
machine learning task needs a large number and sizes of matrix multiplication.
Thus, an MPC protocol specialized for matrix operations may greatly improve
the efficiency of PPML. Moreover, some other non-commutative rings could be
represented in the form of matrix rings. For instance, the quaternion ring is
another non-commutative ring with practical applications, which plays a central
role in computer graphics and aerospace due to its competence in describing the
rotation in three-dimensional space.

In this work, we present a variant of SPDZ protocol whose secret is defined
over matrix rings. Different from the classic SPDZ protocol, the MAC and global
key of our protocol are vectors of length m and the secret of our protocol is an
m×m matrix. Thus, the size of our MAC is negligible compared to the size of

1 A subset of a non-commutative ring where the difference between any two elements
in this subset is invertible.
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our secret. Utilizing the matrix structure, our MPC protocol uses vector obliv-
ious linear evaluation (VOLE) and random vector oblivious linear evaluation
(RVOLE) as functionalities to authenticate the sharing and create the sextuple
for securely computing multiplication gate in the online phase. The advantage
of using VOLE and RVOLE is that these functionalities allow the computation
over both the finite fields and the integer rings with almost the same perfor-
mance. Thus, our MPC protocol can evaluate the circuits over any finite field
and integer ring. As a comparison, the matrix tuple constructed in [11] can only
be defined over integer rings or prime fields of large size to meet the security
parameter as they resort to homomorphic encryption (BFV scheme) in their pre-
processing phase. Moreover, our MPC protocol is very efficient compared to the
classic SPDZ protocol. The classic SPDZ protocol needs O(m3) Beaver triples
for securely computing a multiplication gate which incurs O(n2m3 log q) bits of
communication complexity while our MPC protocol only requires O(n2m2.5 log q)
bits of communication complexity in the preprocessing phase to prepare a sex-
tuple for multiplication gate. 2 In the online phase, our MPC protocol requires
O(m2n log q) bits of communication complexity to securely compute a multipli-
cation gate which is as efficient as the MPC protocol in [11]. The size of the
secret sharing is half the size of the secret sharing scheme in [11].

1.1 Our contribution

MAC for matrix rings. To authenticate a matrix M ∈Mm×m(Fq), we choose
a uniformly random vector v ∈Mm×1(Fq) as the global key and use the matrix-
vector product Mv as the MAC of a matrix M . The intuition of this matrix-
vector product is to reduce the size of MAC by applying the batch check, i.e.,
each component of the MAC is the inner product of a row of M and the global
key v. If the adversary aims to forge a fake authenticated secret sharing, he
needs to choose a nonzero matrix E ∈ Mm×m(Fq) and a MAC δ ∈ Mm×1(Fq)
such that Ev = δ. Since E is a nonzero matrix, we assume that the i-th row
of E is a nonzero vector eTi . Then, we have eTi v = δi where δi is the i-th
component of δ. Since the global key v is distributed uniformly at random, the
adversary succeeds with probability at most 1/q. In comparison, the previous
MPC protocol in [11] chooses a random element α ∈ Fq as the global key and
uses the scalar-matrix product αM as the corresponding MAC. Therefore, our
MAC is m times smaller than theirs. The sharing of the matrix M in our protocol
is defined as ⟨M⟩ = ([M ], [[v]], [[Mv]])3 where [M ] is the additive sharing of M
and [[v]], [[Mv]] are the additive sharing of v and Mv respectively.

The use of VOLE. Our protocol uses the vector oblivious linear evaluation
(VOLE for short) to compute the matrix-vector product. We make use of the
matrix structure to optimize the generation of correlated randomness. In the
computation of MAC, two parties need to obliviously compute the product of a
2 We assume the matrix multiplication requires m3 number of multiplications.
3 We use [·] and , [[·]] to represent the sharing of a matrix and vector.
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matrix M with a column vector v, i.e., u+w = Mv. Observe that Mv can be
decomposed into the sum of m vectors vimi where vi is the i-th component of
v and mi is the i-th column of M . Two parties can invoke VOLE m times to
obtain the shares ui,wi with ui + vi = vimi. In contrast, we have to invoke m2

OLEs to obliviously compute Mv, which is usually more expensive than VOLE.

The use of RVOLE. To further reduce the communication complexity, we use
the random vector oblivious linear evaluation (RVOLE for short) to compute the
product of two random matrices4 whose communication complexity is the most
expensive in the preprocessing phase. The RVOLE used in this paper can be
implemented by a pseudorandom correlated generator, which allows two parties
to take a pair of short, correlated seeds, and expand them to produce a much
larger correlated randomness. Thus, the invocation of RVOLE has sub-linear
communication complexity.

Multiplication sextuple. The biggest challenge of MPC protocol over matrix
rings is that the product of two matrices is not commutative. This prevents us
from applying the Beaver triple straightforwardly. This problem also appears in
[18]. Their solution is to use two types of secret sharings with left linearity and
right linearity respectively and transform the type of secret sharing by consuming
a double sharing, which is a pair of sharings associated with the same secret
and different types. In our case, since our MAC has the form Xv, our secret
sharing only allows left multiplication, i.e., all parties can only locally compute
A⟨M⟩ = ⟨AM⟩. In this work, we propose a multiplication sextuple to circumvent
this obstacle. Let ⟨X⟩ and ⟨Y ⟩ be the sharings of matrix X and Y respectively.
We prepare a sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) where A,B,R are random
matrices, AT and RT are the transpose of A and R, and C = AB. All parties
partially open ⟨X⟩−⟨A⟩ and ⟨Y ⟩−⟨B⟩ to D and E. The technique of Beaver triple
requires all parties to locally compute D⟨B⟩ + ⟨A⟩E + ⟨C⟩ +DE. However, as
we mentioned above, it is impossible to locally compute the right multiplication
⟨A⟩E. To overcome this obstacle, all parties are required to locally compute
ET ⟨AT ⟩ − ⟨RT ⟩ and partially open it to F by using the sharing ⟨AT ⟩ and ⟨RT ⟩.
Then, all parties locally compute FT +⟨R⟩ = ⟨AE⟩ by observing FT = (ETAT −
RT )T = AE −R. This completes the multiplication gate.

Function dependent preprocessing. The evaluation of a single multiplica-
tion gate in our MPC protocol needs two rounds and three broadcasts. Inspired
by [7,18], we introduce function dependent preprocessing to improve the round
and communication complexity. After the application of function dependent pre-
processing, the evaluation of a multiplication gate only needs one round and two
broadcasts. Since this improvement is not the focus of our paper, we take a brief
overview of it in Section C.
4 In our MPC protocol, the RVOLE is applied to the random matrix while VOLE is

applied to the deterministic matrix.
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Migration to Mm×m(Zpk). The matrix in our MPC protocol can be defined
over small fields and rings as well. Let us first consider the small fields and then
generalize to the integer rings. The idea is to replace a global key of a vector
in Mm×1(Fq) with a global key of a matrix in Mm×ℓ(Fq). The reason is that
the adversary succeeds with probability 1/q if our MPC protocol is defined over
Mm×m(Fq). To reduce the error probability, we increase the size of the global
key and MAC. Observe that XV = ∆ where V ∈ Mm×ℓ(Fq) is the MAC and
X ∈Mm×m(Fq) is the secret. Therefore, each column of the global key is used to
verify the correctness of the secret and we verify our secret X with ℓ equations
instead of 1. The error probability will be reduced to 1/qℓ while the size of
MAC is still negligible compared to the size of our secret assuming m tends to
infinity. In this sense, our MPC protocol can be defined over Mm×m(Zp) with
prime number p. Then, we can generalize our MPC protocol to a protocol over
Mm×m(Zpk) in a straightforward way. One can find the details in Section 6.

1.2 Overview of our technique

We first present our MPC protocol over Mm×m(Fq) with large q. Then, in
Section 6, we show how to generalize this construction to a small field and ring
case with slight modifications. As we have mentioned above, the authenticated
sharing of our protocol is ⟨M⟩ = ([M ], [[v]], [[Mv]]). We use a random vector v
as our global key. The MAC of our matrix is the product of a matrix with the
global key v. The idea of our MAC comes from the batch check. A random
vector can be used to verify the correctness of a vector of the same length by
taking the inner product of these two vectors. Thus, to verify the correctness of
an m ×m matrix, we only need a MAC of size m. On the contrary, the classic
SPDZ protocol requires MAC of size m2 to verify an m × m matrix. Another
merit of this sharing can be found in the use of VOLE and RVOLE which we
have already discussed in the subsection 1.1.

In the preprocessing phase, our MPC protocol prepares sextuples of the form
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) with random matrices A,B,R ∈Mm×m(Fq) and
C = AB. We break this protocol into two procedures, πMult and πDouble. We
also present a protocol ΠAuth to generate the authenticated sharing. Protocol
ΠAuth uses functionality VOLE to create the MAC and takes the random linear
combination to verify the correctness of sharings. The use of VOLE can be found
in the previous subsection.

Procedure πMult produces a triple (⟨A⟩, ⟨B⟩, ⟨C⟩). We want to compute [C]
from [A] =

(
A(1), . . . , A(n)

)
and [B] =

(
B(1), . . . , B(n)

)
. Observe that C =

AB =
(∑n

i=1 A
(i)
) (∑n

i=1 B
(i)
)
. The additive sharing of cross terms A(i)B(j) and

A(j)B(i) can be computed by Pi and Pj . The product of two m×m matrices can
be decomposed into m matrix-vector multiplications, i.e., AB = (Ab1, . . . , Abm).
This implies that we only need to invoke m2 times VOLE to complete this
work. Moreover, to further reduce the communication complexity, we use RVOLE
instead of VOLE for this job. We create seeds to generate the random matrix
A(i) and reuse these seeds as inputs for the instances of RVOLE. Similar to
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[20], we prepare τ authenticated sharings ⟨X1⟩, . . . , ⟨Xτ ⟩ and take the random
linear combinations ⟨A⟩ =

∑τ
i=1 ri⟨Xi⟩ to prevent the leakage of bits of the

matrices X1, . . . , Xτ . Thus, instead of generating the sharing of AB, we need to
generate the sharing of X1B, . . . ,XτB. We merge X1, . . . , Xτ into one matrix
X = (XT

1 |XT
2 · · · |XT

τ )
T ∈ Mτm×m(Fq) and invoke m2 times RVOLE to obtain

[X1B], . . . , [XτB]. Then, we take random linear combinations to obtain two pairs
([A], [C]), ([A′], [C ′]) and apply protocol ΠAuth to compute the MAC of these
sharings. By taking a random linear combination of the form χ⟨A⟩ − ⟨A′⟩, we
can verify the product relation and output the triple (⟨A⟩, ⟨B⟩, ⟨C⟩).

Procedure πDouble takes inputs ⟨Ai⟩, i ∈ [2ℓ] and outputs pairs of authen-
ticated sharing ⟨Ai⟩, ⟨AT

i ⟩, i ∈ [2ℓ] for ℓ multiplication gates. The idea is to
first locally compute [AT

i ] from [Ai] by applying the transpose to each share in
[Ai]. Then, we apply protocol ΠAuth to create the authenticated sharing ⟨AT

i ⟩.
To check the transpose relation, we generate a pair of authenticated sharing
of random matrix A0, A

T
0 and sacrifice this pair by taking the random linear

combination

⟨C⟩ =
2ℓ∑
i=1

ri⟨Ai⟩+ ⟨A0⟩ ⟨D⟩ =
2ℓ∑
i=1

ri⟨AT
i ⟩+ ⟨AT

0 ⟩

It must hold that C = DT . Then, this procedure will output pairs of authenti-
cated sharing ⟨Ai⟩, ⟨AT

i ⟩, i ∈ [2ℓ].
In the online phase, our MPC protocol can securely compute the addition

and multiplication gate. The addition gate can be locally computed without
interaction. To compute the multiplication gate, we need a sextuple prepared in
the preprocessing phase. This sextuple can help us to circumvent the obstacle
that the product of two matrices is non-commutative. One can find the details
in the subsection 1.1.

1.3 Related work

There are few MPC protocols handling the matrix operations. Escudero and
Soria-Vazquez [17] presented an honest majority MPC protocol over matrix rings.
One of the biggest challenges in their protocol is to construct Shamir secret shar-
ing scheme over non-commutative rings. They constructed a subset of matrices
as the evaluation points such that these matrices are commutative. Based on
this subset of matrices, they presented the encoding and error correction algo-
rithm for this Shamir secret sharing scheme. Since our MPC protocol is secure in
the presence of dishonest majority, our building block is an additive secret shar-
ing scheme. The sharing and reconstruction algorithm can be straightforwardly
generalized from the commutative case. However, we need a MAC to verify the
correctness of our sharing whose idea can be dated back to SPDZ protocol [14].
In our protocol, the global key and the MAC are vectors instead of elements.
Thus, the MAC of our protocol is negligible compared to the size of the secret.

The most relevant work is due to [11] which presented a variant of SPDZ
protocol over matrix rings. They mimic the classic SPDZ protocol to use a single
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element as the global key to create the MAC of the matrix. Thus, the size of MAC
in their protocol is as big as the secret. In the preprocessing phase, they apply
the homomorphic matrix encryption [19] which is based on a variant of BFV
scheme [9] to create the matrix triple. Their SPDZ protocol over matrix rings
turns out to be very efficient compared to the classic SPDZ protocol handling the
matrix operations as the entry-wise operations. However, the use of BFV scheme
implies that their matrix must be defined over a ring Zq with large enough q.5 In
comparison, our preprocessing phase uses the vector oblivious linear evaluation
and the random oblivious linear evaluation as the functionalities, and thus our
MPC protocol can be defined over any finite field or ring with almost the same
performance. Moreover, the communication complexity of our MPC protocol is
as efficient as theirs.

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we present basic notations and
definitions. In Section 3, we present the online phase of our MPC protocol. In
Section 4, we present Protocol ΠAuth which outputs authenticated sharings. In
Section 5, we present the preprocessing phase of our MPC protocol. In Section 6,
we extend our MPC protocol to matrix rings over small fields and integer rings.
In Section 7, we analyze the communication complexity of our MPC protocol
and compare it with other dishonest majority MPC protocols over matrix rings.
The missing proofs and protocols can be found in Section A.

2 Preliminaries

2.1 Basic Notation

We use the capital letter M to represent a matrix and bold small letter v to
represent a column vector. The transpose of a matrix M is MT and the transpose
of a vector v is vT . Write M = (mi,j)n×n and the j-th column of M is denoted
by mj = (m1,j , . . . ,mn,j). For a vector v, denote by vi the i-th component of v,
i.e., v = (v1, . . . , vn)

T . LetMr×c(Fq) be the collection of r× c matrices over Fq.
Throughout the paper, the security parameter of MPC protocol is κ. Let

Fq be the finite field of size q and Zpk be the ring of integers modulo pk. We
denote by x

$←− X a variable x uniformly sampling from a finite set X . Let
[N ] = {1, · · · , N}.

2.2 Multiparty Computation

The set of parties in our MPC protocol is {P1, · · · , Pn}. We study the setting of
dishonest majority, where at most n− 1 parties are corrupted by the adversary.
The adversary is static and malicious, which means that the set of corrupted
5 In their experiment, log q = 128.
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parties is determined before the execution of protocol and corrupted parties can
arbitrarily deviate from the protocol.

The security of our protocol is proved under Canetti’s Universal Composabil-
ity(UC) framework [10]. A protocol Π securely instantiates a functionality F
if there exists a simulator that interacts with the adversary (or more formally,
environment) such that he can distinguish the ideal world and real world with
only negligible probability. The composability of UC framework enables us to
construct our protocol in hybrid model, which means that protocol Π instan-
tiates functionality F with access to another functionality F ′. In this case, Π
instantiates F in the F ′-hybrid model. Different from a protocol Π which is
associated with an ideal functionality and has simulation-based proof, we use π
to represent a procedure, which acts as a subroutine of protocols, and has no
related functionality or simulation-based proof.

We assume the private and authenticated channels between any pair of par-
ties and a broadcast channel. Our MPC protocol achieves security with abort
since the majority of parties are dishonest. In the ideal world, the functionality
waits for a signal from the adversary before delivery of outputs. If the signal
is Abort, all honest parties abort. Otherwise, the signal is OK, the functionality
sends correct outputs to all honest parties. In the real world, when we say a
party aborts, this party sends an Abort signal through the broadcast channel
and all honest parties abort.

3 Online phase

We begin this section by introducing the authenticated secret sharing of a ma-
trix, which is the building block of our MPC protocol. Then, we describe the
functionalities required for our online phase. We present the Protocol Πonline

to securely instantiate MPC functionality FMPC in the (FPrep, FCoin)-hybrid
model, where FPrep generates correlated randomness in offline phase and FCoin

generates public random field elements. The implementation of FPrep is pre-
sented in the Section 5.

3.1 Authenticated Secret Sharing

In the dishonest majority setting, additive secret sharing alone is not secure
against malicious adversary. Similar to [13], we use a uniformly random global
key to generate a MAC for each share to enhance security. The difference is
that the global key and MACs are not elements in the matrix ring Mm×m(Fq).
Instead, they are vectors of length m over Fq.

Notations. We use [·] and [[·]] to denote an additive secret sharing overMm×m(Fq)
and Mm×1(Fq)

6, respectively. An authenticated secret sharing ⟨X⟩ is a triple
6 Here we use notion Mm×1(Fq) instead of Fm

q in order to show that the global key
and MACs can be generalized to matrix.
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([X], [[v]], [[Xv]]), where X ∈ Mm×m(Fq) is the secret, v
$←− Mm×1(Fq) is the

global key and Xv ∈Mm×1(Fq) is the MAC of the secret. More precisely, [X] =(
X(1), · · · , X(n)

)
, [[v]] =

(
v(1), · · · ,v(n)

)
and ([[Xv]]) =

(
m(1)(X), · · · ,m(n)(X)

)
with

X =

n∑
i=1

X(i),v =

n∑
i=1

v(i), Xv =

n∑
i=1

m(i)(X).

where party Pi holds random share X(i) of secret X, key share v(i) and MAC
share m(i)(X).

Local operations. For simplicity, we use “linear” to refer to “Mm×m(Fq)-
linear”. Scheme [·] is both left linear and right linear due to distribute law of
matrix rings. However, scheme ⟨·⟩ is only left linear. Given an authenticated
secret sharing ⟨X⟩ and a public matrix A ∈ Mm×m(Fq), all parties could left
multiply A to [[Xv]] to obtain [[AXv]], but it is not possible to obtain [[XAv]]
with only local operations. To securely left multiply a matrix A with ⟨X⟩, all
parties locally compute

A⟨X⟩ = ⟨AX⟩ = ([AX], [[v]], [[AXv]])

with [AX] = (AX(1), . . . , AX(n)) and [[AXv]] = (Am(1)(X), . . . , Am(n)(X)). To
securely compute the sum of ⟨X⟩ and ⟨Y ⟩, all parties locally compute

⟨X⟩+ ⟨Y ⟩ = ⟨X + Y ⟩ = ([X + Y ], [[v]], [[(X + Y )v]])

with [X + Y ] = (X(1) + Y (1), . . . , X(n) + Y (n)) and [[(X + Y )v]] =
(
m(1)(X) +

m(i)(Y ), . . . ,m(n)(X)+m(n)(Y )
)
. To securely add a public matrix A with ⟨X⟩,

all parties locally compute

[X +A] = (X(1) +A,X(2), . . . , X(n)),m(i)(X +A) = m(i)(X) +Av(i)

Let ⟨X+A⟩ = ([X+A], [[v]], [[(X+A)v]]) be defined above. The affine operation
can be found in Procedure πAff in Section A.

Opening and checking. To partially open an authenticate secret sharing
⟨Y ⟩ = ([Y ], [[v]], [[Y v]]), all parties send their shares of [Y ] to P1, who can re-
construct the secret and send the result Y ′ to other parties. To check the cor-
rectness of the opening, all parties could locally compute [[σ]] = [[Y v]] − Y ′[[v]],
and broadcast the share of this value via a simultaneous message channel. The
parties abort if the reconstructed value is not 0. The probability that a fake
authenticated secret sharing passes the verification is 1/q. These two procedures
can be found in Section A.

Multiplication. In dishonest majority MPC protocols, correlated randomness
generated in offline phase could assist the computation of multiplications. Beaver

9



triple [6] is a common technique in MPC protocols, which transforms execution of
multiplications to broadcasts and linear operations. However, we can not adapt
Beaver triple directly due to the lack of commutativity of matrix rings.

To multiply two authenticated sharings ⟨X⟩ and ⟨Y ⟩, all parties prepare
a Beaver triple (⟨A⟩, ⟨B⟩, ⟨C⟩) with C = AB during offline phase. All parties
partially open D ← ⟨X⟩ − ⟨A⟩ and E ← ⟨Y ⟩ − ⟨B⟩. The sharing of Z = XY
could be represented as:

[Z] = [C] +D[B] + [A]E +DE

[[Zv]] = [[Cv]] +D[[Bv]] + [[AEv]] +DE[[v]]

We observe that all items except [[AEv]] could be locally computed with linear
operations. To compute MAC share [[AEv]], we follow the paradigm of “mask-
open-unmask”. We choose a random sharing [R] as the mask of [A]E. However,
when opening the masked value [A]E− [R], we cannot guarantee the correctness
due to the lack of MAC. Therefore, we prepare two additional authenticated
sharings (⟨AT ⟩, ⟨RT ⟩) and partially open the transpose ⟨F ⟩ = ET ⟨AT ⟩ − ⟨RT ⟩
instead. Therefore, to execute a multiplication, all parties need to prepare a mul-
tiplication sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) where A,B,R

$←−Mm×m(Fq)
and C = AB.

3.2 Required Functionalities

Here we present some functionalities. The functionality FMPC enables the par-
ties to input secrets inMm×m(Fq), perform linear operations and multiplications
on these values, and output results. The functionality FPrep aims to prepare cor-
related randomness for FMPC .

Authentication functionality FAuth. This functionality allows parties to
generate the shares of global key v and transform an additive secret sharing [X]
to an authenticated secret sharing ⟨X⟩. Although we do not call FAuth directly,
FAuth is contained in FPrep. FAuth can be found in Functionality 1 below.

Functionality 1: FAuth

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements in Mm×m(Fq). Let C be the set of corrupted parties.

– Initialize: On receiving (Init) from all parties, sample random vector
v(i) ← Mm×1(Fq) for i /∈ C and receive v(i) from adversary for i ∈ C.
Store the global key v =

∑n
i=1 v

(i) and send v(i) to Pi.
– Authenticate: On receiving (Auth, [X]) from each party Pi, where [X] is

an additive sharing over Mm×m(Fq):
1. Compute the MAC m(X) = Xv.
2. Wait for

{
m(i)(X)

}
i∈C

from adversary and sample
{
m(i)(X)

}
i/∈C

sub-

ject to
∑n

i=1 m
(i)(X) = m(X).
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3. Wait for message from adversary. If the message is OK, send m(i)(X)
to each party Pi. If the message is Abort, the functionality aborts.

Preprocessing functionality FPrep. This functionality produces random
sharings for input gates and multiplication sextuples for multiplication gates.
FPrep can be found in Functionality 2 below.

Functionality 2: FPrep

The functionality has all the same commands in FAuth, with following addi-
tional commands:

– Input: On input (InputPrep, Pi) from all parties, sample R
$←−Mm×m(Fq)

and generate its authenticated sharing ⟨R⟩. Output R to Pi and(
R(j),m(j)(R)

)
to Pj for all j ̸= i.

– Sextuple: On input (Tuple) from all parties, sample A,B,R
$←−

Mm×m(Fq) and compute C = AB. Generate authenticated sharings
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩).

Multiparty computation functionality FMPC . This functionality is the
goal of our MPC protocol. FMPC is can be found in Functionality 3 below.

Functionality 3: FMPC

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements in Mm×m(Fq).

– Initialize: On input (Init) from all parties, set the global key [[v]] and
obtain sufficient preprocessing data.

– Input: On input (Input, id, X, Pi) from Pi and (Input, id, Pi) from all other
parties, store Val[id] = X.

– Addition: On input (Add, id, id1, id2) from all parties, compute Z =
Val[id1] + Val[id2] and store Val[id] = Z.

– Public matrix multiplication: On input (PubMul, id, A), compute Z =
AVal[id] and store Val[id] = Z.

– Multiplication: On input (Mult, id, (id1, id2)) from all parties, compute
Z = Val[id1]Val[id2] and store Val[id] = Z.

– Check openings: On input (Check, (id1, · · · , idℓ), (X ′
1, · · · , X ′

ℓ)) from all
parties, wait for a signal for the adversary. If the adversary sends OK and
Val[idj ] = X ′

j for j ∈ [ℓ], return OK to all honest parties. Otherwise, return
Abort to all honest parties.

– Output: On input (Output, id) from all parties, the functionality retrieves
Y = Val[id] and sends Y to the adversary if Val[id] ̸= ∅. If the adversary
sends Abort then the functionality aborts, otherwise it delivers Y to all
parties.

11



Coin tossing functionality FCoin. This functionality generates a uniformly
random element in Fq for all parties.

Functionality 4: FCoin

Upon receiving (Coin) from all parties, sample r
$←− Fq and send r to all parties.

3.3 Instantiation of FMPC

The protocol Πonline instantiates FMPC in the (FPrep,FCoin)-hybrid model,
with statistical security parameter κ. The random shares and multiplication
sextuples produced in FPrep will be used in Input and Mult commands, respec-
tively.

Protocol 1: ΠOnline

The parties maintain a dictionary Val for authenticated values.

– Initialize: The parties call FPrep as follows:
1. On input (Init) to get global key [[v]]
2. On input (InputPrep, Pi) to prepare a random authenticated sharing
⟨R⟩ for each input gate, where the input provider Pi learns R

3. On input (Tuple) to prepare a multiplication sextuple
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) for each multiplication gate

– Input: If Pi receives (Input, id, X, Pi) and other parties receive (Input,
id, Pi), execute following operations:
1. Pi broadcasts A = X −R, where ⟨R⟩ is an unused input mask
2. All parties locally compute ⟨X⟩ = ⟨R⟩+A and store Val[id] = ⟨X⟩.

– Addition: If all parties receive (Add, id, id1, id2), retrieve ⟨X⟩ = Val[id1]
and ⟨Y ⟩ = Val[id2], locally compute ⟨Z⟩ = ⟨X⟩+⟨Y ⟩ and set Val[id] = ⟨Z⟩.

– Public matrix multiplication: If all parties receive (PubMul, id, A),
retrieve ⟨X⟩ = Val[id], locally compute ⟨Z⟩ = A⟨X⟩ and set Val[id] = ⟨Z⟩.

– Multiplication: If all parties receive (Mult, id, (id1, id2)), retrieve ⟨X⟩ =
Val[id1] and ⟨Y ⟩ = Val[id2] and execute following operations:

1. Choose an unused multiplication sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩,
⟨R⟩, ⟨RT ⟩).

2. All parties locally compute ⟨D⟩ ← ⟨X⟩ − ⟨A⟩ and ⟨E⟩ ← ⟨Y ⟩ − ⟨B⟩.
3. All parties invoke D ← πOpen(⟨D⟩) and E ← πOpen(⟨E⟩).
4. All parties locally compute ⟨F ⟩ ← ET ⟨AT ⟩ − ⟨RT ⟩ and invoke F ←

πOpen(⟨F ⟩)
5. All parties locally compute ⟨Z⟩ = ⟨C⟩+D⟨B⟩+ ⟨R⟩+DE + FT and

set Val[id] = ⟨Z⟩.
– Check openings: If all parties receive (Check, (id1, · · · , idℓ),

(X ′
1, · · · , X ′

ℓ)), retrieve ⟨Xj⟩ = Val[idj ] for j ∈ [ℓ] and execute following
operations:
1. Call FCoin ℓ times to sample r1, · · · , rℓ

$←− Fq.
2. All parties locally compute ⟨Y ⟩ ←

∑ℓ
j=1 rj⟨Xj⟩.

3. All parties locally compute Y ′ =
∑ℓ

j=1 rjX
′
j .
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4. All parties invoke πCheck(Y
′, ⟨Y ⟩).

– Output: If all parties receive (Output, id) and retrieve ⟨Y ⟩ = Val[id]:
1. All parties invoke Check command to check all the opened values in

the online phase so far.
2. If this does not abort, the parties partially open ⟨Y ⟩ to obtains Y ′.
3. All parties invoke πCheck(Y

′, ⟨Y ⟩). If this procedure passes, output Y ′.

Theorem 1. Protocol ΠOnline securely implements FMPC in the (FPrep, FCoin)-
hybrid model.

Proof (Sketch). A full-fledged simulation-based proof is presented in Section B.1.
Here we restrict ourselves to the core idea of the proof. For the case of Init com-
mand, it is easy to see that the shares of the global key are prepared for all parties
on both ΠOnline and FMPC . In the Input command, the value stored by FMPC

corresponds to the value stored by ΠOnline, which can be seen authenticated
through mask of the random share.

The case of Add and PubMul is easy since these steps only consist of lo-
cal computations which can be simulated trivially. To analyze Mult command,
we should take three values into consideration. The correctness of the multi-
plication step in FMPC is easy to be verified. The parties will get a tuple
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) before computing the product Z of two stored
values X,Y ∈ Mm×m(Fq). Then the protocol opens D ← X − A, E ← Y − B
and F ← ETAT −RT . The parties need to compute Z = C +DB +AE +DE,
where AE can not be directly obtained since ⟨·⟩ has no right linearity. Note that
FT = AE −R and we could reconstruct AE = FT +R.

The above assumes that D,E and F are opened correctly, but this can be
assumed to be the case since, if this does not hold, this will be detected in when
the Check command is issued. That is why we open F ← ETAT −RT instead of
AE−R. Due to the left linearity of the scheme ⟨·⟩, it is more straightforward to
check the correctness of ET ⟨AT ⟩ than ⟨A⟩E. Moreover, the adversary does not
learn sensitive information since the values A,B,RT perfectly mask the values
X,Y and ETAT , respectively. Finally, in the Check and Output command, we
can prove that a fake authenticated secret sharing will pass the verification with
a negligible probability due to the following game which also appears in [14].

1. The challenger generates the secret key v
$←−Mm×1(Fq) and MACs γi = Xiv

for i ∈ [ℓ] and sends X1, . . . , Xℓ to the adversary.
2. The adversary sends back X ′

1, . . . , X
′
ℓ.

3. The challenger generates the random values r1, . . . , rℓ ∈ Fq.
4. The adversary provides an error δ = (δ1, . . . , δm)T .
5. The adversary checks that {

∑ℓ
i=1 ri(Xi −X ′

i)}v = δ

The adversary wins the game if the check passes and exists Xi − X ′
i ̸= 0. The

second step of the game reveals that corrupted players have the option to lie
about the secret shares they opened during the execution of the protocol. δ
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models the fact that the adversary is allowed to introduce errors on the MAC.
Suppose

∑ℓ
i=1 ri(Xi −X ′

i) is not an all-zero matrix and let the nonzero row be
(xa,1, . . . , xa,m). We have δa =

∑m
j=1 xa,jvj . Since v = (v1, . . . , vm) is kept secret

from the adversary, the adversary wins the game with the probability at most
1/q. Now we proceed to the case

∑ℓ
i=1 ri(Xi − X ′

i) = 0. Because r1, . . . , rℓ are
random elements, the probability that

∑ℓ
i=1 riEi = 0 for not all-zero matrix Ei

is at most 1/q. Thus, the adversary wins this game with probability at most 1/q.

4 Authentication

In this section, we show how to authenticate an additive secret sharing. We first
introduce a cryptographic primitive VOLE and then show how to generate the
MAC share by invoking the VOLE.

4.1 Required functionalities

Vector oblivious linear evaluation functionality FV OLE. We first define
the essential functionality FV OLE over Fq as Functionality 5. A VOLE is a two-
party functionality between PA and PB , which takes as input a vector x from the
sender PA and a scalar v from the receiver PB , then randomly samples a vector u
and computes w = vx+u. In our work we need to instantiate several instances
of VOLE, therefore we associate a unique identifier sid to each instance7. The
efficient instantiation of FV OLE can be found in [3,4].

Functionality 5: Fsid
V OLE

The functionality runs between sender PA and receiver PB . The Initialize step
is run once first and the Multiply step could be run arbitrarily many times.

– Initialize: Upon receiving v ∈ Fq from PB , store v.
– Multiply: Upon receiving x ∈ Fm

q from PA:
1. Sample u

$←− Fm
q . If PA is corrupted, receive u from adversary.

2. Compute w = vx + u. If PB is corrupted, receive w from adversary
and recompute u = vx−w.

3. Output u to PA and w to PB .

4.2 Instantiation of FAuth

Now we proceed to generate MAC shares. Each party Pi randomly samples the
global key share v(i) when command Init is called. To authenticate a given share

7 The unique identifier sid works only for a pair of parties and is not a global identifier
in n-party setting.
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{
X(i)

}
i∈[n]

, all parties aim to obtain additive sharing of
(∑n

i=1 X
(i)
) (∑n

i=1 v
(i)
)

as MAC shares. We observe that:(
n∑

i=1

X(i)

)(
n∑

i=1

v(i)

)
=

n∑
i=1

X(i)v(i) +
∑
i ̸=j

X(i)v(j)

Each party Pi could locally compute the first item and each ordered pair
(Pi, Pj) needs to interactively compute additive sharing of the second item, i.e.,
u(i,j)+w(j,i) = X(i)v(j). By setting m(i)(X) = X(i)v(i)+

∑
j ̸=i

(
u(i,j) +w(i,j)

)
,

we conclude that
∑n

i=1 m
(i)(X) = Xv, where X =

∑n
i=1 X

(i) and v(i) =∑n
i=1 v

(i).
Since matrix-vector multiplication is a natural generalization of scalar-vector

multiplication, a pair (Pi, Pj) could obtain the additive sharing of X(i)v(j) via m
invocations of VOLE. In k-th invocation Fk

V OLE for k ∈ [m], Pi inputs the k-th
column x

(i)
k of X(i) and Pj inputs the k-th component v

(j)
k of global key share

v(j), then Pi receives u
(i,j)
k and Pj receives w

(j,i)
k such that w

(j,i)
k = v

(j)
k x

(i)
k +

u
(i,j)
k . By setting u(i,j) =

∑m
k=1−u

(i,j)
k and w(j,i) =

∑m
k=1 w

(j,i)
k , we obtain the

additive sharing of X(i)v(j). It is easy to verify the correctness:

u(i,j) +w(j,i) =

m∑
k=1

−u(i,j)
k +w

(j,i)
k

=

m∑
k=1

−u(i,j)
k + v

(j)
k x

(i)
k + u

(i,j)
k

=

m∑
k=1

v
(j)
k x

(i)
k

It is insufficient to just apply VOLE to generate authenticated sharings in the
presence of a malicious adversary. Because a corrupted party Pj may arbitrarily
choose its inputs and use inconsistent vectors

(
x
(j)
1 , · · · ,x(j)

m

)
or vector v(j) to

interact with different honest parties. To prevent such an attack, we introduce
a consistency check which opens a random linear combination of authenticated
secret sharings to detect the corruption. To avoid leakage caused by this opening,
we sacrifice a random authenticated sharing as the mask. Although such a check
can not guarantee the consistency of inputs in each invocation of FV OLE , it
guarantees that the sum of errors toward an honest party is zero, which suffices
to generate the correct MAC share as errors cancel out after the addition.

Combining VOLE with consistency check, we can obtain the authenticated
sharings from the additive sharings. The authenticated sharings will be stored
after the consistency check passes. Protocol ΠAuth is the instantiation of func-
tionality FAuth.
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Protocol 2: ΠAuth

– Initialize: If all parties receive (Init), each party Pi samples v(i) $←−
Mm×1(Fq) as global key share. For each ordered pair (Pi, Pj) and k ∈ [m],
Pi and Pj call the Initialize step of Fk

V OLE , where Pj inputs v
(j)
k .

– Authenticate: If all parties receive (Auth, [X1], . . . , [Xℓ]):
1. Each party Pi randomly samples a matrix X

(i)
0 ∈Mm×m(Fq).

2. For h ∈ {0} ∪ [ℓ], write X
(i)
h = (x

(i)
h,1, · · · ,x

(i)
h,m):

(a) For each ordered pair (Pi, Pj) and k ∈ [m], Pi and Pj call the
Multiply step of Fk

V OLE , where Pi inputs x
(i)
h,k.

(b) Pi receives u
(i,j)
h,k and Pj receives w

(j,i)
h,k such that w

(j,i)
h,k = u

(i,j)
h,k +

v
(j)
k x

(i)
h,k.

(c) Each party Pi sets m(i)(Xh) = X
(i)
h v(i) +

∑
j ̸=i

∑
k∈[m](w

(i,j)
h,k −

u
(i,j)
h,k ). Let (X

(i)
h ,v(i),m(i)(Xh)) as the Pi’s share of ⟨Xh⟩.

3. Parties call FCoin ℓ times to obtain randomness r1, · · · , rℓ.
4. Parties locally compute ⟨Y ⟩ = ⟨X0⟩+

∑ℓ
h=1 rh⟨Xh⟩.

5. Parties invoke Y ′ ← πOpen(⟨Y ⟩) and πcheck(Y
′, ⟨Y ⟩) to check the cor-

rectness of opened value.
6. If the check succeeds, output ⟨X1⟩, . . . , ⟨Xℓ⟩.

Theorem 2. Protocol ΠAuth securely implements FAuth in the (FV OLE, FCoin)-
hybrid model.

Proof. We analyze the consistency check in ΠAuth and defer the complete simulation-
based security proof to Section B.2. There are two possible deviations in ΠAuth:

– A corrupted party Pj provides inconsistent global key share v(i) with two
different honest parties in the Initialize step.

– A corrupted party Pj provides inconsistent secret share X
(i)
h for h ∈ {0}∪ [ℓ]

with two different honest parties in the Authentication step.

In the command Auth, the adversary could introduce an arbitrarily additive
error. For h ∈ {0}∪ [ℓ] and k ∈ [m], let x(j,i)

h,k , v
(j,i)
k be the actual input of Pj used

in Fk
V OLE with an honest party Pi. We fix an honest party Pi0 , and define the

correct inputs x(j)
h,k, v

(j)
k to be equal to x

(j,i0)
h,k , v

(j,i0)
k respectively. Then we obtain

the additive error between actual inputs and correct inputs:

δ
(j,i)
h,k = x

(j,i)
h,k − x

(j)
h,k ϵ

(j,i)
k = v

(j,i)
k − v

(j)
k

for each j ∈ C, i /∈ C. For an honest party Pj , it keeps inputs x
(j,i)
h,k = x

(j)
h,k and

v
(j,i)
k = v

(j)
k for each i ̸= j. Finally, we define that for i, j ∈ C, the additive error

is zero, i.e., δ(j,i)h,k = 0 and ϵ
(j,i)
k = 0.

For j ∈ C, i /∈ C, if Pj behaves as sender and Pi behaves as receiver, we have
that

m∑
k=1

(
−u(j,i)

h,k +w
(i,j)
h,k

)
= X

(j)
h v(i) +∆

(j,i)
h v(i)
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where ∆
(j,i)
h =

(
δ
(j,i)
h,1 , · · · , δ(j,i)h,m

)
. Similarly, reverse the role of Pi and Pj , we

have that
m∑

k=1

(
−u(i,j)

h,k +w
(j,i)
h,k

)
= X

(i)
h v(j) +X

(i)
h ϵ(j,i)

where ϵ(j,i) =
(
ϵ
(j,i)
1 , · · · , ϵ(j,i)m

)T
.

Sum up the MAC share m(i)(Xh), we can see the following result:
n∑

i=1

m(i)(Xh) =

n∑
i=1

X
(i)
h v(i) +

∑
j ̸=i

m∑
k=1

(
−u(i,j)

h,k +w
(j,i)
h,k

)

=

i∑
i=1

X
(i)
h v(i) +

∑
j ̸=i

X
(i,j)
h v(j,i)

= Xhv +
∑
i/∈C

∑
j∈C

∆
(j,i)
h︸ ︷︷ ︸

∆
(i)
h

v(i) +
∑
i/∈C

X(i)
∑
j∈C

ϵ(j,i)︸ ︷︷ ︸
ϵ(i)

After the random linear combination with coefficients (r0 = 1, r1, · · · , rℓ), we
obtain the following MAC of variable Y :

n∑
i=1

m(i)(Y ) = Y v +
∑
i/∈C

ℓ∑
h=0

rh∆
(i)
h v(i) +

∑
i/∈C

ℓ∑
h=0

rhX
(i)
h︸ ︷︷ ︸

Y (i)

ϵ(i)

Finally we proceed to check opening of Y . To pass the consistency, the adversary
needs to introduce two errors E = Y ′ − Y and γ such that:

n∑
i=1

m(i)(Y ) + γ − (Y + E)v = 0

γ − Ev +
∑
i/∈C

ℓ∑
h=0

rh∆
(i)
h v(i) +

∑
i/∈C

Y (i)ϵ(i) = 0

∑
i/∈C

(
ℓ∑

h=0

rh∆
(i)
h − E

)
v(i) +

∑
i/∈C

Y (i)ϵ(i) =
∑
i∈C

Ev(i) − γ

We assert that if consistency check passes, then ∆
(i)
h = 0 and ϵ(i) = 0 with

overwhelming probability. We prove this assertion with following two claims and
defer their proofs in Section B.2.

Claim. If at least one ϵ(i) ̸= 0 for some i /∈ C, then consistency check passes
with negligible probability.

Claim. If ϵ(i) = 0 for all i /∈ C and ∆
(i)
h ̸= 0 for some i /∈ C, then consistency

check passes with negligible probability.
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5 Offline phase

The preprocessing phase generates the authenticated random sharings ⟨R⟩ for
the input gates and the multiplication sextuples (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩)
for the multiplication gates. In this section, we focus on the production of the
multiplication sextuples. The full-fledged protocol ΠPrep is described in Section
A. To reduce the communication complexity, we introduce a variant of VOLE
programmable random VOLE. For the convenience of presentation, the task of
generating multiplication sextuple is divided into two parts: generating Beaver
triples (⟨A⟩, ⟨B⟩, ⟨C⟩) and generating double sharings (⟨A⟩, ⟨AT ⟩), (⟨R⟩, ⟨RT ⟩).

5.1 Required functionalities

Programmable Random VOLE functionality FRV OLE. A pseudorandom
correlation generator (PCG) allows two parties to expand a pair of short, cor-
related seeds to a much larger amount of correlated randomness. Recently, ef-
ficient PCGs for RVOLE are based on several variants of learning parity with
noise (LPN) assumptions [8,27,28]. While the communication complexity of orig-
inal VOLE scales linearly in vector length, the communication complexity of
PCG-based RVOLE is either square root of vector length (under primal LPN
assumption) or logarithmic in vector length (under dual LPN assumption). In
PCG-based RVOLE, the sender PA sends a seed s ∈ S instead of a whole vector
x, where S is the space of seed.

The property programmability was introduced to PCG-based RVOLE in [26],
which allows the sender to reuse its seed s in different instances of FRV OLE .
We model the programmability with function Expand : S → Fa

q , which deter-
ministically expands the given random seed to a pseudorandom vector of given
length a over Fq. The functionality Fa

RV OLE is described as Functionality 6. The
instantiation of FRV OLE can be found in [26], which was adapted from [28].

Functionality 6: Fa
RV OLE

Expand : S → Fa
q is the deterministic expansion function with seed space S

and output length a. The functionality runs between Pi and Pj .

Upon receiving s ∈ S from Pi and v ∈ Fq from Pj :

1. Compute x = Expand(s).
2. Sample u

$←− Fa
q . If PA is corrupted, receive u from the adversary.

3. Compute w = vx + u. If PB is corrupted, receive w from adversary and
recompute u = vx−w.

4. Output u to Pi and w to Pj .

5.2 Generation of Beaver triple

The first step of generating Beaver triple is to securely compute matrix multipli-
cation, which can be decomposed into some matrix-vector multiplications. We
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encapsulate the two-party protocol between a random matrix X ∈ Ma×m(Fq)
generated by seeds (s1, · · · , sm) and a fixed vector v ∈ Fm

q as a procedure called
random matrix-vector oblivious product evaluation (rMVOPE), which can be
found in Procedure 3.

Procedure 3: πa
rMV OPE

Let Expand : S → Fa
q is the deterministic expansion function with seed space

S and output length a. This is a two-party procedure between sender PA and
receiver PB .

Receive (s1, · · · , sm) ∈ Sm from PA and v ∈ Fm
q from PB :

1. For k ∈ [m]:
(a) PA and PB invokes Fa

RV OLE , where PA inputs sk and PB inputs vk.
(b) PA receives uk and PB receives wk

2. PA sets u = −
∑m

k=1 uk and PB sets w =
∑m

k=1 wk.

Procedure πMult outputs the authenticated Beaver triples. We take a brief
overview of this procedure. To generate a Beaver triple (⟨A⟩, ⟨B⟩, ⟨C⟩), our ap-
proach is similar to [20]. To check the correctness of (⟨A⟩, ⟨B⟩, ⟨C⟩), we sacrifice
another Beaver triple (⟨A′⟩, ⟨B⟩, ⟨C ′⟩). If all parties sample A,A′ by expanding
the seeds and directly invoke rMVOPE to obtain C,C ′, a corrupted party Pj may
use inconsistent share B(j) toward different honest parties to guess some informa-
tion of A and A′. To prevent such leakage, we generate τ copies {Xh, B, Zh}h∈[τ ]

and take Fq-linear combinations with random coefficients {(rh, r′h)}h∈[τ ] to ob-
tain A,A′, C, C ′. The random linear combinations yield universal hash functions
to extract A′, A′, C, C ′ from several partially leaked values {(Xh, Zh)}h∈[τ ].

Procedure 4: πMult

The procedure generates an authenticated triple (⟨A⟩, ⟨B⟩, ⟨C⟩) where A,B
$←−

Mm×m(Fq) and C = AB. The integer parameter τ = 4 suggested in [20]
specifies the number of input triples required to generate an authenticated
triple.

– Multiply:
1. Let Expand : S → Fτm

q . Each party Pi samples seeds
(
s
(i)
1 , · · · , s(i)m

)
and obtains X(i) =

(
x

(i)
1 , · · · ,x(i)

m

)
∈ Mτm×m(Fq), where x

(i)
k =

Expand
(
s
(i)
k

)
for k ∈ [m].

2. All parties invoke πRand to obtain an additive sharing [B].
3. For k ∈ [m] and each ordered pair (Pi, Pj):

(a) Pi and Pj invoke πτm
rMV OPE , where Pi inputs

(
s
(i)
1 , · · · , s(i)m

)
and

Pj inputs b
(j)
k

(b) Pi receives u
(i,j)
k and Pj receives w

(j,i)
k
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4. Each party Pi sets U (i,j) =
(
u

(i,j)
1 , · · · ,u(i,j)

m

)
and W (i,j) =(

w
(i,j)
1 , · · · ,w(i,j)

m

)
.

5. Split the matrices into τ blocks, we write U (i,j) +W (j,i) = X(i)B(j) as
U

(i,j)
1

...
U

(i,j)
τ

+


W

(j,i)
1

...
W

(j,i)
τ

 =


X

(i)
1

...
X

(i)
τ

B(j)

where U
(i,j)
h ,W

(j,i)
h , X

(i)
h , B(j) ∈Mm×m(Fq) for h ∈ [τ ].

6. For h ∈ [τ ], each party Pi computes Z
(i)
h = X

(i)
h B(i) +∑

j ̸=i

(
U

(i,j)
h +W

(i,j)
h

)
.

– Combine:
1. All parties invoke FCoin 2τ times to obtain {(rh, r′h)}h∈[τ ].
2. All parties locally compute

[A] =

τ∑
h=1

rh[Xh] [C] =

τ∑
h=1

rh[Zh]

[A′] =

τ∑
h=1

r′h[Xh] [C′] =

τ∑
h=1

r′h[Zh]

– Authenticate: All parties invoke FAuth to obtain ⟨A⟩, ⟨A′⟩, ⟨B⟩, ⟨C⟩ and
⟨C′⟩.

– Sacrifice:
1. All parties invoke FCoin to obtain χ.
2. All parties locally compute ⟨D⟩ = χ⟨A⟩ − ⟨A′⟩ and partially open

D ← πOpen(⟨D⟩).
3. All parties locally compute ⟨E⟩ = χ⟨C⟩ − ⟨C′⟩ − D⟨B⟩ and partially

open E ← πOpen(⟨E⟩).
4. If E ̸= 0, then aborts.

– Output: If no party aborts, all parties output (⟨A⟩, ⟨B⟩, ⟨C⟩).

5.3 Generation of double sharing

To generate ℓ multiplication sextuples for securely computing ℓ multiplication
gates, we need 2ℓ+ 1 double sharings of the form ⟨A⟩, ⟨AT ⟩ with some random
matrix A. Procedure πDouble receives the authenticated sharing ⟨A⟩ and output
the pair of authenticated sharing (⟨A⟩, ⟨AT ⟩). We briefly explain the idea of this
procedure. Observe that [AT ] can be obtained by locally applying the transpose
to each share of [A]. Then, we apply the FAuth to obtain the authenticated
sharing ⟨AT ⟩. We take random linear combinations of 2ℓ + 1 double sharing
⟨Ai⟩ and ⟨AT

i ⟩ respectively and partially open them to C and D. If there is no
corruption, C = DT and the check passes. Otherwise, this check will pass with
probability at most 1/q. One can find πDouble in Procedure 5.
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Procedure 5: πDouble

The procedure produces 2ℓ pairs of authenticated sharing ⟨Ai⟩, ⟨AT
i ⟩, i ∈ [2ℓ].

Double: Upon receiving (Double, ⟨A1⟩, . . . , ⟨A2ℓ⟩) from all parties:

1. All parties invoke πRand to obtain [A0].
2. All parties locally compute [AT

i ] from [Ai] for i ∈ {0} ∪ [2ℓ] by taking the
transpose of each share.

3. All parties invoke FAuth with command (Auth, [A0], [A
T
0 ], [A

T
1 ], . . . , [A

T
2ℓ])

to obtain the authenticated sharings ⟨A0⟩, ⟨AT
0 ⟩, ⟨AT

1 ⟩, . . . , ⟨AT
2ℓ⟩.

4. All parties call FCoin 2ℓ times to obtain r1, · · · , r2ℓ.
5. All parties locally compute

⟨C⟩ =
2ℓ∑
i=1

ri⟨Ai⟩+ ⟨A0⟩ ⟨D⟩ =
2ℓ∑
i=1

ri⟨AT
i ⟩+ ⟨AT

0 ⟩

6. All parties invoke πOpen to partially open C and D.
7. If C ̸= DT , then aborts.
8. All parties invoke πCheck to check the opened values.
9. If no party aborts, output 2ℓ pairs of authenticated sharings

(⟨Ai⟩, ⟨AT
i ⟩), i ∈ [2ℓ].

Putting together. Protocol ΠTuple instantiates the functionality FTuple by in-
voking the procedures introduced above. πMult and πDouble are used to produce
the authenticated sharings (⟨A⟩, ⟨B⟩, ⟨C⟩) and (⟨A⟩, ⟨AT ⟩), (⟨R⟩, ⟨RT ⟩), respec-
tively.

Protocol 6: ΠTuple

This protocol produces ℓ authenticated sextuples (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩,
⟨RT ⟩) with C = AB:

1. All parties invoke πMult ℓ times to produce (⟨Ai⟩, ⟨Bi⟩, ⟨Ci⟩) with Ci =
AiBi for i ∈ [ℓ].

2. All parties invoke πRand ℓ times to obtain [R1], . . . , [Rℓ].
3. All parties call FAuth with command (Auth, [R1], . . . , [Rℓ]) to obtain ⟨Ri⟩

for i ∈ [ℓ].
4. All parties invoke πDouble with command (Double,
⟨A1⟩, . . . , ⟨Aℓ⟩, ⟨R1⟩, . . . , ⟨Rℓ⟩) to obtain (⟨Ai⟩, ⟨AT

i ⟩) and (⟨Ri⟩, ⟨RT
i ⟩) for

i ∈ [ℓ].
5. Output (⟨Ai⟩, ⟨AT

i ⟩, ⟨Bi⟩, ⟨Ci⟩, ⟨Ri⟩, ⟨RT
i ⟩) for i ∈ [ℓ].

Theorem 3. Protocol ΠTuple securely implements FTuple in the (FAuth, FRV OLE,
FCoin)-hybrid model.

Proof. Let Z be the environment, which we also refer to as the adversary capable
of corrupting a set C containing at most n− 1 parties. We construct a simulator
S such that the real execution and ideal execution are indistinguishable to Z.
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Here we only prove the security of πMult and refer to Section B.3 for the full
proof.

In procedure πτm
rMV OPE , the sender only inputs m seeds. Therefore, the cor-

rupted parties can only choose inconsistent seeds for different honest parties,
which can not translate to an arbitrarily chosen additive error. However, for the
convenience of analysis, we follow the idea of [26] and improve the competence
of adversary to introduce an arbitrarily chosen additive error.

Simulating the Multiply step. The simulator S emulates the functionality
Fτm

RV OLE in procedure πτm
rMV OPE . For j ∈ C and i /∈ C, let

(
s
(j,i)
k,1 , · · · , s(j,i)k,m

)
and

b
(j,i)
k be the actual input in the k-th invocation of πτm

rMV OPE for k ∈ [m]. Fix an
honest party Pi0 and define the correct input

(
s
(j)
1 , · · · , s(j)m

)
and b

(j)
k to be equal

to
(
s
(j,i0)
1,1 , · · · , s(j,i0)1,m

)
and b

(j,i0)
k , respectively. For i /∈ C, S randomly samples

X(i), B(i) $←− Mm×m(Fq). For j ∈ C, S receives
(
s
(j,i)
k,1 , · · · , s(j,i)k,m

)
and b

(j,i)
k

from the adversary. Then S receives
{
u
(j,i)
k ,w

(j,i)
k

}
j∈C,i/∈C

from the adversary

and recomputes
{
u
(i,j)
k ,w

(i,j)
k

}
i/∈C,j∈C

accordingly. Finally, S honestly computes

Z(i).

Simulating the Combine step. S emulates functionality FCoin to obtain
{(rh, r′h)}h∈[τ ] and executes local computations.

Simulating the Authentication step. S emulates functionality FAuth with
inputs from corrupted parties controlled by Z. S authenticates additive sharings
and we define EAuth, E

′
Auth to be the errors introduced in authentication. If

EAuth, E
′
Auth is not zero, then parties authenticate values different from those

in the previous step. If Z sends Abort to FAuth, S sends Abort to FTuple.

Simulating the Sacrifice step. S samples D ← Mm×m(Fq) as χA − A′. If
the triple is incorrect, S aborts; otherwise, S outputs it as a valid triple.

Indistinguishability. We argue that Z cannot distinguish real execution and
simulated one. We will show that if no abort happens, the probability that
adversary introduces some non-zero errors is negligible and the distribution of
opened value is statistically close in both of the worlds.

Now we proceed to the introduced errors during Multiply step. Let X
(j,i)
k

be the matrix generated by seeds
(
s
(j,i)
k,1 , · · · , s(j,i)k,m

)
. In the k-th invocation of

πτm
rMV OPE , denote the errors as ∆

(j,i)
k = X

(j,i)
k − X(j) and ϵ

(j,i)
k = b

(j,i)
k − b(j).
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Following similar analysis in the proof of Theorem 2, we conclude that for k ∈
[m], i /∈ C and j ∈ C:

n∑
i=1

z
(i)
k = Xbk +

∑
i/∈C

∆
(i)
k b

(i)
k︸ ︷︷ ︸

γk

+
∑
i/∈C

X(i)ϵ
(i)
k

where ∆
(i)
k =

∑
j∈C ∆

(j,i)
k and ϵ

(i)
k =

∑
j∈C ϵ

(j,i)
k . Putting m columns together,

we have that:

Z = XB + (γ1, · · · ,γm) +
∑
i/∈C

X(i)
(
ϵ
(i)
1 , · · · , ϵ(i)m

)
Let Γ = (γ1, · · · ,γm). Splitting the matrices into τ blocks, we have that:Z1

...
Zτ

 =

X1

...
Xτ

B +

Γ1

...
Γτ

+
∑
i/∈C


X

(i)
1
...

X
(i)
τ

(ϵ(i)1 , · · · , ϵ(i)m

)

Assume that each party (including the corrupted party) honestly takes lin-
ear combination in Combine step (The deviation in this step causes an ad-
ditive error, which is absorbed by the errors EAuth, E

′
Auth in Authentication

step). After these two steps, all parties obtain ⟨A⟩, ⟨A′⟩, ⟨B⟩, ⟨C⟩, ⟨C ′⟩ where
A,A′, B, C,C ′ satisfy that:

C = AB + E1 + E2 + EAuth

C ′ = A′B + E′
1 + E′

2 + E′
Auth

and

E1 =

τ∑
h=1

rhΓh E2 =

τ∑
h=1

rh
∑
i/∈C

A(i)
(
ϵ
(i)
1 , · · · , ϵ(i)m

)

E′
1 =

τ∑
h=1

r′hΓh E′
2 =

h∑
h=1

r′h
∑
i/∈C

A′(i)
(
ϵ
(i)
1 , · · · , ϵ(i)m

)
If no abort happens in the Sacrifice step, we come to the following conclusions
and defer their proofs to Section B.3.

Claim. If the sacrifice step passes, then E = E1 + E2 + EAuth = 0 and E′ =
E′

1 + E′
2 + E′

Auth with overwhelming probability.

Claim. If the sacrifice step passes, then {ϵ(i)k }i/∈C,k∈[m] are zero with overwhelm-
ing probability.

Now we want to show that opened value D in the real execution is statistically
close to uniform distribution in the simulated execution. Given that D = χA−A′,
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it suffices to prove A′ looks uniformly random to Z and thus can serve as a mask.
The same analysis in [20] is applicable to our case since A′ is the random linear
combination of τ matrices whose entries can be treated as the random linear
combinations of τ elements. Thus, the statistical distance of A′ and uniform
distribution is less than 2−κ.

If sacrifice step passes, we have that EAuth + E1 = 0. Furthermore, for k-th
column:

−(EAuth)k =

τ∑
h=1

rh
∑
i/∈C

∆
(i)
k,hb

(i)
k ,where ∆

(i)
k =


∆

(i)
k,1
...

∆
(i)
k,τ


Since the distribution of E1 is statistically close to the uniform distribution,

the adversary can inject non-zero error EAuth with negligible probability.

6 Extension to Mm×m(Zpk)

The protocol described in Section 3 and 5 is applicable to Mm×m(Fq) with
large enough q, i.e., q ≥ 2κ so that the error probability can be reduced to
q−1 ≤ 2−κ. We note that it is possible to modify our MPC protocol to evaluate
the circuit overMm×m(Zpk) andMm×m(Fq) with small q. We only present the
modification for integer rings. The same modification can be applied to small
fields as well since the major challenge for both of them is to reduce the error
probability.

We note that when our MPC protocol migrates fromMm×m(Fq) toMm×m(Zpk),
the error probability does not meet the security requirement anymore even if
k is large enough. For example, given an authenticated secret sharing ⟨X⟩ =
([X], [[v]], [[Xv]]), where A ∈ Mm×m(Zpk) and v ∈ Mm×1(Zpk), the adver-
sary A could inject an additional error E to forge an authenticated sharing
⟨A + E⟩ = ([A + E], [[v]], [[Xv]]), where E = (pk−1)m×m, i.e., each entry of E is
pk−1. The corrupted sharing passes verification with probability 1/p if

∑m
i=1 v[i]

is divided by p. This problem also arises in the case ofMm×m(Fq) with small q.
To reduce soundness error, we propose the following modifications:

Authenticated Sharing. Instead of letting the global key in Mm×1(Zpk), we
require that the global key is a matrix inMm×ℓ(Zpk). This also implies that the
MAC for each matrix is a matrix inMm×ℓ(Zpk). One can treat the global key in
Mm×ℓ(Zpk) as ℓ independent global keys in Mm×1(Zpk). Let V ∈ Mm×ℓ(Zpk)
be the global key and assume that v1, . . . , vℓ are the column vectors of V . Let
E be the additional error injected by the adversary. To pass the verification, it
must hold that EV = X where X ∈ Mm×ℓ(Zpk) is the matrix known to the
adversary. Let x1, . . . ,xℓ be the column vectors of X and we have Evi = xi for
i ∈ [ℓ]. Since V is distributed uniformly at random, the adversary succeeds with
probability at most p−ℓ. Therefore the soundness error is reduced to p−ℓ. If we
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set ℓ = κ
log2 p , the soundness error becomes 2−κ. Since the size of the matrix is

much bigger than the MAC, the share size is almost the same as the previous
one.

Linear Combinations. Taking the linear combinations of secret sharings is
an efficient verification method to check the correctness of the sharings in batch
which appears in Check command of online phase, and also the production of
random and double sharing in the preprocessing phase. However, the soundness
of this check becomes 1/p if our matrix is defined over Mm×m(Zpk). We can
repeat the linear combinations ℓ times to reduce the error probability to p−ℓ.
Since each linear combination of random and double sharings needs to sacrifice
one corresponding sharing, repeating ℓ times means that all parties need to
prepare ℓ−1 additional sharings which can be amortized away due to this check
in batch.

Combine. To prevent partial leakage of honest parties’ private information, we
need to use a universal hash function to extract randomness from τ copies. For
a small field Fq, we still utilize a random linear combination as a universal hash
function. However, this does not work for ring Zpk . To cope with this problem, we
follow [12] to apply r1X1+ · · ·+ rτXτ mod pk with some constriction. Different
from [12], we restrict that ri ∈ Zp instead of the entries of Xi.

Sacrifice. Recall that to compute a triple (⟨A⟩, ⟨B⟩, ⟨C⟩), we need to sacrifice
(⟨A′⟩, ⟨B⟩, ⟨C ′⟩) to check its correctness. The sacrificing technique inMm×m(Zpk)
can detect the corruptions with probability 1− 1

p . To make this probability over-
whelming, we have to sacrifice ℓ triples to verify the relation C = AB.

VOLE and RVOLE. We need to adapt VOLE and RVOLE for the integer ring
setting. The existing VOLE protocols focus on Z2k . For example, SPDZ2k [12]
uses VOLE as functionality and MozZ2karella [5] uses RVOLE over Z2k as func-
tionality. Since PCG in RVOLE is based on LPN assumptions, the hardness of
LPN assumptions should be re-estimated in the setting of Z2k [21].

7 Analysis

In this section we will analyze the communication complexity and share size of
our MPC protocol over Mm×m(Fq) and Mm×m(Zpk), respectively.

7.1 Analysis of MPC over Mm×m(Fq)

In this subsection, we present the communication complexity of our MPC pro-
tocol over Mm×m(Fq) assuming q ≥ 2κ. For small q, we refer the reader to the
next subsection where we analyze the communication complexity of our MPC
protocol overMm×m(Zpk). The analysis of the matrix over a small field is almost
the same as the matrix over an integer ring.
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Analysis of the online phase. At each step of partial opening, all parties send
their shares to a specific party, then let this party reconstruct and broadcast the
secret, thus the communication complexity is 2m2(n − 1) log q bits. For each
multiplication gate, all parties need to partially open three shares ⟨D⟩, ⟨E⟩, ⟨F ⟩
and thus the communication complexity is 6m2(n − 1) log q bits. Each input
gate requires Pi to broadcast the difference between X and mask R, which
communicates m2(n − 1) log q bits. For the output gate, the partial opening
needs 2m2(n − 1) log q bit of communication and verification needs mn2 log q
bits of communication via simultaneous message channel. Another measure is
share size, which is m(m + 1)n log q bits, since [[v]] remains unchanged in each
authenticated sharing and we omit this item.

We analyze the communication complexity and share size of other MPC
protocols and list the results below. We note that the matrix computed in [11]
is defined over Zpk as they use BFV scheme in their preprocessing phase. The
comparison with [11] is deferred to the integer ring. Since there are no dishonest
majority MPC protocols overMm×m(Fq), we compare our protocol with SPDZ
[14] to execute entry-wise computation. The variant of SPDZ protocols such as
[20] has almost the same communication complexity in the online phase as m3

Beaver triples are required to compute a matrix multiplication gate in the online
phase.

SPDZ [14] our work our work (FD)

comm 4m3(n− 1) log q 6m2(n− 1) log q 4m2(n− 1) log q

share size 2m2 log q m(m+ 1) log q m(m+ 1) log q

Table 1. The comparison of MPC protocols over Mm×m(Fq) in terms of share
size and communication complexity of a multiplication gate (FD represents func-
tion dependent preprocessing)

Analysis of the preprocessing phase. The task of preprocessing is to gen-
erate random sharing and multiplication sextuple. The communication cost is
dictated by ΠTuple which produces the multiplication sextuples. As our prepro-
cessing phase uses VOLE and RVOLE as the building blocks, we calculate the
communication cost of preprocessing phase in the number of calls of the func-
tionality FV OLE and FRV OLE .

To generate a random authenticated sharing ⟨R⟩ for an input gate, where the
secret R is known to Pi, Pi distributes the additive share X(j) to Pj and invokes
FV OLE with Pj . After producing ℓ + 1 such random sharings, Pi sacrifices the
first one to invoke πCheck for consistency check. If ℓ is large enough, the cost of
the consistency check can be amortized away. In this case, the preparation for
an input gate only costs n− 1 calls of FV OLE .

Protocol ΠTuple produces ℓ sextuples by generating ℓ Beaver triples and
2ℓ double sharings. The procedure πMult makes m calls of πτm

rMV OPE , 5 calls of
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ΠAuth and 2 calls of πopen which finally leads to m2n(n−1) calls of Fτm
RV OLE and

5mn(n−1) calls of FV OLE in total. To generate 2ℓ authenticated double sharings,
the procedure πDouble invokes FAuth 3ℓ + 2 times and executes the consistency
check, which causes (3ℓ+2)mn(n−1) calls of FV OLE . Thus, preparing a sextuple
requires m2n(n− 1) calls of Fτm

RV OLE and 8mn(n− 1) calls of FV OLE . As shown
in Section 5, the instantiation of 5.1, FV OLE and Fτm

RV OLE incurs O(m log q)
and O(

√
τm log q) bits of communication, respectively8, therefore the overall

communication complexity for a multiplication sextuple is O(n2m2.5 log q) bits.

7.2 Analysis of MPC over Mm×m(Zpk)

Analysis of the online phase. To migrate MPC protocol fromMm×m(Fq) to
Mm×m(Zpk), we extend the global key and MACs from vectors of length m to
m× ℓ matrices, where ℓ = κ

log p . This modification does not affect the communi-
cation complexity but does affect the share size. In contrast, the homomorphic
encryption scheme BFV in matrix triple [11] requires that plaintext modulus
pk is large enough. To make a fair comparison, we assume that pk satisfies the
security requirement of [11] and compare the communication complexity of the
multiplication gate and the share size. Although our protocol needs slightly more
communication than [11], our protocol has a smaller share size and can be de-
fined over any integer ring. Moreover, the improvement of our MPC protocol by
resorting to function dependent preprocessing can achieve the same communica-
tion complexity.

matrix triple [11] our work our work (FD)

comm 4m2k(n− 1) log p 6m2k(n− 1) log p 4m2k(n− 1) log p

share size 2m2k log p m2k log p+mkκ m2k log p+mkκ

Table 2. The comparison of MPC protocols overMm×m(Zpk) in terms of share
size and communication complexity of a multiplication gate (FD represents func-
tion dependent preprocessing)

Analysis of the prerpocessing phase. The communication complexity of
our preprocessing phase is almost the same as that of our MPC protocol over
Mm×m(Fq). In view of the changes from finite fields to integer rings introduced in
Section 6, the overall communication complexity for computing a multiplication
sextuple is O(κkn2m2.5) bits. Since the preprocessing phase in [11] takes a totally
different approach by resorting to homomorphic encryption (BFV scheme) and
zero knowledge proof, it is difficult to make a fair comparison.
8 The RVOLE with communication complexity O(log τm log q) bits is based on dual

LPN assumptions. Our protocol requires RVOLE with programmability which are
mostly based on primal LPN assumptions.
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Supplementary Material

A Missing Functionalities and Protocols

Channels. This functionality models required communication channels.

Functionality 7: FChannels

The functionality proceeds as follows:

– Pairwise: On input (Message, x, Pi, Pj) from Pi, send x to Pj .
– Broadcast: On input (Broadcast, x, Pi) from Pi, send x to all parties.
– Simultaneous: On input (Simultaneous, xi, Pi) from each party Pi, store

this value. Do not send {xi}i∈[n] to each party until all parties have pro-
vided inputsa.

a This command aims to commit to input of each party.

Affine combinations. The parties could use πAff to locally compute the affine
combination of ⟨·⟩-share with coefficients a1, · · · , aℓ ∈ Fq.

Procedure 7: πAff ((⟨X1⟩, · · · , ⟨Xℓ⟩), (a1 · · · , aℓ))

Given ℓ shared values ⟨Xj⟩ = (X
(i)
j ,v(i),m(i)(Xj))i∈[n] for j ∈ [ℓ] and ℓ con-

stant scalars (a1, · · · , aℓ), all parties can execute following operations to obtain
shares of Y =

∑ℓ
j=1 ajXj .

1. All parties locally compute

Y (i) =

ℓ∑
j=1

ajX
(i)
j , m(i)(Y ) =

ℓ∑
j=1

ajm
(i)(Xj)

2. The parties store the new shared value ⟨Y ⟩ = (Y (i),v(i),m(i)(Y ))i∈[n].

Opening and checking. The following procedures could allow the parties to
partially open and check the correctness of opened values, respectively.

Procedure 8: πOpen(⟨X⟩)

Given a share value ⟨X⟩ = (X(i),v(i),m(i)(X)):

1. All parties send their share X(i) to P1

2. P1 reconstructs X = X(1) + · · ·+X(n) and broadcasts X to all parties.
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Procedure 9: πCheck(X
′, ⟨X⟩)

Given an opened value X and a shared value ⟨X⟩ = (X(i),v(i),m(i)(X)):

1. All parties locally compute σ(i) = mi(X)−Xv(i) and broadcast this value
via the simultaneous message channel.

2. All parties locally compute σ = σ(1)+ · · ·+σ(n) and verify whether z = 0.
If the answer is no, abort.

Random additive secret sharing. This procedure generates a random addi-
tive secret sharing [X].

Procedure 10: πRand

1. Each party Pi samples a random matrix X(i).
2. Output [X] = (X(1), . . . , X(n)) with X =

∑n
i=1 X

(i).

Preprocessing protocol. Commands including Initialize, Authenticate and
Sextuple can be done using essentially the same protocols as ΠAuth and ΠTuple.
Thus, it remains to complete this protocol by describing the Input command.
In particular, Pi samples the random masks R0, R1, · · · , Rℓ

$←−Mm×m(Fq) and
distributes random shares of R0, . . . , Rℓ to other parties. Then all parties except
Pi call functionality FV OLE with Pi to generate the MAC of ⟨R0⟩, . . . , ⟨Rℓ⟩. By
use the same MAC checking procedure as in ΠAuth, we obtain the authenticated
sharings ⟨R1⟩, . . . , ⟨Rℓ⟩.

Protocol 11: ΠPrep

The protocol keeps a dictionary Val.

– Initialize: Same as in ΠAuth.
– Authenticate: Same as in ΠAuth.
– Sextuple: Same as in ΠTuple.
– Input: On input (InputPrep, Pi) from all parties do the following to create

ℓ random authenticated mask:
1. Pi randomly samples R0, R1, · · · , Rℓ

$←−Mm×m(Fq).
2. For h ∈ {0} ∪ [ℓ], Pi randomly samples {R(j)

h }j∈[n] such that∑n
j=1 R

(j)
h = Rh and distributes R

(j)
h to Pj .

3. For h ∈ {0} ∪ [ℓ], write Rh = (rh,1, · · · , rh,m):
(a) For k ∈ [m] and each j ̸= i, Pi and Pj call the Multiply step of
Fk

V OLE , where Pi inputs rh,k.
(b) Pi receives u

(i,j)
h,k and Pj receives v

(j,i)
h,k such that w

(j,i)
h,k = u

(i,j)
h,k +

v
(j)
k r

(i)
h,k.

(c) Pi sets m(i)(Rh) = Rhv
(i) −

∑m
k=1

∑
j ̸=i u

(i,j)
h,k and Pj sets

m(j)(Rh) =
∑m

k=1 w
(j,i)
h,k .
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4. Parties call FCoin ℓ times to obtain randomness χ1, · · · , χℓ.
5. Parties locally compute ⟨Y ⟩ = ⟨R0⟩+

∑ℓ
h=1 χh⟨Rh⟩.

6. Parties invoke Y ′ ← πOpen(⟨Y ⟩) and πcheck(Y
′, ⟨Y ⟩) to check the cor-

rectness of opened value.
7. If the check succeeds, output ⟨R1⟩, . . . , ⟨Rℓ⟩.

B Missing Proofs

B.1 Proof of the Online Phase

Theorem 4 (Theorem 1,restated). Protocol ΠOnline securely implements FMPC

in the (FPrep, FCoin)-hybrid model.

Proof. Let Z be an environment corrupting a set of at most n − 1 parties. We
assume that Z plays the role of both the distinguisher and the adversary, who
simply forwards messages sent and received by corrupted parties in the protocol
as directed by the environment.

Recall that the environment’s view is the collection of all intermediate mes-
sages that corrupted players send and receive, plus the inputs and outputs of all
players. We will describe a simulator S who has the access to the ideal functional-
ity FPrep and FCoin and interacts with Z in such a way that the real interaction
and the simulated interaction are indistinguishable to Z. The simulator S works
as follows.

Simulating Initialize and Input command. The simulator simply emulates
the functionality FPrep honestly. Then, S knows each MAC key v(i) held by Pi.
Also S distributes random shares to the corrupt parties for every input gate and
the multiplication sextuples for every multiplication gate.

In the Input command, when a Pi is honest, S broadcasts a random element
R ∈ Mm×m(Fq). When a corrupted party Pi broadcasts ϵ, S extracts its input
as X = ϵ+R, where R is the random value that Pi should have used. Then the
simulator stores the values as input to the FMPC .

Simulating Addition and Public matrix multiplication command. These
steps only consist of local computations which can be simulated trivially, where
S carries out honestly on behalf of the virtual honest parties.

Simulating Multiplication command. When the values D,E and F are
opened for multiplication, S opens random shares on behalf of the honest parties.
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Simulating the Output and Check openings command. S first receives
the output Y from FMPC . Next, S executes Check command with the adversary,
on behalf of the virtual honest parties. If the check fails, S sends Abort. If the
above check passes, S modifies the honest parties shares it holds to be consistent
with the output Y , as well as the MAC shares to be consistent with Y v. Then
S runs the πCheck with the adversary, on behalf of the honest parties.

Indistinguishability. Now we argue that Z cannot distinguish between real
and ideal executions. It is clear for Init command, because Z gets random values
in both executions. In Input command, the values broadcast by the honest parties
are uniformly at random in both worlds. It is also the case Mult command, where
the adversary receives honest parties’ shares of three fresh random values. These
shares are uniformly at random in both of the worlds. The MAC shares of these
opened values are also uniformly at random in both of the worlds, which are
the random sharings of a correct MAC with an error added by the adversary in
Input command.

In Output command, the probability that the Check command and a single
πCheck result in abort is the same in both executions. Meanwhile, if the first step
of Check command passes, then the honest parties will reveal their shares in both
executions. In the real execution, these shares are conditioned on adding up to
the value computed in the protocol with the shares provided by the adversary,
whereas in the simulated execution this sum is equal to the value output by the
functionality. Due to the sketch proof above, we know that this check will pass
except with probability 2/q. It is the same as the last single πCheck, which will
pass except with probability 1/q. As a result, we can say that in both executions
the values are the same, except with probability 3/q.

B.2 Proof of Authentication

Claim. If at least one ϵ(i) ̸= 0 for some i /∈ C, then consistency check passes
with negligible probability.

Proof. Assume for i /∈ C, ϵ(i) ̸= 0. Note that Y (i) is honestly generated and its
distribution is uniformly random in Mm×m(Fq) due to the random mask X

(i)
0 .

If the consistency check passes, Y (i)ϵ(i) = δ for some δ that is independent of
Y (i), which happens with probability q−m.

Claim. If ϵ(i) = 0 for all i /∈ C and ∆
(i)
h ̸= 0 for some i /∈ C, then consistency

check passes with negligible probability.

Proof. If E ̸= 0, the adversary passes consistency check only if E
∑

i/∈C v
(i) = δ

for some δ that is independent of
{
v(i)
}
i/∈C , which happens with probability q−1.

If E = 0 and ∆
(i)
h ̸= 0 for some i /∈ C, h ∈ {0} ∩ [ℓ], the adversary needs to make

error ∆
(i)
h satisfy ∆

(i)
h v(i) = δ′ for some δ′ that is independent of v(i). Such

attack succeeds with probability at most q−1.
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Theorem 5 (Theorem 2,restated). Protocol ΠAuth securely implements FAuth

in the (FV OLE, FCoin)-hybrid model.

Proof. We define a simulator S such that an environment Z can only distinguish
a real execution interacting with the honest parties and an ideal execution with
the simulator S with a negligible probability.

Simulating Initialize command. For k ∈ [m], let v
(j,i)
k be the input of a

corrupted party Pj toward an honest party Pi during the Initialize step of
Fk

V OLE . S fixes an honest party Pi0 and sends v(j) =
(
v
(j,i0)
1 , · · · , v(j,i0)m

)
to

FAuth as the global key share of Pj . For i /∈ C, S samples v(i) $←− Fm
q .

Simulating Authenticate command.

1. For i /∈ C, randomly sample X
(i)
0

$←−Mm×m(Fq).
2. For h ∈ {0} ∪ [ℓ]:

(a) For all j ∈ C, i /∈ C and k ∈ [m], S receives x
(j,i)
h,k ,u

(j,i)
h,k and w

(j,i)
h,k from

the adversary.
(b) Honestly compute the MAC share m(i)(Xh) for i /∈ C with the simulator

of FV OLE .
3. Randomly sample and send r1, · · · , rℓ to the adversary.
4. Send adversary the honestly computed share Y (i) for i /∈ C and receive Y (j)

for j ∈ C from the adversary to reconstruct Y ′.
5. Honestly compute σ(i) = m(i)(Y ) − Y ′v(i) for i /∈ C and receive σ(j) from

the adversary.
6. Execute the consistency check. If it fails, then send Abort to FAuth.
7. If no abort happens, for j ∈ C and h ∈ [ℓ], compute m(j)(Xh) with x

(j)
h,k,v

(j),u
(j,i)
h,k

and w
(j,i)
h,k , then send (X

(j)
h ,m(j)(Xh)) to the adversary.

Indistinguishability. It is easy to observe that the transcript for messages
inspected by the adversary has the identical distribution in ideal and real execu-
tions. In the previous analysis, we argue that if the adversary introduces additive
errors that result in a fake authenticated sharing, the consistency check passes
with negligible probability, therefore the probability of passing consistency check
is almost identical in the two worlds. Finally, we show that the distribution of
honest parties’ MACs is identical in both worlds since FV OLE outputs random
vectors, which serve as a random mask.

B.3 Proof of Sextuple Generation

Claim. If the sacrifice step passes, then E = E1 + E2 + EAuth = 0 and E′ =
E′

1 + E′
2 + E′

Auth with overwhelming probability.
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Proof. If the protocol does not abort in sacrifice step, then χC − C ′ −DB = 0.
Since C = AB + E and C ′ = AB + E′, we have that

χC − C ′ −DB = 0

χ(AB + E)− (A′B + E′)− (χA−A′)B = 0

χE − E′ = 0

Such equation holds with probability q−1.

Claim. If the sacrifice step passes, then {ϵ(i)k }i/∈C,k∈[m] are zero with overwhelm-
ing probability.

Proof. Due to the previous claim, if sacrifice step passes, then following equation
holds

E1 + E2 + EAuth = 0

−E1 − EAuth =
∑
i/∈C

A(i)
(
ϵ
(i)
1 , · · · , ϵ(i)m

)
where {A(i)}i/∈C is distributed uniformly at random and other items are indepen-
dent of {A(i)}i/∈C . Suppose that ϵ

(i)
k ̸= 0 for some k ∈ [m], i /∈ C, then adversary

needs to make A(i)ϵ
(i)
k = δ from some δ is independent of A(i) to pass the

sacrifice step, which happens with probability q−m.

Theorem 6 (Theorem 3,restated). Protocol ΠTuple securely implements FTuple

in the (FAuth, FRV OLE, FCoin)-hybrid model.

Proof. Here we provide the supplementary proof of the security of πDouble.
Let Z be the environment, which we also refer to as adversary, corrupting a

set C containing at most n−1 parties. We construct a simulator S such that the
real execution and ideal execution is indistinguishable to Z.

Simulating the Double step The simulator S emulates the functionality
FAuth with inputs from the adversary. Similarly, S just emulates the FCoin to
obtain {ri}i∈[2ℓ] and executes local computations. Note that every pair of the
double sharings (Ai, A

T
i ) for i ∈ {0} ∪ [2ℓ] will be introduced errors in the two

steps above, which we denote by (Ei, E
′
i). Then, S runs the procedure πCheck

on behalf of the virtual honest parties.

Indistinguishability Now we argue that Z cannot distinguish real execution
and simulated one. Define EC =

∑2ℓ
i=0 riEi, ED =

∑2ℓ
i=0 riE

′
i, where r0 = 1. The

first check will pass if adversary make the sum of the weighted errors equal, that
is to say EC = ED. To pass the second check, the key of the problem returns to
the classic check if we denote errors of the MAC sharings added in the πCheck

procedure by δC , δD, which satisfy that:

ECv = δC

EDv = δD
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Therefore adversary could introduce non-zero errors EC , ED with only negligible
probability q−1.

C Function Dependent Preprocessing

The downside of our protocol in Section 3 is that each multiplication gate re-
quires 2 rounds of interactions while the original SPDZ protocol only needs one
round. Recently, MPC protocols with function dependent preprocessing have
been proposed in both honest majority [17,15] and dishonest majority setting
[7,16]. By utilizing this idea, we can further reduce the round complexity and
communication complexity of our MPC protocol. We briefly review the necessary
changes for this improvement.

The value X is not represented by the authenticated sharing ⟨X⟩, but a pair
(⟨ΛX⟩, ΦX), where ΛX

$←−Mm×m(Fq) and the difference ΦX = X − ΛX is open
to all parties. Note that ΦX is masked with uniformly random ΛX , therefore its
exposure leaks no information about X.

Assume that all parties have two variants (⟨ΛX⟩, ΦX) and (⟨ΛY ⟩, ΦY ). For an
addition gate, all parties just need to execute local additions to obtain (⟨ΛX +
ΛY ⟩, ΦX + ΦY ) as the sharing of X + Y . For a multiplication gate, all parties
choose a random mask ⟨ΛZ⟩ and the main task is to compute the public difference
ΦZ . Following the analysis in Section 3, we could obtain:

⟨ΦZ⟩ = ΦXΦY + ⟨ΛXΦY ⟩+ ΦX⟨ΛY ⟩+ ⟨ΛXΛY ⟩ − ⟨ΛZ⟩

We need to compute ⟨ΛXΦY ⟩ in the absence of right linearity and use the
same approach to partially open ΦT

Y ⟨ΛT
X⟩−⟨RT ⟩, where R

$←−Mm×m(Fq). Since
ΦY is known to all parties in the function dependent model, this computation
can be done locally. Thus, to compute a multiplication gate, in the preprocessing
phase, we need to prepare (⟨ΛX⟩, ⟨ΛT

X⟩, ⟨ΛY ⟩, ⟨ΛXΛY ⟩, ⟨R⟩, ⟨RT ⟩, ⟨ΛZ⟩), where
R

$←−Mm×m(Fq), ΛX , ΛY , ΛZ are masked values aligned to X,Y, Z, respectively.
We define the functionality FFD−Prep to describe the function dependent

preprocessing as Functionality 8. We can slightly modify ΠPrep to instantiate
this functionality. Based on FFD−Prep, we could instantiate FMPC as Protocol
12. To avoid confusion with ΠOnline, we denote this instantiation as ΠFD−Online.

Functionality 8: FFD−Prep

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements inMm×m(Fq) (Note that Val stores ⟨ΛX⟩ instead of ⟨X⟩). This
functionality has all the same commands in FAuth with following additional
commands:

– Input: On input (InputPrep, id, Pi) from all parties, sample ΛX
$←−

Mm×m(Fq), store Val[id] = ΛX and return ΛX to Pi.
– Addition: On input (AddPrep, id, (id1, id2)) from all parties, compute

ΛZ = Val[id1] + Val[id2] and store Val[id] = ΛZ .
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– Public matrix multiplication: On input (PubMulPrep, id, A) from all
parties, compute ΛZ = AVal[id] and store Val[id] = ΛZ .

– Multiplication: On input (MultPrep, id, (id1, id2)) from
all parties, do following operations and return the tuple(
⟨ΛX⟩, ⟨ΛT

X⟩, ⟨ΛY ⟩, ⟨ΛXΛY ⟩, ⟨R⟩, ⟨RT ⟩, ⟨ΛZ⟩
)
:

• Set ΛX = Val[id1] and ΛY = Val[id2]
• Generate authenticated sharings ⟨ΛT

X⟩ and ⟨ΛXΛY ⟩
• Sample ΛZ

$←−Mm×m(Fq) and store Val[id] = ΛZ .
• Sample R

$←−Mm×m(Fq) and obtain a double sharing (⟨R⟩, ⟨RT ⟩).

Protocol 12: ΠFD−Online

The parties maintain a dictionary Val for authenticated secret sharings of mask-
ing values.

– Initialize: Each party samples v(i) $←− Mm×m(Fq) and set Val = ∅. Call
FFD−Prep with the circuit as input.

– Input: If Pi receives (Input, id, X, Pi) and other parties receive (Input,
id, Pi), Pi retrieves mask ΛX associated to X and broadcasts ΦX = X−ΛX

to all parties.
– Addition: If all parties receive (Add, id, (id1, id2)), retrieve public differ-

ences of two inputs ΦX , ΦY and set difference of output as ΦZ = ΦX +ΦY .
– Public matrix multiplication: If all parties receive (PubMul, id, A) from

all parties, retrieve difference of input ΦX and update it as AΦX .
– Multiplication: If all parties receive (Mult, id, (id1, id2)), retrieve
⟨ΛX⟩ = Val[id1] and ⟨ΛY ⟩ = Val[id2] and corresponding differences
ΦX , ΦY . Do the following:
1. Obtain the corresponding multiplication sextuple

(⟨ΛX⟩, ⟨ΛT
X⟩, ⟨ΛY ⟩, ⟨ΛXΛY ⟩, ⟨R⟩, ⟨RT ⟩, ⟨ΛZ⟩).

2. All parties locally compute ⟨D⟩ = ⟨ΛXΛY ⟩+ΦX⟨ΛY ⟩+ΦXΦY −⟨ΛZ⟩+
⟨R⟩ and ⟨E⟩ = ΦT

Y ⟨ΛT
X⟩ − ⟨RT ⟩.

3. All parties invoke D ← πOpen(⟨D⟩) and E ← πOpen(⟨E⟩).
4. Set ΦZ = D + ET .

– Partially Opening: Same as in ΠOnline.
– Check Opening: Same as in ΠOnline.
– Output: When all parties output a variable Y , do the same as in ΠOnline

to open ΛY to all parties. Then reconstruct Z = ΛY + ΦY .

Theorem 7. Protocol ΠFD−Online securely implements FMPC in the (FFD−Prep,
FCoin)-hybrid model.
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