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Abstract. We propose a new framework to homomorphically evaluate Boolean
functions using the Torus Fully Homomorphic Encryption (TFHE) scheme. Compared
to previous approaches focusing on Boolean gates, our technique can evaluate more
complex Boolean functions with several inputs using a single bootstrapping. This
allows us to greatly reduce the number of bootstrapping operations necessary to
evaluate a Boolean circuit compared to previous works, thus achieving significant
improvements in terms of performances. We define theoretically our approach which
consists in adding an intermediate homomorphic layer between the plain Boolean
space and the ciphertext space. This layer relies on so-called p-encodings embedding
bits into Zp. We analyze the properties of these encodings to enable the evaluation
of a given Boolean function and provide a deterministic algorithm (as well as an
efficient heuristic) to find valid sets of encodings for a given function. We also
propose a method to decompose any Boolean circuit into Boolean functions which are
efficiently evaluable using our approach. We apply our framework to homomorphically
evaluate various cryptographic primitives, and in particular the AES cipher. Our
implementation results show significant improvements compared to the state of the
art.
Keywords: FHE · TFHE · Boolean Functions · Implementation

1 Introduction
Homomorphic encryption (HE) is a cryptographic technique allowing the computation of
operations on encrypted messages (which directly reflect on the original messages once
decrypted), using only knowledge of public data. For example, an additive homomorphic
encryption scheme is able to encrypt two messages m1 and m2 in ciphertexts c1 and c2 and
to compute a third ciphertext c3 from c1 and c2 that encrypts the sum m1 + m2, without
knowledge of the secret key.

The security of these schemes typically relies on a small noise introduced in the data
when encrypting. The problem arising is that this noise is growing while homomorphic
computations are carried out, which bury the original data into the noise and makes
it unrecoverable at decryption. In 2009, Gentry [Gen09] introduced the operation of
bootstrapping to solve this problem. This operation resets the noise at a nominal level without
decryption allowing a potentially infinite amount of operations, making the construction of
a scheme achieving Fully Homomorphic Encryption (FHE) possible. This operation being
extremely heavy and slow, it is considered as the main bottleneck for the development of
schemes efficient enough to be used in practice.

Currently, the most popular schemes in the FHE ecosystem are lattice-based and rely
on the hardness of the Learning With Errors assumption [Reg05] and/or its ring variant
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RLWE [LPR10]. BFV [Bra12], BGV [BGV12] and CKKS [CKKS17] are leveled schemes,
which means that they keep track of the “level” of noise in the data during the homomorphic
evaluation. As soon as this level reaches a critical bound, no more computations can
be performed. Some recent works (see e.g. [CHK+18], [CCS19], [LLL+20]) propose a
bootstrapping operation for these schemes to overcome this limit in the future. On the
other hand, TFHE [CGGI18] is built on top of a powerful bootstrapping technique known
to currently be the most efficient but limiting the precision of encrypted data.

Each FHE scheme offers a set of basic homomorphic operations that can be used to
build more complex algorithms. In general, these operations are homomorphic additions
and multiplications, however some complex operations cannot be constructed only with
these operations. TFHE offers homomorphic additions and multiplications by a plaintext
as well, but its force lies in its operation of programmable bootstrapping allowing the
evaluation of encrypted look-up tables (LUT) while resetting the noise level. However, for
performance issues, these look-up tables can only handle a small amount of bits as input
(around 8 bits maximum) so the scheme is best suited for applications requiring a small
precision.

In particular, TFHE is the best option to evaluate Boolean circuits with encrypted
inputs, but the performances of the existing frameworks are still limited. In [CGGI18], the
authors propose a strategy to evaluate Boolean functions called the gate bootstrapping, in
which they perform one bootstrapping for each bivariate Boolean gate of the underlying
circuit. As a consequence, the conversion of the original Boolean circuit in a homomorphic
circuit handling encrypted bits is straightforward, moreover the noise growth is contained
thanks to the systematic use of bootstrapping. However, this approach is very expensive
due to the high numbers of bootstrappings and makes it highly suboptimal for large
circuits.

The authors of [CLOT21] propose a different approach: by leveraging a newer version
of the TFHE scheme supporting a new operation named TLWE ciphertexts multiplica-
tion, Boolean circuits are evaluated with homomorphic sums for XOR gates and this new
multiplication operation for AND gates. While this approach is clearly a progress from the
vanilla framework, we note that a few bootstrappings are still required to control the noise
growth and that this new operation of TLWE multiplications remains costly both in terms
of performances and in terms of noise. Thus, we choose to stick to the first version of the
TFHE scheme (while slightly modifying it) to keep the framework lighter and we tackle
the performance issues of [CGGI18] with a different approach than the one of [CLOT21].

Our work introduces a new framework to homomorphically evaluate Boolean functions
on encrypted data efficiently, i.e. by reducing the amount of necessary bootstrappings. Our
approach introduces an intermediate homomorphic layer which encodes bits on a small ring
Zp before encrypting them. This allows us to evaluate Boolean functions with one cheap
homomorphic sum followed by one bootstrapping. After formalizing the underlying concept
of p-encoding and explaining our evaluation strategy, we investigate the issue of finding
valid sets of encodings for a Boolean function. We characterize this problem and provide
an exact constructive algorithm to solve it. We further provide a sieving heuristic finding
solutions more efficiently but at the cost of loosing optimally. Since our method is only
efficient for Boolean functions with limited number of inputs, we also propose a heuristic to
decompose any Boolean circuit into Boolean functions which are efficiently evaluable using
our approach. Finally, we apply our technique to various cryptographic primitives, namely
the SIMON block cipher, the Trivium stream cipher, the Keccak permutation, the Ascon
s-box and the AES s-box. Compared to previous works implementing the same primitives
(for SIMON, Trivium and AES) our implementations achieve significant speedups.

After some technical preliminaries on TFHE (Section 2), we introduce a new concept
of intermediate homomorphic layer and explain how bits are encoded in Section 3 and the
algorithms to construct it in Sections 4, 5. Finally, we describe our modifications of the
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TFHE scheme in Section 6 and our experimental results in Section 7.

2 Preliminaries on TFHE

2.1 Notations
Let T = R/Z be the real torus, that is to say the additive group of real numbers modulo 1.
In practice, torus elements are not represented with an infinite number of digits, but are
discretized. Let us denote this precision in base 2 as Ω. We can define the discretized torus
Tq = {a

q | a ∈ Zq} (the elements of the torus up to Ω bits of precision, q being 2Ω) and
identify it with the ring Zq. As a consequence, any element a

q of Tq will be represented in
machine by a without any loss of property of the group Tq. The operations of sum + and
external product · have to be understood modulo q.

Moreover, for a natural integer N and a given q, we will denote by TN,q[X] the ring
of polynomial Tq[X]/(XN + 1). The elements of this ring are polynomials of maximum
degree N − 1 and with coefficients in Tq. Like for the scalar version, this ring will be
identified with the ring Zq/(XN + 1). N is usually taken as a power of two.

Finally, we will denote by B the set of binary digits {0, 1}. & and ⊕ denote the AND and
XOR binary operations. For x and q ∈ Z , [x]q denotes the reduction of x modulo q. For
S a set, x

$← S denotes a uniformly random sampling from the set. For χ a distribution,
x

$← χ denotes a random sampling according to the distribution.

2.2 Complexity Assumptions
The TFHE scheme, as other schemes using lattices, relies on the hardness of the LWE
assumption. More precisely, it relies on the torus-based version of the problem. In the
following, we consider the classic definition but over a discretized torus and with a binary
secret:

Definition 1. (LWE problem over the discretized torus). Let q, n ∈ N and let s =
(s1, . . . , sn) $← Bn. Let χ be an error distribution over Zq. The decisional Learning With
Errors over discretized torus problem is to distinguish samples chosen with the following
distributions:

D0 = {(a, r) | a $← Tn
q , r

$← Tq}

and:

D1 = {(a, b) | a = (a1, . . . , an) $← Tn
q , e

$← χ, b =
n∑

j=1
aj · sj + e}

The search version of the problem is to recover s from the samples of D1.

Both the search and decisional problems are reducible to each other [Reg05] and their
average case is as hard as worst-case lattice problems.

[Joy22] argues that identifying the discretized torus Tq as Zq makes the LWE assumption
over the discretized torus as hard as the standard LWE assumption.

TFHE relies as well on the generalized version of LWE over rings introduced in [BGV12]
named GLWE.

Definition 2. (GLWE problem over the discretized torus). Let N, q, k ∈ N with N a
power of two and let s = (s1, . . . , sk) $← BN [X]k. Let χ be an error distribution over
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ZN,q[X]. The General decisional Learning With Errors over discretized torus problem is
to distinguish samples chosen with the following distributions:

D0 = {(a, r) | a $← TN,q[X]k, r
$← TN,q[X]}

and:

D1 = {(a, b) | a = (a1, . . . , ak) $← TN,q[X]k, e
$← χ, b =

k∑
j=1

aj · sj + e}

The search version is analogous to the LWE one.

Note that RLWE is simply an instantiation of GLWE with k = 1.
The complexity analysis is analogous to the LWE version. In practice, the error

distribution χ is a centered Gaussian distribution parametrized by its standard deviation
σ.

2.3 Plaintext Space

Figure 1: Embedding of Zp in Zq

Before expliciting more in depth the TFHE
scheme, it is useful to define the plaintext space
and how it is embedded in the discretized torus.

The plaintext space is the ring Zp, with p ∈ N.
For now, let us assume that p | q and identify Zp

with Tp. As p | q, all elements of Tp are elements
of Tq as well. Thus, we can define a mapping
ρ : Zp → Zq as ρ : m 7→ mq

p .
Of course, only p elements of Zq are reached

by such a mapping and they have the form{
kq
p | k ∈ Zp

}
. As they are evenly distributed

across Zq, they define what we call sectors of Zq

of the form:{(
(2k − 1)q

2p
,

(2k + 1)q
2p

)
| k ∈ Zp

}
.

The embedding of Zp in Zq is illustrated in Figure
1.

During encryption of m, some small noise e is drawn from a Gaussian distribution over
Zq and is added to m. As e is small, the noisy message m + e stays in the same sector as
m but while homomorphic operations are carried out, the noise grows and may overflow
out of the sector. When decrypting, one recovers the sum of the expected result and some
noise m′ + e′. As long as e′ < q

2p , the message m′ can be recovered by rounding to the
closest center of sector.

In our work, we pick odd values for p. q being a power of 2 in practice, it implies that
p does not divide q. This enables nice features explained in Section 6. Consequently, the
centers and the bounds of sectors are computed by rounding the fractions to the closest
integers. In practice, p is much smaller than q (p is restricted to a few bits, while q typically
equals 232 or 264), so this discrepancy makes this approximation sound. In the following,
we will ignore this rounding.

2.4 Ciphertexts Types and Basic Operations
TFHE manipulates several different types of ciphertexts. In the following, we explain their
structure:
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• TLWE ciphertexts: The message m to be encrypted is encoded as an element of Tq.
A mask a = (a1, . . . , an) is drawn uniformely from Tn

q and a noise error e is sampled
from χ. Using the secret key sk = (s1, . . . , sn) ∈ Bn, the body of the ciphertext is
defined by b =

∑n
j=1 aj · sj + m + e. Finally, the TLWE ciphertext is c = (a, b). The

decryption is performed by calculating the phase: ϕ(c) = b − ⟨a, s⟩ = m + e and
rounding to the closest center of sector.

• TRLWE ciphertexts: It has the same global structure as TLWE ones, except the
mask a is sampled from TN,q[X]k, the secret key from B[X]k and the error from
TN,q[X]. Some papers in the literature use the denomination TRLWE only if k = 1,
and TGLWE otherwise. In this work, we do not make a difference between both
cases.

During the bootstrapping phase presented in Section 2.5, another structure (the
TRGSW ciphertext) is used but we do not mention it as we will not need it. More details
about TRGSW can be found in [Joy22].

Two basics homomorphic operations are straightforward with these two structures:
the component-wise sum of two TLWE (resp. TRLWE) ciphertexts c1 and c2 produces
a ciphertext c3 encrypting the sum modulo p of the two underlying messages m1 and
m2. Moreover, the external product λ · c1 with λ ∈ Z also produces an encryption of the
multiplication [λ ·m1]p.

In the framework introduced by this paper, the freshly encrypted ciphertexts are TLWE,
as well as during homomorphic computations. We only manipulate TRLWE ciphertexts
during the BlindRotate phase of the bootstrapping, presented in Section 2.5.

2.5 TFHE programmable bootstrapping (PBS)
As defined by Gentry in [Gen09], the procedure of bootstrapping can be defined as the
homomorphic evaluation of the decryption circuit. In the context of TFHE, the hardest
part to compute is the rounding of the value to an element of Tp by removing the noise. To
achieve this homomorphically, it uses four procedures called ModulusSwitch, BlindRotate,
SampleExtract and KeySwitch.

ModulusSwitch: The high level idea starts by homomorphically computing the phase
µ ∈ Zq and reducing it to µ̃ ∈ Z2N by computing µ̃ =

⌊
µ·2N

q

⌉
. In practice N takes values

between 210 and 213 so the most significant bits carrying the true value modulo p are
preserved.

BlindRotate: Then, for a polynomial v(X) ∈ ZN,q[X], called the accumulator, one
homomorphically multiplies v(X) by X−µ̃ by blind rotation which yields an encryption
of the polynomial vµ̃ + vµ̃+1X + · · · ∈ ZN,q[X]. By defining vj := 1

p

⌊
jp
2N

⌉
∀j, the blind

rotation shall output an encrypted version of the message in the zero-degree coefficient.
We do not explain here how this polynomial multiplication occurs, the reader is referred
to [CGGI18] for a more elaborated explanation. The procedure outputs a TRLWE ci-
phertext of dimension k encrypting the polynomial X−µ̃ · v(X). Note that the quotient
polynomial of the ring has degree N but µ̃ lives in Z2N so each coefficient of vi can be
reached with a multiplication by X−µ̃ and by X [N−µ̃]2N . In the latter case, the coefficient
vi gets negated because of the ring modulus XN + 1: we will refer to this problem as the
negacyclicity problem. One way to prevent this issue is to ensure that the most significant
bit of µ is fixed at 0 [Joy22] but a recent work [CLOT21] proposes a more sophisticated
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way to solve this problem. In our case, we use a modified version of the accumulator
detailed in Section 6.

SampleExtract: This step simply extracts the degree-zero coefficient of the previous
polynomial. It takes as input the TRLWE ciphertext yielded by the BlindRotate step
and outputs the TLWE ciphertext c′ encrypting the original message m. However, this
ciphertext is not immediately available for either further homomorphic computations or
decryption, because it has a length kN + 1 instead of n + 1 (and as a consequence is
encrypted under a different TLWE key).

KeySwitch: The previous step outputs the right value, but encrypted under a different
set of parameters i.e. c′ ∈ ZkN+1

q while we are looking for c ∈ Zn
q . The only thing left is to

convert c′ to c, which requires key switching keys constructed from the secret key sk used
at encryption. More details about this specific step can also be found in [CGGI18].

This “bland” procedure of bootstrapping simply refreshes the noise in the ciphertext
to put it back at the “initial level”, but can be very simply turned into a Programmable
bootstrapping. Specifically it can simultaneously evaluate homomorphically any function
f on the input. To achieve this, at the construction of the accumulator, the coefficient vj

is replaced by their evaluation by the function f(vj). This feature is extremely powerful
and is the core of the huge potential of TFHE.

2.6 Basics on Boolean Functions and Boolean Circuits
In this paper, we focus on the evaluation of Boolean functions with TFHE. A Boolean
function has the form f : Bℓ −→ B, with ℓ being called the arity of the function.

Definition 3. The Algebraic Normal Form (ANF) of a Boolean function f : {0, 1}ℓ 7→
{0, 1} is a polynomial expression in which each term corresponds to a specific input
combination of n variables. The ANF is defined as follows:

f(x1, x2, . . . , xl) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ a2n−1x1x2 . . . xl

where: a0, a1, a2, . . . , a2ℓ−1 ∈ {0, 1} are the Boolean coefficients and
x1, x2, . . . , xℓ are called the Boolean variables

This result means that any Boolean function can be evaluated by the means of AND
and XOR operations. In the following, we will focus on the implementation of Boolean
circuits composed of these operations exclusively.

A Boolean function can be represented by its truth table, which is simply a table
gathering all the possible inputs and the corresponding result of the application by the
function. It can also be represented with a Boolean formula. A third representation is the
Boolean circuit:

Definition 4. A Boolean circuit associated to the Boolean function f is a finite Directed
Acyclic Graph whose edges are wires and vertices are Boolean gates representing Boolean
operations. We consider AND gates and XOR gates, of fan-in 2 and fan-out 1. We also
consider copy gates, of fan-in 1 and fan-out > 1, that outputs several copies of its input.
A circuit is further formally composed of input gates of fan-in 0 and fan-out 1, and output
gates of fan-in 1 and fan-out 0.
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Evaluating a ℓ-input m-output circuit consists in writing an input x ∈ Bℓ in the input
gates, processing the gates from input gates to output gates, then reading the outputs
from the output gates.

This notion of Boolean circuit will be particularly useful in Section 5.

3 Boolean Encoding over Zp and Homomorphic Evaluation
Strategy Between B and Zp

To evaluate Boolean functions in TFHE, one could use the vanilla TFHE with p = 2.
The problem is that the only evaluable function would be the XOR operation. To evaluate
the other operators, the solution of [CGGI18] which is also implemented in the tfhe-rs
library [Zam22b] is to take a larger p, specifically p = 8. This allows all the operations
of the Boolean algebra to be carried out, however the negacyclicity problem introduced
in Section 2.5 arises because 8 is even. Their solution to this issue is to keep a bit of
padding fixed to zero, i.e., the values in Zp have their most significant bit fixed to zero.
This restriction has a heavy impact on performances, because it requires a bootstrapping
after each Boolean gate to make sure no data ever overflows in the most significant bit.

Our solution makes use of odd values for p, which allows us to remove this constraint
of padding and to perform more operations without bootstrapping. To do so, we had to
slightly adapt the bootstrapping procedure of TFHE to support odd moduli. We explain
this tweak in Section 6.

Moreover, the PBS described in Section 2.5 takes only one input and so can only
evaluate univariate functions. The common solution to evaluate multivariate functions
is to concatenate several input ciphertexts into one by shifting the MSB of each input
and to sum them all. The problem is that the number of message bits cannot grow too
much because the other parameters of the LWE problem must grow accordingly, degrading
the performances. As a consequence, the performances quickly degrades as the arity of
the function increases. Our approach consists in removing the padding bit and using a
combination of homomorphic additions before a PBS to evaluate a function for any number
of inputs with the cost of a single PBS.

To this purpose, we propose a construction in which we embed Boolean values in Zp

for well-chosen values of p, forming an “intermediate homomorphic layer” between B and
Zq. In the following, we explain how we define such a layer, and we describe our new
strategy to evaluate Boolean functions in a more efficient way without considering the
circuit representation of the function.

3.1 Encoding of B over Zp

To represent Boolean values over Zp, we use a mapping function that we call a p-encoding:

Definition 5 (p-encoding). A p-encoding is a function E : B 7→ 2Zp that maps the Boolean
space to a subset of the discretized torus. A p-encoding is valid if and only if:{

E(0) ∩ E(1) = ∅ and
if p is even: ∀ x ∈ Zp,∀ b ∈ B : x ∈ E(b) ⇐⇒

[
x + p

2
]

p
/∈ E(b) (1)

We call this last property relaxed negacyclicity.

In our approach when we need to encrypt a bit, we apply a p-encoding to embed it on
Zp, then we encrypt the result using the classical setup of TFHE. When new values are
freshly encrypted or produced by a PBS, only one element of Zp is chosen for each bit.
We call such an encoding a canonical p-encoding:
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Figure 2: Representation of two valid p-encodings. The green part represents E(1), and
the red part E(0). Note that the relaxed negacyclity is respected by the p-encoding on the
right-hand figure as p is even.

Definition 6 (Canonical Encoding). A p-encoding E is said canonical if and only if it is
valid and |E(0)| = |E(1)| = 1

Let c be a ciphertext encoding a bit b under a p-encoding E , where E is an arbitrary valid
encoding: its associated subsets can be any subset of Zp as long as the validity requirements
of (1) are fulfilled. One can transform the ciphertext c into another ciphertext c′ encoded
under any canonical p-encoding, possibly under a different p, by simply performing a PBS.
Property 1 (Reduction to a canonical encoding). Let E be a valid p-encoding and E ′

a canonical p′-encoding. We denote α′ = E ′(0) and β′ = E ′(1). Let c be a ciphertext
encrypting a bit b under E . Then, one can produce a ciphertext c′ encrypting the same bit
b under E ′ by applying a PBS on c. This PBS performs the function :

CastE7→E′ : Zp 7→ Zp′

x 7→


α′ if x ∈ E(0)
β′ if x ∈ E(1)
⊥ otherwise.

Here, ⊥ simply denotes a placeholder value for a state that cannot be reached.
Our goal is to represent the Boolean function we want to evaluate with a sum of

p-encodings (we define what we mean by “sum of p-encoding” in Section 3.2). When sums
are carried out on ciphertexts (and so homomorphically on the underlying p-encodings),
the sets E(0) and E(1) of the p-encodings may move, grow, shrink, but they should never
overlap as it would result in a loss of information. As we removed the need of a bit of
padding, we do not need to track a potential overflow of data (informally we say that
ciphertexts are free to “go around the torus”). After the sum, the encoding of the result
can be reset to a canonical one with a PBS to allow further computation. Or, if the
homomorphic computation is over, the result can be recovered by decrypting the ciphertext
and checking in which partition the decrypted value lies.

The next subsection explains in further details the process of evaluating Boolean
functions on with p-encodings.

3.2 A New Strategy for Homomorphic Boolean Evaluation
In the following, we consider two Boolean variables x and y and their two respective
encodings over Zp:

Ex =
{

0 7→ {αi}0≤i≤l0

1 7→ {βi}0≤i≤l1

and Ey =
{

0 7→ {α′
i}0≤i≤l′

0

1 7→ {β′
i}0≤i≤l′

1

(2)
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Let f be a bivariate Boolean function and let us construct two sets P0 and P1 such
that:

Pb = {[γ +δ]p | (γ, δ) ∈ Ex(bx)×Ey(by) and f(bx, by) = b with (bx, by) ∈ B2} ∀ b ∈ B. (3)

We say that the sum of p-encodings Ex + Ey is suitable for the evaluation of f if and
only if P0 ∩P1 = ∅. The definition can be generalized to any number of arguments ℓ for f .
For a given f , finding such correct encodings is not trivial. We elaborate further on this
point in Section 4.

If Ex and Ey are suitable for f , then one can use the computed sets Pb to construct a
new p-encoding

Ez =
{

0 7→ P0

1 7→ P1

that encodes the bit f(x, y). As Ez is valid, then the clear value of the bit can be
recovered by decryption, or further computations can be performed without the need of a
bootstrapping.

Definition 7 (Application of a function to a vector of encodings). Let f : Bℓ 7→ B be a
Boolean function and let E = (E1, . . . , El) be a vector of p-encodings. We define f(E) by:

f(E) =
{

0 7→ P0

1 7→ P1

with:

Pb =


[

l∑
i=1

γi

]
p

| (γ1, . . . , γl) ∈
ℓ∏

i=1
Ei(bi) and f(b1, . . . , bl) = b

∀b ∈ B

We stress that f(E) is a valid p-encoding if and only of P0 ∩ P1 = ∅.

Let us illustrate the latter definition on two toy example. We consider the two Boolean
operators & and ⊕. The p-encoding resulting of the function f : (x, y) 7→ x & y is:

E& =


0 7→ {αi + α′

j}0≤i≤l0
0≤j≤l′

0

∪ {αi + β′
j}0≤i≤l0

0≤j≤l′
1

∪ {α′
i + βj}0≤i≤l′

0
0≤j≤l1

1 7→ {βi + β′
j}0≤i≤l1

0≤j≤l′
1

(4)

and the p-encoding resulting of the operation f : (x, y) 7→ x⊕ y is:

E⊕ =


0 7→ {αi + α′

j}0≤i≤l0
0≤j≤l′

0

∪ {βi + β′
j}0≤i≤l′

0
0≤j≤l′

1

1 7→ {αi + β′
j}0≤i≤l0

0≤j≤l′
1

∪ {α′
i + βj}0≤i≤l′

0
0≤j≤l1

(5)

Figure 3 further illustrates this construction for these two operations.
To wrap up, here is our proposed framework to evaluate a Boolean function f : Bℓ 7→ B

given a vector of suitable p-encodings E = (E1, . . . , El):

1. Encrypt each input bi with some canonical p-encoding Ei into a ciphertext ci such
that Esum = f(E1, . . . , Eℓ) is a valid encoding.

2. For a Boolean function f to be evaluated on b1, . . . , bl, compute homomorphically the
sum of the ciphertexts c = c1 + · · ·+ cl. This yields an encryption of b = f(b1, . . . , bl),
encoded with a valid p-encoding Esum = f(E1, . . . , El).
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Figure 3: Starting from two canonical encodings, we produce two new p-encodings corre-
sponding to the results of the & and the ⊕ operations.

3. (a) If the result is directly required by the client, c is returned as ciphertext which
can be decrypted to get the result in Zp and associated to the right Boolean
value.

(b) If the result is reused in further homomorphic computations, a PBS calculating
CastEsum 7→Enew on the result is computed (like introduced in Property 1), with
Enew a new canonical p-encoding. The resulting value can then be used as an
input for a next Boolean function.

Let us formalize this process by defining the notion of gadget associated to a Boolean
function f :

Definition 8 (Gadget). Let f be a Boolean function of arity ℓ. A gadget associated to f

is an homomorphic operator defined by a tuple Γ =
(
Ein = (E(1)

in , . . . , E(ℓ)
in ), Eout, pin, pout

)
such that:

• All the elements of Ein are pin-encodings, and Eout is a canonical pout-encoding.

• The encoding Esum = f(E(1)
in , . . . , E(ℓ)

in ) is a valid encoding.

Applying a gadget to ciphertexts c1, . . . , cℓ, that encrypt the bits b1, . . . , bℓ, produces a
new ciphertext c′ encrypting the bit f(b1, . . . , bℓ) under the pout-encoding Eout. To do so,
we perform the following algorithm:

• Constructing an intermediate ciphertext cinter =
∑ℓ

i=1 ci using the homomorphic sum
of TFHE. This ciphertext encrypts f(b1, . . . , bℓ) under the pin-encoding f(E1, . . . , Eℓ).

• Reducing the encoding of cinter from Einter to Eout by applying a PBS on cinter

performing the function CastEinter 7→Eout
. This produces the expected result c′.

The advantage of this construction is that only one PBS is performed to apply the
function. Moreover, depending on the function, the input size of the PBS lookup table
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might be much smaller than the arity of the function. Gadgets can be seen as a way to
compress several Boolean operators into a single evaluation of univariate look-up table. Of
course, for a given pin and a given f , such a gadget may not exist. In such a case, two
solutions can be considered:

• Increasing the value of pin (e.g. taking pin ≥ 2ℓ always works, but is very inefficient).

• Splitting the function into a graph of subfunctions, and evaluating each one with a
gadget.

The question of constructing valid gadgets for a given f is treated in Section 4. The
question of efficiently splitting a function is treated in Section 5.

Example: We illustrate our approach with a simple working example: let f be a basic
multiplexing function, such that

f(a, b, c) =
{

a if c = 1
b if c = 0

Instead of leveraging its Boolean representation f(a, b, c) = a&c⊕ b&c̄, which would cost 3
PBS with the approach of [CGGI18], our strategy consists in constructing a gadget and
apply it to the inputs a, b and c, which takes only one PBS. Here is the step-by-step
procedure:

1. Encrypting the bits with the 7-encodings:

Ea = Eb =
{

0 7→ {0}
1 7→ {1}

and Ec =
{

0 7→ {0}
1 7→ {2}

.

2. Applying the function f on the 7-encodings by summing the ciphertexts, producing
a valid 7-encoding:

Esum =
{

0 7→ {0, 1, 2, 5}
1 7→ {3, 4, 6}

At this point, only sums have been performed on the ciphertexts.

3. With one PBS, resetting the result to a target canonical p-encoding (with any p), for
example

Enew =
{

0 7→ {0}
1 7→ {1}

with p = 7

A visualization of this procedure can be found in Figure 4. We just defined the gadget
Γ = ((Ea, Eb, Ec), Enew, 7, 7).

3.3 Encoding Switching
To apply a gadget to a given ciphertext, it has to be encrypted under the right encoding.
Thus, we need a method to homomorphically switch the encoding of a ciphertext. This
allows as well to plug the output of any gadget on the input of any other one, and so
to evaluate a chain of gadgets as long as we want. In the following, we explore different
possibilities of encoding switching. Let us begin with some trivial cases:
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Figure 4: Illustration of an execution of the framework for the multiplexing function.

Property 2 (Encoding switching with a sum by a constant). Let x be a ciphertext

encoded under Ex =
{

0 7→ {αi}0≤i≤l0

1 7→ {βi}0≤i≤l1

and a ∈ Zp a constant. The encoding of x can

be switched to:

E ′
x =

{
0 7→ {[αi + a]p}0≤i≤l0

1 7→ {[βi + a]p}0≤i≤l1

by an homomorphic addition of the ciphertext x and the clear value a.

Proof. All the elements of E ′
x(0) (resp. E ′

x(1)) are offset by exactly a from their counterparts
in Ex(0) (resp. E(1)). Thus, if the original encoding Ex was valid, then Ex(0) ∩ Ex(1) = ∅.
So we trivially get E ′

x(0) ∩ E ′
x(1) = ∅ and thus the validity of E ′

x.

Property 3 (Encoding switching with multiplication by a constant). Let x be a ciphertext

encoded under Ex =
{

0 7→ {αi}0≤i≤l0

1 7→ {βi}0≤i≤l1

and a ∈ Zp a constant value prime with p. The

encoding of x can be switched to:

E ′
x =

{
0 7→ {[a · αi]p}0≤i≤l0

1 7→ {[a · βi]p}0≤i≤l1

by an homomorphic multiplication of the ciphertext x by the clear value a.

Proof. As a is prime with p, the multiplication by a is a bijection from Zp to Zp. By
definition, all the αi’s are different of the βi’s. If we apply a bijection on them, the
inequalities are conserved.

Note that the condition of primality between a and p is a sufficient condition for the
multiplication to be a valid encoding switching, but is not necessary. In particular, one
other case is particularly useful in practice:

Property 4 (Encoding switching for a canonical encoding containing a zero). Let x be a

ciphertext encoded under the p-encoding: Ex =
{

0 7→ {0}
1 7→ {1}

and let a ∈ Zp \ {0}. Then,
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it can be switched to: E ′
x =

{
0 7→ {0}
1 7→ {a}

by a simple homomorphic multiplication between

the ciphertext x and the clear value a. This holds as well if E(0) and E(1) swapped.

Proof. The property is trivial by the linear homomorphism of the TFHE scheme.

These techniques are powerful because they do not require any bootstrapping, so they
can be considered as free in terms of performances. However, any valid p-encoding can
be turned into any other one with a programmable bootstrapping, even with a different
modulus p. A reduced version of this is given by Property 1, but it can be extended to
any valid output p-encoding.

Property 5 (Arbitrary encoding switching with a PBS). Let c be a ciphertext encoded
under E . Its encoding can be switched to E ′ (even with a different modulus p′) by applying
a PBS on c evaluating the function

CastE7→E′ : Zp 7→ Zp′ (6)

x 7→


α′ ∈ E ′(0) if x ∈ E(0)
β′ ∈ E ′(1) if x ∈ E(1)
⊥ otherwise.

(7)

Here, ⊥ simply denotes an arbitrary placeholder value, as it will never be reached.

See Sections 2.5 and 6.2 for a more in-depth insight on the actual procedure of
programmable bootstrapping.

4 Algorithms of construction of gadgets
Let f : Bℓ 7→ B a Boolean function with ℓ entries. This section addresses the problem of
constructing a gadget for f . To do so, we pick a value for p and we search a vector of ℓ
p-encodings Ein suitable for f .

4.1 Reduction of the Search Space
While exhaustive search is a first option, it quickly becomes impractical due to the explosion
of the number of possibilities as p grows. As a consequence, a reduction of the search
space is needed without leaving out a potential solution.

We introduce two lemmas that will be used to reduce the search space:

Lemma 1 (Reducibility to singletons). Let f : Bℓ −→ B and let (E1, . . . , El) be a vector of p-

encodings suitable for f and having the form: ∀ i ∈ {1, . . . , ℓ}, Ei =

0 7→ {x(i)
j }1≤j≤l

(i)
0

1 7→ {y(i)
j }1≤j≤l

(i)
1

.

Then any vector of canonical p-encodings (E ′
1, . . . , E ′

l) of the form: ∀ i ∈ {1, . . . , ℓ}, E ′
i ={

0 7→ {x(i)}
1 7→ {y(i)}

with x(i) ∈ Ei(0) and y(i) ∈ Ei(1) is suitable for the function f as well.

Proof. Let us assume that the vector E = (E1, . . . , El) of Lemma 1 is suitable for the
function f . Then the sets P0 and P1 constructed like in Equation 3 are disjoint. Now, let
us consider the vector of canonical p-encodings E ′ = (E ′

1, . . . , E ′
l ) respecting the property:

∀ b ∈ B,∀ i ∈ {0, . . . , ℓ}, E ′
i(b) ⊂ Ei(b).

As a consequence, if we build the sets P ′
0 and P ′

1 relative to the encodings E ′, then we
naturally get P ′

0 ⊂ P0 and P ′
1 ⊂ P1. So we get P ′

0 ∩ P ′
1 = ∅, proving Lemma 1.
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Lemma 2 (Reducibility to the singleton zero). Let f : Bℓ −→ B and let (E1, . . . , El) be a

vector of p-encodings suitable for f and of the form: ∀i ∈ {1, . . . , ℓ}, Ei =
{

0 7→ {x(i)}
1 7→ {y(i)}

Then any vector of canonical p-encodings (E ′
1, . . . , E ′

l) of the form: ∀ i ∈ {1, . . . , ℓ}, E ′
i ={

0 7→ {0}
1 7→ {y(i) − x(i)}

is suitable for the function f as well.

Proof. Let f : Bℓ −→ B be a function and E be a vector of canonical p-encodings (E1, . . . , El)
suitable for f with:

∀ i ∈ {1, . . . , ℓ}, Ei =
{

0 7→ {x(i)}
1 7→ {y(i)}

.

Let us build the sets P0 and P1 according to Equation 3. Each element of these sets is the
sum of exactly one element of each p-encoding, that is to say an element Ei(0) ∪ Ei(1).

Let us pick an indice k ∈ {1, . . . , ℓ}, a value a ∈ Zp and replace Ek in the vector E by:

E ′
k =

{
0 7→ {x(i) − a}
1 7→ {y(i) − a}

By using the Property 2, we directly have P ′
0 ∩P ′

1 = ∅ from P0 ∩P1 = ∅ (by suitability
of the encodings for f).

By iterating this procedure on each of the ℓ elements of E , and by picking each time
a = −x(i), we prove Lemma 2.

Using both Lemmas 1 and 2, we can restrict the search to the encodings of the form

Ei =
{

0 7→ {0}
1 7→ {di}

with di ̸= 0 without any loss of generality.
Moreover, we restrict the solution further: we only consider p-encodings with p odd and

prime. The choice of an odd p allows to free ourselves from the negacyclicity constraint
(more about that in Section 6.1). To explain the constraint of primality, we introduce the
following lemma, that allows to drastically improve the performances of the search:

Lemma 3. Let p be a prime and f : B −→ B be a Boolean function and let E = (E1, . . . , El)

be p-encodings suitable for f with: ∀ i ∈ {1, . . . , ℓ}, Ei =
{

0 7→ {x(i)}
1 7→ {y(i)}

. For every

a ∈ Zp \ {0}, the vector of p-encodings E ′ = (E ′
1, . . . , E ′

l ) with: E ′
i =

{
0 7→ {[a · x(i)]p}
1 7→ {[a · y(i)]p}

is

suitable for f as well.

Proof. This is an immediate consequence of Property 3.

As a consequence, if p is prime (which we shall always choose in practice), any solution
can be turned into a solution with d1 = 1 by simply multiplying all the p-encodings of the
solution by [d−1

1 ]p. So we can fix d1 = 1 without any loss of generality, reducing drastically
the size of the search space.
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4.2 Formalization of the Search Problem
According to the lemmas from Section 4.1, we can reduce the problem of finding a vector of
p-encodings (E1, . . . , El) such that f(E1, . . . , El) is valid to the problem of finding a vector

d = (d1, . . . , dl) such that Ei =
{

0 7→ {0}
1 7→ {di}

and f(E1, . . . , El) is valid. In the following,

we describe an algorithm to find such a vector d.
We denote V the matrix of elements of B of shape 2ℓ × ℓ gathering all the possible

sequences of entries for the function f :

V =


0 . . . 0 0
0 . . . 0 1
... . . . ...

...
1 . . . 1 1


Also, we denote by b the vector of all the outputs of the function f , sorted in same

order as the rows of V . Thus, we have: ∀ i ∈ {1, . . . , 2ℓ}, bi = f(Vi) for Vi the ith row of
V . Let us define the vector r as: r = V d. To make d a solution of the problem, r has to
verify the following property:

∀ i, j ∈ {1, . . . , 2ℓ}2, f(Vi) ̸= f(Vj) =⇒ ri ̸= rj

An alternative formulation is: we look for two disjoint subsets P0 and P1 of Zp, such that:
f(Vi) = b⇐⇒ ri ∈ Pb.

The following section describes an algorithm finding a solution to this problem.

4.3 Algorithm
We start by constructing two sets F and T such that:

F = {Vi|bi = 0} and T = {Vi|bi = 1}.

Each line Vi represents a linear combination of the dj ’s, that verifies:

ri =
ℓ∑

j=0
Vij · dj mod p.

The values ri produced by the elements of F must be different from the ones produced by
T . As a consequence, we can write:

∀ (Vi, Vj) ∈ F × T ,

ℓ∑
k=0

Vik · dk ̸=
ℓ∑

k=0
Vjk · dk,

which is equivalent to writing:

∀ (Vi, Vj) ∈ F × T ,

ℓ∑
k=0

(Vik − Vjk) · dk ̸= 0.

So we can rewrite our constraints in the set C = {Vi − Vj |(Vi, Vj) ∈ F × T }. C contains
vectors with coordinates in {0, 1,−1} representing linear combinations that have to be
non-zero. Note that if an element of the set C is the opposite of an other, it does not bring
further constraint and can thus be safely discarded from the set.
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The use of a set in the implementation at this point of the algorithm allows to remove
a lot of duplicate constraints and to simplify the next step. Then, the problem reduces to
solving a “linear system of inequalities” in the ring Zp:

c
(1)
1 · d1 + · · ·+ c

(1)
l · dl ̸= 0 mod p

c
(2)
1 · d1 + · · ·+ c

(2)
l · dl ̸= 0 mod p

...
with c

(j)
i ∈ {0,±1}

After filtering, we pack all the elements of C in ℓ matrices {Ci}1≤i≤ℓ (each row being a
linear combination), where the matrix Ci packs all the constraints involving only the i
first inputs (i.e. all the coefficients of column index greater than i are zeros).

We then perform a recursive search (Algorithm 1), affecting at each step of depth i
a possible value di for the i-th input. To do so, we call Algorithm 2 to construct the set
of all possible values complying with the constraints of the matrix Ci and the previously
set values for the preceding inputs. If we reach a dead-end, we backtrack by deleting the
preceding input and assigning it the next possible value. Algorithms 1 and 2 formalize
this idea: Algorithm 1 is a basic recursive backtracking algorithm using calls to the set
construction function (Algorithm 2) to get the possibilities for the next value of d. The
latter, when called at depth j + 1, takes as input the j values already computed at higher
depth for d and the matrix of constraints Cj+1. Each line of Cj+1 creates a (potentially
duplicate) forbidden value for dj+1, these values are all computed and the complement of
this set in Zp is returned by the algorithm (i.e. the set for possible values for dj+1 at this
point of the search).

Theorem 1. Running Algorithm 1 with increasing values of p ensures that the first solution
d found is optimal for the function f , i.e. the solution works and its associated p is the
smallest as possible.

Optimizations: Several optimizations are possible to improve the performances of the
search. First, in Algorithm 2, one can check the size of the set S̄ at each iteration and
stop as soon as the size of the set is p. Such a set means that a dead-end has been reached
and that no value will be returned by the function. Then, one can leverage symmetries
existing in the table but also in the function. For example, if we consider the function
f : (x, y) −→ x⊕ y, the two variables x and y have symmetric roles. Thus, if the pair of
encodings (Ex, Ey) is valid, then the pair (Ey, Ex) is valid as well. As a consequence, one
can arbitrarily set dx ≤ dy and removing half the possibilities for (x, y).

Development of an heuristic: This algorithm of the previous section is deterministic
and finds any existing set of encodings compliant with the function f for a given value
of p. However, the right value for p is not known a priori, so we have to run the full
algorithm for each possible value of p until we find one that works. For these reasons, we
might prefer an efficient heuristic over the previous algorithm in some contexts. In Section
4.5, we define such a heuristic which allows to drastically improve the performance by
executing directly the algorithm with realistic values for p.

4.4 Performances measurements
In this section, we present some experimental results to demonstrate the performances of
the algorithm. We ran Algorithm 1 for a lot of random Boolean functions of arity ℓ. Two
metrics are particularly interesting for us:

• The running time of the algorithm, especially in the cases where there is no solution.
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Algorithm 1 Recursive function search that adds an element to the vector d
Require:

d := (di)1≤i≤j ▷ The vector of values for the inputs already computed
{Ci|i ∈ {0, . . . , ℓ− 1}} ▷ The matrices of constraints, pre-computed
p ∈ N∗ ▷ the modulus of the input encodings
ℓ ∈ N∗ ▷ The target number of encodings required

Ensure: f is evaluable using the encodings d.
if j = ℓ then

return d ▷ Base case of recursion when a complete solution has been found
else
P ← get_possible_values(d, Cj+1, p) ▷ Retrieving the set of

possible values for dk.
for x ∈ P do

d← (d||x) ▷ Affecting one of the possible value to dk

dsol ← search(d, C, p, ℓ) ▷ Recursively calling the algorithm
if dsol ̸= ⊥ then

return dsol ▷ If a final solution has been found,
propagating it to the higher level

else
d← d[: j + 1] ▷ If the previous call failed, we remove

the last value and try an other one.
end if

end for
return ⊥ ▷ If all of the possibilities have been tested

and none of them work, we need to backtrack
end if

Algorithm 2 Function get_possible_values that builds the set of possible values for
the next slot of d given the slots already filled in.
Require:

d := (di){1≤i≤j} ▷ The set of values for the inputs already computed. Note that d1 is
fixed to 1
Cj+1 ▷ The matrix of constraints of this step, pre-computed
p ∈ N∗ ▷ the modulus of input encoding

Ensure: The set S contains only values suitable for the j + 1-th slot of d.
S̄ ← {} ▷ S̄ is the set of forbidden values for dj+1
for c ∈ Cj+1 do

c̄← c[j + 1] ▷ We retrieve the (j + 1)th coefficient of the inequation c

S̄ ← S̄ ∪ {
[
−c̄ ·

∑j
k=1 ck · dk

]
p
} ▷ We compute the value forbidden by c

end for
S ← Zp \ S̄
return S
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Figure 5: Rate of success of the algorithm for 100 random Boolean functions for different
values of ℓ and p.

• The probability of success, for a random function

Figure 5 shows the rate of success for random Boolean functions of arity ℓ ∈ {2, 9} and
for prime values of p ∈ [3, 39]. It illustrates the intuitive idea that one has to increase p to
evaluate functions of bigger arity ℓ. It also give a rough idea of the value of p required for
a given function of arity ℓ.

Figure 6a shows the evolution of the time of execution of the algorithm for random
Boolean functions for which no solution exists. It shows the explosion of the complexity
for high values of p, and justifies the need of a more efficient algorithm for those function
(we introduce one in Section 5).

Lastly, Figure 6b shows how long it takes to find a solution when one exists, relatively
to the running time when no solution exist at all. It illustrates a form of "speed of
convergence" and shows that it is located around 1

3 .

4.5 An Efficient Sieving Heuristic to Find Suitable Encodings

Let us consider a function f : Bℓ 7→ B of matrix of constraints C = (C(i)
j )1≤i≤nj

1≤j≤ℓ

and its

associated system of linear inequalities:
c

(1)
1 × d1 + c

(1)
2 × d2 + · · ·+ c

(1)
ℓ × dℓ ̸= 0 mod p

c
(2)
1 × d1 + c

(2)
2 × d2 + · · ·+ c

(2)
ℓ × dℓ ̸= 0 mod p

. . .

The principle is to sample random values in Z (with some large bound) and affect them
to the dj ’s. If all the corresponding values for all the Ci =

∑ℓ
j=1 c

(i)
j × dj are not divisible

by a value p, then the vector (dj mod p | j ∈ {1, . . . , ℓ}) is a solution of the system of
inequalities generated by C.
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(a) Running time of the algorithm for different values
of ℓ and p for random functions. Note that the scale
is logarithmic.

(b) Ratio between the time to
find a solution when it exists with
the time to run the full algorithm
when no solution exists.

Figure 6: Some metrics about running time.

To reduce the amount of samples required to find a solution, we want to avoid sampling
trivially wrong sets of dj ’s. For example, if all the dj ’s are themselves divisible by p, then
the Ci’s will all be divisible as well. To tackle this problem, we perform the sampling
across prime numbers in Z.

Algorithm 3 Sample a solution d in Z for a function f and returns a possible value for p.
Require:
{Ci}1≤i≤n ▷ The lines of the matrix of constraints C of the function f
P ▷ The sets of possible values for p to be tested
D ▷ The sets of possible values in Z to assign to the di’s. All these elements are big
primes

Ensure: f is possible to evaluate using a modulus smaller or equal than p.
d $← D ▷ Sample random prime values in Z and assign it to d = (d1, . . . , dl)
r = C × d ▷ r is the right member of the system
for p ∈ P do

if 0 ∈ [r]p then ▷ If p divides one of the coordinates of r
P ← P \ {p} ▷ This value of p is incorrect

end if
end for
if | P |> 0 then

return min(P ) ▷ Returns the smallest possible value for p, if any.
end if

Running this algorithm several times and keeping the smallest returned value for p,
one gets an upper bound on the minimum p required to evaluate a function with our
framework. Note that, on the contrary of the deterministic search algorithm, this heuristic
does not require a prime p.

Example: Let us consider the s-box of the block cipher ASCON. We study this s-box in
more details and provide an exact optimized solution for its homomorphic evaluation in
Section 7.4. Here, we apply Algorithm 3 on the five functions generating the five output
bits and monitor the results until we gather N = 10000 non-zero possible values for p.
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(a) The outputs of 10000 runs of the Algorithm
3 for the first subfunction of the Ascon s-box

(b) Number of iterations required to get a solu-
tion for a given value of p

The figure 7a shows the repartition of the returned values of p by the algorithm during
these N runs on the first subfunction. The optimal value of p found by the deterministic
approach of Section 4.3 is 17 so the upper bound 19 is pretty close, despite being rarely
found by the algorithm. Also, the figure 7b shows 21 (the second best solution found by
the sieving) is almost instantly found by the algorithm.

In the process of finding the smallest p possible and a correct vector of p-encoding to
evaluate a function f , this heuristic is really efficient to get a tight upper bound on the
value of p.

5 Scaling our Approach to any Boolean Circuit
Our framework optimizes the homomorphic evaluation of single Boolean functions but
suffers the following limitations:

1. For a Boolean function with a high number of inputs, the search algorithm may be
very time-consuming.

2. Some functions simply do not have any solution for acceptable values for p (p < 32
for example) and thus are not efficiently evaluable in a single PBS.1

As a consequence, we need a solution to extend our framework to these cases. In this
section, we propose a strategy to leverage the circuit representation of a “tough” function
f to find a strategy of homomorphic evaluation with as few bootstrappings as possible.

5.1 Graph of Subcircuits
Let f : Bℓ −→ B be a Boolean function, and let F be a Boolean circuit representing f
(some preliminaries about Boolean circuits can be found in Section 2.6). Let us describe
the layout of the circuit F . It has ℓ input wires, denoted by {yj}1≤j≤ℓ, and the output
wire is denoted by z. The intermediary wires are denoted by {tj}1≤j≤θ. The Boolean
operation gates are of fan-out 1.

Our goal is to split the circuit into a directed acyclic graph G, whose vertexes are
subcircuits {F1, . . . ,Fk} and whose edges connect the outputs of a subcircuit with the
input of another. Each subcircuit Fi represents a subfunction fi : Bli 7→ B that is evaluable
with a gadget with our framework.

1The PBS can be evaluated for larger values of p but it quickly becomes inefficient as p grows.
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Figure 8: Example of graph of subcircuits (on left) and of a valid subcircuit (on right).
Each subcircuit Fi is evaluated homomorphically with a gadget Γi.

We use the same notations to refer to the elements of a subcircuit Fi and we index
them with i. The output of Fi is denoted by z(i) and its inputs by {y(i)

j }1≤j≤ℓ and so on.
The graph is valid for f with respect to modulus p if the following properties are

satisfied:

• Each subcircuit Fi has only one output z(i).

• For a subcircuit Fi, all its inputs are either inputs of the whole circuit or outputs of
other subcircuits of the graph. We can write this property as:

{y(i)
j }1≤j≤li

⊂
(
{yj}1≤j≤ℓ ∪ {z(j)}1≤j<i

)
Thus, the indexing of the Fi’s respects the topological order of the graph, i.e. no
gates of Fi has a child in any of the Fj , with j < i.

• All the Boolean functions fi represented by the subcircuits Fi are evaluable in a
single bootstrapping with modulus p with our proposed method.

• The last subcircuit Fc of the graph has z (the output of the main circuit) for output:
z(c) = z.

To homomorphically evaluate the function f , we evaluate each subcircuits with one
bootstrapping for each of them and get the final result. In order to reduce the cost of
evaluation for a given p, the goal is hence to find the smallest valid graph possible in terms
of number of subcircuits. Taking a greater value of p produces a different graph that may
be smaller (as subcircuits might be larger), but the timings of bootstrapping in this graph
might on the other hand be greater. One can therefore run the search for different values
of p and keep the most efficient setup among the possible graphs.
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5.2 Heuristics to Find a Small Graph
Finding such a graph can be done by exhaustively evaluating all the possible subcircuits
with our method introduced in Section 4, and then find the more efficient one. However it
is not really practical to evaluate all the possible subcircuits, so we develop some heuristics
to reduce the search space. Let us start by defining a few bounds on the considered
subcircuits, we will leave the other ones apart in our algorithm:

• The subcircuits have at most B inputs (∀i, l(i) < B). The purpose of this bound is
to limit the running time of Algorithm 1. In practice, for our experiments, we took
B = 10.

• The subcircuits are evaluable with one single bootstrapping with a maximum value
pmax. This value ensures a bootstrapping with a reasonable timing. If the search
algorithm fails for pmax, the subcircuit is dropped without trying to extend p. In
our experiment, we took pmax = 31.

In order to decompose our Boolean circuit into a graph satisfying the above property
for a modulus p, we would want to exhaustively search all the subcircuits of F compliant
with the bounds we introduced earlier. However, all subcircuits are not equally worth
to evaluate. In particular a wire incoming a copy gate is particularly worth evaluating
because is costs one bootstrapping but produce several inputs for the next subcircuits.

We gather wires that precede a copy gate in the set Z. We add to this set the global
output z. We also gather the input wires of the global circuit F in the set Y . We define the
notion of atomic subcircuit that is a valid subcircuit whose all inputs belong to Y ∪ Z and
whose output belongs to Z. Note that the merge of two atomic subcircuits that respect
the global circuit wiring is also an atomic subcircuit.

Our heuristic works as follows:

1. For each of these outputs zi ∈ Z, we exhaustively construct a set F̂zi
that gathers

all the atomic subcircuits whose output is zi. We then filter out the subcircuits of
F̂zi

that do not comply with the bounds introduced at the beginning of the section
or that are not evaluable with a gadget with the input modulus p (we use Algorithm
1 to decide that).

2. Now we want to construct the smallest valid graph evaluating F using subcircuits
from the F̂zi ’s. While finding the smallest graph is hard, constructing any valid
graph is easy. As a consequence, our strategy to find a small graph is to randomly
create a lot of valid graphs and to take the smallest one. The procedure to create
a valid graph is the following: we start from the output z and we randomly draw
a subcircuit Fz from F̂z. The inputs of Fz can be sorted into two categories: the
ones belonging to Y and the ones belonging to Z. For each one of these latter wires
w ∈ Z, we repeat the procedure, i.e. we draw a subcircuit Fw from F̂w, and so
on. When we have reached all the input wires of F , we get a valid graph G . This
second step is run a large amount of times (the number of trials is a parameter of
the method), and the smallest graph, i.e. the one with the fewest subcircuits, is
returned.

We carried on this method on the s-box of AES in Section 7.5.

5.3 Parallelization of the Execution of the Graph
Once we have our graph G, we can identify its nL layers. Formally, they are defined as:
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Definition 9. A layer L of a graph G is a set of subcircuit {Fα, . . . ,Fω} of G that verifies:
∀Fi,Fj ∈ L,Fi is not an ancestor node of Fj .

By construction, all the subcircuits belonging to the same layer can be evaluated in
parallel. This reduces the number of bootstrapping steps from k (the number of subcircuits
in the graph G) to nL (the number of layers). Our graph-finding heuristic can be tweaked to
select the graph with minimum number of layers instead of minimum number of subcircuits
to optimize parallelization.

6 Adaptation of TFHE and the tfhe-rs Library
From a high level point of view, our technique can be seen as adding an additional layer of
abstraction on top of TFHE. However things are not that simple: picking odd values for p
leads to some changes in the inner working of the programmable bootstrapping (PBS), and
the choice of parameters is also affected by this change. Moreover, we implemented our
framework by forking the tfhe-rs library [Zam22b] written in Rust. The following section
covers the adaptation of the PBS and the choice of new parameters. The adaptation of
the library is treated in Section 6.4.

6.1 Dealing with the Negacyclicity Problem for an Odd p

In the following, we explain the negacyclicity problem and how we propose to solve it. To
do so, we need to dig into the details of the BlindRotate step of the PBS, that we have
introduced in Section 2.5.

Let v(X) be a polynomial of the ring Zq,N [X]/(XN +1), denoted by v(X) =
∑N−1

k=0 vkXk.
Observe that a multiplication by X in this ring “rotates” the coefficients of the polynomial:

X · v(X) = −vN−1 + v0 ·X · · ·+ vN−2XN−1 .

In TFHE, the polynomial multiplication in the blind rotation is actually done by X−µ̃,
with µ̃ =

⌊
µ·2N

q

⌉
, which lives in {0, . . . , 2N − 1}. This leads to two problems:

• A coefficient vj can be brought in first place by two differents rotations: the one
induced by the polynomial multiplication by X [−j]2N and the one by X [−j+N ]2N .

• Each time a coefficient goes last to first, it gets negated (because XN = −1 in the
ring). So actually, the multiplication by X [−j]2N yields correctly vj , but the one by
X [−j+N ]2N yields −vj .

However, these problems can be circumvented for even and odd values of p. Recall that
µ = m + e ∈ Zq, with e sampled from a small centered Gaussian. The use of a small error
makes that µ does not take all the values of Zq with the same probability: in particular,
the densest parts in terms of probability over Zq are the one close to the “unscrambled”
values of m, namely

{⌊
kq
p

⌉
| k ∈ Zp

}
. We illustrate this distribution on Figure 9. We call

these sections of the torus the dense spots.
When we transpose these dense spots into Z2N , they become the sectors close to{⌊
k·2N

p

⌉
| k ∈ Zp

}
. Let us note that the noises in Zq and Z2N are fundamentally different:

the former is the one added at encryption that may have grew during the homomorphic
computations, and the latter is called “drift” and is caused by the accumulation of the
rounding errors on each coefficient of the ciphertext during the modulus switching (but
this difference in nature does not impact our purpose). Let k ∈ Zp, the multiplication
X− k·2N

p · v(X) yields the same degree-zero coefficient as the multiplication X[− k·2N
p +N]2N ·
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Figure 9: Distribution of the values of µ across Zq for p = 6 and p = 5: the colored parts
show the dense spots where the value has a high probability to lie in. The width of these
sectors depends on σ (the standard deviation of the error distribution χ of TFHE). Note
that this repartition looks the same for µ̃ in Z2N .

(a) With p even, the dense spots of each half of
the torus are aligned.

(b) With p odd, the dense spots face empty spots,
close to the bounds of the p-sectors.

Figure 10

v(X), up to the minus sign. For the sake of clarity, we write the exponent of the latter in
a slightly different manner:[

−k · 2N

p
+ N

]
2N

=
[ (−k + p

2 ) · 2N

p

]
2N

This is where the parity of p plays a part: if p is even, then
[

(−k+ p
2 )·2N

p

]
2N

is a dense
spot as well. So, the rotations by these two values will happen with high probability and
they will both yield the same coefficient v k·2N

p
(up to the minus sign for one of them). Thus,

when evaluating a function f with a PBS, the calls f(k) and f(k + p
2 ) will produce the same

output (one again, up to the minus sign), which is a collision constraining the definition of
f . On the other hand, let us consider an odd value for p. Then,

[
(−k+ p

2 )·2N

p

]
2N

is no longer

a dense spot, as it lies exactly halfway between the two dense spots
[

(−k+ p−1
2 )·2N

p

]
2N

and
[

(−k+ p+1
2 )·2N

p

]
2N

. As a consequence, collision never occurs. Figure 10 illustrates this
phenomenon.

That is why we select only odd values for p in our framework. We will see in Section
6.3 how this change impacts the parametrization of the scheme.

Exception for p = 2: We just said that only odd values can be selected for p in our
framework, however p-encodings with even values of p exist as well: nonetheless they need
to achieve the relaxed negacyclicity property introduced in Definition 5. This restriction
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makes them basically useless, as using only odd p-encodings is sufficient to evaluate all
possible Boolean functions without having to bother with the negacyclicity property.
However, the case p = 2 is an exception: the valid 2-encodings are automatically negacyclic
and allow to evaluate the XOR operation by simply performing an homomorphic sum (so
without bootstrapping). So it might be efficient to switch between 2-encodings for XOR
operations and p-encodings (with odd p) for non-linear Boolean functions. We make use
of this strategy in our implementation of the Keccak permutation in Section 7.3 and for
the AES in Section 7.5.

6.2 Construction of the Accumulator for an Odd p

The accumulator is the polynomial v(X) used in the BlindRotate step of the PBS. In
the Section 6.1, we showed how the values are spread over the torus after bootstrapping.
To actually make that works, we need to explicitly characterize this polynomial. In the
following presentation, we neglect roundings to keep notations light (as if p would divide
N), or, equivalently, the division operator is assumed to include rounding.

Definition 10. If p is an odd modulus, and f : Zp 7→ Zp′ a function, then the accumulator
v(X) ∈ ZN,q[X]/(XN + 1) has the form:

v(X) = X− N
2p ·

N/p−1∑
j=0

Xj ·

 p−1
2∑

i=0
f(i)Xi 2N

p +
p−1

2 −1∑
i=0

−f

(
i + p + 1

2

)
Xi 2N

p + N
p


Let us explain the structure of this accumulator. The polynomial has degree N

and is made of p distinct windows of width N
p . Each of these windows has constant

coefficient value f(k), for k ∈ {0, . . . , p − 1}. For 0 ≤ α ≤ p−1
2 , the range of degrees

whose coefficients are f(α) is
[
α 2N

p −
N
2p ; α 2N

p + N
2p

]
. Now, for p+1

2 ≤ β ≤ p − 1, we
can write β = α + p+1

2 , with 0 ≤ α < p−1
2 . This time, the range of spanned degrees

is
[
α 2N

p + N
2p ; (α + 1) 2N

p −
N
2p

]
. Thus, the values k ∈ {0, . . . , p − 1} spans the entire

space [0; N) without overlap. The values over p+1
2 gets negated by the negacyclicity, so

the underlying coefficient is also negated to compensate this effect. We illustrate this
construction on Figure 11.

6.3 Crafting of Parameters
The instances of the TFHE scheme are defined by a set of parameters. These parameters
should simultaneously ensure the security of the scheme and the correctness of the homo-
morphic computations. They also determine the time of execution of one PBS. Here we
define a framework to dimension the parameters required to optimally execute a given
gadget.

Finding an optimal set of parameters for a given application is a hard problem and has
been studied in particular in [BBB+23]. The parameters need to ensure three properties:
security, correctness and efficiency.

Let us start by an overview of the different parameters at play in an instance of the
TFHE bootstrapping:

• n: the dimension of the LWE samples. Namely, the TLWE ciphertexts are vectors of
length n + 1.

• q: the modulus of the ring the encrypted values live on. In tfhe-rs those values
are stored on u32 values, making q = 232. We treat this as an immutable platform-
dependent value.



26 Optimized Homomorphic Evaluation of Boolean Functions

Figure 11: Illustration of the construction of the accumulator. On top is the ring Z2N

splitted in windows. Below is a representation of the polynomial v, with its version once
rotated by a multiplication by XN . On the figure, p = 5.

• σ: the standard deviation of the Gaussian distribution of error in LWE samples.

• k: the dimension of the GLWE samples. If k = 1, we talk about RLWE samples.

• σ′: the standard deviation of the Gaussian distribution of error in GLWE samples.

• A few more parameters dimensioning some inner algorithms of the bootstrapping. A
detailed description and an analysis of their impact on performances and noise level
can be found in [BBB+23]. In this work, they are denoted as micro-parameters.

In [BBB+23], authors elaborate a strategy where they define an atomic pattern of FHE
operators, that is to say a subgraph of FHE operators in which the noise of the output is
independent from the one in the inputs. Then, they develop an optimization framework to
derive the best set of parameters for a given atomic pattern.

In particular, the first atomic pattern they study, that they denote by A(CJP 21), is a
subgraph composed of a linear combination of ciphertexts with clear constants, then a
Keyswitch and then a BlindRotate followed by a SampleExtract (ModulusSwitch is seen
as a part of BlindRotate). Note that in Section 2.5 we introduced the bootstrapping of
TFHE by putting the BlindRotate before the Keyswitch, but the other way around is also
doable. To dimension the parameters of TFHE to evaluate such an atomic pattern, their
framework takes as input the 2-norm of the vector of constants of the linear combination
(denoted by ν) and a noise bound t on the standard deviation of the distribution of error
in a ciphertext that ensures a correct decryption with a good probability (1 − ϵ). We
elaborate further on how this bound is constructed below in this section.

If we look closely, the evaluation of a gadget we introduced in Definition 8 can be seen as
aA(CJP 21) with a few differences. Thus, we slightly modified the tool concrete-optimizer
[Zam22a], that allows to generate parameters for different types of atomic patterns, to
support our gadget as a new atomic pattern. Let us dive into the differences between a
gadget and a A(CJP 21):
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Support of odd values for p: Using an odd value for p changes the bootstrapping
procedure, and in particular the definition of the accumulator for the BlindRotate (as
explained in Section 6.2). With our construction, the windows in the polynomial are
half the size of the ones for an even p, which impacts the noise bound t. As this bound
depends of the failure probability α that the user is ready to tolerate, we shall denote it tα

hereafter, which satisfies: tα = ∆
2z∗(1− N

√
1−α) where z∗ is the standard score and ∆ is the

scaling factor (see [BBB+23] for more explanations). The impact of our adaptation on
this formula is solely with respect to the scaling factor. In the context of an A(CJP 21), we
have ∆ = q

2πp with π the number of MSB for padding. As explained in Section 6.1, we do
not need any padding mechanism anymore, so the 2π vanishes. However, the length of a
window is divided by 2, and p does not divide q anymore so we need to add a rounding.
We finally get ∆ =

⌊
q

2p

⌉
.

Link between input encodings and ν: In a scenario where only one gadget has to be
evaluated, its inputs are freshly encrypted ciphertexts. Then, there is no need to perform
any encoding switching before evaluating the gadget, and so we are in the context of a
A(CJP 21) with ν = 1. However, if we are in a context of a graph of gadgets like in Section 5,
the output of a gadget can be used as input of subsequent gadgets under different encodings.
In this case, some encoding switchings are necessary. If these encoding switching are made
using a mutiplication by a constant (Property 3), we are still in the context of a ACJP 21

but with ν ̸= 1. To formalize that, we first recall that Algorithm 1 produces gadgets of the

form Γ = (Ein, Eout, pin, pout, f), with E(i)
in =

{
0 7→ {0}
1 7→ {di}

. Thus, if we fix that all gadget

output ciphertexts are encoded under Eout =
{

0 7→ {0}
1 7→ {1}

, then the encoding switchings

needed before an evaluation of Γ corresponds to a linear combination of the inputs with
the vector d = (di | i ∈ [1, ℓ]), so we fall back on a A(CJP 21) with ν = ∥d∥.

We implemented these changes in concrete-optimizer and uses it to generate sets of
parameters for our implementations detailed in Section 7.

6.4 Concrete Implementations of p-Encodings and Homomorphic Func-
tions in tfhe-rs

To implement our framework, we relied on the tfhe-rs library [Zam22b]. Here is a list of
the major changes we applied to the code:

Addition of the notion of p-encoding: An encoding E is simply implemented with a
structure Encoding storing two HashSets and the modulus p. The HashSets represent
both sets E(0) and E(1). When creating an Encoding, the code checks whether the two
underlying sets are disjoint or not. Moreover, the operation of encryption and decryption
are modified as well. The signatures change from:

encrypt(Boolean, ClientKey) -> Ciphertext

to:
encrypt(Boolean, ClientKey, Encoding) -> Ciphertext

(same for decrypt). The functions also perform the mapping B 7→ Zp before encryption
and the other way around after decryption.
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Support of odd moduli: The native tfhe-rs only support power-of-two-moduli p. We
extended the library to handle odd values for p. This required modifying the encryption
and decryption algorithm, and to compute the sets of parameters with the method of
Section 6.3.

Definition of the new structure Gadget: According to the evaluation strategy we
introduced in Section 3.2, we wrote a new structure Gadget, associated to a Boolean
function f : Bℓ 7→ B, carrying:

• A list of the Encoding objects for the inputs: Ein = (E1, . . . , El), with the input
modulus pin they encoded on.

• The output Encoding object Eout, with the output modulus pout it is encoded on.

• The clear function f .

When such a structure is constructed, it self-checks whether f(Ein) is valid. Then, when
provided ℓ Ciphertexts objects encoded under their respective p-encoding, it executes
the homomorphic sum and the PBS and outputs the results encoded under Eout. Some
utilitary functions performing encoding-switching are also available, allowing the chaining
of several Gadget.

Implementation of the accumulator: The procedure of bootstrapping of tfhe-rs is
slightly modified to support the new version of the accumulator we introduced in Section
6.2.

Parsing of graphs: We implemented a Python script that produces graphs to represent
more complex functions that requires several PBS, as described in Section 5. These graphs
are stored with a comprehensive file format and our Rust implementation has a module of
parsing allowing to load these graphs and automatically generate the corresponding graph
of Gadget.

7 Application to Cryptographic Primitives
In this section, we apply our approach on some cryptographic primitives. For each
primitive, we first explain the construction of the gadgets required and report the concrete
performances of our implementation. We detailed all the timings of our experimentations
along with the sets of parameters we used in Section 7.6.

For performance measurement, we implemented our framework in our fork of the
library tfhe-rs [Zam22b] adapted as discussed in Section 6 and we generated the sets
of parameters thank to our version of concrete-optimizer [Zam22a]. By default, we
tailored the sets of parameters to limit the probability of failure ϵ of a bootstrapping to
2−40, and a security level of λ = 128 bits. All experiments have been carried out on a
laptop with a 12th Gen Intel(R) Core(TM) i5-1245U CPU with 10 cores and a frequency
of 4.4 GHz, and 16 GB of RAM.

7.1 SIMON Block Cipher
SIMON is a hardware-oriented block cipher developed in [BSS+15], which relies only on
the following operations: AND, rotation, XOR. It is a classical Feistel network for which the
Feistel function consists in applying basic operations on the branch, xoring the subkey and
then xoring the result with the other branch as depicted in the Figure 12 (on this figure,
Si denotes the left circular shift by i bits.). We use one ciphertext per bit so the rotation
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Figure 12: One Feistel round of SIMON.

operation is essentially free. Note that the key is considered as a plaintext, which does
not change anything in the framework. In our implementation, we considered a (128-128)
instance of SIMON (i.e. the whole state and the key are of size 128).

The Boolean function to evaluate can be defined as

f(b0, b1, b2, b3, b4) = b0 · b1 ⊕ b2 ⊕ b3 ⊕ b4 .

Using Algorithm 1, we found the smallest possible p (p = 9) and the following 9-
encodings to evaluate each bit of the Feistel function with one single bootstrapping (i.e.
totalling 64 PBS per round).

E0 = E1 =
{

0 7→ {0}
1 7→ {1}

and E2 = E3 = E4 =
{

0 7→ {0}
1 7→ {2}

with p = 9.

The sum of these p-encodings yields the output encoding:

Eout =
{

0 7→ {0, 1, 4, 5, 8}
1 7→ {2, 3, 6, 7}

with p = 9

which is valid for f . After the PBS, all the bits of the state are encrypted under the
encoding E0. We formalize that with the gadget Γ = ((E0, E1, E2, E3, E4), E0, 9, 9)

To perform a Feistel round on a state of size k, the gadget Γ is applied in parallel
k/2 times. Note that one bit may be used in several evaluation as b0, b1 and b2. So we
sometimes have to switch from E0 to E1 by a simple external multiplication by 2, which is
negligible in terms of performances.

Using our version of concrete-optimizer [Zam22a], we crafted a set of parameters
suitable for this modulus and these encodings. On our machine, one PBS with such
parameters takes about 9.5 ms. The theoretical timings achieved on one full block without
any parallelization is 41 seconds (68 rounds × 64 bits × 9.5 ms) which we confirmed
experimentally.

Nonetheless, this setting is intrinsically parallelizable: the 64 gadgets of each round
can be performed in parallel. We implemented parallelization using the module Rayon of
Rust, which made the total timings drop to 13 seconds on our machine.

Compared to [BSS+23] that implemented the same block cipher on an equivalent
hardware with parallelism, our implementation is about 10 times faster. Table 6 shows the
comparison. Note that in this paper, the probability of failure is not specified. As ours is
pretty conservative, this is a good argument in favor of our framework.
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Figure 13: The trivium stream cipher. Figure extracted from [Can06]

7.2 The Trivium Stream Cipher
Trivium [Can06] is a stream cipher that uses a circular state. At each round, the bits are
rotated within the state, except for three of them that are refreshed using the Boolean
function of Section 7.1. The outer stream is generated by xoring three bits of the state
each round once a “warming-up” phase is achieved.

For each generated key bit, it requires performing this function three times and
aggregating five XOR operations in the center. Our strategy is to evaluate the refreshing
function three times per round with one PBS for each of them, then get the result in Z2
and chain the five XOR operations to get the output. Figure 13 illustrates the layout of the
cipher.

In [BOS23], the authors implement Trivium using the original tfhe-rs library, with
2 bits of message and 2 bits of carry for a total of 4 significative bits out of the 32 of a
ciphertext component. They call this mode the shortint mode. The use-case they target
is transciphering.

To compare our implementation with the one of [BOS23], timings are not a good metric
as in their work they are provided on a massive AWS instance with a significant amount
of parallelism. A better metric is to count the number of PBS and compare the parameter
sets.

We reproduced the PBS operation with their parameter set on our machine and
then simply estimated the timings of one round of Trivium with their approach with no
parallelism. The results are summed up in Table 1. Note that in our implementation we
do not refresh the output bits with a PBS after the chain of XOR, because in the use-case
of transciphering one more XOR has to be performed with the message. We take advantage
of this and move the last PBS into the transciphering phase.

Table 1: Comparison of timings of one round of Trivium between our work and [BOS23],
with ϵ = 2−40.

Instance Timing PBS Number of PBS per round Estimated timings
[BOS23] 6.6 7 46.2 ms

Our work 9.5 3 28.5 ms
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7.3 Keccak Permutation
Keccak is a hash function standardized by NIST under the name SHA-3 [NIS15]. It is a
sponge function, whose transformation is called the Keccak permutation. It consists of five
sub-functions: θ, ρ, π, χ, and ι.

Let us recall that our approach encrypts each bit in one TFHE ciphertext. Let us
explain the stategies of homomorphization of these sub-functions:

• ρ and π simply reorder the bits within the state, so they are not impacted by the
homomorphization.

• θ is just a serie of XOR operations, so it can be performed with a serie of homomorphic
additions and without any PBS provided that the input ciphertexts are defined over
Zp with p = 2.

• χ is the only non-linear function of the permutation, and has to be performed with
a PBS. It is the transformation that applies the function defined by

fχ(a, b, c) = a⊕ c⊕ b&c

to get each bit of the output state.

• Finally, ι performs a simple xor with a constant, so it can be handled in a similar
manner that θ. The difference is that the constant is in clear this time.

The p-encodings we use are:

• E& =
{

0 7→ {1}
1 7→ {2}

with p& = 3 to evaluate the & operator in the alternative formula

of χ.

• E⊕ =
{

0 7→ {0}
1 7→ {1}

with p⊕ = 2 for the other operations of ⊕.

Our strategy of homomorphic evaluation of the Keccak permutation is as follows:

1. Encrypt the input state under the encoding E⊕.

2. Evaluate the subfuctions θ, ρ, and π. Theses functions being purely linear, they can
be performed only with sums under E⊕.

3. Change the encoding from E⊕ to E& with one PBS per bit of the state (Property 5).

4. Evaluate the AND operator of the subfunction χ with the gadget

Γ& = ((E&, E&), E⊕, 3, 2)

associated to function f& : (x, y) 7→ x&y. This gadget is applied once per bit of the
state.

5. Evaluate the remaining ⊕ operators of χ and the ι subfunctions, then jump back
Step 2. for the next loop iteration.

Casting a ciphertext from E⊕ to E& (Step 3) is a bit tricky because p⊕ = 2 is even.
Because of the negacyclicity problem, one needs E&(0) = [−E&(1)]p&

. With p& = 3, the
only candidate is the encoding E& defined above.

As a result, each round takes two programmable bootstrappings per bit. An implemen-
tation with our tweaked version of tfhe-rs takes 16.5 seconds (without any parallelism)
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on our hardware to perform one Keccak round on a state of 1600 bits in spite of the two
PBS required per round and per bit. Those timings are possible because of the small values
of p allowing the use of a set of small parameters, which speeds up the computation. A full
run of Keccak counting 24 rounds, we can then estimate the timings without parallelism to
6.6 minutes. For the sake of simplicity, we use the same set of parameters for both types
of PBS, avoiding the hassle of using two different server keys.

This strategy of implementation complies with the more generic one that we introduce
in Section 7.4 and that is illustrated on Figure 15. It suits very well the use-cases where
linear and non-linear operations are alternating.

7.4 Ascon
Ascon [DEMS21] is a lightweight block cipher algorithm that was designed to provide
efficient and secure encryption and authentication for a wide range of applications, partic-
ularly in resource-constrained environments such as embedded systems and IoT devices.
The name “Ascon” stands for “Authenticated encryption for Small Constrained Devices”.
We implemented its s-box, whose circuit is represented on Figure 14.

Figure 14: The 5-bits look-up table of ASCON. Figure extracted from [DEMS21]

This layout is a bit different from the others: the s-box takes five bits as input and
outputs five bits. We denote f0, . . . , f4 the five functions of B5 7→ B that generate the 5
output bits x0, . . . , x4. Thus, we need to define five gadgets (one per function).

These functions, once analyzed by the algorithm, can be computed in one single
bootstrapping each, but for different values of p (respectively p = 17, 7, 7, 15, 11 that are
the smallest possible values). We could implement the gadgets Γ0, . . . , Γ4 (associated to
f0, . . . , f4) with different values for pin, but this would imply to introduce some encoding
switchings before each round of hashing. To keep things simpler we generated only
encodings with p = 17, making the implementation more straightforward as no encoding
switching is required. For each subfunction fi, five canonical 17-encodings (Ei,0, . . . , Ei,4)
of form

Ei,j =
{

0 7→ {0}
1 7→ {di,j}

are computed. The results are displayed in the Table 2. Note the zero values in some
cases, they show that the variable is not used in the subfunction.

The s-box layer is followed by a linear layer, where the bits of the states are shifted
and combined with XOR operations. This can be trivially done with p = 2. Finally, to
prepare the next round, an encoding switching is performed to send back the ciphertexts
on 17-encodings. This is summed up in Figure 15. Note that there is no encoding switching
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Figure 15: A common layout to evaluate cryptographic primitives. The upper part of
the boxes represents what happens in the clear, while the lower part shows the encrypted
operations.

Table 2: Parameters di,j for Ascon, with p = 17 for every subfunction.
subfunction di,0 di,1 di,2 di,3 di,4

f0 1 2 3 7 14
f1 1 2 2 2 4
f2 1 2 2 4 0
f3 1 1 5 5 3
f4 1 2 0 4 3

from non-linear layer to linear layer because the gadgets can directly outputs ciphertexts

under E⊕ =
{

0 7→ {0}
1 7→ {1}

with p = 2.

To wrap up, we construct the five gadgets Γi = ((Ei,0, . . . , Ei,4), E⊕, 17, 2, fi). They will
carry the evaluation of the s-boxes and output ciphertexts encrypted under E⊕. Then, the
linear layer is trivially evaluated with homomorphic sums. An encoding switching from E⊕
to Ei,j allows to come back to non-linear operations.

Using this solution, the s-box is evaluated in 92 ms. Note that the 5 different PBS
described in Table 2 have different norms of vector d so they may have a different set of
parameters for each. We use the more restrictive one (i.e. the one with greater ∥ν∥) for
the 5. Estimating the timings of a full run of Ascon is not trivial because it depends a
lot of the parameters. To give a rough idea, in hashing mode, 64 s-boxes are required per
round, with 12 rounds recommended. The outputs of the s-boxes are in Z2 to allow the
evaluation of the linear layer of Ascon. At the end of this linear layer, the encoding of each
of the 320 bits of the state must be switched back to Z17 with a PBS. To do so, we use the
same set of parameters as for the encoding switching in Step 3 of the Keccak evaluation in
Section 7.3.

This gives an estimation of 89 seconds for one Ascon hash.

7.5 AES
AES [DR00], or Advanced Encryption Standard, stands as one of the most widely used
and trusted encryption algorithms in the world of computer security. Its standardization
occured in 2001 when it was adopted by NIST to replace the obsolete DES (Data Encryption
Standard). Implementing this primitive in FHE is known as particularly tricky and only
few attempts have been made [GHS12], [CLT14], [TCBS23].

A round of AES can be decomposed into 4 steps:

1. SubBytes: a non-linear substitution step where each byte is replaced by another
according to a lookup table. This step concentrates all the challenge for homomor-
phization, the other one being trivial with our framework.
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2. ShiftRows: a transposition step where the last three rows of the state are shifted
cyclically a certain number of times. As our framework encrypts each bit in a distinct
ciphertext, this step is for free.

3. MixColumns: a linear mixing operation which operates on the columns of the state,
combining the four bytes in each column. This step can be implemented using only
XOR operations and bit-shiftings. The former are trivial with our framework using
p = 2 and the latter are for free as the ones in the previous step.

4. AddRoundKey: each byte of the state is combined with a byte of the key from the
key schedule using a XOR. Still using p = 2, this can be carried out easily.

The s-box of SubBytes takes 8 bits in input and yields 8 bits of output. It is defined
by two substeps: an inversion in GF (28) followed by an affine transformation. While the
latter is trivial to compute with TFHE, the former is much trickier and thus we did not
take advantage of this representation. Using our framework, the obvious-looking solution
is to split the full s-box B8 7→ B8 into 8 subfunctions f0, . . . , f7 : B8 7→ B. We could then
give them to the search algorithm of Section 4. If this would work, we could evaluate the
Rjindael s-box in 8 PBS. Unfortunately, the algorithm does not converge for values of p
“reasonable”, that is to say less than 7 bits.

We thus need to leverage an alternative representation of the s-box. A well known
efficient Boolean representation of the AES s-box is given in [BP10]. In this work, authors
applied logic minimization techniques to produce an optimized Boolean circuit (in terms
of number of gates) of the s-box splitted in 3 phases:

1. A purely linear layer mapping the 8 input bits onto 22 bits.

2. A middle non-linear layer, represented by a circuit with exclusively AND and XOR
logic gates, mapping the previous 22 bits onto 18 bits.

3. A final purely linear layer mapping the 18 bits on the 8 output bits of the s-box.

To design our implementation of AES, we will use the strategy we introduced for
Keccak (Section 7.3) and ASCON (Section 7.4) and that is illustrated on Figure 15. The
steps ShiftRows, MixColumns, AddRoundKeys only involves XOR operators, so we will carry
them out with p = 2. Same things with the steps 1. and 3. of the circuit of SubBytes
of [BP10]. The only part remaining is the Step 2. of the SubBytes, that is a non-linear
circuit. We evaluate this circuit using gadgets and the approach introduced in Section 5.
A layer of encoding switching allows to link both parts.

In particular, MixColumns can be reduced to a serie of XOR (in our implementation, we
use the circuit designed in [Max19]).

In the following, we focus on the implementation of the non-linear layer using the
approach by graphs of Section 5.

7.5.1 Homomorphization of the S-box

We start from the circuit representation given in the work of [BP10]. This set of instructions
is compiled into a circuit A, compliant with the definitions introduced in Section 5.1.

Each of the 18 outputs (z0, . . . , z17) are isolated from each other and the circuits
(A0, . . . ,A17) generating them are separated. Of course, some intermediary values are
used in several circuits, but for now we ignore this and we considerate the 18 problems as
independent from each other.

Then, for each circuit Ai, we run the algorithm explained in Section 5 to produce
an efficient graph. We merge all those graphs and run everything for a total of 36 PBS
to evaluate the full circuit A, with a global p = 11. This allows a relatively quick
bootstrapping.
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Recall that the SubBytes step is made of 16 s-boxes. So, we can derive that one
execution of the SubBytes step takes 16× 36 = 576 PBS.

The outputs of this step would be encoded with p = 2, allowing the XOR operations
of the following steps to be performed efficiently. We also need to take into account the
encoding switching to come back to p = 11 before each SubBytes. It costs one PBS per
bit, so 128 PBS. Finally, this gives a total of 704 PBS per round. For AES-128, which
takes 10 rounds, we estimate a full run to 7040 PBS.

7.5.2 Performances

In terms of performances, with a set of parameters ensuring a security level of λ = 128 bits
and an error probability ϵ = 2−40, a PBS takes 17 ms on our hardware. The total runtime
of the whole implementation on one thread is 135 s. We note that the 16 evaluations of
s-boxes in SubBytes can be parallelized, as well as each of the 128 encoding switchings
before SubBytes. Moreover, within each s-box, we can locally apply our strategy of
parallelization introduced in Section 5.3.

We compare favorably to previous works of [GHS12] and [CLT14], who report timings of
respectively 18 minutes and 5 minutes for a full AES, Once again, authors do not mention
the value of ϵ. The more recent work of [TCBS23], also proposes an implementation of
AES-128 using a completely different technique called the tree-bootstrapping. On a similar
experimental setup, but with a failure probability ϵ = 2−23, they claim an execution in
270 s on one thread. We ran again our code with an other set of parameters tailored for
the same ϵ and obtained a full run in 103 s. Note that in our implementation, we used
the mode restrictive set of parameters PBS(11,4) for every bootstrapping (even the ones
that should be performed with PBS(2,1. We also derived the theoretical timing that could
have been achieved if we had implemented this with two server keys (one for each set of
parameters). This theoretical timing should be of 105 s with ϵ = 2−40, we added it in
Table 6.

7.6 Summary of Applications
We summarize hereafter the parameters and performances of our implementations of
cryptographic primitives. Table 3 gives an overview of the TFHE parameters used for each
value of p in these examples. They all meet the required level of security of 2128 and the
error probability ϵ = 2−40. It also shows the associated p and the norm of d, denoted by
Nd (that corresponds to Nd = ⌈log2(∥d∥)⌉) that are the input of the parameter selection
algorithm. To allow the comparison with the strategy of gate bootstrapping, we also
included the set of parameters hardcoded in tfhe-rs to evaluate boolean operators. Table 4
shows the complexity of the cryptographic primitives expressed in PBS with our framework.
It can be compared with Table 5, that illustrates the number of PBS required with the
naive strategy of gate bootstrapping. Finally, Table 6 shows the concrete performance
achieved by our implementations on our machine, as well as the comparison with other
works and with the gate bootstrapping. For more information about an implementation or
a comparison, the reader is referred to the related section.

8 Conclusion
In this paper, we have proposed a new strategy to evaluate Boolean functions homomor-
phically using TFHE. Our technique relies on constructing an intermediate homomorphic
layer between the Boolean space B of the plaintexts and the torus Tq on which ciphertexts
live. We introduced a formal model for our technique and detailed algorithms to efficiently
construct such layers and select appropriate parameters. We further extended our strategy
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Table 3: Sets of TFHE parameters for each PBS used in our implementations, with the
constraints used to generate the sets, and the performances. Each setting is referenced as
PBS(p,Nd) with Nd = ⌈log2(∥d∥)⌉. All this parameters ensure a level of security λ = 128
bits and a failure probability of bootstrapping of ϵ = 2−40. q is always fixed to 232. PBSgate

refers to the naive case of the gate bootstrapping implemented in [Zam22b] and is used to
estimate the timings of the naive strategy in Table 6.

Identification TFHE parameters Timings
Ref. Sections n k N σLWE σGLWE Bg ℓg BKS ℓKS PBS
PBSgate Table 5 722 2 512 216.2 27.8 26 3 23 4 10 ms
PBS(9,2) 7.1, 7.2 684 3 512 216 222 210 2 23 4 9.5 ms
PBS(3,2) 7.3 676 5 256 222 277 218 1 24 3 5.25 ms
PBS(2,1) 7.3, 7.4 676 5 256 222 277 218 1 24 3 5.25 ms
PBS(17,5) 7.4 740 2 1024 213 222 27 3 25 3 18 ms
PBS(11,4) 7.5 708 3 512 215 222 26 4 22 7 17 ms

Table 4: Complexity of the different primitives we implemented with respect to the PBS
of Table 3. The primitives indicated by a (∗) are estimations while the others have been
fully implemented.

Section Primitive Complexity in PBS

7.1 One round of SIMON-128 64 PBS(9,2)
One full run of SIMON-128 4352 PBS(9,2)

7.2 One round of Trivium 3 PBS(9,2)
One warm-up phase of Trivium (∗) 3456 PBS(9,2)

7.3 One round of Keccak 1600 PBS(3,2) + 1600 PBS(2,1)
A full Keccak permutation (∗) 38400 PBS(3,2) + 38400 PBS(2,1)

7.4 One evaluation of Ascon’s s-box 5 PBS(17,5)
One full Ascon hashing run (∗) 3840 PBS(17,5) + 3840PBS(2,1)

7.5 One evaluation of the AES s-box 36 PBS(11,4)
A full run of AES-128 5760 PBS(11,4) + 1280 PBS(2,1)

Table 5: Number of logic gates in the circuit of each primitive. This shows the heavy cost
of the naive method of performing one bootstrapping per gate (except the NOT ones).

Section Primitive Number of logic gates

7.1 One round of SIMON-128 256
One full run of SIMON-128 17408

7.2 One round of Trivium 13
One warm-up phase of Trivium (∗) 14976

7.3 One round of Keccak 7687
A full Keccak permutation (∗) 184488

7.4 One evaluation of Ascon’s s-box 16
One full Ascon hashing run (∗) 19968

7.5 One evaluation of the AES s-box 115 ( [BP10])
A full run of AES-128 23360 ( [BP10], [Max19])
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Table 6: Timings of evaluation of full primitives, and comparison with previous works
when they exist. Like on Table 4, a star (∗) is added in the cells if our timing is not
obtained from a full implementation but estimated from an implemented building block.
Also, the security level of each implementation is λ = 128 and the default error probability
is ϵ = 2−40. The concurrent works that do not indicates their ϵ are marked with †.

Primitive Section or Other work Performances

One full run of SIMON
Gate Bootstrapping 174 s

[BSS+23] † 128 s
Our work (Section 7.1) 10 s

One warm-up phase of Trivium (*)
Gate Bootstrapping 1498 s

[BOS23] (estimation on our machine) 53 s
Our work (Section 7.2) 32.8 s

One Full Keccak permutation (∗) Gate Bootstrapping 30.7 min
Our work (Section 7.3) 8.8 min

One Ascon hashing (∗) Gate Bootstrapping 200s
Our work (Section 7.4) 92 s

One full evaluation of AES-128
(ϵ = 2−23) on one thread

[GHS12] † 18 min
[CLT14] † 5 min
[TCBS23] 270 s

Our work (Section 7.5) 103 s

One full evaluation of AES-128
(ϵ = 2−40) on one thread

Gate Bootstrapping 234 s
Our work (Real implementation) 135 s

Our work (Theoretical timing with two keys) 105 s

to the case of arbitrary Boolean circuits by developing some heuristic to decompose a
circuit into Boolean functions efficiently evaluable with our framework. We applied our
framework to various cryptographic primitives, in particular to the challenging AES cipher.
All the reported implementations outperform the state of the art.

We are currently working on a generalization of the ideas developed in this paper
to the arithmetic case. We would also like to experiment with some more sophisticated
bootstrapping techniques, such that the multi-value bootstrapping introduced in [CIM19]
that would allow to evaluate several gadgets at once. Moreover, future work may be
focused on the search algorithm (thet can probably be enhanced to scale better with the
arity of the input function). Finally, more work on the efficient decomposition of Boolean
circuits would be welcome: especially if one wants to evaluate deeper circuits.
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