
Boosting the Performance of High-Assurance Cryptography:

Parallel Execution and Optimizing Memory Access in

Formally-Verified Line-Point Zero-Knowledge

Samuel Dittmer1, Karim Eldefrawy2, Stéphane Graham-Lengrand2, Steve Lu1, Rafail
Ostrovsky3, and Vitor Pereira2

1Stealth Software Technologies, Inc., Los Angeles, CA, USA
2SRI International, Menlo Park, CA, USA

3University of California, Los Angeles, CA, USA

May 13, 2024

Abstract

Despite the notable advances in the development of high-assurance, verified implementa-
tions of cryptographic protocols, such implementations typically face significant performance
overheads, particularly due to the penalties induced by formal verification and automated ex-
traction of executable code. In this paper, we address some core performance challenges facing
computer-aided cryptography by presenting a formal treatment for accelerating such verified im-
plementations based on multiple generic optimizations covering parallelism and memory access.
We illustrate our techniques for addressing such performance bottlenecks using the Line-Point
Zero-Knowledge (LPZK) protocol as a case study. Our starting point is a new verified imple-
mentation of LPZK that we formalize and synthesize using EasyCrypt; our first implementation
is developed to reduce the proof effort and without considering the performance of the extracted
executable code. We then show how such (automatically) extracted code can be optimized in
three different ways to obtain a 3000x speedup and thus matching the performance of the
manual implementation of LPZK of [18]. We obtain such performance gains by first modifying
the algorithmic specifications, then by adopting a provably secure parallel execution model, and
finally by optimizing the memory access structures. All optimizations are first formally veri-
fied inside EasyCrypt, and then executable code is automatically synthesized from each step of
the formalization. For each optimization, we analyze performance gains resulting from it and
also address challenges facing the computer-aided security proofs thereof, and challenges facing
automated synthesis of executable code with such an optimization.

Keywords: Zero-Knowledge; Formal Verification; Parallelism; Verified Implementation; Verified
Optimizations; Code Synthesis

A shorter version of this paper will appear in the Proceedings of the 2023 ACM Conference on Computer and
Communications Security (CCS 2023). This is the full version.

1

Contents

1 Introduction 3

2 Line-Point Zero Knowledge protocol 7
2.1 Theoretic LPZK overview . 8
2.2 Gate-by-gate IT-LPZKv1 explanation . 9

3 Verified LPZK implementation 10
3.1 Automated extraction of executable code . 15

4 Optimization based on execution model: parallelism 16
4.1 Parallel RAM EasyCrypt formalization . 17
4.2 Generic map-reduce EasyCrypt library . 18
4.3 Verified parallel LPZK implementation . 21

5 Optimization based on memory management: array-based implementation 23
5.1 Array-based LPZK EasyCrypt formalization . 23
5.2 Verified array-based LPZK implementation . 24

6 Related work 26
6.1 VOLE-based NIZKs . 26
6.2 Computer-aided cryptography applied to ZK protocols 27

7 Conclusion and Future Work 28

A Designated verifier non-interactive ZK EasyCrypt security definitions 33

B Other applications of the EasyCrypt parallelism library 34
B.1 Parallel formalization of MPC-in-the-Head . 35
B.2 Parallel formalization of garbling schemes . 35

C Reducing the TCB: Jasmin as the finite field arithmetic backend 36

2

1 Introduction

Developing high-assurance, verified implementations of cryptographic primitives and protocols has
attracted a lot of recent attention [8] because it can minimize implementation and security bugs in
critical cryptographic code. This is achieved through the development and application of formal,
machine-checkable approaches to the design, analysis, and implementation of cryptographic primi-
tives and protocols. The broader goal of computer-aided cryptography [8] is not only to provide a
better way to tame the complexity of security proofs, but also to make sure that the proven security
properties are preserved in concrete implementations of cryptographic algorithms.

Unfortunately, such high-assurance implementations have so far suffered from significant per-
formance overheads, particularly those that follow an approach based on formal verification and
automated extraction of executable code. We observe that there are some core performance chal-
lenges facing computer-aided cryptography, and our goal is to address these performance challenges
by presenting a formal treatment on how such verified implementations can be accelerated using
multiple optimizations covering parallelism and memory access. We illustrate our techniques for
addressing these performance bottlenecks using a concrete zero-knowledge (ZK) protocol as a case
study. ZK protocols allow a prover P, with input (x,w), and a verifier V, with input x, to jointly
compute a boolean function f(x,w) that accepts the proof if R(x,w) holds, for an NP relation
R. First introduced in seminal work by Goldwasser, Micali, and Rackoff [23], ZK protocols and
subsequent applications have seen significant improvements over the past decades, with the pro-
posal of several efficient, scalable, and practical constructions for generic relations or the use of ZK
protocols in different privacy-preserving application scenarios.

Despite being a fast-growing research area, only a small subset of ZK protocols has been studied
from the perspective of computer-aided cryptography. Works on the connection between computer-
aided cryptography and ZK include [1, 28, 6], where the authors developed comprehensive computer-
aided security proofs and also high-assurance mechanisms for the compilation and evaluation of ZK
statements. Concretely, the focus of [28] and [6] was the MPC-in-the-Head (or “IKOS”) paradigm
[25], a modular construction that yields ZK protocols from secure multiparty computation (MPC)
in combination with commitment schemes. Nevertheless, the performance obtained by the veri-
fied implementation of IKOS, whilst not being prohibitive, is still far from the efficiency obtained
by optimized unverified implementations. In fact, perhaps the biggest critique of computer-aided
cryptography, namely the approaches that focus on the production of high-level verified implemen-
tations via code extraction, is that executable code derived from it is not as efficient as unverified
custom implementations. Note that this statement is not entirely true for other computer-aided
cryptography approaches that focus on low-level verified implementations (such as the ones based
on Jasmin [2], HACL⋆ [34] or Vale [15]), who are able to achieve performance on-par with unverified
implementations. However, these approaches entail significantly more complexity and tool expertise
than our work.

Another efficient class of ZK protocols is derived from vector oblivious linear evaluation (VOLE)
constructions [16]. Briefly, a VOLE protocol can be used to establish secret correlated randomness
between the prover and the verifier that can then be consumed by the ZK protocol. By using such
pre-processing, it is possible to construct fast ZK protocols based on arithmetic field operations.
Example of such protocols include Line-Point Zero Knowledge (LPZK) protocol [19, 18], Wolverine
[29], Quicksilver [31], and Mac’n’cheese [12].

In LPZK, the prover produces a proof by encoding the witness as an affine line v(w) = aw +
b, and the verifier checks validity of the proof by querying the line at a single point α. The
attractiveness of LPZK lies in its efficiency. Namely, proving satisfiability of (generic) arithmetic
circuits requires only 2-5 times the computation of evaluating the circuit in the clear and the prover

3

only communicates roughly 2 field elements per multiplication gate, making LPZK also attractive
from a network point of view. LPZK is defined over the designated verifier non-interactive zero-
knowledge (DVNIZK) model, where it is assumed that input-independent correlated randomness
has been pre-processed and that the interaction between the prover and verifier consists of a single
message sent by the former to the latter. The terminology designated verifier is used to attest that
only a verifier holding correlated randomness with the prover is able to verify the proof produced
by the prover.

In this work, we develop an end-to-end machine-checked implementation of LPZK, that was
obtained from a series of (also machine-checked) optimization steps. In more detail, we start with
a reference implementation of LPZK, for which we perform the machine-checked completeness,
soundness, and zero-knowledge proofs. Next, we apply the following optimization steps:

1. Optimization based on algorithmic re-design: where we optimize the verifier specification

2. Optimization based on the execution model: where we explore the usage of parallelism to
speed up the computation

3. Optimization based on memory management: where we replace and augment the data struc-
tures used to store input and randomness values in order to reduce access overhead

For each optimization, we prove that the resulting new implementation has the same observable
behavior as the reference implementation, thus achieving the same level of security. Our goal is
to start with an LPZK specification that minimizes the proof effort required to machine-check the
completeness, soundness and zero-knowledge properties, and then introduce optimizations (poten-
tially increasing the complexity of the protocol specification) without the need to re-implement the
security proof in each optimization step.

Figure 1: Overview of our formalization, annotated with overall lines of proof code (denoted by loc).
RAM stands for Random Access Memory machine and PRAM stands for Parallel RAM. LPZK
denotes Line-Point Zero-Knowledge. LS LPZK denotes a list-based sequential LPZK, whilst AS
LPZK denotes an array-based one. LP LPZK denotes a list-based LPZK in the PRAM model
while AP LPZK denotes an array-based LPZK in the PRAM model.

4

Contributions Our contributions are summarized in Figure 1. Our starting point is a new ref-
erence EasyCrypt formalization of the LPZK protocol. As a first optimization step, we modify the
verifier algorithm to reduce the number of circuit iterations performed, achieving new LPZK imple-
mentation for which we obtain executable code, that we denote by LS LPZK, denoting a list-based
sequential implementation. This implementation is then optimized by utilizing the parallel capa-
bilities of LPZK and by introducing different memory access data types. To achieve a parallelized
LPZK implementation, we first define Random Access Memory (RAM) machine wrappers both
for the prover and for the verifier. These RAM wrappers are then used to formalize a parallelized
LPZK implementation under the parallel RAM (PRAM) model proposed in [21], that we dub LP
LPZK, standing for list-based parallel implementation. Finally, we modified the memory structures
of the list-based implementation to achieve an array-based sequential LPZK implementation, that
we portray as AS LPZK, which can also be matched against our parallelism methodology (AP
LPZK). The final optimized version exhibits up to 3000x speedup and matches the performance
of the manually implemented version of LPZK give in [18].

Our parallel implementation was derived via a new parallelism EasyCrypt framework, that is
of independent interest. This framework was developed based on three main ideas: i. support
any (parallelizable) algorithm and data structures; ii. support any number of parallel cores; and
iii. achieve a high degree of modularity, in the sense that the parallel model formalization was
done once and for all and new secure parallel executions of cryptographic algorithms could be
obtained with reduced proof effort, without the need to repeat the proof every time the framework
is instantiated with a new cryptographic protocol. Briefly, our parallelism library requires the
user to provide a methodology to split the circuit being evaluated and to aggregate the resulting
smaller circuits back to the original one. Our library then yields secure parallel evaluations of the
desired cryptographic primitive according to the split-and-aggregate model created by the split and
aggregate functions, with the user being required to prove only some side-conditions that these two
functions need to follow.

In summary, at a high-level, we developed the first verified, high-assurance implementation of
LPZK with performance matching an unverified implementation of the same protocol. Our formal
work was verified in EasyCrypt and leverages a previously developed IKOS-based ZK formalization
[6]. The verified optimized executable code is obtained via the OCaml extraction approach first
used to extract verified MPC executable code [20], and later an executable for a ZK protocol
based on MPC-in-the-head [6]. We also make contributions to the general field of computer-aided
cryptography and to the EasyCrypt tool-set, as follows:

• We demonstrate the feasibility of optimizing verified code, by introducing new techniques to
reason about observable behavior of implementations. We show that a significant portion
of the proof effort is concentrated around the reference specification and that deriving the
security results of the optimized versions can be obtained with reduced proof overhead

• We develop a modular framework for parallelism in EasyCrypt, that is capable of generat-
ing parallel descriptions of EasyCrypt specifications for an arbitrary number of cores. Our
parallelism formalization tolerates any (parallelizable) circuit and only requires a user to pro-
vide a function that splits the circuit into smaller, independent, circuits, and a function that
correctly aggregates the outputs of the cores

• We improve the EasyCrypt extraction mechanism first defined in [20] and refined in [6] to
capture the parallel execution model, as well as the memory-based optimizations that are
employed in this work

5

Technical Challenges The challenges facing our work can be summarized into three categories:
machine-checked security proofs, high-assurance cryptographic implementations, and the secure
optimization of (executable) cryptographic code.

Machine-checked security proofs. Despite notable advances in the development of more
comprehensive tools and proof methodologies, machine-checked cryptography still faces many
challenges, particularly regarding the required tool proficiency in order to perform such machine-
checked proofs. Concretely to the ZK context, these challenges are further exacerbated if one
takes into account the formalization of foundational results such as soundness or zero-knowledge.
In addition, machine-checking a security proof is a process that needs to take into account all the
nuances that are sometimes skipped in pen-and-paper proofs, making them more expensive and
time-consuming in terms of the required human effort.

High-assurance cryptographic implementations: Once a formalization is complete, another
challenge resides on how to obtain software that securely implements the specification of the
cryptographic primitive or protocol that was machine-checked. In other words, how to develop
an implementation that mirrors the formalization and for which there are guarantees that the
functional correctness and security properties proven also apply to the actual executable code.
We address this challenge by relying on the EasyCrypt code extraction pipeline proposed in [20]
and refined in [6]. This approach uses WhyML, Why3 specification language, as an intermediate
step between the EasyCrypt proof and OCaml code. In short, EasyCrypt proofs are first mapped
into WhyML specifications following a purely syntactic translation process since the EasyCrypt
functional language is very close to WhyML. Finally, we use Why3 powerful extraction mechanism
to obtain executable OCaml code, a synthesis mechanism for which a semantic preservation proof
exists [27]. Therefore, it is possible to deposit a high degree of trust in the final OCaml code.

Secure optimization of high-assurance cryptographic code: When developing a formal
security proof inside EasyCrypt, it is natural to focus on reducing the proof effort, instead of focusing
on the efficiency of specification. This typically leads to formalization for which the proof effort is
reduced to the minimum, but where the code obtained will be slow, specially comparing to non-
verified implementations. To overcome this drawback, we construct new methodologies and proof
approaches that can be used to optimize EasyCrypt specifications.

The most challenging optimization strategy that we formalized is based on parallel computing,
where we constructed a generic and modular map-reduce like EasyCrypt framework that works for
an arbitrary number of parallel cores and for which we demonstrate that functional correctness and
security properties of the sequential execution are preserved in the parallel model. This framework
is of independent interest and can be re-used in the context of other existing and new EasyCrypt
formalizations of cryptographic algorithms. Specific to our LPZK solution, we obtain a parallel
implementation where a circuit is split into smaller independent circuits, and where the outputs of
the cores are aggregated in a way that generates the same messages as the sequential execution.

Additionally, we also show how to replace data structures used to store private inputs and ran-
domness with the goal of speeding up memory accesses. We focus on showing how to change a list-
based implementation to an array-based implementation, which results in significant performance
gains on the final implementation. Informally, our result states that, if the two implementations
compute a message with the same type (or data structure), then this optimization can be securely
done with the overhead of proving an isomorphism between the list and array storage, and that
memory accesses will be safe, i.e., there will be no accesses to memory that is not allocated.

6

Limitations The Trusted Code Base (TCB) of our verified LPZK implementation includes Easy-
Crypt, the extraction tool and the OCaml compiler, as well as unverified OCaml libraries for multi-
precision integers, for array operations, for the serialization of network messages and for the spawn-
ing of parallel cores. It is possible to reduce the TCB by relying on Jasmin [2] low-level verified
arithmetic libraries [3]. In this case, a (manual) C code layer connects the extracted OCaml code
to the Jasmin code, as further discussed in Appendix C.

Benchmarking Methodology Throughout the paper, we report multiple performance results
for the different versions of our verified LPZK implementation. To avoid repeatedly describing the
benchmarking environment, we briefly describe it here.

All measurements were conducted on an Amazon Web Services (AWS) EC2 instance, with an
Intel Xeon Scalable processor clocked at 3.1 GHz, with 32 virtual cores (16 physical cores with
two threads) and with 32 GB RAM capacity. We test our implementations against a matrix
multiplication circuit, where we consider matrices of size 2n, with incremental n. We also run our
tests considering three different field sizes, namely 230 − 218 + 1 (32 bit prime), 261 − 1 (64 bit
prime) and 2255 − 19 (256 bit prime), and use a 10 hours timeout.

For each test, we collect execution times of the prover and of the verifier, which include the
time taken to compute the commit and to generate the commitment message (for the prover) and
the time taken to parse the received message and decide the proof acceptance (for the verifier).
From them, we derive the total protocol time and the time-per-gate. We measure the time-per-gate
considering only the number of multiplication gates, which we obtain by 2n

3
.

Access to Our Development Our EasyCrypt formalization, proofs, and extracted executable
software can be found at https://github.com/SRI-CSL/high-assurance-crypto/tree/main/

high-assurance-zk/lpzk.

Paper Outline The rest of the paper is organized as follows. We give an overview of LPZK in
Section 2. We then show how we developed our EasyCrypt formalization of LPZK and achieve the
first version of our LPZK verified implementation in Section 3, including some performance mea-
surements. In Sections 4 and 5, we present the optimizations that were made to the reference LPZK
implementation, analyzing the performance gains of each optimization. We conclude the paper by
discussing relevant related work in Section 6 before finishing up by pointing some conclusions and
possible future research directions in Section 7.

2 Line-Point Zero Knowledge protocol

The LPZK protocol has been given two (different) presentations in [19] and [18]. We refer the
reader to both of those presentations, and give a third, rather different presentation to simplify
the illustration. We begin with a discussion of our choice of LPZK protocol, before describing the
protocol at a high-level, and then give more low-level details that are crucial to understanding its
formal verification.

The ”Line-Point Zero Knowledge” protocol is actually a family of protocols, representing a
series of optimizations and variations. In the language of [18], we call these protocols IT-LPZKv1,
IT-LPZKv2, ROM-LPZKv1, and ROM-LPZKv2. The IT-LPZK protocols are information-
theoretically secure in the random VOLE (rVOLE) model, while the ROM-LPZK protocols are
secure in the random VOLE-random oracle (rVOLE-ROM) hybrid model. The v1 protocols are
the baseline constructions, while the v2 constructions are the constructions which improve the

7

https://github.com/SRI-CSL/high-assurance-crypto/tree/main/high-assurance-zk/lpzk
https://github.com/SRI-CSL/high-assurance-crypto/tree/main/high-assurance-zk/lpzk

communication cost either by generating more complex correlated randomness or by transferring
communication to an offline step. Each of the IT-LPZK constructions require two times the com-
munication cost of the corresponding ROM-LPZK protocols (when ROM-LPZKv2 is performed on
a layered circuit).

In this work, we implement and formally verify IT-LPZKv1, although we include one technical
modification from IT-LPZKv2 that reduces the computation cost. Namely, in the VOLE expression
v := aα + b, we use the vector b rather than the vector a to store wire values. Our choice of
IT-LPZKv1 was motivated by the desire to formally verify a VOLE-based NIZK protocol in an
as general as possible setting, that does not require the assumption of the Random Oracle Model
(ROM). We remark that IT-LPZKv1 is a reasonable choice in real-world settings: without a random
oracle, the computation cost goes down, so IT-LPZKv1 and IT-LPZKv2 will outperform ROM-
LPZKv1 and ROM-LPZKv2 over sufficiently fast networks, and, although the v2 protocols move
some online work to the offline step, the v1 protocols are simpler and do not require any attention
to be paid to circuit structure.

In what follows this section, we will first provide a theoretic overview of LPZK, before finishing
with a gate-by-gate explanation of the IT-LPZKv1 protocol.

2.1 Theoretic LPZK overview

LPZK is a protocol whose goal is to prove satisfiability of arithmetic circuits in zero-knowledge.
Without loss of generality, we will only consider arithmetic circuits that evaluate to 0. In LPZK, we
treat the expression v = aα+b held by the verifier as the evaluation of a line on a point α, and the
expression held by the prover as a formal polynomial representation of that line aα+b. We embed
circuit values into the coefficients of that line, and then generate from here a collection of matching
polynomial representations, where the prover holds the formal expression and the verifier holds the
evaluation. We perform a series of manipulations so that the list of all coefficients in these selected
polynomials is a small fraction of the circuit size (in fact, equal to 1/t|C|, for a batching parameter
t), and so that revealing these coefficients gives the verifier no information. Then, the prover reveals
all coefficients from the selected expressions to the verifier. This gives total communication per
multiplication gate equal to 2+ 1

t and soundness error is equal to t/|F|. Note that, in the EasyCrypt
implementation, we take t = 1 for simplicity. The theoretic outline of LPZK is as follows:

1. Encode each wire value w corresponding to an input to the circuit or an intermediate gate
value as the value b of a VOLE entry v = aα + b. Generate a random VOLE v := aα + b
and have the prover send the verifier the vector w − b.

2. Prover and verifier generate matching quadratic expressions for each multiplication gate of
the form vivj − vk, where the prover holds expressions over a formal variable t, and, if the
prover is honest, the verifier holds the same expressions evaluated at t = α. These quadratics
will have zero constant term when the prover is honest, since wiwj−wk = 0, and if the prover
cheats or the witness fails, the quadratic will have nonzero constant term with overwhelming
probability.

3. Prover and verifier refine the matching quadratic expressions by consuming another entry
of VOLE. After “masking” the quadratic expression with fresh randomness, the prover can
open the quadratic coefficient to the verifier, so that they now both hold matching linear
expressions with zero constant coefficient if and only if P is honest.

4. P convinces V they hold matching linear expressions by batching over size t. If P is honest,
P holds linear polynomials with zero constant coefficient, so the product of t such terms is a

8

polynomial of the form cαt, where c is a product of the corresponding coefficients. P sends
this value c to V, who checks it against cαt.

2.2 Gate-by-gate IT-LPZKv1 explanation

We present IT-LPZKv1 with reference to global vectors known or constructed by a prover (P), a
verifier (V), and a dealer (D). The dealer is an ideal functionality replaced by a VOLE protocol
in the actual execution of the protocol. All parties have reference to a circuit C, which we here
write as C = (n,G), with n the total number of wires, and where each gate g ∈ G is of the form
(⊕, i, j, k), with ⊕ ∈ {+,×}, with input wires of index i and j and an output wire at index k. A
pseudo-code description of the protocol is depicted in Figure 2.

Dealer algorithm: $α, u = (a, b, a’, b’); y = (v, v’), where

Input wires: u = ($a, $b, ⊥, ⊥); y = (a α + b, ⊥)

Add wires: u = (al + ar, bl + br, ⊥, ⊥); y = (a α + b, ⊥)

Mul wires: u = ($a, $b, $a’, $b’); y = (a α + b, a’ α + b’)

Prover algorithm: z = (m, m’, c), where

Input wires: z = (w-b, ⊥, ⊥)

Add wires: z = (⊥, ⊥, ⊥)

Mul wires: z = (w-b, al*ar-a’, al*wr+ar*wl-a-b’)

Final message: (z, a)

Verifier algorithm: f = (e, e’, e’’), where

Input wires: f = (v+m, ⊥, ⊥)

Add wires: f = (el + er, ⊥, ⊥)

Mul wires: f = (v+m, v’ + α*m’, el*er-e-α*e’)
Check: Output wire: e == n*α + w

Batched checks: ei’’ == ci*α

Figure 2: IT-LPZKv1 protocol, including descriptions of the dealer, prover, and verifier

The dealer, upon receiving the statement encoded as a circuit C, randomly samples a value α
and generates vectors a,b,v,a′,b′,v′, each of length |C|, as follows. For input wires i, we have
(ai, bi), generated randomly, vi = aiα + bi, and a′i = b′i = v′i = ⊥. For each addition gate, we have
(ak, bk, vk) = (ai + aj , bi + bj , vi + vj), with a′i, b

′
i, v
′
i = ⊥. For each multiplication gate, we generate

ak, bk, a
′
k, b
′
k randomly with vk = akα+ bk and v′k = a′kα+ b′k.

The prover, holding the secret witness w and all intermediate gate values (recall that the prover
can evaluate the circuit on the clear), receives vectors a, a’, b, b′ from the dealer, and computes
the vectors m,m′, and c as follows. For each input wire, we have mi = wi − bi, m

′
i = ⊥, ci = ⊥.

For each addition gate, we have (mk,m
′
k, ck) = (⊥,⊥,⊥). For each multiplication gate, we have

(mk,m
′
k, ck) = (wk − bk, aiaj − a′k, aiwj + ajwi − ak − b′k).

Finally, the prover sends the vectors m,m′ to the verifier along with the vector n = (n1, n2, . . .),
with n1 = an and for i > 1 we have ni =

∏
cj , where the ci’s are split into batches of size t and

multiplied together batch-by-batch.

The verifier receives a value α and a vector v from the dealer, and knows the desired output
wire wn. This value can be fixed to zero if one considers, without loss of generality, arithmetic
circuits that evaluate to zero. It then computes the vectors e, e′, e′′ as follows. For each input wire,

9

we have (ei, e
′
i, e
′′
i) = (vi +mi,⊥,⊥). For each addition gate, we have (ek, e

′
k, e
′′
k) = (ei + ej ,⊥,⊥).

For each multiplication gate, we have

(ek, e
′
k, e
′′
k) = (vk +mk, v

′
k + αm′k, eiej − ek − αe′k).

Finally, the verifier checks that en = n1α+ wn and that e′′i = α · ni.

3 Verified LPZK implementation

In this section, we provide the details of our LPZK EasyCrypt formalization, highlighting some
of its features with EasyCrypt code snippets. Our work leverages on previous IKOS formalization
given in [6], out of which we re-used all ZK security definitions and protocol syntax, adapted to
the DVNIZK model.

DVNIZK protocol syntax The starting point of our EasyCrypt formalization is the syntax
definition of a DVNIZK protocol, given in Figure 3. Following the same approach as [6], this
syntax definition makes a mix-use of abstract and concrete types and operators. Undefined data
types and operators must be specified by each protocol at the instantiation step, including the
witness, statement and randomness types. The output types of both the prover and verifier are
hardwired into the formalization as a singleton and boolean value, respectively, since these will be
the same for each possible instantiation of a DVNIZK protocol.

op relation : witness_t → statement_t → bool.

op language(x : statement_t) = ∃ w, relation w x.

type prover_input_t = witness_t * statement_t.

type verifier_input_t = statement_t.

op valid_rand_verifier :

prover_rand_t → verifier_rand_t → verifier_input_t → bool.

type prover_output_t = unit.

type verifier_output_t = bool.

op commit : prover_rand_t → prover_input_t → commitment_t.

op prove : verifier_rand_t → verifier_input_t → commitment_t → bool.

type trace_t = commitment_t.

op protocol (r : prover_rand_t * verifier_rand_t)

(x : prover_input_t * verifier_input_t) :

trace_t * (prover_output_t * verifier_output_t) =

let (r_p, r_v) = r in let (x_p, x_v) = x in

let c = commit r_p x_p in

let b = prove r_v x_v c in (c, ((),b)).

Figure 3: DVNIZK protocol syntax

Because our formalization focuses on non-interactive protocols, we only specify one prover oper-
ator - commit - and one verifier operator - prove. Informally, the prover will run commit, producing
a proof message that is sent to the verifier, that can then finish the ZK protocol by attesting
the validity of the statement invoking prove. The honest protocol execution is specified by the
protocol method. Both operators are abstract, and need to be realized when instantiating a con-
crete DVNIZK protocol. Moreover, both operators are de-randomized, meaning that randomness
needs to be explicitly given to both the prover and the verifier. This is natural restriction, that
essentially assumes that randomness is sampled uniformly by some honest random generator pro-
cedure, which, in the case of LPZK, is represented by the dealer functionality.

We would like to highlight the valid_rand_verifier operator. The goal of this operator is to
assure that the randomness given to the verifier is correlated to the randomness given to the prover,

10

and represents an essential component of our formalization, since the two parties will only be able
to correctly execute the LPZK protocol if both randomness are correlated. Nevertheless, we do not
provide a concrete specification of this predicate, since different designated verifier protocols can
have different randomness correlated assumptions.

Security properties We re-use the security definitions formalized in [6], with small modifications
that adapt them to capture the network model of DVNIZK protocols. Due to the similarities
between the security definitions, we omit them in the main body of the paper and refer the reader
to Appendix A for a more detailed description.

Arithmetic circuits We model arithmetic circuits (Figure 4) as a record with three elements.
The first element is the topology of the circuit, that comprises the number of public input wires
npinputs, the number of secret input wires nsinputs, the number of gates ngates and the number
of output wires noutputs. The second element comprises the actual gates that form the circuit,
modeled as an inductive tree, where the output of the circuit is given by the gate at the root of the
tree, nodes correspond to arithmetic gates, and the input and constant gates form the leaves. In
Figure 4 (and throughout the remaining of the paper), type t is used to refer to the type of elements
of a finite field. Finally, the circuit description also encompasses the concrete definition of the output
wires, represented by the out_wires record. This element is essential to our parallelization strategy,
since it will facilitate the splitting of circuits by output wires.

type wire_t = t. type wid_t = int. type gid_t = int.

type gates_t = [

| PInput of wid_t

| SInput of wid_t

| Constant of gid_t & t

| Addition of gid_t & gates_t & gates_t

| Multiplication of gid_t & gates_t & gates_t].

type topology_t = { npinputs : int ; nsinputs : int ; ngates : int ; noutputs : int }.

type circuit_t = { topo : topology_t ; gates : gates_t ; out_wires : wid_t list }

Figure 4: Arithmetic circuits modeled as inductive tree

LPZK specification We use the same terminology followed in Section 2 to define the prover
and verifier randomness required to perform a correct LPZK evaluation, as if it was provided by
an honest dealer. The EasyCrypt randomness specification is portrayed in Figure 5. Succinctly, the
prover will have a list composed of four field elements (a, b, a’ and b’) per gate and the verifier will
hold the random field element alpha and a list of random elements that are correlated to the prover
randomness, i.e., v = a * alpha + b and v’ = a’ * alpha + b’. This property is attested by the
valid_rand_verifier predicate. We also refer the reader to the valid_rand_prover predicate, where
we define what constitutes valid prover randomness: we require all a values corresponding to the
circuit gates to be different from zero. As it is going to be explained more ahead in this section,
this restriction was made to simplify the soundness result.

We now show how the LPZK prover and verifier were formalized in EasyCrypt. Again, we follow
the same nomenclature of Section 2 and the EasyCrypt definitions we present here can easily be
matched against those given in Section 2.

We model the commitment message as a tree, following the same format used for the definition
of arithmetic circuits. For each circuit gate, the prover commits values m, m’ and c, captured

11

type ui_t = { a : t ; b : t ; a’ : t ; b’ : t }. type prover_rand_t = ui_t list.

op valid_rand_prover (r : prover_rand_t) (x : prover_input_t) : bool =

let (w, st) = x in

let (c, inst) = st in

size r = c.‘topo.‘nsinputs + c.‘topo.‘npinputs + c.‘topo.‘ngates + 2 ∧
(∀ k, 0 ≤ k < size r ⇒ (nth def_ui r k).‘a ̸= fzero).

type yi_t = { v : t ; v’ : t }.

type verifier_rand_t = { alpha : t ; y : yi_t list }.

op valid_rand_verifier (rp : prover_rand_t) (rv : verifier_rand_t) (x : verifier_input_t) : bool =

size rv.‘y = size rp ∧
∀ k, 0 ≤ k < size rv.‘y ⇒
(nth def_yi rv.‘y k).‘v = (nth def_ui rp k).‘a*rv.‘alpha+(nth def_ui rp k).‘b ∧
(nth def_yi rv.‘y k).‘v’ = (nth def_ui rp k).‘a’*rv.‘alpha+(nth def_ui rp k).‘b’.

Figure 5: Prover and verifier randomness

by the zi_t record type. The final commitment message is comprised of the z_t tree structure
(corresponding to z in Section 2) and of a finite field value (corresponding to a in Section 2).

type zi_t = { m : t ; m’ : t ; c : t }.

type z_t = [

| PInputZ of wid_t & zi_t

| SInputZ of wid_t & zi_t

| ConstantZ of gid_t & zi_t

| AdditionZ of gid_t & zi_t & z_t & z_t

| MultiplicationZ of gid_t & zi_t & z_t & z_t].

type commitment_t = z_t * t.

Figure 6: Commitment message data type

The prover commits to the statement following the EasyCrypt specification illustrated in Fig-
ure 7. To improve readability, we focus only on the functionality of certain gates. Informally, the
commitment message is built based on two operators: gen_z - transverses the circuit and produces
the three commitment values m, c and c’ for each gate - and get_a - outputs the random a value
for the output gate of the circuit.

Before starting the commitment computation, the prover first invokes a pre-processing function
dubbed add_final_mul. This function forces all circuits to end in a multiplication gate by adding a
final multiplication gate to the root of the circuit tree. This small pre-processing layer was added
to simplify the soundness proof, as is going to be explained more ahead in this section.

Upon receiving the commitment message, the verifier will build the data structure f (Figure 8),
encompassing three field values per gates: e, e’ and e’’. This data structure also follows the same
tree format as the circuit and commitment.

To validate a proof, the verifier first checks that the message it received is consistent with the
original circuit (which is also checked for its validity), meaning that it will check if the prover
produced a commitment for the actual circuit being evaluated. If this is the case, then the verifier
will perform the multiplication gate checks corresponding to the second verifier check of Figure 2.
Finally, the verifier computes f in order to obtain the value e for the output gate using the operator
get_e, and check if e it is equal to n · α. The LPZK verifier formalization is portrayed in Figure 9.

Completeness Our completeness theorem states that LPZK achieves perfect completeness, as-
suming that the inputs are well formed and that the randomness of the two parties is correlated
according to the predicate given in Figure 5. For the completeness theorem, we assume the ex-

12

op gen_z (u : prover_rand_t) (gg : gates_t) (xp : t list) (xs : t list) : z_t =

with gg = PInput wid ⇒
let b = (nth def_ui u wid).‘b in

let w = eval_gates gg xp xs in

PInputZ wid {| m = w - b ; m’ = 0 ; c = 0 |}

...

with gg = Multiplication gid l r ⇒
let wl = eval_gates l xp xs in let wr = eval_gates r xp xs in

let w = wl * wr in

...

MultiplicationZ gid {| m = w - b ; m’ = (al * ar) - a’ ;

c = ((al * wr) + (ar * wl)) - a) - b’ |}

(gen_z u l xp xs) (gen_z u r xp xs).

op commit (r : prover_rand_t) (x : prover_input_t) : commitment_t =

let (w, st) = x in let (c, inst) = st in

let c = add_final_mul c in

(gen_z r c.‘gates inst w, get_a r c.‘gates).

Figure 7: Prover execution

type fi_t = { e : t ; e’ : t ; e’’ : t }.

type f_t = [

| PInputF of fi_t

| SInputF of fi_t

| ConstantF of fi_t

| AdditionF of fi_t & f_t & f_t

| MultiplicationF of fi_t & f_t & f_t].

Figure 8: Verifier data structure

istence of an honest dealer that provides correlated randomness to the prover and to the verifier.
Formally, our EasyCrypt result is as follows.

Theorem 3.1 (Completeness (EasyCrypt)). For all honest dealers D that produce correlated ran-
domness, and for all valid witness w and statement x, if R(x,w) holds then

Pr[Completeness(D).main(w,x)@ &m : res] = 1%r,

where res is the output of the Completeness game.

Proof (intuition). The proof is done by induction on the circuit, where, for every gate, we prove
that, assuming that both parties hold correlated randomness, the prover will correctly compute
the protocol relation and that verifier can successfully attest the proof. All proofs are reduced to
simple field arithmetic properties, such as commutative, associative and distributive properties of
addition and multiplication.

Soundness The theoretic soundness error of LPZK is 1
|F| , where F is the size of the underlying

finite field when we set the batching parameter to t = 1. In contrast with the completeness theorem,
it is assumed that the prover randomness has been previously sampled and that the dealer will
only be responsible to produce the appropriate verifier randomness. This result is represented in
Theorem 3.2. Note that, in accordance with the valid_rand_prover of Figure 5, we are restricting
the values of the prover random a values to be different than zero. If that was the case, then the
soundness lemma of Theorem 3.2 would not hold, and we would need to account for a soundness
error of 1

|F|−1 . Restricting the value of the random a values to be different than zero simplifies the
soundness result bellow.

13

op batch_check (f : f_t) (z : z_t) (alpha : t) : bool =

...

with f = MultiplicationF fi fl fr ⇒
if (is_multiplicationz z) then

fi.‘e’’ = alpha * (as_multiplicationz z).‘2.‘c ∧
batch_check fl (as_multiplicationz z).‘3 alpha ∧
batch_check fr (as_multiplicationz z).‘4 alpha

else false.

op gen_f (r : verifier_rand_t) (z : z_t) =

with z = PInputZ wid zi ⇒
let m = zi.‘m in

let v = (nth def_yi r.‘y wid).‘v in

PInputF {| e = v + m ; e’ = 0 ; e’’ = 0 |}

...

with z = MultiplicationZ gid zi zl zr ⇒
let fl = gen_f r zl in let fr = gen_f r zr in

let m = zi.‘m in let m’ = zi.‘m’ in

let y = nth def_yi r.‘y gid in

...

let e = v + m in let e’ = v’ + (r.‘alpha * m’) in

MultiplicationF {| e = e ; e’ = e’ ;

e’’ = ((el * er) - e) - (r.‘alpha * e’) |} fl fr.

op prove (r : verifier_rand_t) (x : verifier_input_t) (c : commitment_t) : bool =

let (z, b) = c in

let (circ, inst) = x in

if (valid_circuit circ) then

let circ = add_final_mul circ in

if valid_z z circ ∧ n ̸= fzero then

let f = gen_f r z in

if (batch_check f z r.‘alpha) then

get_e f = n * r.‘alpha

else false

else false

else false.

Figure 9: Verifier execution

Theorem 3.2 (Soundness (EasyCrypt)). For all honest dealers D that produce correlated randomness
against prover randomness rp, for all malicious provers MP and for all statements x, if the statement
is not in the protocol language, then

Pr [Soundness(D, MP).main(rp, x)@ &m : res] ≤ 1%r / q%r

where q is the size of the finite field and res is the output of the Soundness game.

Proof (intuition). To obtain the soundness result for the LPZK protocol, we require the circuit
statement to end in a multiplication gate. Again, this can be done without loss of generality, since
to all circuits can be added a multiplication by one gate without altering the final output value of
the circuit.

This pre-computation greatly simplified the soundness proof, since most of the proof effort is
going to be concentrated in the final multiplication gate. By eliminating the case where the random
value a hold by a malicious prover is zero (which can only happen with negligible probability), we
are left with an equation to be solved over one witness w field value, allowing us to derive a soundness
error of at most 1

|F| .

Zero-knowledge For the zero-knowledge result, we define a simulator that will execute following
the exact same steps as the prover but, because it has no access to the witness, assumes that all
witness values are zero. The zero-knowledge result is obtained by establishing an isomorphism
between the honest prover execution and the simulator, as described in Theorem 3.3. For this

14

theorem, we make use of a concrete prover random generator RP, that samples four random field
elements per gate.

Theorem 3.3 (Zero-knowledge (EasyCrypt)). For all honest prover random generator RP, for all
distinguishers D, for all malicious verifiers MV and for all witness w and statement x, we have

Pr[GameReal(D, RP, MV).main(w,x)@ &m : res] =

Pr[GameIdeal(D, RP, MV, Simulator).main(w,x)@ &m : res]

where res is the output of the ZKGame game.

Proof (intuition). We first establish an isomorphism between an honest prover’s execution and the
simulator. This isomorphism states that if the random values held by the prover and simulator
are uniformly sampled, then the honest prover execution (that uses the correct witness values) and
the simulator (that assumes all witness values are zero) are indistinguishable. As a consequence,
a malicious verifier will have no advantage against the zero knowledge game, since it will not be
able to differentiate if the commitment message receive came from an honest prover run or from
the simulator

First optimization step: reducing extra circuit iterations Before extracting OCaml code
from our EasyCrypt formalization, we perform a preliminary optimization step that reduces extra
circuit iterations made by the verifier. Following the definition depicted in Figure 9, one can observe
that the verifier iterates over the circuit to check that the commitment message is consistent with
the circuit and then performs another circuit iteration to generate f. Naturally, this party can
condense the two circuit iterations into a single one, where gen_f now checks the consistency of the
commitment while generating f at the same time.

Completeness, soundness and zero knowledge for this new version of LPZK were derived by
proving that both the original and new versions have the same observable behavior. Informally, we
prove that the new prove operator will produce the same decision as the reference one on all possible
inputs. This allowed us to prove that: i. the completeness game of the new LPZK version has the
same probability of the completeness game of the reference LPZK version; ii. the soundness game
of the new LPZK version has the same probability of the soundness game of the reference LPZK
version; and iii. that the real zero knowledge game of the new LPZK version is indistinguishable
from the real game of the reference LPZK version and, therefore, the same simulator can be used
to prove zero knowledge.

3.1 Automated extraction of executable code

The verified implementation of LPZK is obtained from the EasyCrypt formalization by using the
EasyCrypt synthesis tool developed in [20]. Briefly, this tool performs a complete translation of
the EasyCrypt specification, stopping the extraction at the finite field arithmetic operations level.
This pruning was purposely performed in order to allow multiple instantiations of these operations
with different arithmetic libraries. For the context of this work, we use the default GMP arithmetic
library. However, the extraction driver can be tweaked (without requiring any tool expertise) to
map finite field operations to other arithmetic libraries.

Table 1 summarizes a preliminary performance analysis made to our high-assurance LPZK im-
plementation, following the benchmark infrastructure described in Section 1. The reported timings
seem poor, specially when comparing to the execution times of the unverified implementation in
[18]. These differences are greatly exacerbated as one goes deeper into bigger instances of the ma-
trix multiplication test family. For example, for the MM64 test, this version of the LPZK verified

15

MM16 MM32 MM64 MM128
PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG

230 − 218 + 1 606 379 985 240 22814 17435 40250 1228 1035719 933133 1968852 7511 - - > 10 h -
261 − 1 604 380 984 240 22817 17392 40209 1227 1034646 931599 1966246 7501 - - > 10 h -
2255 − 19 606 381 987 241 22926 17594 40520 1237 1035185 946349 1981534 7558 - - > 10 h -
#gates 8960 (4096) 59378 (32768) 535766 (262144) 4243456 (2097152)

Table 1: Performance analyses of the LPZK verified implementation. Each test instance is identified
by MMX, with X being the size of the matrix side. PRV represents the prover total time, VER
represents the verifier total time, TOT represents the total protocol time and TPG represents the
time-per-gate with respect to multiplications. All times are given in milliseconds, except the TPG,
which is given in microseconds. Due to space constrains, we ommit the prover and verifier times
for MM128, and focus only on the TOT metric, given in hours. The last row of the table portrays
the total gates of the matrix multiplication circuit, with the number multiplications being shown
between parentheses.

implementation is 6 orders of magnitude slower both in total execution time and in time-per-gate
measurements, considering the 261 − 1 field.

We also compare the obtained performance against the verified implementation of MPC-in-
the-Head given in [6]. The benchmark performance of [6] only considers circuits of up to 10,000
gates, which is smaller than the maximum of our tests. Nevertheless, comparing against the MM16
test instance (which has an approximate number of gates), we can conclude that the verified
implementation of LPZK out-performs the MPC-in-the-Head verified implementation by a factor
of 12 for primes that fit into a 64-bit word, and by a factor 14 for the 2255 − 19 prime. From an
orders of magnitude point of view, our LPZK implementation is two-orders of magnitude faster
comparing total times and one-order of magnitude faster comparing the time-per-gate metric.

Finally, we analyse the time-per-gate metric. It would be expected to observe a constant
time-per-gate measurement, independently of the matrix size. However, that is not the case for the
verified LPZK implementation we describe here, which suggests that our implementation is following
a quadratic behaviour, in contrast to the expected linear behavior. The quadratic complexity is
the result of the usage of lists to store input and randomness data, inducing linear access times
throughout the implementation. This issue is going to be addressed later in this paper, particularly
when we change to an array-based implementation, with constant access time.

4 Optimization based on execution model: parallelism

This section describes how we obtain a verified parallel implementation of the LPZK protocol.
We start by describing how we formalized parallel execution in EasyCrypt and how we used it to
build a generic parallelism-supporting library for EasyCrypt, that is of independent interest and
that can be re-used for other protocols (not only for zero-knowledge protocols) to speed EasyCrypt
formalizations of parallelized versions thereof. We then show how we instantiated the parallelism
library with LPZK by splitting the circuit according to output wires. This parallelization strategy
demonstrated to have good performance results for highly parallelizable circuits such as matrix
multiplication. We conclude this section with a discussion of the performance gains obtained by
our parallelism approach.

16

4.1 Parallel RAM EasyCrypt formalization

We model parallelism in EasyCrypt following the parallel RAM (PRAM) design of [21]. The authors
propose the PRAM architecture as a way to capture the scenario where each step of a RAMmachine
can branch to multiple processes that have access to the same memory. Informally, PRAM can
be seen as a collection of RAM machines that are executing asynchronously, and its workflow
can be described as follows. First, the computation description is split into smaller independent
descriptions, each one being given to a parallel core, specified as RAM machines. For example,
if the computation is described by means of an arithmetic circuit, then the circuit is divided into
smaller circuits, that can be aggregated back to the original circuit. Then, the collection of RAM
machines (i.e., the parallel processes) execute asynchronously, each one with its own internal state
but sharing common read-only memory. When all RAMmachines end their execution, their outputs
are collected and combined into a single output, as if it was produced sequentially.

Our EasyCrypt PRAM formalization was inspired by the EasyCrypt project of [7]. In this work,
the authors explored the role of verified compilers in the context of MPC from two possible compi-
lation dimensions: i. one that formalizes the distributive computation of MPC protocols described
as programs; and ii. one where the program is compiled from a high-level language to a low-level
language, while keeping the same security guarantees of the source program We leverage the formal-
ization given by the first compilation dimension in order to formalize the PRAM framework. Our
secure parallel result is established following a UC-like approach, where an attacker will attempt to
distinguish a real world from an ideal world, colluding with an adversarial environment that con-
trols the flow of inputs and the collection of outputs to and from the protocol. In the real world,
the attacker interacts directly with the parallel execution of the protocol. In the ideal world, the
attacker interacts with a RAM machine that is sequentially computing the protocol. The parallel
PRAM execution is secure if there exists a simulator that can emulate the real world view observ-
able by the attacker, while interacting with the ideal functionality. This formalization choice was
mainly motivated because it is a model that allowed us to reason not only about the equivalence of
outputs, but also about the security of intermediate computations, capturing the desired twofold
result: i. the asynchronous execution of the parallel RAM machines does not constitute a breach
in the security of the protocol, or, in other words, the PRAM implementation computes the same
thing as a sequential RAM machine even when the adversary controls the scheduler; and ii. the
aggregation of the outputs of the PRAM cores is equivalent to a sequential execution.

Our formalization is parameterized by a language L, that fixes how the computation is described.
For the context of LPZK, L will correspond to arithmetic circuits, but we leave it abstract to increase
the modularity of the parallel framework. This language will be used to characterize both the RAM
and PRAM executions.

A RAM machine is modeled as a single party evaluating a circuit C written in the language
L. The evaluation is defined using a function step that is responsible to advance with the circuit
evaluation, potentially modifying the internal state of the RAM machine. In the PRAM execution,
a set of cores will be responsible to evaluate the original circuit C. Each core locally executes
its own smaller circuit, and the outputs are aggregated at the end. We consider two different
execution configurations: one where cores advance asynchronously via their respective local steps,
and another where cores advance synchronously at the same time.

The EasyCrypt formalization of both the RAM and PRAM semantics is portrayed in Figure 10,
where stepP represents the asynchronous and stepS represents the synchronous core execution.
In addition to the step procedures, the RAM and PRAM modules also disclose an initialization
procedure, a procedure to provide inputs to the circuit and a procedure to collect output at the
end of the evaluation. These interfaces fix the data types for the output of each parallel core

17

(execution_info_t), possible circuit meta information that is required to reconstruct the original
circuit (meta_information_t) and also the number of processors involved in the parallel evaluation.
We enforce the distinction between execution_info_t and output_t: the former is used to capture
the output of each parallel core, while the latter is used to capture the final output of the parallel
evaluation, i.e., when all individual outputs are collected and aggregated.

module type RAM = {

proc init(P : L) : unit

proc step() : execution_info_t option

proc setInput(x : input_t) : bool

proc getOutput() : output_t option }.

module type PRAM = {

proc init(meta : meta_information_t, Ps : L list) : unit

proc stepP(id : processorId_t) : bool

proc stepS() : execution_info_t option

proc setInput(x : input_t) : bool

proc getOutput() : output_t option }.

Figure 10: EasyCrypt RAM and PRAM computational models

The animation of a RAM or PRAM instance is done following a Universal Composability (UC)
style approach, similar to the one formalized in [7]. Our framework is animated by two external
entities: an environment Z and an adversary A, that collude while interacting with the system.
Looking at the interfaces of Figure 10, we observe that programs in both worlds progress based on
step commands, which are delivered via the adversarial interface to A and to a simulator S (in the
ideal world). In the real world (PRAM), the adversary can choose to either request a synchronous
execution of all processes via the stepS interface or, alternatively, the adversary may drive a single
process to progress in its local computations via stepP. In the ideal world, A has access to a single
step method, that can possibly reveal some leakage. In either world, the environment can activate
the adversary whenever it wishes to trigger the progress of the PRAM cores or of the sequential
RAM machine. Additionally, the environment can also control the flow of inputs and outputs
interacting with the RAM or PRAM semantics, through the procedures setInput and getOutput.

4.2 Generic map-reduce EasyCrypt library

The intuition behind our genericmap-reduce formalization is the usage of multiple instances of RAM
machines to capture the specification of the parallel cores. Indeed, PRAM will maintain a parallel
state (pstate_t), consisting of a collection of the individual states of every RAM machine involved
in the parallel computation. Our EasyCrypt map-reduce framework assumes that it will evaluate
non-reactive functionalities, meaning that inputs can only be provided once at the beginning of the
computation and outputs can only be collected once at the end of the computation.

We first show the formalization of a dedicated functional specification of a RAM machine in
EasyCrypt, by instantiating the RAM interface of Figure 10 with the functional operators showed
in Figure 11. The motivation behind the definition of the functional RAM model was to provide
a more natural way to specify the execution of the parallel cores, since it allows us to use the
functional operators to capture the workflow of the parallel cores.

The execution of a RAM machine is centered around its state, captured by the state_t type.
At first, the empty state is initialized with a circuit (i.e., the computation description). Then, as
the evaluation takes place, a RAM machine can be given input via set_input or, if the computation

18

type state_t.

op empty_state : state_t.

op init_state : P → state_t.

op set_input : state_t → input_t → state_t.

op step : state_t → state_t * execution_info_t option.

op get_input : state_t → input_t option.

op get_output : state_t → output_t option.

Figure 11: EasyCrypt functional RAM model

has ended, collected output from. The concrete circuit evaluation is captured by the step operator,
that produces a new state and possible execution related information.

The realization of the parallel map-reduce execution on top of the PRAM model is depicted
in Figure 12. Each processor (RAM machine) is initialized with its corresponding circuit. After,
the execution can follow two different approaches. First, the cores can be executed one at a time
using stepP. Because we only consider non-reactive functionalities, a successful core execution is
only achieved if the core was already provided input and if it has no output (i.e., it has not reached
the end of its circuit). And second, the entire set of cores can be animated at the same time using
stepS. Processors share the same input values and output collection can only be done after all
individual processes have finished their respective computation. Note that, following a UC-like
formalization, it means that stepP and stepS can be invoked intertwined an arbitrary number of
times, without a specific order.

module MapReduce = {

proc init(meta_ : meta_information_t, Ps : L list) : unit = { ... }

proc stepP(id : processorId_t) : bool = {

st_i ← odflt empty_state (assoc pst id); r ← false;

if (0 ≤ id < nprocesses ∧ has_input st_i ∧ !has_output st_i) {

pst ← (id, fst (step st_i)) :: (assoc_rem id pst);

r ← true;

}

return r;

}

proc stepS() : execution_info_t option = {

while (i < nprocesses) {

b <@ stepP(i);

pst ← (i, odflt empty_state (assoc pst i)) :: (assoc_rem i pst);

}

y ← aggregate meta pst;

return y;

}

proc setInput(x : input_t) : bool = { ... }

proc getOutput() : output_t option = { ... } }.

Figure 12: Concrete PRAM formalization

The secure transformation of a sequential evaluation into a parallel one relies on the operators
portrayed in Figure 13, which need to be provide for every instantiation of the parallel framework.
The first one is the circuit split operator split_circuit, that takes as input a circuit and produces
smaller independent circuits, together with all meta information required to reconstruct the original
circuit. The next one is the circuit aggregation procedure aggregate_circuit. Intuitively, these
two operators should cancel each other, in the sense that aggregating a circuit after splitting it
should yield the same original circuit and vice-versa. Finally, our model specifies the aggregate

function, that uses the circuit meta information and the parallel state where all cores have finished

19

their execution in order to compile the outputs of all cores into a single output value, as if it was
sequentially computed.

op split_circuit : P → meta_information_t * P list.

op aggregate_circuit : meta_information_t * P list → P.

op aggregate : meta_information_t → pstate_t → execution_info_t option.

Figure 13: Split and aggregate functionalities

Our model imposes the expected correctness assumptions regarding these functions. In more
detail, we require that aggregate, using a parallel state that resulted from evaluating a set of circuits
obtained via split_circuit, must produce the same output as a single RAM machine evaluating
the original circuit. An instantiation of aggregate for which the above property hold is said to
correctly aggregate a circuit. This property is the only property that users need to prove when
using our parallelism library.

Our main parallel result is established by proving that splitting a circuit and evaluating it
according to the PRAM description of Figure 12 is equivalent to evaluating a circuit sequentially
using a dedicated RAM machine. In other words, we prove that a sequential execution of some
algorithm can be securely transformed into a parallel execution, with the same observable behavior.
Formally, we prove the following EasyCrypt theorem.

Theorem 4.1 (Secure parallel execution (EasyCrypt)). For all environments Z and for all adver-
saries A, for all circuits c and for all aggregate functions that correctly aggregate c, there exists a
simulator S such that

Pr[ParallelGame(Z, A).eval(c)@ &m : res] =

Pr[SequentialGame(Z, A, S).eval(c)@ &m : res]

where ParallelGame is the execution of MapReduce from Figure 12, SequentialGame is the sequential
RAM evaluation

Proof (intuition). Intuitively, the goal of the simulator S is to intercept queries made by the ad-
versary A, and construct answers that will trick A into thinking it is dealing with a distributed
program evaluation. In practice, it amounts to constructing a simulated parallel execution, that
keeps in its internal state an emulation of the parallel semantics. Looking at the interface defined
by the PRAM model, the parallel evaluation can easily be embedded in the simulator as it can
store and manage local configurations for all existing parallel cores. Because the adversary does not
get intermediate observations, we are to prove that the scheduler has no impact in the final result,
a statement that follows from the independence of the computations. Note that, even though the
different cores share the memory, they are not concurrently accessing the same memory locations.

The proof relies on simulator S presented above. It amounts to proving that the adversarial view
in the PRAM model is indistinguishable from its view in the simulated RAM model. This is proven
by keeping both the RAM and PRAM evaluation synchronized. When the ParallelGame invokes
the stepP interface, the simulator replicates its behavior, which he can do since it maintains its local
copy of the parallel execution. If, after executing the individual core, all cores have evaluated their
respective circuit, the simulator will then proceed by evaluating the sequential RAM machine until
it produces output. Similarly, when the ParallelGame invokes the stepS procedure, the simulator
will also execute the entire set of cores at the same time, before executing the sequential RAM
machine.

Finally, when Z requests output, the ParallelGame responds by aggregating the output of the
parallel cores, whereas the simulator responds with the output of the sequential RAM machine.
Because, by assumption aggregate correctly aggregates circuit c, both games will be equivalent.

20

4.3 Verified parallel LPZK implementation

A verified parallel implementation of LPZK is obtained by instantiating the generic EasyCrypt
parallelism with concrete LPZK operations as specified in Section 3. We formalize a parallel version
of the LPZK prover and of the LPZK verifier, by first defining a sequential RAM wrapper for both
entities and then by providing concrete realizations of the split_circuit, aggregate_circuit and
aggregate operators. For the remaining of this section, we will focus on how we derived a parallel
implementation of the LPZK prover. Achieving a parallel implementation of the LPZK verifier
is analogous. To further attest the modularity of our parallelism framework, we discuss other
instantiations of our EasyCrypt parallelism library in Appendix B.

The first step is defining a wrapper for the sequential LPZK specification detailed in Section 3
following the RAM syntax of Figure 11. The language considered is that of arithmetic circuits, as
shown in Figure 4, where the witness, statement and randomness represent the circuit inputs, the
output is the commitment message and the parallel core outputs (the execution_info_t data type)
is the z structure.

The state of the RAM machine will store values that identify the circuit being evaluated, the
witness, statement and randomness, and also of its final output. State modifications induced by the
init_state, set_input and step functions are defined in the expected way. We illustrate the LPZK
prover RAM wrapper in Figure 14. The final commitment construction is done when invoking the
get_output method, whose responsibility is to take the output of the RAM machine and compute
the field value a.

type state_t = { circ : L option ; w : witness_t option ; r : prover_rand_t option ; inst : instance_t option

; zo : execution_info_t option }.

op step (st : state_t) : state_t * execution_info_t option =

if has_input st then

let circ = oget (st.‘circ) in

let zc = gen_z (oget st.‘r) circ.‘gates (oget st.‘inst) (oget st.‘w) in

({| circ = st.‘circ ; w = st.‘w ; r = st.‘r ; inst = st.‘inst ; zo = Some zc |}, Some zc)

else (st, None).

op get_output (st : state_t) : output_t option =

if st.‘zo ̸= None then

let (z, c) = oget st.‘zo in

let z’ = (get_a (oget st.‘r) (oget st.‘circ).‘gates, c) in

Some (z, z’)

else None.

Figure 14: LPZK prover RAM wrapper

Splitting is done by taking the description of the output wires exposed by the output_wires

record of Figure 4 and extracting them from the gates record. The original circuit can be recon-
structed back by aggregating the smaller circuits via addition gates. This aggregation strategy
is correct because we are restricting the usage of arithmetic circuits that evaluate to zero and,
therefore, the final circuit output can be obtained by adding the outputs of the smaller circuits.
A similar approach is followed to combine the outputs of the parallel cores. Each processor ends
its execution by outputting the z structure corresponding to the evaluated circuit, and the final
value of z is derived by compiling all values of z using addition gates. We depict the EasyCrypt
formalization of the aggregate function in Figure 15.

Executable OCaml code is obtained via code extraction, again using EasyCrypt to OCaml code
generation tool of [20]. However, in contrast with the previous sequential LPZK implementation
that we automatically synthesize using such tool, we were not able to perform a fully automatic
code extraction from the EasyCrypt formalization, mostly because we are formalizing the execution

21

op aggregate (m : meta_information_t) (cs : pstate_t) : RAMProver.execution_info_t option =

if has_output cs then

let (topo, ys) = m in

let c_0 = oget (oget (assoc cs 0)).‘RAMProver.zo in

let id = topo.‘ngates - topo.‘noutputs in

let reorganize = map (fun id ⇒ (id, oget (assoc cs id))) (iota_ 0 nprocesses) in

let aggregation = foldl (fun st c ⇒ let (i, acc) = st in let (id, com) = c in (i+1, AdditionZ i {| m =

fzero; m’ = fzero; c = fzero; |} acc (oget com.‘RAMProver.zo))) (id, c_0) reorganize in

Some (snd aggregation)

else None.

Figure 15: Aggregation of parallel cores outputs

of LPZK in a thread like environment, but we are leaving out of the formalization the operating
system calls to generate the actual threads. These are part of our TCB and were implemented
by resorting to the Domainslib OCaml library, a library that provides support for nested-parallel
programming.

Table 2 summarizes the extraction methodology that we followed to obtain the parallel im-
plementation from the proof, describing which components are automatically extracted and what
needs to be manually implemented. We automatically extract the (verified) code that is going to
be given to the different processors, how the original circuit is split and how the outputs of the
processors are aggregated. The unverified part of the code is reduced to basic OCaml data types,
the Zarith library to perform finite field arithmetic, and the Domainslib library used to create and
launch threads.

Content Automatic Manual

LPZK Core code All code -

RAM LZPK RAM wrapper N/A N/A

PRAM LZPK
PRAM

implementation
split_circuit

aggregate

Thread
management

Table 2: Summary of the components that are automatically extracted and manually implemented

Table 3 gives a performance analysis of the PRAM LPZK implementation, realized following
the same benchmarking approach of the sequential LPZK implementation. Our numbers reflect
an execution with 4, 8, 16 and 32 parallel processes, taking advantage of the modularity of the
parallelism framework. For this performance analysis, we focus only on the F261−1 field.

MM16 MM32 MM64 M128
PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG

4 cores 242 116 358 87 9385 5622 15007 458 458383 325550 783933 2990 - - > 10 h -
8 cores 122 73 195 48 4294 3352 7647 233 206723 197719 404442 1543 11954640 13342648 25297288 12063
16 cores 83 39 122 30 2353 1629 3983 122 105819 89089 194909 744 6064130 6680697 12744827 6077
32 cores 80 50 130 32 2200 1407 3607 110 87815 70990 158805 606 4597496 4851991 9449487 4506
#gates 8960 (4096) 59378 (32768) 535766 (262144) 4243456 (2097152)

Table 3: Performance analysis of our parallel verified LPZK implementation, considering different
instances of the MM test for the F261−1 field. All times are given in milliseconds, except the TPG,
which is given in microseconds. The last row of the table portrays the total gates of the matrix
multiplication circuit, with the number multiplications being shown between parentheses.

The performance benefits of introducing the parallel implementation are clear, and are particu-
larly noticeable for bigger instances of the matrix multiplication problem. Concretely, even a 4 core

22

setting is able to speed-up the LPZK evaluation time by a factor of 3, taking an order of magnitude
off the time-per-gate on the MM16 and MM32 instances. Focusing on the bigger core setting of 32
cores, we observe 8-12x computation speed-up. In fact, considering a 32 core setting, our parallel
LPZK formalization and extraction methodology leads to a 48% improvement on the total execu-
tion time of the protocol, while maintaining the high-assurance guarantees of the sequential LPZK
implementation. Summing up, the total time of the protocol is reduced by a factor of 3 in a 4 core
setting, by a factor of 5 in a 8 core setting, by a factor of 8-10 in a 16 core setting and by a factor
of 8-12 in a 32 core setting.

Finally, we also note a significant reduction of the performance of the MM128 test. From more
than 10 hours, our verified parallelism approach is able to reduce the execution time to 7 hours
with 8 cores, to 3.5 hours with 16 cores and to 2.6 hours with 32 cores. Despite still being slow, it
is a demonstration that our EasyCrypt parallelism framework can be used to reduce computation
times whilst keeping the guarantees of sequential evaluations.

5 Optimization based on memory management: array-based im-
plementation

In this section, we explore memory management performance gains by modifying the data structures
used to store and access values in memory. Recalling the benchmark discussion of Section 3, our im-
plementation observed a quadratic behavior, mostly because of all linear memory accesses that are
performed due to the usage of lists. Therefore, we explored how changing to a an array-based con-
stant access implementation could improve the performance of the verified LPZK implementation.
At the end of the section, we will discuss the performance of two array-based implementations: i. a
sequential one, that we use to compare against other manual, unverified implementations of NIZK
protocols (including an unverified, highly optimized implementation of LPZK); and ii. a parallel
one, that was obtained by taking advantage of the parallel EasyCrypt library described in Section 4,
and that is the fastest implementation obtained by our methodologies

5.1 Array-based LPZK EasyCrypt formalization

The development of the new array-based LPZK implementation required the definition of an array
EasyCrypt library, to be later used in the LPZK formalization. EasyCrypt already includes an array
formalization as part of its standard library, however, array operations are specified over lists.
For example, accessing an element of an array is defined by converting the array to a list and
then accessing that element on the resulting list. This choice of formalization provides concrete
realizations of array operations but does not remove the linear access time imposed by lists. Our
(simple) array theory encompasses operators to create arrays, access array elements and converted
between arrays and lists, as depicted in Figure 16. We purposely leave the array type and operations
abstract, so that different array implementations can be used at the code extraction time.

type α array.

op size : α array → int.

op make : int → α→ α array.

op get : α→ α array → int → α .

op to_list : α array → α list.

op of_list : α list → α array.

Figure 16: EasyCrypt array library

23

MM16 MM32 MM64 MM128
PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG

Sequential
230 − 218 + 1 3 4 7 1.7 26 28 54 1.7 236 268 504 1.9 1538 1496 3034 1.4

261 − 1 5 5 10 2.5 41 35 76 2.3 342 308 650 2.5 2194 1797 3991 2
2255 − 19 19 18 37 9 156 148 304 9.2 1261 1169 2430 9.2 9985 10463 20449 9.7

32 cores
230 − 218 + 1 6 6 12 2.8 11 12 23 0.7 95 82 177 0.7 830 605 1435 0.7

261 − 1 7 6 13 3 15 13 28 0.8 123 94 216 0.8 982 690 1672 0.8
2255 − 19 10 9 19 4.8 53 40 93 2.8 408 254 661 2.5 3498 2224 5722 2.7
#gates 8960 (4096) 59378 (32768) 535766 (262144) 4243456 (2097152)

Table 4: Performance analysis the array-based verified LPZK implementation. All times are given
in milliseconds, except the TPG, which is given in microseconds. The last row of the table portrays
the total gates of the matrix multiplication circuit, with the number multiplications being shown
between parentheses.

The EasyCrypt formalization of the array-based LPZK is obtained by replacing all occurrences of
the list type by the newly defined array type and all occurrences of nth (the list access EasyCrypt
operator) by the get array operator. Although this optimization can be applied to any EasyCrypt
formalization, we still do not have a generic, modular and automated way to easily apply it to any
EasyCrypt code. Essentially, applying our memory management optimization approach involves
manually changing the usage of lists to arrays, and then proving the equivalence between the two.
This has to be done manually for every EasyCrypt formalization, unlike the parallelism optimization,
which works as an automated compiler from sequential to parallel descriptions. Nevertheless,
automating this process is something we envision as a potential future work direction.

The equivalence between the list-based and the array-based LPZK formalization is established
by proving that the outputs of the prover and of the verifier are independent of the memory
data structures being used. Concretely, this means proving that the prover produces the same
commitment message given values stored using a list-based data structure or an array-based data
structure and, likewise, proving that the verifier produced the same decision bit following either
the list-based or array-based implementations. Note that we are not changing the type of the
commitment message, i.e., both implementations are producing commitments with the same type
(type commitment_t = z_t * z’_t). This allowed us to derive that: i. the completeness game of
the array-based LPZK version has the same probability of the completeness game of the list-based
LPZK version; ii. the soundness game of the array-based LPZK version has the same probability
of the soundness game of the list-based LPZK version; and iii. that the real zero knowledge game
of the array-based LPZK version is indistinguishable from the real game of the list-based LPZK
version.

5.2 Verified array-based LPZK implementation

The array-based LPZK implementation was obtained by EasyCrypt code synthesis again relying
on the tool of [20]. The developed EasyCrypt array library is instantiated at the code extraction
level by plugging the standard OCaml array library directly into the tool as the backend for our
EasyCrypt array library.

We conclude this section by reporting the performance of our verified array-based LPZK im-
plementation, given in Table 4. We report the times of the sequential version and of the 32-core
parallel version, that aggregates both the parallelism and array optimizations, giving the fastest
times achieved by our verified LPZK implementation. We collect performance times over the three
finite fields that we are considering.

24

IT-LPZKv1 IT-LPZKv2 ROM-LPZKv2 VERIFIED IT-LPZKv1
PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG

opt. 261 − 1 23 16 39 0.04 18 12 30 0.03 234 213 447 0.4 - - - -
gen. 261 − 1 1611 1120 2731 2.7 1304 900 2204 2.2 2340 1295 3635 3.6 1274 1051 2325 2.3
gen. 2255 − 19 1976 1525 3501 3.5 1648 1176 2824 2.8 2172 1088 3260 3.3 4912 4472 9384 9.4

Table 5: Comparison between the high-assurance sequential array-based implementation of LPZK
against the manual implementation of [18], as measured by executing a circuit with one million
multiplication gates. The first row shows a comparison with the manual LPZK implementation
using an optimized F261−1 backend (opt. 261 − 1), while the bottom rows show a comparison with
the manual LPZK implementation using a generic NTL based field backend (gen. 261 − 1 and gen.
2255 − 19). All times are given in milliseconds, except the TPG, which is given in microseconds

The performance gains are compelling, in all test instances and for all finite fields. Naturally,
the most impressive gains are seen in the MM128 test instance, where the total evaluation decreased
from more than 10 hours to just slightly over one and a half seconds (F261−1) or almost 6 seconds
(F2255−19), considering the 32 core parallel version. Indeed, changing to an array-based memory
management reduces the overall complexity of the implementation, from a quadratic one to a linear
one, as exposed by the constant time-per-gate measurement that is achieved in the array-based
implementation. Consequently, the code execution times dropped considerably.

Comparison against unverified LPZK implementation For a fairer comparison, we will
resort to the sequential array-based implementation when comparing to existing implementations
of other ZK protocols, since most of them do not incorporate parallelism mechanisms. We start
by giving a comparison with the the unverified implementation of LPZK given in [18], sketched in
Table 5, where we compare the two implementations against a circuit with a million multiplication
gates. For the manual LPZK implementation, we measured the times of IT-LPZKv1, IT-LPZKv2
and ROM-LPZKv2. The unverified LPZK implementation is instantiated first with a highly opti-
mized backend for the F261−1 field and then with a generic finite field backend based on the NTL
library, to provide a fair comparison with the verified LPZK implementation obtained from the
EasyCrypt where field operations are done using OCaml bindings to the GMP library.

When comparing against the unverified LPZK implementation that uses the optimized F261−1
field, the verified LPZK implementation is 70x slower, which is reflected in the 2 orders of magnitude
that separate the TPG measurement in both. This difference is amplified if one compares against
the manual IT-LPZKv2 implementation. However, when the field operations are done using a
generic field backend (which represents the fairest comparison between the verified an unverified
implementations), we can conclude that our verified implementation is actually slightly faster that
the unverified one. Concretely, we can observe 1.3x performance gains in the prover, verifier
and total protocol times. Even considering IT-LPZKv2, the performance of the verified LPZK
implementation achieves similar performance, even being slightly faster in terms of prover execution
time. This contrasts with the performance measured for the 2255 − 19 field, where the unverified
LPZK implementation is actually 2.7x faster than the verified one. Since both implementations do
not make algorithmic changes with respect to the finite field, we conjecture that these discrepancies
come from differences in the arithmetic implementations made by the NTL and GMP libraries.

Comparison against unverified state-of-the-art NIZK protocols Taking advantage of Ta-
ble 3 of [18], we can also compare our verified LPZK implementation against other state-of-the-art
NIZK protocols and zkSNARKs, namely Groth16 [24], Virgo [33] and QuickSilver [31], that we sum-
marize in Table 6. This table provides the execution times of the aforementioned protocols when

25

Groth16 Virgo QuickSilver Verified LPZK
PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG PRV VER TOT TPG
21k 2 21k 21 478 12 490 0.5 128 128 256 0.3 1274 1051 2325 2.3

Table 6: Comparison between the high-assurance sequential array-based implementation of LPZK
against other state-of-the-art NIZK protocols, as measured by executing a circuit with one million
multiplication gates. The protocols are all executed over F261−1. All times are given in milliseconds,
except the TPG, which is given in microseconds

evaluating a circuit with one million gates over F261−1. All measurements were done on top of an
AWS machine with equal specifications to the one used to collect the benchmarks of our verified
LPZK implementation. The values reported put our sequential array-based LPZK implementation
with better prover performance than Groth16, and with equal performance when comparing to
Virgo. Nevertheless, those implementations achieve better verification times, also due to the nature
of the protocols.

We also compare our code against other ZK codebases, based on MPC-in-the-Head, concretely
that of ZKBoo [22], that also relies on parallelism. The authors report a 13ms prover time and a
5ms verifier time for the evaluation of a fine-tuned SHA-1 circuit with 40 AND gates, 372 XOR
gates and 325 addition gates, that combines operations over F232 and over F2, using an 4 GHz 8
core machine. Because doing a single run of LPZK for a boolean circuit would yield a soundness
error of 1

2 , LPZK requires the performance of a series of protocol repetitions to achieve a negligible
soundness error. Concretely, to achieve a 2−80 soundness error as the experiences performed by
ZKBoo, our implementation reports an execution time of 104ms for the prover and 96ms for the
verifier, a 8x penalty compared with the time reported by ZKBoo. Note, nevertheless, that our
benchmarking environment uses slower processing cores.

Finally, we refer the reader to the 32 core line of Table 4, which portrays the fastest execution
times achieved by our high-assurance LPZK implementation combining both optimization paths
proposed in this paper. The purpose of this paper was to explore new techniques to close the
performance gap between verified and unverified implementations of cryptographic mechanisms. In
that sense, although it is an unfair comparison, such implementation is an important step in the
direction of optimizing high-assurance cryptographic implementations, putting our final verified
LPZK implementation in a very competitive position, even when compared with other unverified
implementations of ZK protocols.

6 Related work

In this section, we discuss the state-of-the-art from the perspective of the recent accomplishments
in VOLE-based NIZKs and from the perspective of the application of computer-aided cryptography
to ZK protocols.

6.1 VOLE-based NIZKs

The original work [16] showing how two parties could efficiently generate vector oblivious linear
evaluation (VOLE)-type correlated randomness, also observed that existing honest-verifier ZK lin-
ear interactive proof (HVZK-LIP) schemes could be compiled to NIZK over VOLE. Follow up
work developed fast and efficient VOLE-based NIZKs. The first wave of these efforts included
three works: LPZK [19], Mac’n’Cheese, [12], and Wolverine [29], where each used one entry of the
VOLE to encode each gate of the circuit (treating the VOLE as a message authentication code, an

26

IT-MAC). LPZK achieved the best communication in the random oracle model for arithmetic cir-
cuits, requiring 1 field element of communication per gate, and gave the only construction that was
information-theoretically secure in the random VOLE model, without requiring a random oracle.
Wolverine required 2 elements of communication per gate, but could also treat boolean circuits, and
Mac’n’Cheese applied stacked disjunction techniques to give more efficient constructions for special
subclasses of circuits.

From here, improvements have continued developing further optimization, cross-polination, and
diversification. Quicksilver [31], a follow-up work to Wolverine, combined techniques from Wolverine
and LPZK to achieve one field element of communication per gate in the boolean setting, while
additionally giving very small communication costs in the special case where a circuit could be
represented as a low-degree polynomial. LPZKv2 [18] improved further to requiring 1

2 elements
of communication per gate in the case of layered circuits, using either more complex correlated
randomness, or by moving half of the communication to an offline step. The Mac’n’Cheese protocol
was extended to protocols Appenzeller and Brie [10] to handle switching between representations
over different fields and rings, so that a circuit could be written with some gates over Fp and other
gates over F2k .

More recent work [30] presented a construction that requires |C|3/4 communication in the gen-
eral case at the cost of the use of an additively homomorphic encryption scheme (AHE), and
MozZ2karella [11] extended the VOLE-based ZK approach to the ring Z2k .

6.2 Computer-aided cryptography applied to ZK protocols

The application of computer-aided cryptography mechanisms to ZK protocols has been the focus of
recent research, the most closely related to our work being that of [6], where the authors formalized
and automatically synthesized ZK protocols based on the IKOS framework [6]. Compared to pre-
vious work, the authors there consider 3-pass ZK protocols, and give both a machine-checked proof
of security for IKOS and a formally verified implementation, including verified implementations for
the underlying MPC, secret sharing and commitment sub-protocols, and can be used in practice to
prove arbitrary goals in zero knowledge. Their formalization follows the original IKOS construction
given in [25] and uses the standard syntax and security notions for ZK proofs, MPC protocols and
commitment schemes. This has the advantage of allowing one to build on and to deploy standard
components, but introduces the challenge of formalizing more complex security proofs.

Independently, the work of [28] presented a machine-checked security proof for a class of Σ-
protocols that follows the approach to IKOS introduced by the ZKBoo protocol [22], which is an
important optimized derivative of the MPC-in-the-Head paradigm. The authors give a formaliza-
tion of decomposition protocols and show how they can be modularly used to construct Σ-protocols,
which are secure in the sense of special-soundness and special honest verifier ZK. We note that these
properties are specific to Σ protocols; indeed, additional transformations and security proofs are
needed to obtain the standard non-interactive proof-of-knowledge guarantees that these protocols
provide.

Prior to the above research, works in [9] and [17] were the first to formalize a special class of Σϕ-
protocols in CertiCrypt, a predecessor of EasyCrypt implemented as a Coq library, and CryptHOL,
respectively. Both works proved the security of general AND and OR composability theorems
for Σϕ-protocols, formalized abstract and concrete commitment scheme primitives and proved a
construction of commitment schemes from Σ-protocols.

Another computer-aided cryptography treatment of ZK protocol was the work of [4], where
the authors developed a full-stack verified framework for developing ZK proofs. The proposed
framework is composed of two compilers: i. a non-verified optimizing ZK compiler that translates

27

high-level ZK proof goals to C or Java implementations; and ii. a verified compiler that generates a
reference implementation The authors provided a CertiCrypt machine-checked proof attesting that
the reference implementation satisfies the ZK properties and that the optimized implementation has
the same observable behavior as the reference implementation, for any goal. This work leverages
the results from [9], extended with AND compositions of ΣGSP-protocols.

7 Conclusion and Future Work

In this paper, we provide an additional step in the effort of closing the performance gap between
verified implementations and non-verified implementations of cryptographic primitives, using the
LPZK protocol as a case-study. Our approach to securely generate an optimized high-assurance
implementation of LPZK was mechanically verified in EasyCrypt and encompasses a generic and
modular parallelism framework, tolerating an arbitrary number of cores, and a memory-based
optimization path from lists to arrays.

The effects of the optimization methodologies we propose are further demonstrated by the graph
depicted in Figure 17, where we show the averages of the time-per-gate measurements for the dif-
ferent versions of the implementation, starting from the list-based sequential implementation to
the array-based 32 core parallel implementation. This graph shows how the verified optimizations
were able to reduce the complexity of the implementation from quadratic to linear, ending up
with a final codebase that achieves competitive performance even when compared with unverified
implementations of other ZK protocols. The green line (concerning the sequential array-based im-
plementation) and the dark blue line (concerning the 32-core parallel array-based implementation)
are overlapped.

Figure 17: Time-per-gate evolution with respect to the matrix multiplication circuit. LS - list-based
sequential implementation (Section 3) LPX - list-based parallel implementation (Section 4), with
X denoting the number of cores AS - array-based sequential implementation (Section 5) AP-32
- array-base parallel implementation, using 32 cores

28

Acknowledgement

We would like to thank Sabine Oechsner and Peter Scholl for their valuable comments that helped
us identifying a mistake concerning the batch multiplication checks made by the verifier. This error
was present both in the original EasyCrypt proof and in the resuting OCaml implementation. It has
been addressed and is now fixed.

This material is based upon work supported by DARPA under Contract No. HR001120C0086.
Any opinions, findings and conclusions or recommendations expressed in this material are those
the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

References

[1] Jose Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn, Ahmad-Reza
Sadeghi, and Thomas Schneider. A certifying compiler for zero-knowledge proofs of knowl-
edge based on σ-protocols. Cryptology ePrint Archive, Paper 2010/339, 2010. https:

//eprint.iacr.org/2010/339.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vin-
cent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jas-
min: High-assurance and high-speed cryptography. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1807–1823, 2017.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos,
Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: High-assurance and
high-speed cryptographic implementations. CoRR, abs/1904.04606, 2019.

[4] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe, Stephan Krenn, and
Santiago Zanella Béguelin. Full proof cryptography: Verifiable compilation of efficient zero-
knowledge protocols. Cryptology ePrint Archive, Paper 2012/258, 2012. https://eprint.

iacr.org/2012/258.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin
Grégoire, Vincent Laporte, and Vitor Pereira. A fast and verified software stack for secure
function evaluation. Cryptology ePrint Archive, Paper 2017/821, 2017. https://eprint.

iacr.org/2017/821.

[6] José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim Eldefrawy, Stéphane
Graham-Lengrand, Hugo Pacheco, and Vitor Pereira. Machine-checked zkp for np-relations:
Formally verified security proofs and implementations of mpc-in-the-head. Cryptology ePrint
Archive, Paper 2021/1149, 2021. https://eprint.iacr.org/2021/1149.

[7] José Carlos Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Hugo Pacheco, Vitor Pereira, and
Bernardo Portela. A formal treatment of the role of verified compilers in secure computation.
Journal of Logical and Algebraic Methods in Programming, 125:100736, 2022.

[8] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. Sok: Computer-aided cryptography. Cryptology ePrint Archive,
Paper 2019/1393, 2019. https://eprint.iacr.org/2019/1393.

29

https://eprint.iacr.org/2010/339
https://eprint.iacr.org/2010/339
https://eprint.iacr.org/2012/258
https://eprint.iacr.org/2012/258
https://eprint.iacr.org/2017/821
https://eprint.iacr.org/2017/821
https://eprint.iacr.org/2021/1149
https://eprint.iacr.org/2019/1393

[9] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and Sylvain Her-
aud. A machine-checked formalization of sigma-protocols. In 2010 23rd IEEE Computer
Security Foundations Symposium, pages 246–260, 2010.

[10] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benôıt Razet, and Peter Scholl.
Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and z2k. In
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 192–211. ACM, 2021.

[11] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. Moz$\mathbb
{Z} {2ˆk}$arella: Efficient vector-ole and zero-knowledge proofs over $\mathbb {Z} {2ˆk}$.
In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture Notes in Computer Science,
pages 329–358. Springer, 2022.

[12] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings,
Part IV, volume 12828 of Lecture Notes in Computer Science, pages 92–122. Springer, 2021.

[13] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Proceedings of the 2012 ACM conference on Computer and communications security, pages
784–796, 2012.

[14] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 351–371. 2019.

[15] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R Lorch, Bryan
Parno, Ashay Rane, Srinath TV Setty, and Laure Thompson. Vale: Verifying high-performance
cryptographic assembly code. In USENIX Security Symposium, volume 152, 2017.

[16] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 896–912. ACM, 2018.

[17] David Butler, Andreas Lochbihler, David Aspinall, and Adria Gascon. Formalising σ-protocols
and commitment schemes using crypthol. Cryptology ePrint Archive, Paper 2019/1185, 2019.
https://eprint.iacr.org/2019/1185.

[18] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero knowl-
edge: Two multiplications for the price of one. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages
829–841. ACM, 2022.

30

https://eprint.iacr.org/2019/1185

[19] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its applica-
tions. Cryptology ePrint Archive, Paper 2020/1446, 2020. https://eprint.iacr.org/2020/
1446.

[20] Karim Eldefrawy and Vitor Pereira. A high-assurance evaluator for machine-checked secure
multiparty computation. Cryptology ePrint Archive, Paper 2019/922, 2019. https://eprint.
iacr.org/2019/922.

[21] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Sparks: Succinct
parallelizable arguments of knowledge. Cryptology ePrint Archive, Paper 2020/994, 2020.
https://eprint.iacr.org/2020/994.

[22] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. Cryptology ePrint Archive, Paper 2016/163, 2016. https://eprint.iacr.

org/2016/163.

[23] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge complexity of interactive
proof-systems. In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 203–225. 2019.

[24] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive,
Paper 2016/260, 2016. https://eprint.iacr.org/2016/260.

[25] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 21–30, 2007.

[26] Ueli Maurer. Secure multi-party computation made simple. Discrete Applied Mathematics,
154(2):370–381, 2006.

[27] Mário José Parreira Pereira. Tools and Techniques for the Verification of Modular Stateful
Code. Theses, Université Paris Saclay (COmUE), December 2018.

[28] Nikolaj Sidorenco, Sabine Oechsner, and Bas Spitters. Formal security analysis of mpc-in-the-
head zero-knowledge protocols. Cryptology ePrint Archive, Paper 2021/437, 2021. https:

//eprint.iacr.org/2021/437.

[29] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 1074–1091. IEEE, 2021.

[30] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. Antman: Interac-
tive zero-knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,
2022, pages 2901–2914. ACM, 2022.

[31] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient and afford-
able zero-knowledge proofs for circuits and polynomials over any field. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, pages 2986–3001. ACM, 2021.

31

https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2019/922
https://eprint.iacr.org/2019/922
https://eprint.iacr.org/2020/994
https://eprint.iacr.org/2016/163
https://eprint.iacr.org/2016/163
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2021/437
https://eprint.iacr.org/2021/437

[32] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations
of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[33] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. Cryptology ePrint Archive, Paper
2019/1482, 2019. https://eprint.iacr.org/2019/1482.

[34] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beur-
douche. Hacl*: A verified modern cryptographic library. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 1789–1806, 2017.

32

https://eprint.iacr.org/2019/1482

A Designated verifier non-interactive ZK EasyCrypt security defi-
nitions

We re-use the security definitions formalized in [6], with small modifications that adapt them to
capture the network model of DVNIZK protocols. For simplicity, we will only focus on the major
differences between the two formalizations and refer the reader to [6] for a more detailed description
of how ZK security properties can be formalized in EasyCrypt.

The main difference between the two models lies on the specification of the adversarial entities
over which security definitions are quantified. For example, a malicious prover entity used to
parameterize the soundness game is specified by the interface depicted in Figure 18, that discloses
only one procedure, while the one of [6] discloses two procedures because IKOS is commit-challenge-
response three pass protocol.

module type MProver_t = {

proc commit(rp : prover_rand_t, x : statement_t) : commitment_t

}.

Figure 18: Malicious prover interface

This difference is also reflected in the soundness game, showed in Figure 19, where RandV_t

models a verifier random generator procedure.

module Soundness(R : RandV_t, MP : MProver_t) = {

proc main(rp : prover_rand_t, x : statement_t) : bool = {

c <@ MP.commit(rp, x);

rv <@ R.gen(rp);

b ← prove rv x c;

return b;

}

}.

Figure 19: DVNIZK protocol soundness game

In what concerns the zero-knowledge property, we use the formalization of the single-run zero
knowledge property of [6]. This definition is used as an intermediate step to obtain the standard
zero-knowledge result for IKOS, but it is enough to capture standard zero-knowledge for LPZK.
Zero-knowledge if formalized based on the real and ideal world experiences, that are specified by the
ZKGame module, which, by itself, is parameterized by either a real-world evaluator or an ideal-world
evaluator. The zero-knowledge formalization of DVNIZK protocols is represented in Figure 20,
where RandP_t models a prover random generator procedure.

Both evaluators are defined according to the Evaluator_t interface. Because of space constrains,
we omit the definition of the real-world evaluator, and focus only on the definition of the ideal-world,
that we show in Figure 21.

The IdealEvaluator module has the responsibility of animating the interaction between a sim-
ulator and a malicious verifier. Intuitively, the goal of the simulator is to mimic the behavior of
the prover and provide the malicious verifier with a commitment message that is indistinguishable
from one generated by an honest prover execution, without knowing the secret witness. The ex-
ecution is then shifted back to the ZKGame, where the trace produced by the evaluator is given to
a module of the Distinguisher_t type, an entity that will try to differentiate between an honest

33

module type Distinguisher_t = {

proc guess(_ : witness_t * statement_t * trace_t option) : bool

}.

module type Evaluator_t = {

proc eval(w : witness_t, x : statement_t, rp : prover_rand_t) : trace_t option

}.

module ZKGame (D : Distinguisher_t) (RP : RandP_t) (E : Evaluator_t) = {

proc main(w : witness_t, x : statement_t) : bool = {

rp <@ RP.gen(w,x);

ctr <@ E.eval(w,x,rp);

b’ <@ D.guess(w,x,ctr);

return b’;

}

}.

Figure 20: DVNIZK protocol zero-knowledge game

module type MVerifier_t = {

proc prove(x : statement_t, c : commitment_t) : bool

}.

module type Simulator_t = {

proc gen_commitment(rp : prover_rand_t, x : statement_t) : commitment_t option

}.

module IdealEvaluator (MV : MVerifier_t) (S : Simulator_t) = {

proc eval(w : witness_t, x : statement_t, rp : prover_rand_t) : trace_t option = {

ret ← None;

oc <@ S.gen_commitment(rp, x);

if (oc ̸= None) {

c ← oget oc;

b <@ MV.prove(x, c);

ret ← Some c;

}

return ret;

}

}.

Figure 21: Ideal-world zero-knowledge evaluator

protocol execution (RealEvaluator) and a simulated one (IdealEvaluator). If the two evaluators
are indistinguishable, it will output 1 with the same probability on both the real and ideal worlds.

B Other applications of the EasyCrypt parallelism library

In this appendix, we will explore the modularity of the EasyCrypt PRAM-based parallelism library
by demonstrating how it can be instantiated with other protocols and how it can be used in
application scenarios different than ZK protocols. Because our framework is best suited to work
with circuit-based cryptographic primitives, we will focus on other EasyCrypt formalizations that
also represent computations by means of arithmetic/boolean circuits. Concretely, we will discuss
how to obtain secure parallel implementations following our PRAM model of:

1. the MPC-in-the-Head formalization of [6], showing how to split the relation circuit to speed-up
the construction of the commitment message

2. the garbling scheme formalization of [5]. showing how the garbling scheme procedure can be
parallelized to speed-up the overall computation

34

B.1 Parallel formalization of MPC-in-the-Head

The IKOS [25] construction is a ZK paradigm that combines a multiparty computation (MPC)
protocol with a commitment scheme to yield a ZK protocol. Informally, the prover executes an
MPC protocol in its head, i.e., it will emulate the interactions between parties, producing the
communication trace of the MPC protocol. The prover commits to the traces (views) of each
party and sends the corresponding commitments to the verifier. The verifier then challenges the
prover by selecting a set of parties, of which the commitments are open by the prover. Finally, the
verifier accepts the proof if the prover successfully opened the commitments to the views, if the
deterministic output of those views is 1 (true) and if the views are consistent with each other, in
the sense that the outgoing messages implicit in one views are identical to the incoming messages
reported in another view.

The IKOS formalization of [6] is actually a twofold project. First, the authors formalized
the IKOS modular construction, that was then instantiated with two MPC protocols: the BGW
protocol [14] and Maurer’s MPC protocol [26]. In this section, we will focus on the BGW-based
IKOS instantiation, since it is the one that resembles our LPZK EasyCrypt specification the most.

Similarly to our formalization, the BGW-based IKOS instantiation also adopts a tree-like for-
mat, supporting the same arithmetic gates supported by LPZK. Therefore, an equal strategy can
be employed in order to split the circuit being evaluated, by creating a series of independent smaller
circuits, according to output wires. Each parallel core will then be responsible to produce the com-
munication view that corresponds to the piece of circuit that was assigned to it. However, output
aggregation is much simpler: because there is no communication on addition gates, aggregating the
views produced by the parallel processes is simply a matter of concatenating the views together.
The actual computation of the commitment message after outputs are aggregated is done by ap-
plying the commitment scheme to the re-constructed view. We provide on Figure 22 a sketch of a
realization of our map-reduce EasyCrypt framework.

op split_circuit (c : L) : meta_information_t * L list =

let ys = c.‘out_wires in

let topo = c.‘topo in

let gg = c.‘gates in

((topo, ys), map (fun y ⇒ {| topo = topo ;

gates = oget (get_gate gg y) ;

out_wires = [y] |}) ys).

op aggregate (m : meta_information_t) (cs : pstate_t) : RAMProver.execution_info_t option =

if has_output cs then

let (topo, ys) = m in

let c_0 = oget (oget (assoc cs 0)).‘RAMProver.zo in

let id = topo.‘ngates - topo.‘noutputs in

let reorganize = map (fun id ⇒ (id, oget (assoc cs id))) (iota_ 0 nprocesses) in

let aggregation = foldl (fun st c ⇒ let (id, v) = c in st ++ [v]) c_0 reorganize in

Some aggregation

else None.

Figure 22: IKOS instantiation of the EasyCrypt parallelism library

B.2 Parallel formalization of garbling schemes

Another interesting use case of our PRAM formalization resides on its application to legacy Easy-
Crypt formalizations, particularly that of [5], where the authors provide a high-assurance imple-
mentation of Yao’s secure function evaluation (SFE) protocol [32], synthesized from an EasyCrypt
formalization of the same protocol. The formalization closely follows the design given by Bellare,

35

Hoang and Rogaway in [13], where the authors provide a provable-security treatment to garbling
schemes, and show their applications as a building block to achieve SFE.

In [5], the authors adapt the same circuit syntax disclosed in [13]. Concretely, circuits are
specified as a six-tuple C = (n,m, q,A,B,G), where n is the number of input wires, m is the
number of output wires and q is the number of gates. These three parameters are used to define
a convention for the circuit wire organization as follows: input wires have IDs in [1;n], gates have
IDs in [n + 1;n + q] and output wires have IDs in [n + q −m + 1;n + q]. A and B are functions
that map the ID of a gate to its left and right incoming wires, respectively. Finally, G identifies
the functionality of each gate.

Specifying a circuit splitting procedure for this circuit format is not as straightforward as in the
previous example. One would need to write a function that, for all output wires, finds the part of
the circuit that produces it. Aggregation can be done by taking the garbled circuits produced by
the parallel cores and sorting them by wire IDs. These procedures are depicted in Figure 23.

op split_circuit (c : L) : meta_information_t * L list =

let (n, m, q, A, B, G) = c in

let ys = iota_ (n + q - m + 1) (n + q) in

(((n, m, q, A, B), ys), map (fun y ⇒ (n, m, q, A, B, get_circuit y c)) ys).

op aggregate (m : meta_information_t) (cs : pstate_t) : RAMProver.execution_info_t option =

if has_output cs then

let (topo, ys) = m in

let (n, m, q, A, B) = topo in

let c_0 = oget (oget (assoc cs 0)).‘RAMProver.zo in

let reorganize = map (fun id ⇒ (id, oget (assoc cs id))) (iota_ 0 nprocesses) in

let aggregation = foldl (fun st c ⇒ let (id, v) = c in st ++ [v]) c_0 reorganize in

Some (n, m, q, A, B, sort aggregation)

else None.

Figure 23: Garbling scheme instantiation of the EasyCrypt parallelism library

C Reducing the TCB: Jasmin as the finite field arithmetic backend

A natural step forward after having a working verified implementation of LPZK is to try to re-
duce the TCB (i.e., replace unverified pieces of code with verified ones) without compromising on
the efficiency of the overall implementation. To that end, we took advantage of the verified field
arithmetic libraries written in Jasmin that were developed in the scope of the verified IKOS im-
plementation developed in [6] and did a new code extraction from the EasyCrypt proof, this time
pruning the resulting OCaml code at the field arithmetic level. These were specified to match the
interface with the Jasmin code. The connection between OCaml and Jasmin is done via a thin layer
of C code that was manually written, following the same approach of [6].

Table 7 reports the execution times obtained when the (unverified) Zarith library is replace with
a (verified) Jasmin library for field arithmetic. Again, we are reporting the execution times obtained
against the matrix multiplication test family, incrementing the matrix side. However, data from
this tests was collected using a modest 2.3 GHz Quad-Core Intel Core i7 with 32 GB RAM, 512
KB L2 CACHE PER CORE, 8 MB L3 CACHE.

Interestingly, introducing the Jasmin field arithmetic backend in replacement for Zarith does not
compromise the overall efficiency of the protocol. In fact, Table 7 actually shows slight improve-
ments. Nevertheless, the benefits of using the Jasmin backend for field arithmetic are not strictly
related to efficiency: because the field operations are verified, we are actually reducing the TCB of
our implementation, without changes in efficiency.

36

MM4 MM8 MM16 MM32 MM64

PRAM LPZK (Zarith) 10.4 26.4 272.2 7,904.4 467,055.8
PRAM LPZK (Jasmin) 10.7 24 235.2 7,559.4 454,945.7

#gates 192 (80) 1280 (576) 9216 (4352) 69632 (33792) 540672 (266240)

Table 7: Performance analysis of our parallel verified LPZK implementation using Zarith, comparing
to the performance obtained by our parallel verified implementation of the same protocol using a
Jasmin field arithmetic backend.

37

	Introduction
	Line-Point Zero Knowledge protocol
	Theoretic LPZK overview
	Gate-by-gate IT-LPZKv1 explanation

	Verified LPZK implementation
	Automated extraction of executable code

	Optimization based on execution model: parallelism
	Parallel RAM EasyCrypt formalization
	Generic map-reduce EasyCrypt library
	Verified parallel LPZK implementation

	Optimization based on memory management: array-based implementation
	Array-based LPZK EasyCrypt formalization
	Verified array-based LPZK implementation

	Related work
	VOLE-based NIZKs
	Computer-aided cryptography applied to ZK protocols

	Conclusion and Future Work
	Designated verifier non-interactive ZK EasyCrypt security definitions
	Other applications of the EasyCrypt parallelism library
	Parallel formalization of MPC-in-the-Head
	Parallel formalization of garbling schemes

	Reducing the TCB: Jasmin as the finite field arithmetic backend

