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Abstract. The literature gives the impression that (1) existing
heuristics accurately predict how effective lattice attacks are, (2)
non-ternary lattice systems are not vulnerable to hybrid multi-decoding
primal attacks, and (3) the asymptotic exponents of attacks against
non-ternary systems have stabilized.
This paper shows that 1 contradicts 2 and that 1 contradicts 3:
the existing heuristics imply that hybrid primal key-recovery attacks
are exponentially faster than standard non-hybrid primal key-recovery
attacks against the LPR PKE with any constant error width. This
is the first report since 2015 of an exponential speedup in heuristic
non-quantum primal attacks against non-ternary LPR.
Quantitatively, for dimension n, modulus nQ0+o(1), and error width w, a
surprisingly simple hybrid attack reduces heuristic costs from 2(ρ+o(1))n

to 2(ρ−ρH0+o(1))n, where z0 = 2Q0/(Q0 + 1/2)2, ρ = z0 log4(3/2), and
H0 = 1/(1 + (lg w)/0.057981z0). This raises the questions of (1) what
heuristic exponent is achieved by more sophisticated hybrid attacks and
(2) what impact hybrid attacks have upon concrete cryptosystems whose
security analyses have ignored hybrid attacks, such as Kyber-512.
Keywords: algorithm analysis, lattice attacks, combinatorial attacks,
lattice-basis reduction, hybrid attacks, CVPP, BDDP

1 Introduction

The NewHope proposal [12]—the winner of the 2016 Internet Defense Prize,
and the ancestor of many subsequent cryptosystems—states that some other
proposals for lattice-based post-quantum cryptography have “combinatorial
vulnerabilities [56] induced by the fact that secrets are ternary”.
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The cited paper “[56]” is a 2007 paper “A hybrid lattice-reduction and
meet-in-the-middle attack against NTRU” [80] by Howgrave-Graham. “Hybrid”
refers to the fact that the attack combines ingredients from two earlier types of
attacks: attacks that reduce a public lattice basis in the hope of discovering
a secret lattice vector, and attacks that carry out a meet-in-the-middle
combinatorial search for the secret vector. There are many other uses of the
word “hybrid” in the literature; a more distinctive feature of the attack from
[80] is that it formulates many guesses for portions of the secret vector and
applies a decoding step to each guess, so one might call it a “multi-decoding”
attack.

“Ternary” in [12], sometimes called “trinary” in the literature, refers to
secret vectors with entries in {−1, 0, 1}. “Vulnerabilities” does not have a clear
definition in [12] but is nevertheless clear as a guide to cryptosystem selection:
surely nobody would want to use a cryptosystem with “vulnerabilities”!

The Kyber proposal—a descendant of NewHope, and NIST’s first selection of
a post-quantum encryption system to standardize—expresses [13, page 13] an
“intuition” that the threat from “improvements to hybrid attacks [56] targeting
schemes with very low noise” is much larger than the threat from “attacks
attempting to exploit failures that occur with extremely low probability”.

Again “[56]” is the Howgrave-Graham paper. The “threat” evaluation guides
cryptosystem selection in the same way that the word “vulnerabilities” does: the
reader is invited to envision the nightmare scenario of improved hybrid attacks
rendering “schemes with very low noise” feasible to break. The Kyber security
analysis makes no further mention of hybrid attacks. The reader is led to believe
that Kyber is immune to this entire class of attacks.

A skim of other proposals for lattice-based encryption finds KINDI and
LIMA similarly dismissing hybrid attacks, and finds Compact-LWE, Ding Key
Exchange, EMBLEM, Frodo, HILA5, KCL, Lizard, LOTUS, SABER, and
Titanium not even citing Howgrave-Graham’s paper.

One can find hybrid-attack costs quantified, and often reported to be the best
attacks known, for LAC [98, Table 3], NTRU [44, Table 6], NTRU Prime [26,
Table 2], and Round5 [15, Table 4]. All of these systems use ternary secrets.

This might sound like a convincing case for the narrative that ternary secrets
are the source of combinatorial vulnerabilities—perhaps worse vulnerabilities
than currently known—and that, unless ternary secrets are critical for
performance, one should use a non-ternary system, such as Kyber.

1.1. Is it true that hybrid multi-decoding attacks are limited to
ternary secrets? A skeptical security reviewer will ask for algorithm analyses
providing clear evidence that non-ternary systems are not vulnerable to hybrid
attacks. Let’s look at what the literature says about the analysis of these attacks.

Howgrave-Graham’s paper [80] introduced hybrid attacks as combinatorially
searching “some linear combinations” of some basis vectors. Nothing in this
description structurally limits the combinations to coefficients −1, 0, 1.

The paper then specialized this to attacking binary secrets, taking the linear
combinations specifically as 2σ sums of subsets of σ basis vectors, where σ is
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chosen by the attacker. There is a comment in [80, Section 8] that moving
from binary secrets to ternary secrets would make hybrid attacks “substantially
harder”—clearly the attacker cannot afford such a large σ if the search space
has size 3σ instead of 2σ—but there was no claim in [80] that this change would
eliminate hybrid speedups.

2009 Hirschhorn–Hoffstein–Howgrave-Graham–Whyte [71] and subsequently
2015 Hoffstein–Pipher–Schanck–Silverman–Whyte–Zhang [73] reported hybrid
speedups for various ternary encryption systems. These papers did not claim
that there was a sharp dividing line between 2σ, 3σ, 5σ, etc. The obvious reason
for these papers to focus on ternary encryption systems is simply that there were
concrete proposals of ternary encryption systems.

A hybrid attack against a signature system with secret entries −2, −1, 0, 1, 2
was outlined by 2013 Ducas–Durmus–Lepoint–Lyubashevsky [52, full version,
Appendix A.5], and was claimed in [52, footnote 2] to be faster than other known
attacks against the system. There was no claim that the same type of attack
is inapplicable to encryption systems. One can easily argue that the analysis
in [52] is too optimistic for the attacker—there are, e.g., silent assumptions
that searching cost is as small as an entropy-based lower bound, and that
meet-in-the-middle probabilities (see Section 4.3) are 1—but the point here
is that, whether or not the paper is accurate, the paper did not claim that
non-ternary KEMs are immune to hybrid attacks.

What, then, is the basis for the NewHope claim that hybrid “vulnerabilities”
are “induced by the fact that secrets are ternary”? The NewHope paper [12]
provides no justification for this claim, and provides no citations regarding hybrid
attacks except for Howgrave-Graham’s paper—a paper that does not actually
make this claim.

Similarly, the Kyber documentation provides no justification for the idea
that Kyber is immune to hybrid attacks. Given the standardization processes
underway for Kyber, one would expect a much more clear paper trail justifying
the omission of hybrid attacks from the Kyber security analysis.

The idea that hybrid attacks save time only for “sufficiently narrow” secret
distributions was questioned in 2020 Bernstein–Lange [30, page 26]: “Is this
true, or a calculation error in existing algorithm analyses?” Another possibility
is that the requisite analyses never even took place: perhaps the evidence of
hybrid attacks mattering for ternary systems was misinterpreted as evidence of
hybrid attacks not mattering for non-ternary systems.

1.2. Contributions of this paper. Fix w ∈ {3, 5, 7, . . .}. The main point of
this paper is that hybrid primal key-recovery attacks against the LPR PKE with
error width w are, according to existing heuristics commonly used to analyze the
performance of lattice attacks, exponentially faster than standard non-hybrid
primal key-recovery attacks against the same system.

Quantitatively, consider the key-recovery problem reviewed in Section 2.1 with

• lattice dimension n → ∞,
• modulus q growing as nQ0+o(1) for any constant Q0 > 1/2, and
• standard deviation s for any constant s > 0.
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The existing heuristics imply, by calculations reviewed in Section 2, that the
cost of the standard non-hybrid non-quantum primal key-recovery attack is
2(ρ+o(1))n where z0 = 2Q0/(Q0 + 1/2)2 and ρ = z0 log4(3/2). If all entries in the
secret vectors are in {−(w − 1)/2, . . . , (w − 1)/2} then the existing heuristics
also imply, by new calculations in Section 3, that the cost of a simple width-w
hybrid non-quantum primal key-recovery attack is 2(ρ−ρH0+o(1))n where H0 =
1/(1 + (lg w)/0.057981z0).

The difference ρH0 is positive for all w. Consequently, either the proposals
[12], [13], etc. are wrong in assuming that hybrid primal speedups are limited
to ternary secrets (i.e., to w = 3), or the heuristics used for previous attack
analyses are wrong, or both.

1.3. Which hybrid attacks? Clarity and reviewability of attack analyses are
always important, but are particularly important for a paper disputing previous
work. This is why Section 3’s quantification of the hybrid improvement focuses
on simple hybrid attacks, skipping speedups that are not necessary for the main
point. For example, simple hybrid attacks have 0 levels of collision search; these
are much easier to analyze than hybrid attacks with more levels of collision
search.

This paper is not claiming that the simple hybrid attack analyzed in Section 3
is the optimal hybrid attack. Section 4 surveys known directions of speedups in
hybrid attacks; it would be unsurprising for analyses of these speedups to further
reduce the heuristic asymptotic exponent. The necessary analyses will require
more work and, in most cases, hybrid-specific heuristics.

1.4. Interactions with memory-access costs. To maximize comparability,
this paper measures cost using the notion of “instructions” from [7], the source
of the “gate” counts in the latest Kyber proposal [13]. This notion allows a single
instruction to read or write data from an array of any size, as in introductory
courses on algorithms.

In the broader cryptographic literature, attack analyses are sometimes carried
out in more realistic cost metrics where the cost of communication grows with
the communication distance. Asymptotic analyses of this type include [20], [21],
[29], [17], and [32].

One can, with some work, check that all sieving algorithms in the literature
have heuristic asymptotic exponents above log4(3/2)+o(1) in these more realistic
metrics, although this has to be taken with a grain of salt since there has not been
much effort to optimize these exponents in those metrics. If the costs of memory
access in fact push sieving to a higher exponent than log4(3/2) + o(1) then
presumably they will also increase the 0.057981 above, increasing the exponent
fraction eliminated by hybrid attacks. In the opposite direction, presumably any
improvements in sieving will reduce the relative influence of hybrid attacks.

The literature gives the impression that sieving-based lattice attacks fail when
the optimal amount of memory for the standard primal attack is not available.
For example, [116] states the following: “If you only have 290 bits of memory,
then you cannot iterate a BDGL-based sieve. So you cannot use BDGL to find
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dimension 384 vectors that are as short as you like. You cannot use BDGL to
break Kyber512.” This is contradicted by hybrid attacks, which (1) naturally
consume less memory than the standard non-hybrid attack and (2) provide
smooth time-memory tradeoffs to fit into even less memory. See Section 3.6.

1.5. Caveats regarding concrete attack costs. Analysis of asymptotic
exponents is a normal first step in understanding algorithm performance. It
is important to keep in mind, however, that those exponents say nothing about
performance for any specific problem size.

If F has a smaller exponent than G, then F (n) is smaller than G(n) for all
sufficiently large n, but F (n) could be larger than G(n) for, e.g., n = 512. There
can also be errors in the opposite direction: the ratio F (512)/G(512) can be even
smaller than one might guess from the asymptotics. One needs to quantify F
and G in more detail to draw conclusions about specific values of n.

The heuristic exponential speedup described in this paper implies a heuristic
speedup for all sufficiently large n. This does not establish that there is a heuristic
speedup for n = 512. Given the balancing allowed by the structure of hybrid
attacks, and given various speedup ideas in the literature on hybrid attacks (see
Section 4), it would not be surprising to see a speedup for n = 512; but such a
speedup is not demonstrated, let alone quantified, in this paper.

These warnings should not be taken as endorsing the literature’s omission
of hybrid attacks from the analyses of a wide range of concrete lattice-based
cryptosystems. On the contrary, the omission is unjustified, and could easily be
disastrous. Careful analysis of the concrete impact of hybrid attacks is required.

1.6. Evaluating attack stability. One of the fundamental arguments for
caution regarding lattice-based cryptography is that the estimated security levels
of lattice systems keep dropping. Measuring the short-term instability here
is difficult because of various sources of noise, but the following difference in
dimensions is clear:

• FrodoKEM [11], which is frequently portrayed as the most conservative
lattice system, says it is an “instantiation and implementation” of a 2010
cryptosystem [97] from Lindner and Peikert.

• The Lindner–Peikert paper proposed lattice dimension 256, saying this
was as hard to break as AES-128: “For the ‘medium security’ (n = 256)
parameter set, the best runtime/advantage ratio is approximately 2120

seconds, which translates on our machine to about 2150 operations. It seems
reasonable to conclude that these parameters currently offer security levels
at least matching those of AES-128.”

• Given subsequent attacks, it is no longer reasonable to suggest that breaking
this dimension-256 proposal costs “about 2150 operations”. Within proposals
claimed today to be as hard to break as AES-128, the most aggressive
proposals use dimensions around 512, and FrodoKEM uses dimension 640.

Will users next decade be worrying about the safety of dimension 1024? 2048?
A counterargument is as follows: (1) the security loss since 2010 came from a

burst of work improving the asymptotic exponents of lattice attacks, (2) those
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exponents stabilized years ago, and (3) subexponential improvements have much
less effect on security levels. Consider, for example, the following statement
from NIST [3, page 84]: “The performance of sieving algorithms has been
improving [306–314], however recent results [315] indicate that improvements
in locally sensitive hash techniques, which have resulted in the largest decreases
in asymptotic complexity for sieving thus far, cannot be improved further.”

There are three structural flaws in this counterargument. First, while it
is certainly true that using better locality-sensitive hash functions produced
better exponents for sieving algorithms, an asymptotic optimality result for
locality-sensitive hash functions does not imply asymptotic optimality for sieving
algorithms. Formally, this logical gap is clear from the cited optimality paper [90]
saying that the class of sieving algorithms it considers covers “almost all
approaches to date” (emphasis added). Furthermore, the paper says its “lower
bounds” are “0.292d + o(d) for large d (or 0.265d + o(d) quantumly)”, but
[43] and [69] are two papers from 2021 reporting heuristic quantum exponents
around 0.257, which is below 0.265. Those exponent improvements are by only a
small percentage, but they contradict the claimed “lower bounds” on the cost of
sieving. The theorems also do not rule out larger improvements and non-quantum
improvements.

Second, even if one ignores quantum computation and assumes that the best
possible non-quantum sieving exponent is log4(3/2) ≈ 0.292481 (which, again,
is not proven in [90]), this does not imply that a lattice attack using sieving
has reached optimal exponents. There are other layers in lattice attacks. This
paper’s results regarding hybrid attacks show that paying attention to those
layers produces—according to the existing heuristics—exponential speedups.
The heuristic asymptotic exponents of lattice attacks have not stabilized.

Third, the gap between asymptotic costs and concrete costs is a two-edged
sword. It is, as noted in Section 1.5, not safe to assume that an asymptotic
speedup means a speedup for, e.g., n = 512; but it is also not safe to assume
that asymptotic stability means stability for n = 512. On the contrary, one would
expect concrete attack costs to take even longer to stabilize than asymptotic
exponents.

1.7. Caveats regarding the heuristics. This paper is not claiming that the
existing heuristics are accurate, nor is it collecting any evidence for the accuracy
of the heuristics. This paper is considering consequences of the hypothesis that
the heuristics are accurate.

It is important to keep in mind that the heuristics can be wrong. See [31]
for an example of a class of lattices for which earlier literature had obtained
incorrect attack conclusions by applying the same heuristics.

1.8. Priority dates. One aspect of this paper was announced earlier: in [24],
I outlined why existing heuristics imply that a simple hybrid attack produces
an exponential speedup. This paper does more work to quantify the exponents,
building on the asymptotic analysis from [25].
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2 The standard primal attack

This section reviews the key-recovery problem for the LPR cryptosystem;
the standard primal key-recovery attack; the standard analysis of the attack
cost, assuming existing heuristics; the standard analysis of the required attack
parameters, again assuming existing heuristics; and the asymptotics of those
parameters.

The resulting first-order asymptotics of the heuristic attack cost are as follows.
Fix a real number Q0 > 1/2 and an error distribution χ supported on a finite set
of integers. Assume that q ∈ nQ0+o(1) as n → ∞, where q is the modulus and n
is the lattice dimension. Assume that χ has zero average and nonzero standard
deviation. Write z0 = 2Q0/(Q0 + 1/2)2 and ρ = z0 log4(3/2). The cost is then
2(ρ+o(1))n. For example, ρ is approximately 0.187188 for Q0 = 2; 0.259983 for
Q0 = 1; and 0.292481 for Q0 close enough to 1/2.

These asymptotics are the baseline performance for this paper. Section 3 shows
that hybrid primal attacks are exponentially faster than that, assuming existing
heuristics.

2.1. The target cryptosystem. For comparability of this paper’s analysis
with the asymptotic analysis from [25], this paper targets exactly the PKE
defined in [25, Section 2.3]:

This PKE has three parameters: an integer n ≥ 2; an integer q ≥ 2;
and a probability distribution χ supported on a finite set of integers.
Assume for simplicity that the average of χ is 0. Write R for the ring
Z[x]/(xn + 1).

Key generation works as follows. Generate uniform random G ∈ R/q.
Generate a, e ∈ R with coefficients drawn independently at random from
χ. Compute A = aG + e ∈ R/q. The secret key is (a, e). The public key
is (G, A) ∈ (R/q)2.

The definition in [25] also includes encryption and decryption, but this paper
(except in Section 4.6) focuses on attacks that recover the secret key from the
public key, i.e., attacks against “normal-form 1-sample search Ring-LWE”.

As noted in [25, Section 2.3], the 2010 Lyubashevsky–Peikert–Regev PKE [99,
Section 1.1] included further restrictions: it required n to be a power of 2, and
required q to be a prime congruent to 1 modulo 2n. This paper, like [25],
does not impose these requirements: the requirements exclude various followup
cryptosystems and do not interact with this paper’s attack analysis. Readers
are cautioned that the structure of (n, q) can be relevant to more sophisticated
attacks: e.g., if n = 768 then the equation A = aG+e in R/q implies the equation
A = aG + e in the smaller ring (Z/q)[x]/(x256 + 1).

2.2. Details of the standard primal key-recovery attack. This paper’s
baseline attack is exactly the attack reviewed in [25, Section 2.4], which is quoted
here except for a change of notation in the definition of L:
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There is an attack parameter κ ≤ n. Define a function Firstκ : R →
Zκ that extracts the first κ coefficients from its input. This induces a
function, also written Firstκ, from R/q to (Z/q)κ.

Define L as the set of all (α, ε, γ) ∈ R×Zκ ×Z such that Firstκ(γA−αG)
is the same as ε modulo q. This is a lattice of full rank d = n + κ + 1 and
determinant qκ. Note that ±(a, Firstκ(e), 1) are elements of this lattice.

There is another attack parameter β. The attack writes down a basis for
L, applies BKZ-β to reduce this basis, and hopes that BKZ-β outputs
one of the short nonzero vectors ±(a, Firstκ(e), 1), in particular revealing
a.

Aside from the question of which BKZ variant is plugged in, this attack is
from 1998 Hoffstein–Pipher–Silverman [74, Section 3.4.2] (see also the 1996
preprint [75]) in the case κ = n. The generalization to any κ ≤ n is from 2001
May–Silverman [103]. This paper ignores the scaling generalization from 1997
Coppersmith–Shamir [47]; that generalization is important for cryptosystems
that choose a and e to have different sizes, but has negligible effect on the
cryptosystem from Section 2.1. See [25, Section 2.4] for the history of the
subsequent “Ring-LWE” naming.

2.3. The standard heuristic analysis of the attack cost. The standard
heuristic analysis of BKZ-β says that 2016 Becker–Ducas–Gama–Laarhoven [19]
solves SVP-β with heuristic cost 2(log4(3/2)+o(1))β , and that BKZ-β is is within
a subexponential factor of SVP-β, hence also heuristic cost 2(log4(3/2)+o(1))β .

The log4(3/2) exponent depends on the model of computation. This paper’s
quantification of attack costs does not consider costs of memory access, as noted
in Section 1.4, and does not consider quantum computation.

2.4. The standard parameter choice. Assume β ≥ 60 (as explained in, e.g.,
[25, Section 2.6]). The standard analysis of the standard primal attack is the
analysis from the NewHope paper [12, Section 6.3], which uses various heuristics
to conclude that the attack works if and only if the 2-norm of (a, Firstκ(e), 1) is
below (d/β)1/2δ2β−d−1qκ/d, where δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).

The squared 2-norm of (a, Firstκ(e), 1) is (n + κ)s2 + 1 on average, where s
is the standard deviation of χ. The analyses in [12], [8], [13], etc. heuristically
treat the squared 2-norm as being exactly its average.

(The squared 2-norm is almost certainly close to its average. The differences
are not visible in the first-order asymptotics used in this paper and do not matter
for evaluating exponential speedups. The differences are visible in second-order
asymptotics: [25, Section 4] exploits cases where the squared 2-norm is smaller
than average to obtain a subexponential speedup for one-out-of-many-ciphertext
attacks.)

To summarize, the existing heuristics imply that the attack works if and only
if StandardRatio(n, q, s, κ, β) < 1, where StandardRatio is defined as follows.
This definition is copied from [25, Definition 2.5.1].
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Definition 2.4.1 (the standard ratio). Let n, q, s, κ, β be real numbers such
that 2 ≤ n; 2 ≤ q; 0 < s; 1 ≤ κ; and 2 ≤ β. Then StandardRatio(n, q, s, κ, β)
is defined as ((n + κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d where d = n + κ + 1 and
δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).

For a review of the underlying heuristics, see [25, Section 2.5]. which also notes
that subsequent speedups and corrections are portrayed by [6] as minor. Different
heuristics might produce different asymptotics, but the NewHope heuristics have
not been withdrawn, and this paper focuses on those.

The standard parameter choice minimizes β subject to the condition
StandardRatio(n, q, s, κ, β) < 1, and minimizes κ subject to this choice of β.
The point of prioritizing minimization of β is that the heuristic cost of the
attack grows exponentially with β; see Section 2.3.

2.5. Asymptotics for the standard parameter choice. [25, Theorem 2.7.1]
identifies the second-order asymptotics of the minimum β among all (β, κ)
satisfying StandardRatio(n, q, s, κ, β) < 1, assuming lg q grows as Q0 lg n + Q1 +
o(1) and lg s grows as S0 lg n + S1 + o(1), with 0 ≤ S0 ≤ 1/2 < Q0 − S0.

Those second-order asymptotics imply simpler first-order asymptotics: the
minimum β has β/n ∈ z0+o(1) where z0 = 2Q0/(Q0−S0+1/2)2. One can derive
these first-order asymptotics from first-order hypotheses on the parameters,
namely that lg q ∈ (Q0 + o(1)) lg n and lg s ∈ (S0 + o(1)) lg n, i.e., q ∈ nQ0+o(1)

and s ∈ nS0+o(1). (See standardratio_below and standardratio_above in the
formally verified theorems accompanying [25].)

The case of interest in this paper is that χ is independent of n, so the standard
deviation s of χ is also independent of n, so S0 = 0 and 1/2 < Q0. The minimum
β satisfying StandardRatio(n, q, s, κ, β) < 1 then has β/n ∈ z0 + o(1) with
z0 = 2Q0/(Q0 + 1/2)2. Plugging this into the standard heuristic analyses (see
Sections 2.3 and 2.4) produces the conclusion that the heuristic attack cost is
2(log4(3/2)+o(1))β = 2(ρ+o(1))n where ρ = z0 log4(3/2).

Readers focusing on the case that q is a prime congruent to 1 modulo 2n should
note that in this case 1 ≤ Q0. Conversely, Heath-Brown conjectured in [68] (see
also [123] for numerical evidence) that the smallest prime congruent to 1 modulo
k is O(k(log k)2); this conjecture implies that taking Q0 = 1 is compatible with
taking q specifically as the smallest prime congruent to 1 modulo 2n.

3 Analysis of a simple hybrid multi-decoding attack

This section highlights a specific type of hybrid attack and computes what the
existing heuristics imply about this attack. The main result is as follows.

Recall from Section 2 that the existing heuristics imply that the standard
primal attack costs 2(ρ+o(1))n, where z0 = 2Q0/(Q0 +1/2)2 and ρ = z0 log4(3/2),
assuming q ∈ nQ0+o(1) with Q0 > 1/2.

Fix w ∈ {3, 5, 7, . . .}. Assume that the error distribution χ is supported
on {−(w − 1)/2, . . . , −1, 0, 1, . . . , (w − 1)/2}. The existing heuristics then imply
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that the width-w hybrid attack in this section costs 2(ρ−ρH0+o(1))n, where
H0 = 1/(1 + (lg w)/0.057981z0).

Compared to the standard primal attack, this attack reduces heuristic costs
by a factor 2(ρH0+o(1))n. This is always an exponential factor: z0, ρ, and H0 are
positive no matter what Q0 and w are.

3.1. Overview of the attack components. Consider first the following
situation: some coefficients of the secret a are already known. Specifically, write a
uniquely as u+v where u is supported on the first σ coefficients and v is supported
on the last n−σ coefficients, and assume that u is known. Section 3.4 reviews how
the knowledge of u efficiently reduces the attack problem to a “bounded-distance
decoding” problem for a lattice L′ having smaller rank than the lattice L that
was used in Section 2.2. Section 3.5 quantifies the asymptotics of how much time
is saved in this situation as σ grows.

Section 3.6 moves from this situation to the actual attack situation, where u is
not known in advance, and quantifies the performance of a simple hybrid attack
that runs through guesses for u. See Section 4 for a survey of more advanced
hybrid attacks.

One might think that the number of guesses for u outweighs the per-u speedup
unless the error width w is below some small cutoff. However, suitable algorithms
for the decoding problem spend most of their time on precomputations that
depend only on L′, and spend exponentially less time on each per-u computation.
The definition of L′ does not depend on u; precomputations for L′ are reused for
all of the guesses for u. This allows an exponential number of guesses, producing
an exponential speedup for any w.

The necessary subroutines from the literature are explained first: Section 3.2
reviews what the literature says about the performance of an algorithm to find
closest vectors after precomputation, and Section 3.3 reviews what the literature
says about the performance of an algorithm for bounded-distance decoding after
precomputation.

3.2. Closest vectors after precomputation (“CVPP”). This paper uses
the following result from Ducas–Laarhoven–van Woerden [53] (improving on
results of Laarhoven [92] and Doulgerakis–Laarhoven–de Weger [51]) as a black
box: a computation with heuristic cost 2(log4(3/2)−0.057981+o(1))β finds an element
of L closest to t, given a rank-β lattice L and a vector t, after an L-dependent
t-independent precomputation with heuristic cost 2(log4(3/2)+o(1))β .

One can almost see these numbers from [53] saying that one can “heuristically
solve CVPP instances in 20.234d+o(d) amortized time, for batches of size at least
20.058d+o(d)”. The numbers “0.234” and “0.058” are rounded; one has to look at
the structure of the algorithm analysis in [53] to see that the exact numbers have
sum log4(3/2), reflecting a precomputation with cost 2(log4(3/2)+o(1))β as stated
above. This also forces the exact second number to be at least 0.057981, since if
it were below 0.057981 than the exact first number would be above 0.2345 and
would not round to 0.234. (A more precise recomputation of the 0.058 would,
by essentially the same argument, have to give something larger than 0.057981,
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and would give slightly better hybrid exponents, but would take more effort to
check.)

The structure of [53] also shows that each target vector t is handled separately
after the L-dependent precomputation, rather than actually requiring any
particular batch size. However, hybrid attacks do generate batches of targets
(this is clear from the algorithm structure and is highlighted in, e.g., [5]), and one
can choose parameters in hybrid attacks to rely purely on the batch statement
quoted above. Faster batch CVP algorithms, whether or not structured as CVP
algorithms after precomputation, would accelerate hybrid attacks.

3.3. Bounded-distance decoding after precomputation (“BDDP”).
The problem of bounded-distance decoding has a real number D > 0 as a
parameter. A problem instance provides the following information about two
vectors x, y: the sum x + y; a lattice L containing y; and the promise that x has
2-norm at most D. Solving the problem instance means finding (x, y).

One approach to decoding is “embedding” (from 1983 Kannan [87, Lemma
3]), where one converts this close-vector problem into a short-vector problem.
For example, look for a short vector (x, 1) in the lattice of pairs (α, γ) such that
γ ∈ Z and γ(x + y) − α ∈ L; more generally, pick a scale factor λ and then
look for a short vector (x, λ) in the lattice of pairs (α, γ) such that γ ∈ λZ and
γ(x + y) − αλ ∈ L.

Embedding is a reasonable starting approach—it is used inside the
standard primal attack, for example—but hybrid attacks instead rely on more
sophisticated decoders with the following two-stage structure:

• Perform precomputations on the lattice L, independently of the vector x+y.
• Use those precomputations to reduce x + y.

In the paper [80] introducing hybrid attacks, Howgrave-Graham used BKZ-β
for the first stage, and the “nearest plane” algorithm (“weak reduction”) for the
second stage. The nearest-plane algorithm had been analyzed implicitly by 1982
Lenstra–Lenstra–Lovász [96] and explicitly by 1986 Babai [16].

Howgrave-Graham briefly mentioned the possibility of doing better by
“mixing Babai’s CVP (which is essentially blocksize 1) with searching in
higher blocksizes 2, 3, . . .”. This block-size-β generalization of the nearest-plane
algorithm is now called the “nearest-colattice algorithm”. This name comes from
2020 Espitau–Kirchner [57], along with an analysis of the algorithm.

The specific algorithm variant that matters here is the algorithm from [57,
Section 5, third paragraph]: first apply BKZ-β to find a “highly reduced basis”
of the input lattice L; then compute a “CVP on the tail of the basis” to find a
vector in the β-dimensional projection of L closest to the projection of the input
vector x + y, hopefully the projection of y; then “finish with Babai’s algorithm”,
hopefully finding y.

This algorithm has the desired two-stage structure. The BKZ-β computation,
along with the precomputation for CVP-β from Section 3.2, depends only on L,
and has heuristic cost 2(log4(3/2)+o(1))β . Each input vector x + y is then handled
with heuristic cost just 2(log4(3/2)−0.057981+o(1))β .
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When does the algorithm succeed? The existing heuristics are reviewed
in [25, Section 3.1] and imply that the algorithm works if the distance D
is below (1 + o(1))(d/β)1/2δ2β−d−1(det L)1/d, where d is the rank of L and
δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).

Note that this heuristic distance bound is within a factor 1 + o(1) of the
heuristic shortness bound used in Section 2.4. In other words, using BKZ-β and
CVP-β to find a close vector has, at this level of asymptotic detail, the same
heuristic effectiveness as using BKZ-β to find a short vector.

This is more detail than necessary for seeing exponential speedups:
one can instead use simpler first-order asymptotics. Specifically, δ2(β−1) ∈
Θ(β), so the heuristics imply that the algorithm works if D is below
(d/β)1/2Θ(β)1−d/2β(det L)1/d. The heuristics also imply that projecting from
dimension d to dimension β multiplies 2-norm by (β/d)1/2, and thus that the
algorithm works if the projection of x+y has 2-norm below Θ(β)1−d/2β(det L)1/d.
This matches what is stated in [57, Section 5, third paragraph].

3.4. Exploiting partial information. Recall the public lattice L from
Section 2.2, the set of all (α, ε, γ) ∈ R × Zκ × Z such that Firstκ(γA − αG) is
the same as ε modulo q. The standard primal attack uses BKZ-β to (hopefully)
find the short elements ±(a, Firstκ(e), 1) of this lattice.

Define L′ as the set of all (ω, ε) ∈ R × Zκ such that Firstκ(−ωG) is the same
as ε modulo q and ω is supported on the last n−σ coefficients; here σ is another
attack parameter. This is a lattice of rank n − σ + κ and determinant qκ.

(The literature often states algorithms purely for full-rank lattices. To fit that
restriction, simply suppress the first σ coefficients of ω, all of which are 0 by
definition, to convert L′ into a full-rank lattice.)

Now write a uniquely as u + v where u is supported on the first σ coefficients
and v is supported on the last n − σ coefficients, as in Section 3.1; and consider
the situation that u is known.

By definition A = aG + e = uG + vG + e in R/q, so −vG = e + uG − A, so
Firstκ(−vG) = Firstκ(e + uG − A), so (v, Firstκ(e + uG − A)) ∈ L′. The known
vector (0, Firstκ(uG − A)) is close to this vector (v, Firstκ(e + uG − A)) ∈ L′:
the difference is the short vector (v, Firstκ(e)).

This is the desired reduction to a decoding problem: namely, the problem
of finding the vector (v, Firstκ(e + uG − A)) ∈ L′ close to the known vector
(0, Firstκ(uG − A)).

3.5. The speedup from partial information. Now consider the question
of how large β needs to be asymptotically for the decoding algorithm from
Section 3.3 to solve the decoding problem from Section 3.4. This analysis assumes
σ ∈ (H+o(1))n with 0 < H < 1; the choice of H will be optimized in Section 3.6.

The squared 2-norm of the short vector (v, Firstκ(e)) from Section 3.4 is
(n − σ + κ)s2 on average, where s is the standard deviation of χ. As noted
in Section 2.4, the squared 2-norm is almost certainly close to its average, and
the gap does not affect first-order asymptotics; in any case, the existing heuristics
treat the squared 2-norm as exactly its average.
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The heuristics reviewed in Section 3.3 for the decoding algorithm then imply
that the algorithm works if (n−σ+κ)1/2s is below (1+o(1))(d/β)1/2δ2β−d−1qκ/d,
where d = n − σ + κ and again δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).

This is equivalent to StandardRatio(n − σ − 1, q, s, κ, β) < 1 + o(1), almost
by definition of StandardRatio. The only change is between (n − σ + κ)s2 and
(n − σ − 1 + κ)s2 + 1; these have constant difference, and converge to ∞ (since
s > 0 by assumption and n − σ ∈ (1 − H + o(1))n with H < 1 by assumption),
so they have ratio 1 + o(1).

Note that q ∈ (n − σ − 1)Q0+o(1), since lg(n − σ − 1) ∈ (1 + o(1)) lg n. The
asymptotic analysis of StandardRatio from [25] then says that the minimum β
with StandardRatio(n−σ −1, q, s, κ, β) < 1+o(1) has β/(n−σ −1) ∈ z0 +o(1);
equivalently, β/n ∈ (1 − H)z0 + o(1).

The precomputation from Section 3.3, namely BKZ-β followed by a CVP-β
precomputation, then costs 2(log4(3/2)+o(1))β = 2(ρ−ρH+o(1))n. This is better than
the standard primal attack by a factor 2(ρH+o(1))n: in short, knowing an H
fraction of the n entries in a cuts an H fraction out of the asymptotic exponent.

The main computation, decoding (0, Firstκ(uG − A)), is even faster: it
costs just 2(log4(3/2)−0.057981+o(1))β , better than the precomputation by a factor
2(0.057981+o(1))β = 2(0.057981(1−H)z0+o(1))n.

3.6. Multiple guesses for the partial information. Now let’s drop the
assumption that u is known, and instead let’s search through possibilities for u,
taking advantage of the fact that only a tiny fraction of the cost in Section 3.5
is from the main u-dependent computation.

Fix w ∈ {3, 5, 7, . . .}. Consider the following simple width-w hybrid attack:

• Apply the precomputation from Section 3.3 to the lattice L′ from Section 3.4.
• Search all wσ choices of u ∈ R where the last n − σ coefficients are 0 and

the first σ coefficients are in {−(w − 1)/2, . . . , −1, 0, 1, . . . , (w − 1)/2}.
• For each u, apply the main computation from Section 3.3 to try to find an

element of L′ close to (0, Firstκ(uG − A)).

If χ is supported on {−(w − 1)/2, . . . , −1, 0, 1, . . . , (w − 1)/2} then this attack
will at some point guess the correct u, matching the first σ coefficients of a.

Assume σ ∈ (H + o(1))n as in Section 3.5. Then the precomputation costs
2(ρ−ρH+o(1))n as in Section 3.5. There are also wσ = 2σ lg w ∈ 2(H lg w+o(1))n

decoding steps, each of which costs 2(ρ−ρH−0.057981(1−H)z0+o(1))n, for total attack
cost 2(ρ−ρH+o(1))n + 2(ρ−ρH−0.057981(1−H)z0+H lg w+o(1))n .

Now define H0 = 1/(1 + (lg w)/0.057981z0), and choose specifically H =
H0. Then H lg w = 0.057981(1 − H)z0, so the decoding steps together cost
2(ρ−ρH+o(1))n, just like the precomputation. The total heuristic attack cost is
then 2(ρ−ρH0+o(1))n as claimed.

As mentioned in Section 1, this algorithm also offers smooth time-memory
tradeoffs, reducing concerns about subroutines that use memory exponential in
β. Specifically, increasing H beyond H0 gradually increases the cost exponent
ρ − ρH − 0.057981(1 − H)z0 + H lg w, but also gradually decreases β since β ∈
((1 − H)z0 + o(1))n.
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4 Known unknowns

Howgrave-Graham’s original hybrid-attack paper [80] started by describing “an
algorithm that enumerates all possible v” (as in Section 3, which has u where [80]
has “v”), but continued with a more sophisticated meet-in-the-middle approach.
One might hope for the meet-in-the-middle approach and more sophisticated
combinatorial approaches to reduce wσ guesses to w(1/2+o(1))σ guesses or even
lower, decreasing the heuristic asymptotic exponent for the full attack cost from
ρ − ρ/(1 + (lg w)/0.057981z0) to ρ − ρ/(1 + 0.5(lg w)/0.057981z0) or even lower.
However, a full analysis of the meet-in-the-middle approach is challenging; see
Section 4.3.

More broadly, the literature presents ideas in several different directions for
speeding up hybrid attacks, and presents reasons to believe that many of these
ideas produce speedups. This section surveys these ideas. Each direction—and
each combination of directions—raises new analysis questions. It is plausible,
in light of the results of Section 3, that many of these ideas produce changes
in the heuristic asymptotic attack exponent. Concrete security analysis should
consider all of the ideas; as noted in Section 1.5, asymptotic exponents do not
say anything about any particular concrete size.

Sometimes the literature considers quantum algorithms: for example, one can
trivially replace wσ guesses with approximately wσ/2 iterations of Grover search.
This requires recalculation of asymptotic exponents and concrete costs.

4.1. Exploiting non-uniform error distributions. As a preliminary point,
note that the attack from Section 3.6 can, and almost always does, finish early.
There are wσ guesses for u; as soon as the attack checks the correct guess, the
attack finds v, recognizes that v is short, and terminates.

One might think that this is a small constant-factor speedup, for two reasons:
first, half the time is spent on precomputation before the guesses begin; second,
the attack will try (1 + wσ)/2 guesses on average. But neither of these reasons
holds up to scrutiny:

• Balancing precomputation with main computation is just one of the
options available to the attacker; see Section 3.6. Increasing σ means that
exponentially less time is spent on precomputation—and then speedups in
the main computation become correspondingly more important.

• Typically χ is non-uniform on its support. Guesses then have different success
probabilities, and if the attack tries guesses in decreasing order of probability
then it will finish with fewer than (1 + wσ)/2 guesses on average, perhaps
far fewer.

As an example of non-uniformity, some of Kyber’s proposed parameter sets
define χ as a width-5 binomial distribution; i.e., a sum of 4 independent unbiased
coins minus 2; i.e., −2, −1, 0, 1, 2 with probability 1/16, 1/4, 3/8, 1/4, 1/16
respectively. Then a matches u on the first σ coefficients with probability
(1/16)σ−2+σ2(1/4)σ−1+σ1(3/8)σ0 if the first σ coefficients of u have exactly σj

entries equal to j. It is easy to sort the guesses for u in decreasing order of this
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probability. Similar comments apply to parameter sets that define χ as a sum of
6 unbiased coins minus 3.

A more general attack strategy searches a subset of the wσ possibilities for u.
For example:

• The binomial distribution on {−2, −1, 0, 1, 2} produces ternary u with
probability (7/8)σ, so an attack that searches only 3σ ternary vectors, rather
than all 5σ possible vectors, succeeds with probability (7/8)σ.

• Most of the hybrid-attack literature considers a search specifically through
the set of u where j occurs σj times, and then optimizes the attacker’s choice
of the σj parameters. For example, Howgrave-Graham considered searching
through binary secrets with an attacker-chosen weight.

• One can choose U ∈ {1, . . . , wσ}, list the U highest-probability possibilities
using some mechanism of breaking ties, and search those possibilities.

The first example is easy to state but seems inferior to the third: some ternary
vectors are less likely to appear than some non-ternary vectors. For example,
out of the 550 ≈ 2116 length-50 vectors with entries in {−2, −1, 0, 1, 2}, there are
350 ≈ 279.248 ternary vectors, and the binomial distribution produces a ternary
vector with probability (7/8)50 ≈ 2−9.632; but a short calculation shows that
the binomial distribution produces one of the 350 most popular vectors with
probability about 2−8.013. See the guess50.sage script attached to this PDF.

The second example, when chosen with maximum-likelihood parameters, is a
special case of the third. The third example is due to 2018 Wunderer [127,
Section 7.3], optimizing the quantum hybrid attack from 2017 Göpfert–van
Vredendaal–Wunderer [65]. See the NTRU Prime documentation [26, Section
6.8] for some non-quantum examples of the same approach.

One can amplify the success probability by running the whole attack again
with another selection of σ positions in case of failure. The literature does not
appear to have explored the extent to which work can be shared across the
BKZ-β computations for different selections of positions, but it seems likely
that choosing suitable subsets produces a smaller heuristic asymptotic exponent
for hybrid attacks even without such sharing. Another option, in the quantum
context, is to use a Grover search through selections of positions.

A full analysis would have to consider correlations among selections of
positions. Consider, for example, an attack that simply tries u = 0 for various
selections of σ positions. The chance that a selection succeeds depends on the
number of zeros in the secret; the attack does a better job of targeting secrets
with more zeros. For comparison, the attack of [25] does a better job of targeting
secrets with smaller 2-norm.

4.2. Optimizing block sizes. As noted in Section 3.3, Howgrave-Graham used
block size β for precomputation and block size 1 for the main computation, but
mentioned the possibility of using larger block sizes for the main computation.

Section 3 uses block sizes (β, β) instead of (β, 1): i.e., block size β for the
precomputation and for the main computation. A small speedup in this case is
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that some variants of BKZ-β include the necessary CVP-β precomputation, as
noted in [25].

The literature typically takes (β, 1). There is no reason to think that this
is optimal; perhaps this case hides most of the power of hybrid attacks.
There is also no reason to think that (β, β) is optimal. The asymptotic
exponents and concrete costs of general pairs (β, β′) are open questions. 2019
Albrecht–Curtis–Wunderer [5] estimated concrete performance of various pairs
(β, β′), but without the preprocessing speedups reviewed in Sections 3.2 and 3.3.

4.3. Collision searches: meet-in-the-middle and beyond. The classic
subset-sum problem asks whether there are elements u1, u2, . . . , uσ of {0, 1} such
that u1C1 + u2C2 + · · · + uσCσ = S, given C1, C2, . . . , Cσ, S.

There are 2σ possible vectors (u1, u2, . . . , uσ). A meet-in-the-middle search
takes only about 2σ/2 operations (and 1981 Schroeppel–Shamir [117] reduced the
memory usage to about 2σ/4). 2010 Howgrave-Graham–Joux [81] used multiple
levels of collision search to reduce the heuristic asymptotic cost exponent below
1/2, in particular claiming cost exponent 0.311. 2011 Becker–Coron–Joux [18]
reached heuristic exponent 0.291, and reported heuristic exponent 0.337 for the
algorithm from [81]; May and Meurer had discovered an error in the analysis
from [81]. 2019 Esser–May [58] claimed 0.255 but withdrew the claim. 2020
Bonnetain–Bricout–Schrottenloher–Shen [38] then reached 0.283. For quantum
exponents, see 2013 Bernstein–Jeffery–Lange–Meurer [28], 2018 Helm–May [70],
and [38].

2003 Odlyzko, as reported in [82], adapted a meet-in-the-middle search to the
problem of finding small (a, e) given G and A = aG + e. Odlyzko decomposed
a as a0 + a1, computed a0G for all possible a0, and then computed a1G for
all possible a1. There is almost a collision between A − a0G and a1G for the
correct (a0, a1). The only issue is that there is a small difference e between
A − a0G and a1G; Odlyzko addressed this by picking a locality-sensitive hash
function and looking for collisions among hashes of A − a0G and a1G. 2013
Wang–Ma–Ma [124] proposed a quantum version of Odlyzko’s attack, and 2016
van Vredendaal [122] proposed time-memory tradeoffs.

Multiple levels of collision search were similarly adapted to this problem by
2021 May [102] in the ternary case and 2022 Glaser–May [64] in further cases.
See also 2021 van Hoof–Kirshanova–May [79] for a quantum version in the
ternary case.

Howgrave-Graham’s main hybrid attack from [80] first decomposed a as
u + v as in Section 3, and then decomposed u as u0 + u1 as in Odlyzko’s
meet-in-the-middle search. Recall that Section 3 decoded (0, Firstκ(uG − A))
for each possible u; Howgrave-Graham instead decoded (0, Firstκ(u0G − A)) for
each possible u0 and decoded (0, Firstκ(−u1G)) for each possible u1, and looked
for collisions among locality-sensitive hashes of the decoding results.

This is no longer bounded-distance decoding: the decoding inputs have no
reason to be close to the lattice. One might call it “bounded-distance-pair
decoding”: the pair of correct inputs (0, Firstκ(u0G − A)) and (0, Firstκ(−u1G))
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has difference close to the lattice, so one can reasonably hope for the decoding
outputs to also be close, and to collide after locality-sensitive hashing.

Analyzing the collision probability here is not easy. In [126, Section 4.4],
[127, Section 5.3.3], and [128, Section 4.4], Wunderer pointed out various
underestimates and overestimates in the meet-in-the-middle probability analyses
for the nearest-plane algorithm from previous hybrid-attack papers; see also 2021
Nguyen [111]. The latest heuristics need to be generalized from the nearest-plane
algorithm to higher-block-size BDD algorithms, and need to be systematically
tested against experiments.

It should be possible to similarly handle multiple levels of collision search:
insert a decoding step and locality-sensitive hashing before each equality test.
Analyzing the performance of such an algorithm will be even more challenging
than analyzing the performance of a single level of collision search.

4.4. Dual attacks. A dual attack is most easily phrased as a way to distinguish
A = aG + e from uniform: first, given G, find a short nonzero vector x such that
Gx = 0; then, given A = aG + e, observe that Ax = aGx + ex = ex tends to be
shorter than Rx would be for a uniform random R.

More generally, one can use a short nonzero vector (x, y) such that Gx = y.
Then Ax = aGx + ex = ay + ex, which again tends to be shorter than Rx would
be for a uniform random R.

Even more generally, one can combine information from many short vectors
(x, y) to amplify the overall distinguishing probability. Care is required in the
analysis to account for vectors not being statistically independent: see 2023.03
Ducas–Pulles [54], 2023 Wiemers–Ehlen [125], 2023.12 Ducas–Pulles [55], and
2023 Carrier–Debris-Alazard–Meyer-Hilfiger–Tillich [42].

To the extent that these distinguishers work, one can easily convert them
into secret-recovery attacks by guessing some coordinates of e and using the
distinguishers to identify the correct guess. A closer look at the distinguishers
shows that the computations for many guesses can be batched via FFTs. Once
some coordinates of e are known, finding the remaining coordinates of e is a
relatively small problem.

Like a hybrid attack, a dual attack begins with a precomputation stage that
depends only on G. Guessing some coordinates of e in a dual search attack is
analogous to guessing some coordinates of a in a simple hybrid attack without
collision search. The guesses are used in different ways; it would be interesting
to compute the heuristic asymptotic exponents of dual attacks with and without
FFTs, and to compare those to the exponents of various types of hybrid
primal attacks. Presumably there will be some cases where algorithms have
the same first-order asymptotic exponents but different second-order asymptotic
exponents, as in [25, Section 4].

Dual attacks have a long history, going back to 1962 Gallager [62], who
introduced the dual-attack idea as a decoder for “low-density parity-check codes”
(LDPC codes). 2001 Al Jabri [10] analyzed the performance of a dual attack
against random codes. Meanwhile Bleichenbacher had used a dual lattice attack
(including FFTs and various other speedup ideas) to break the NSA/NIST DSA



18 Daniel J. Bernstein

standard in an estimated 264 operations, forcing an update of the standard
in 2001, although details of the attack were not posted until 2004. See [109,
page 72, “unpublished attack”], [121, Section 5], [37], [107], [108], and [23,
“Bleichenbacher’s attack” section].

Analyses of the effectiveness of simpler dual lattice attacks appeared in 2009
Micciancio–Regev [105, Section 5.4, “Security” paragraphs] for the case of a
single x, and in the NewHope paper [12, Section 6.4] for the case of many x.

2017 Albrecht [4] reported that ternary secrets of constant Hamming
weight allow smaller exponents for dual attacks. The algorithm in [4] guessed
that some coordinates are all 0 or, more generally, have at most a few
positions set, and retried if none of the guesses succeed; this is analogous
to the retries in Section 4.1. 2020 Espitau–Joux–Kharchenko [56] instead
guessed all possibilities (not necessarily ternary) for some coordinates, as
did 2021 Bi–Lu–Luo–Wang–Zhang [36]. 2021 Guo–Johansson [66], crediting
Bleichenbacher, used FFTs to merge computations across guesses.

2019 Cheon–Hhan–Hong–Son [45] and 2022 Bi–Lu–Luo–Wang [35] considered
collision searches inside dual attacks. For further speedup ideas, see 2022
MATZOV [101], 2022 Albrecht–Shen [9] (using quantum computation), and
2022 Carrier–Shen–Tillich [41].

4.5. Optimizing decoding. The 0.057981 in this paper comes from the 2020
Ducas–Laarhoven–van Woerden [53] algorithm for CVP after precomputation,
as explained in Section 3.2. Plugging that algorithm into the nearest-colattice
algorithm is one way to decode after precomputation, but there are alternatives.
For example, 2021 Laarhoven–Walter [93] presents and recommends dual
algorithms for bounded-distance decoding, although it does not account for
failures of independence and does not compare to the nearest-colattice algorithm.

4.6. Exploiting proof gaps. This paper has focused on the key-recovery
problem for the LPR PKE, finding (a, e) given G and A = aG+e. As mentioned
in Section 2.2, this is a “search ring-LWE” problem.

Finding the secret key breaks “OW-CPA”, “IND-CPA”, and “IND-CCA2” for
the LPR PKE (typically with probability slightly below 1 because of decryption
failures in the PKE, depending on how q is chosen), and breaks “IND-CCA2” for
a typical KEM built from that PKE. However, breaking these security properties
can be easier than key recovery.

The IND-CCA2 security analysis for a typical lattice KEM—see, e.g., Kyber’s
IND-CCA2 security analysis [13, Theorems 1, 2, and 3]—is structured as follows:

• There are theorems proving that the ROM IND-CCA2 security level of the
KEM is at least the IND-CPA security level of the underlying PKE, aside
from a 2-bit probability gap. See, e.g., 2017 Hofheinz–Hövelmanns–Kiltz [76,
Theorems 3.2 and 3.3].

• There are similar theorems for QROM IND-CCA2, but with a much larger
probability gap between the IND-CCA2 problem and the IND-CPA problem:
see, e.g., 2023 Hövelmanns–Majenz [72, Theorem 1]. (Some KEMs avoid this
gap; see generally [112, Section 3.8].)
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• The IND-CPA security level of the PKEs in question is trivially proven to
be at least the security level of a “decision Ring-LWE” problem, namely
distinguishing a pair (aG + e, aG′ + e′) from uniform given G and G′. (For
Kyber, one has to consider a more general “decision Module-LWE” problem;
the differences do not matter for this paper.)

There are three ways that the theorems allow these problems to have lower
security levels than the original search-Ring-LWE problem: (1) IND-CCA2 can
have lower security level than QROM IND-CCA2; (2) low-probability IND-CPA
can have lower security level than high-probability IND-CPA; (3) decision
Ring-LWE can have lower security level than search Ring-LWE.

Hybrid attacks naturally target lower probabilities at higher speed; see
Section 4.1. The same is true for dual attacks. Furthermore, illustrating the
general risk of decision problems being easier than search problems (see [22,
Section 6]), dual attacks against decision Ring-LWE are simpler and faster than
dual attacks against search Ring-LWE: one simply runs the distinguisher once,
without the extra cost of handling many guesses for portions of e. Similarly,
for dual attacks against IND-CPA for the LPR PKE, it suffices to distinguish
two known guesses e0, e1 for e. Perhaps there is also a noticeable speedup from
choosing the IND-CPA plaintexts non-randomly, for example searching through
many plaintexts to find the maximum possible angle between e0 and e1.

It would be interesting to quantify these effects, for example to see how
weak low-probability decision Ring-LWE is against known attacks compared to
high-probability search Ring-LWE. Theorems saying that the QROM IND-CCA2
security level is at least the security level of low-probability decision Ring-LWE
are vacuous if low-probability decision Ring-LWE is breakable. Perhaps attacks
against low-probability decision Ring-LWE can also be converted into similarly
efficient QROM IND-CCA2 attacks against a KEM.
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#!/usr/bin/env sage

sigma = 50
repstarget = 3^sigma

data = []

for f0 in range(sigma+1):
  for f1 in range(sigma+1-f0):
    f2 = sigma-f0-f1
    prob = (3/8)^f0*(1/4)^f1*(1/16)^f2
    reps = 2^(f1+f2)*factorial(sigma)/factorial(f0)/factorial(f1)/factorial(f2)
    data += [(prob,reps)]

repstotal = 0
probtotal = 0

data = list(reversed(sorted(data)))
for prob,reps in data:
  assert repstotal <= repstarget
  if repstotal+reps > repstarget:
    reps = repstarget-repstotal
  probtotal += reps*prob
  repstotal += reps

print(f'repstarget {repstarget}')
print(f'repstotal {repstotal}')
print(f'probtotal {probtotal}')
print(f'lgprobtotal {log(RealIntervalField(80)(probtotal),2.0)}')


