
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

E2E near-standard and practical authenticated transciphering
Ehud Aharoni

IBM Research, Israel

Nir Drucker

IBM Research, Israel

Gilad Ezov

IBM Research, Israel

Eyal Kushnir

IBM Research, Israel

Hayim Shaul

IBM Research, Israel

Omri Soceanu

IBM Research, Israel

ABSTRACT
Homomorphic encryption (HE) enables computation delegation

to untrusted third parties while maintaining data confidentiality.

Hybrid encryption (a.k.a transciphering) allows a reduction in the

number of ciphertexts and storage size, which makes FHE solutions

practical for a variety of modern applications. Still, modern tran-

sciphering has three main drawbacks: 1) lack of standardization

or bad performance of symmetric decryption under FHE; 2) post-

HE-evaluation is limited to small-size applications; 3) lack of input

data integrity. Interestingly, modern-size secure inference applica-

tions were demonstrated using approximated FHE schemes such

as CKKS. However, implementing transciphering using standard

Authenticated Encryption (AE) over CKKS is challenging due to its

approximated nature.

In this paper, we aim to close these gaps. First, we report and

demonstrate the first end-to-end process that uses transciphering

for real-world applications i.e., running deep neural network (DNN)

inference under encryption. For that, we discuss the concept of Au-

thenticated Transciphering (AT), which like AE, provides some

integrity guarantees for the transciphered data. Finally, to demon-

strate the AT concept, we report on the first implementation of

Ascon decryption under CKKS, and complete the picture with a

detailed technical description of our AES-GCM implementation

under CKKS.

KEYWORDS
homomorphic encryption, hybrid encryption, transciphering, stan-

dard implementations, AES256-GCM

1 INTRODUCTION
Modern cryptography provides useful and standardized solutions

for ensuring the confidentiality and integrity of organizations’ data

in transit, for example, through the use of TLS 1.3 [61], or at rest,

using advanced encryption standard (AES)-Galois / counter mode

(GCM) [36]. The combination of these solutions allows users to

enjoy, for example, the storage services provided by public cloud

environments. Still, to better utilize the cloud, organizations and

industries like finance and healthcare aim to move their workloads

from in-house data centers to the cloud in order to use its scalable

and reliable compute capabilities. A major issue with the above is

that the use of these third-party services can be restricted by the

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies YYYY(X), 1–17
© YYYY Copyright held by the owner/author(s).

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: A hybrid encryption flow. 1. A user encrypts some
data using AES (black key and lock), locks the key using FHE
encryption (brown lock) and uploads both to the cloud. 2. The
cloud encrypts the AES encrypted data using FHE (double-
encryption). 3. The cloud removes the AES decryption under
FHE using the encapsulated AES key. 4. The cloud performs
some computation on the FHE encrypted data. 5. The cloud
returns the computation results encrypted to the user who
decrypt and consume the desired results.

need to comply with government regulations such as GDPR [37]

and CCPA [1], which ensure data privacy.

Fully homomorphic encryption (FHE), which gains popularity

nowadays, can address the above issue because it enables compu-

tation to be performed on encrypted data. The potential of FHE

can be observed in Gartner’s report [40], which states that by 2025,

50% of large enterprises are expected to adopt privacy-enhancing

computation for processing data in untrusted environments e.g., by

using FHE. Another example is the extensive list of enterprises and

academic institutions actively involved in initiatives like HEBench

[65] and the standardization efforts for FHE [5].

Only in the last few years FHE solutions become practical enough

for complex tasks such as secure DNN inference over relatively

large datasets and architectures as in [2, 9, 54]. These often rely on

the CKKS FHE scheme due to its approximated nature, which leads

to efficient solutions but also raises unique challenges for handling

the accumulated error without destroying the original data.

Moreover, these studies often assume an ephemeral application,

where data is encrypted using FHE, uploaded to an untrusted en-

vironment for FHE computation, and the results are returned to

the user for decryption. However, in reality, the situation becomes

more complex when users need to store their data encrypted at
one point in time and use it in the cloud for computation at a
later point in time. In such cases, the large size of FHE ciphertexts

can result in extra costs. For instance, FHE ciphertexts may have an

expansion ratio of more than 2:1 compared to storing the original

plaintext, or compared with the 1:1 compression ratio when using

symmetric encryption such as AES. These costs impact not only

1

https://orcid.org/0000-0002-3647-1440
https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0003-4579-8127
https://orcid.org/0000-0001-6123-0297
https://orcid.org/0000-0001-8432-0623
https://orcid.org/0000-0002-7570-4366
https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the storage “at rest” but also the bandwidth required for uploading

and downloading the data to and from the cloud.

Hybrid encryption, a.k.a., transciphering (see e.g., [41, 62]), en-

ables the encryption of data using symmetric block ciphers, which

can then be transmitted and stored in the cloud at moderate costs.

Subsequently, the encrypted data can be moved to a computing

service that employs FHE. Through transciphering, the service

effectively “replaces” the encryption scheme from symmetric en-

cryption to FHE encryption. Once the data is encrypted using FHE,

the service can perform computations on it and return the results

to the user or store them for future use. Fig. 1 illustrates this pro-

cess. We note that the term hybrid encryption was introduced in

[27] where key and data encapsulation mechanisms (KEM/DEM)

were combined to generate a public key encryption (PKE). In the

context of FHE it is common to use the same term, where the data

undergoes encryption through a symmetric encryption method,

while the key of the symmetric encryption undergoes encryption

using a PKE scheme such as FHE.

Our contribution. We demonstrate, for the first time, an end-to-

end application that uses practical near-standard hybrid encryption

and subsequently practically evaluates a large task such as run-

ning DNN inference over a modern size network, ResNet-50, and

a large dataset – ImageNet with images of size 224 × 224 × 3. Our
demonstration relies on CKKS because: 1) it was demonstrated to

show good results for secure inference under FHE; 2) among the

FHE schemes, it is the only one that was already standardized (in

South Korea [63]). Note that we say that our solution is near-
standard because a (CKKS) FHE standard is only available in
South Korea or otherwise expected in late 2024 [5]. In addition,
we consider and address the following research challenges.

(1) Can we implement transciphering from a standard-
ized cipher to CKKS? CKKS is an approximated FHE

scheme, and thus considered unsuitable for implementing

standard symmetric ciphers, which operate over finite fields.

This is due to the extra accumulated error that does not

disappear when bootstrapping. To address this issue, we

leverage a new technique called BLEACH [34] that allows

maintaining the error size when running binary circuits

over CKKS. Specifically, we use it to implement algorithms

such as AES-GCM and Ascon in bit-wise representation.

(2) How to make BLEACHmore efficient for large binary
circuits? We found that performing a cleanup operation

after every gate, as in [34], can lead to a slow implemen-

tation. To mitigate this, we expand BLEACH in Section 5

to support cleaning after multiple gates, which enables a

more efficient implementation of binary circuits.

(3) Can the above mentioned transciphering be efficient?
We answer affirmatively to this question and provide de-

tails on how to construct a hybrid encryption implementa-

tion that can be considered practical by many applications

and which uses NIST standardized block-cipher, specifi-

cally AES-counter (CTR)-128. We do that by using IBM

®

HElayers [2] compiled with CryptoLab

®

HEaaN [28] and

running on a commodity GPU. Our implementation runs in

1.65 minutes for 512KB of data, with an amortized latency

of 3 msec per AES block. In addition, we report a 1.71×

speedup over our initial results for AES-CTR-256 that were

presented (without technical details) in a poster [4].

(4) What is authenticated transciphering (AT) and why is
it required? We study and discuss the security guarantees

of the above implementation using a notion that we call

AT. Here the integrity of the input data to the FHE service

is guaranteed. An AT implementation was presented e.g.,

in [10] but without labeling it as such and without any

discussion about the motivation and consequences of using

it. We complete this gap and discuss the pros and cons of

this notion and how it should be used in threat models.

(5) Does AES-CTR is enough to provide integrity to the
encrypted data? No, today, many applications attempt to

ensure both the confidentiality and the integrity of the user

data. To this end, using an authenticated encryption with

associated data (AEAD) scheme is advantageous over using

solely a symmetric cipher such as AES-CTR. Thus, we also

consider the integration of an end-2-end application with

a standardized AEAD, specifically AES-GCM. Our AES-

GCM-128 implementation exhibits efficient performance,

processing 512KB of data in a mere 6.95 minutes, with

an amortized latency of 13 msec per AES block, whereas

our AES-GCM-256 implementation runs in 7.66 minutes,

with an amortized latency of 14 msec per AES block, 1.5×
faster compared to the initial poster results [4]. The paper

provides the implementation details and describes the way

we handle the nullification of data for invalid tags.

(6) How to support IoT devices that cannot afford AES-
GCM? in addition to our AES-GCM implementation, we

also implemented and evaluated the Ascon cryptosystem

under CKKS. Ascon is the winner of the national institute

for standards and technology (NIST) lightweight project

[59] and is about to be standardized.

(7) What challenges exist when implementing an AT so-
lution under CKKS? AEAD schemes must erase the plain-

text data upon receiving invalid tags. This is harder to

achieve in CKKS because the error is blended with the

plaintext. In Section 6 we discuss challenges and solutions

for verifying the AEAD tags and nullify faulty ciphertexts

under FHE.

Roadmap. The rest of the paper is organized as follows. Sec. 2

reports the state-of-the-art hybrid encryption constructions. Sec. 3

lists the notation used in the paper, and briefly explains the concepts

of FHE and AEAD. The paper proceeds by describing our fast AES-

CTR implementation in Sec. 4. The handling of the error of CKKS

is explained in Sec. 5, and our AT notion is explored in Sec. 6. Using

this notion, AT schemes using AES-GCM or Ascon, and CKKS

are implemented in Sections 7 and 8, respectively. The latency

measurements of running these schemes are reported in Sec. 9. The

above implementation is utilized to construct and demonstrate the

first end-to-end flow for performing DNN inference over encrypted

data in Sec. 10. Finally, Sec. 11 discusses some takeaways from the

study, and Sec. 12 concludes the paper.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

Figure 2: Performance of AES implementations under FHE. Parallelograms represent different FHE schemes: DGHV (purple),
BGV (yellow), CKKS - ours (red), and TFHE (blue). The bars are associated with the right y-axis and count the number of AES
blocks that were evaluated in parallel (batch size). The solid lines are associated with the left y-axis and report the latency and
amortized latency (latency/batch size) as originally reported per implementation. The x-axis labels contains the original number
of CPU threads. The dotted lines represent the original performance normalized for a GPU run (as in our case). Specifically, we
assumed a 500× speedup of our GPU compared to “old” CPUs and a factor of 100

𝑥 × for an 𝑥 threads modern CPU implementation.

Figure 3: Non-standardized block cipher proposals. Each
block cipher is described below the FHE scheme that it targets.
The order in which the block ciphers is listed is arbitrary.

2 RELATEDWORK.
The two principle categories for transciphers’ implementation are:

a) implementations of transciphers that use standard symmetric

encryption e.g., AES-electronic codebook (ECB) [58]; b) implemen-

tations of transciphers that offer a new non-standardized symmetric

encryption schemes.

The former group of implementations is compared in Fig. 2.

DGHV-based implementations offer less than 128-bit security e.g.,

[17, 24], while others (e.g., [41]) took over an hour to complete.

A revision [42] of [41] reported the fastest amortized latency of

2 seconds per AES block when using the BGV FHE scheme, but

claimed that no further deep computations are possible, which

means that we cannot use it for our end-to-end implementation.

Alternatively, [42] also reported a latency of 1,050 seconds and an

amortized latency of 5.833 sec, with a bootstrappable BGV context.

In contrast, our best implementation has an amortized latency of

3 msec, 1925× faster. We remark that we use a commodity GPU

while [42] used a single-thread CPU from 2014. To normalize the

results of [42] we used a factor of 500×, see Fig. 2 dotted lines. Still,

our implementation is faster. Moreover, there is no known FHE

scheme switching ability between BGV and CKKS, and there is no

known BGV implementation of modern DNNs, which makes our

implementation the only one that fits an end-to-end demonstration.

Fig. 2 also presents TFHE-based implementations [43, 64, 66–

68], which operate on one AES block at a time. Thus, their latency

equals the amortized latency with minimal results of 9 sec per

block (running on 16 CPU threads). Also here, we used the dotted

line to normalize the results, this time with a factor of
100

𝑥 × for

an 𝑥 threads CPU implementation. With this normalization, the

fastest implementation has a latency of 0.262 seconds, which is

87.3× slower compared to our implementation. Our end-two-end

demonstration involves an image input of size 224 × 224 × 3 =

150,528 bytes or 150,528/16 = 9,408 AES blocks, which will take

9,408 ∗ 0.262 = 2,465 seconds to decrypt using the fastest TFHE

implementation, while only 99 seconds with our implementation.

The second type of implementations is summarized in Fig. 3 and

it includes Krevyium [16], FLIP [57] and Elizabeth [26] that target

the FHEW/TFHE [21, 35] FHE schemes, LowMC [6], Rasta [30],

Dasta [51], Pasta [33], Masta [48], Fasta [23], and Chaghri [7] that

target the B/FV [13, 38] and BGV [14] schemes, and Hera [22] and

Rubato [49] that target CKKS. However, none of these schemes are

yet standardized, or planned to be standardized (a process that takes

several years), making them unsuitable for our case. Additionally,

comparing their performance to the standardized scheme would be

meaningless as it would not be an apples-to-apples comparison. We

include them here for the sake of completeness. Another demonstra-

tion of why the thorough process of standardization is needed was

recently demonstrated in [44] that present a key recovery attack on

Rubato with some recommendations for parameter modifications.

Another type of implementation was conducted to assess the

performance of FHE on lightweight stream ciphers that participated

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

in the NIST lightweight cryptography project [59] before the selec-

tion of Ascon as the finalist for standardization. For example, [10]

reported the implementations of the stream ciphers Trivium [29],

Kreyvium [16], and Grain-128a [45] under TFHE [21]. Additionally,

it also implemented Grain128-AEAD [45] and thus initiated the

process of studying AT constructions. Sec. 6 provides further details

on AT. Unfortunately, none of the above constructions was selected

for standardization and thus the reported implementations cannot

be used by those who require standardized cryptography. Moreover,

due to the use of TFHE, no batching is possible, which results in

latency in the orders of several dozen seconds per 64-bit block.

3 PRELIMINARIES AND NOTATION
Table 1 details the notation used throughout the paper.

Table 1: Notation legend.

Notation Description
0
𝑥

A sequence of 𝑥 bits, where all bits are 0.

𝑎 | |𝑏 A concatenation of two strings 𝑎 and 𝑏.

𝑏𝑖 The 𝑖th bit of a byte 𝑏, where 𝑏 =
∑
0≤𝑖<8 𝑏𝑖 · 2𝑖 .

𝐺𝐹 (2𝑎) A Galois fields (GF) of characteristic 2
𝑎
,

e.g., 𝐺𝐹 (28) for the AES state elements.

0𝑥 Hexadecimal prefix, e.g., 0𝑥𝑒 = 14.

𝑎 ⊕ 𝑏 A Boolean XOR operation of two bits, bytes, or

64-bit words dependent on the context.

𝑎 ⊙ 𝑏 A Boolean AND operation of two bits, bytes, or

64-bit words dependent on the context.

𝑎 := 𝑓 () A deterministic assignment of 𝑓 () to 𝑎.
𝑎 ← 𝑓 () A probabilistic assignment of 𝑓 () to 𝑎.
𝑥 ≫ 𝑘 A left rotation of the bits of a value 𝑥 by 𝑘 .

3.1 Homomorphic Encryption
We start by describing the high-level background and basic con-

cepts of FHE schemes. FHE schemes allow us to perform operations

on encrypted data [50]. Modern FHE instantiations such as BGV

[14], B/FV [13, 38], and CKKS [18] rely on the complexity of the

Ring-LWE problem [56] for security and support single instruction

multiple data (SIMD) operations. The FHE system has an encryp-

tion operation FHE. Enc : R1 → R2 that encrypts input plaintext
from the ring R1 (+, ∗) into ciphertexts in the ring R2 (★, ·) and an

associated decryption operation FHE.Dec : R2 → R1. An FHE

scheme is correct if for every valid input 𝑥,𝑦 ∈ R1
FHE.Dec(FHE. Enc(𝑥)) = 𝑥 (1)

FHE.Dec(FHE. Enc(𝑥) ★ FHE. Enc(𝑦)) = 𝑥 + 𝑦 (2)

FHE.Dec(FHE. Enc(𝑥) · FHE. Enc(𝑦)) = 𝑥 ∗ 𝑦 (3)

and is approximately correct (as in CKKS) if for some small 𝜖 > 0

that is determined by the key, |𝑥 − FHE.Dec(FHE. Enc(𝑥)) | ≤ 𝜖 .
Equations 2,and 3 are modified in the same way. In this paper, we

used CKKS for the experiments, as state-of-the-art DNN inference

studies such as [9, 54] are based on CKKS. In CKKS, R1 is a vector
space over the complex plane C𝑛 and R2 is the polynomial quotient

ring over the integers Z[𝑋]/(𝑋𝑛 − 1). We call every element in the

plaintext vector a slot.

When designing an FHE application, it is important to consider

that certain operations incur higher computational costs than oth-

ers. For instance, additions are significantly faster compared to

multiplications of plaintexts by ciphertexts, which, in turn, are

faster compared to ciphertext-ciphertext multiplications. The slow-

est operation in FHE is known as the bootstrap operation. The

bootstrap operation is required after a series of consecutive multi-

plications in order to refresh the state of the ciphertext, enabling

further computations. In the CKKS scheme, on modern hardware,

the bootstrap operation is several orders of magnitude slower com-

pared to regular multiplications. Consequently, minimizing the

need for bootstrapping is essential for efficient FHE computations.

There are two primary methods to mitigate the need for boot-

strapping: 1) reducing the multiplication depth of the evaluated

circuit. By minimizing the number of sequential multiplications, the

frequency of bootstrapping operations can be reduced; 2) Avoiding

the wait until the last moment to perform a bootstrap operation. In-

stead, strategically identify locations in the computation where the

number of ciphertexts in memory requiring bootstrap operations

is minimal. This approach involves manual inspection and care-

ful placement of the bootstrap operation to optimize efficiency. In

this work, we adopted the latter approach. The decision regarding

bootstrap placement is elaborated upon in the relevant sections.

To support binary inputs within the CKKS scheme, we adopt

the methodology proposed by BLEACH [34] and employ a cleanup

utility after a specific number of Boolean gates. See further analysis

of the error management in Sec. 5.

3.2 Authenticated Encryption
Authenticated encryption with associated data (AEAD) is a cryp-

tosystem that offers users both confidentiality and authenticity

guarantees. Similar to block ciphers, AEAD schemes consist of three

methods: AEAD.KeyGen, AEAD. Enc, and AEAD.Dec, which op-

erate over various spaces. The key space is denoted asK , the nonce

space as N , the plaintext and additional data space as {0, 1}∗, and
the ciphertext space as C.

The key generation method 𝑘 ← AEAD.KeyGen generates a

new (pseudo)random symmetric key 𝑘 ∈ K . The encryption func-

tion (𝑐, 𝑡) ← AEAD. Enc𝑘 (𝑎, 𝑛,𝑚) receives a plaintext message

𝑚 ∈ {0, 1}∗ a nonce 𝑛 ∈ N , some authentication data 𝑎 ∈ {0, 1}∗
and the key 𝑘 . It outputs a ciphertext 𝑐 ∈ C in addition to an

authentication tag 𝑡 over the pair (𝑎,𝑚). The decription method

{𝑚,⊥} = AEAD.Dec𝑘 (𝑎, 𝑛, 𝑐) receives a ciphertext 𝑐 ∈ C a nonce

𝑛 ∈ N and some authentication data 𝑎 ∈ {0, 1}∗ and an authentica-

tion tag 𝑡 . If the verification of the authentication tag succeed, it

returns the decryption of 𝑐 (𝑚), otherwise, it returns ⊥.

4 ADVANCED ENCRYPTION STANDARD (AES)
This chapter starts by briefly describing the AES block cipher. Sub-

sequently, we describe our encrypted AES-CTR implementation.

4.1 The AES block cipher
AES was officially standardized by NIST in 2001 [58] and has since

become widely accepted and the most commonly used block cipher

in modern cryptographic systems and applications. Its importance

is exemplified by the rapid growth of AES-encrypted online data,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

Figure 4: An illustration of an AES-128/192/256 block cipher.
In hybrid encryption, the key is encrypted using FHE.

which is strongly supported by industry players like IBM in its Z

systems [52], and Intel, who have introduced AES-NI processor

instructions [46, 47] to enhance AES performance.

We briefly describe the AES encryption algorithm, which we

illustrate in Fig. 4, the decryption procedure is described in [58]. The

description of the AES steps below is required for comprehending

the FHE optimization we implemented and for later understanding

of how we addressed the noise challenge when operating under

CKKS. AES encryption operates on a plaintext block consisting of

128 bits and a key that can be either 128, 192, or 256 bits in size. The

encryption process generates a ciphertext block of 128 bits. The

key undergoes an expansion process, resulting in the creation of

10, 12, or 14 round keys, depending on the key size. To begin the

encryption, the plaintext block is XOR-ed with the first 128 bits

of the key, which serves as a whitening step. The resulting value

then undergoes a series of 39, 47, or 55 consecutive transformations.

These transformations can be organized into 9, 11, or 13 identical

AES rounds, respectively, followed by an additional final round. The

𝑗th AES round, j=1, . . . , 9/11/13, is the sequence of transformations

MixColumns(ShiftRows(SubBytes(𝑆))) ⊕ RoundKey[𝑗]
operating on the 128-bits state 𝑆 , where 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 [𝑗] is the 𝑗th
round key. The last round 𝑗 = 10/12/14 is the sequence

ShiftRows(SubBytes(𝑆)) ⊕ RoundKey[𝑗]

Encryption modes. Various cryptographic modes of operation

can be utilized with the AES algorithm, including ECB, cipher block

chaining (CBC), CTR, and GCM. In our implementation, we chose

to implement the CTR and GCM modes. The selection of these

modes is driven by the fact that ECB is deemed insecure due to

its vulnerability to certain attacks, thus making it unsuitable for

our purposes. In addition, the CBC mode poses challenges in terms

of parallelization, limiting its efficiency in certain scenarios, espe-

cially when considering FHE, which may already introduce some

slowdowns. In contrast, AES-GCM, which extends AES-CTR with

authentication capabilities, has been designated as the preferred

AES mode of operation in security protocols such as TLS 1.3 [61].

In AES-CTRmode, each plaintext block is XORedwith the output

of an AES encryption operation using a 32-bit nonce (𝑛) concate-

nated with a 96-bit counter (𝑐), with a specified key (𝑘). It is crucial

for the security and confidentiality of AES that the concatenated

128-bit value (𝑛 | |𝑐) remains unique for a given key (𝑘). A notable

advantage of AES-CTR is its ability to encrypt multiple plaintext

blocks in parallel, making it highly efficient for processing large

volumes of data simultaneously. Leveraging this inherent paralleliz-

ability, our implementation takes advantage of the AES-CTR mode

to enhance the decryption performance and the overall efficiency.

Remark 1. The generation of AES keys, their subsequent cleartext
expansion, and the encryption of all keys are conducted offline by the
client only once. The procedure itself is straightforward, assuming
consistent data packing as outlined below. For the sake of brevity, we
omit the detailed description of this process.

4.2 Implementing AES-CTR over HE
Our implementation follows a bit-sliced approach, where each FHE

plaintext slot is treated individually per AES block, leveraging the

FHE SIMD capabilities. Because every AES block consists of 128

bits, this implementation requires 128 ciphertexts (or in tile tensor

shape notation, [128, 𝑠𝑠], where 𝑠 is the number of slots. See App.

B). We consider ciphertexts of size approximately 12 MB, thus the

overall state size amounts to ∼ 12MB
1 ∗128 = 1.5 GB.

The advantage of employing this method is the elimination of

rotational operations entirely. However, a trade-off arises in the

form of the requirement for users to decrypt 512 KB at a time,

derived from the multiplication of 128-bit blocks by 32K slots per

ciphertext. Nonetheless, this limitation becomes negligible when

the primary use case involves handling substantial amounts of data,

such as in the scale of megabytes (MB), gigabytes (GB), or even

petabytes (PT).

During our design process, we considered various alternative

approaches. One such approach involves utilizing the CKKS scheme

to operate on bytes instead of individual bits through techniques

like the BLEACH cleanup method [34]. However, CKKS currently

lacks support for performing Boolean-XOR operations directly on

these bytes. Instead, it requires the decomposition of numbers into

bits before applying the XOR operation, and the subsequent recon-

struction of bits into bytes. While this approach may potentially

reduce the number of ciphertexts and thereby improved cache and

memory utilization, the associated costs of decomposing and recon-

structing bytes, as well as managing the S-Box look-up table, would

have been considerably higher for the same number of AES blocks.

As a result, we chose not to use this approach, and preferred the

above bit-sliced implementation.

Another approach involved consolidating all the bits of the AES

blocks into a single ciphertext, placing them adjacent to each other.

In this approach, the MixColumns and ShiftRows stages would

require numerous rotations, while the AddKey and SubBytes oper-

ations would still involve the same amount of computation as in

the bit-sliced approach. Similar to the byte-sliced approach, this ap-

proach offers the advantage of reducing the number of ciphertexts

and imposing a lower limit on the number of blocks that need to

1
Every ciphertext involves two polynomials each has 65,536 coefficients and a multipli-

cation depth of ∼ 12. Using 8 bytes per coefficient leads to 8 ∗ 12 ∗ 65,536 ∗ 2 = 12𝑀𝐵.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

be decrypted at a time. However, as mentioned earlier, this limit

is generally not a concern when operating with large volumes of

data in cloud environments. This approach was taken for exam-

ple in [19]. Next, we describe our implementation of the four AES

methods: AddKey,MixColumns, ShiftRows, and SubBytes.

AddKey Operation. The AddKey operation, within the context

of CKKS, is realized through a straightforward XOR operation.

In CKKS, this XOR operation is implemented using the equation

𝑥 ⊕ 𝑦 = (𝑥 − 𝑦)2, where 𝑥 and 𝑦 represent individual bits, which

in turn are represented by values within the range [0 ± 𝜖, 1 ± 𝜖],
where 𝜖 denotes an extremely small value, see Sec. 5. For efficient

parallelization, the XOR operation is performed in parallel for all the

128 ciphertexts of the AES state, ensuring efficient and simultaneous

processing. Asmentioned in Remark 1, the keys must also be packed

using the bit-sliced approach, which means that the same key is

duplicated over all slots of the 128-ciphertexts (in tile tensor shape

notation, [128, ∗𝑠], where 𝑠 is the number of slots, see App. B.

Remark 2. It is feasible to “share" FHE ciphertexts for multiple AES
decryptions, employing distinct keys. This can be achieved by either
the clients broadcasting the respective keys to the corresponding FHE
ciphertext slots beforehand or by requesting the server to select the
pertinent keys per slot using application masks. These masks consist
of binary values, with a value of 1 in the relevant positions and 0
elsewhere. They are multiplied by the associated FHE ciphertexts that
encrypt the corresponding AES keys and summed together.

ShiftRows Operation. Using the bit-sliced representation, the

ShiftRows operation is achieved without any additional computa-

tional cost. In this representation, the operation simply involves

replacing the ciphertext location. More precisely, it is implemented

by permuting the pointers to the corresponding ciphertexts.

MixColumns Operation. One reason that we preferred imple-

menting AES-CTR over other alternatives, e.g., AES-CBC, is that

its decryption process involves only AES encryption operations.

This is especially critical when considering theMixColumns Step.

If we consider the AES state as a 4 × 4 matrix of elements in

𝐺𝐹 (28) multiplied modulo the polynomial 𝑥4 + 1 then the out-

put of the MixColumns operation (in encryption) on every column

input [𝑏0, 𝑏1, 𝑏2, 𝑏3]𝑇 is

𝐷0 = 𝑥 · 𝑏0 + (𝑥 + 1) · 𝑏1 + 𝑏2 + 𝑏3
𝐷1 = 𝑏0 + 𝑥 · 𝑏1 + (𝑥 + 1) · 𝑏2 + 𝑏3
𝐷2 = 𝑏0 + 𝑏1 + 𝑥 · 𝑏2 + (𝑥 + 1) · 𝑏3
𝐷3 = (𝑥 + 1) · 𝑏0 + 𝑏1 + 𝑏2 + 𝑥 · 𝑏3

As described in [39], these equations can be simplified to:

𝐷0 = 𝑥 · (𝑏0 + 𝑏1) + 𝑏1 + 𝑏2 + 𝑏3
𝐷1 = 𝑥 · (𝑏1 + 𝑏2) + 𝑏2 + 𝑏3 + 𝑏0
𝐷2 = 𝑥 · (𝑏2 + 𝑏3) + 𝑏3 + 𝑏0 + 𝑏1
𝐷3 = 𝑥 · (𝑏3 + 𝑏0) + 𝑏0 + 𝑏1 + 𝑏2

Here, + translates in 𝐺𝐹 (28) to the XOR operation and multiplica-

tion by 𝑥 of a value 𝑎 ∈ 𝐺𝐹 (28) is done using the equation

(𝑎7, 𝑎6,𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0) =
(𝑎6, 𝑎5, 𝑎4, 𝑎3 ⊕ 𝑎7, 𝑎2 ⊕ 𝑎7, 𝑎1, 𝑎0 ⊕ 𝑎7, 𝑎7)

These simplified equations primarily involve repeated XOR oper-

ations. In contrast, during the AES decryption, which is used by

AES-CBC decryption, the InvMixColumns operation is performed

using the following equations:

𝐷0 =(𝑥3 + 𝑥2 + 𝑥) · 𝑏0 + (𝑥3 + 𝑥 + 1) · 𝑏1+
(𝑥3 + 𝑥2 + 1) · 𝑏2 + (𝑥3 + 1) · 𝑏3

𝐷1 =(𝑥3 + 1) · 𝑏0 + (𝑥3 + 𝑥2 + 𝑥) · 𝑏1+
(𝑥3 + 𝑥 + 1) · 𝑏2 + (𝑥3 + 𝑥2 + 1) · 𝑏3

𝐷2 =(𝑥3 + 𝑥2 + 1) · 𝑏0 + (𝑥3 + 1) · 𝑏1+
(𝑥3 + 𝑥2 + 𝑥) · 𝑏2 + (𝑥3 + 𝑥 + 1) · 𝑏3

𝐷3 =(𝑥3 + 𝑥 + 1) · 𝑏0 + (𝑥3 + 𝑥2 + 1) · 𝑏1+
(𝑥3 + 1) · 𝑏2 + (𝑥3 + 𝑥2 + 𝑥) · 𝑏3

These equations involve multiple serial multiplications, which leads

to an increase in the circuit’s multiplication depth when executed

under FHE. Hence, evaluatingMixColumns is significantly faster

compared to InvMixColumns.

SubBytes Operation. The AES S-box involves an affine transfor-

mation on the inverse of the input in𝐺𝐹 (28). However, computing

the inverse efficiently is not an easy task. Extensive research has

been dedicated to achieve this task in various contexts, such as hard-

ware implementation and secure multi party computation (MPC)

protocols. Notable studies include [11, 12, 15, 60]. One prominent

approach involves transforming the AES Galois field data to a tower

(composite) field with a minimized number of gates. For instance,

in [12], a circuit was achieved using only 34 AND gates and a mul-

tiplication depth of 4, while [11] presented a circuit with 32 AND

gates and a multiplication depth of 6.

However, a drawback of prior-art designs is their assumption that

XOR gates are computationally free. Consequently, they propose

minimization functions that primarily aim to reduce the number of

AND gates. While this assumption holds true in hardware imple-

mentations, MPC protocols, and some FHE schemes such as BGV or

BF/V, it does not hold for the CKKS scheme. In CKKS, both XOR and

AND gates require one multiplication operation, thereby increasing

the overall multiplication depth of the circuit.

Our implementation utilizes the lookup table approach, com-

monly employed in hardware systems. Usually these hardware

implementations are vulnerable to memory access attacks. How-

ever, in our case the nature of FHE imposes oblivious computations,

thereby eliminating this drawback. For AES, we employ a lookup ta-

ble consisting of 256 entries, where each entry represents a unique

8-bit value expressed in plaintext bits.

To compute the inverse function, we begin by calculating the

indicator mask for each table cell by comparing the cell index with

the input value. We leverage the following observations: 1) when

an output bit is 0, we can disregard the indicator ciphertext entirely,

and 2) when a bit is 1, we can utilize the indicator ciphertext, par-

ticularly during the summation process involved in collecting all

the indicators of all cells to get the final output.

In Appendix A we show how all 255 indicators can be computed

using 255 multiplications and depth 3. In our implementation we

used a similar technique, however, to have a more readable code

our implementation used 272 multiplication and the same depth.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

As noted above, since the tables are binary and given in plaintext.

The output of each table can be computed as a sum of a subset of

the indicators with no additional multiplication.

Overall, the multiplication depth associated with each round

in our implementation is 9 as follows: AddKey: 1,MixColumns: 3,

ShiftRows: 0, SubBytes: 3, and the cleanup function ℎ1 (Sec. 5): 2.

For AES128/192/256, which require 9, 11, and 13 rounds respectively,

as well as an additional final round, which does not include the

MixColumns operation, the total multiplication depth is calculated

as 87, 105, and 123 respectively.

Bootstrap Policy. As part of our implementation, at every round,

we incorporated a bootstrap operation after SubBytes following by

a cleanup utility. The bootstrap operation is executed independently

on each of the 128 ciphertexts, and hence can be parallelized when

the underlying hardware supports it. The above bootstrap policy fits

nicely when the maximal multiplication depth is 12 and a bootstrap

is needed when a ciphertext reaches chain index 3.

5 BINARY CIRCUITS OVER CKKS
We chose CKKS [18] because it is the leading FHE scheme when

considering state-of-the-art inference applications, for example,

[9, 54]. For our implementation, we leveraged a recent technique

called BLEACH [34], which has demonstrated that executing binary

circuits over CKKS is practical. Specifically, it showed (Lemma 5.1)

that performing XOR (⊕), AND (∧), or OR (∨) operations on two

encrypted bits, followed by the cleanup functionℎ1 (𝑥) = −2𝑥3+3𝑥2
[20], does not introduce any significant increase in the ciphertext

error. This allows us to execute these operations while maintaining

the desired level of accuracy in the ciphertext.

Lemma 5.1 ([34] Lemma 3). Let 𝑥 = 𝑏𝑥 + 𝑒𝑥 and 𝑦 = 𝑏𝑦 + 𝑒𝑦 be
input to a binary operation, 𝑏𝑥 , 𝑏𝑦 ∈ {0, 1} and |𝑒𝑥 |, |𝑒𝑦 | < 𝑒 ≤ 0.001,
and the error added when multiplying and rescaling two ciphertexts is
𝑒𝑐𝑘𝑘𝑠 such that 2.1𝑒𝑐𝑘𝑘𝑠 < 0.5𝑒 . Then 𝑧 = 𝑏𝑧 + 𝑒𝑧 , where 𝑏𝑧 ∈ {0, 1}
and |𝑒𝑧 | < 𝑒 for 𝑧 = ℎ1 (𝑥 ∧ 𝑦) or ℎ1 (𝑥 ∨ 𝑦) or ℎ1 (𝑥 ⊕ 𝑦)

However we found that bleaching after every boolean gate is not

efficient enough, and thus we extend this BLEACH lemma and show

that it is enough to perform a cleanup operation after every several

steps that depend on the scheme parameters e.g., the fractional part

accuracy. We start by reminding:

Lemma 5.2 ([34][Lemma 2). For 𝑥 = 𝑏𝑥 + 𝑒𝑥 and 𝑦 = 𝑏𝑦 + 𝑒𝑦 ,
where 𝑏𝑥 , 𝑏𝑦 ∈ {0, 1} and |𝑒𝑥 |, |𝑒𝑦 | < 𝑒 < 0.25,

| (𝑥 ∧ 𝑦) − (𝑏𝑥 ∧ 𝑏𝑦) | < 5𝑒,

| (𝑥 ∨ 𝑦) − (𝑏𝑥 ∨ 𝑏𝑦) | < 5𝑒,

| (𝑥 ⊕ 𝑦) − (𝑏𝑥 ⊕ 𝑏𝑦) | < 2.25𝑒.

Using this gate error bounds (5,5,2.25) we state Lemma 5.3.

Lemma 5.3. Let 0 < 𝑒 < 0.25 be the bound on the initial error of
the inputs, let 𝐵 be the gate error bound, and let 𝑓 be a Boolean circuit
with multiplication depth 𝑑 and input values 𝑥𝑖 = 𝑏𝑥𝑖 +𝑒𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
𝑏𝑥𝑖 ∈ {0, 1} and |𝑒𝑥𝑖 | < 𝑒 . If the error added when multiplying and
rescaling two ciphertexts is 𝑒𝑐𝑘𝑘𝑠 such that 𝑒𝑐𝑘𝑘𝑠 < 0.25𝑒 . Then
𝑧 = ℎ1 (𝑓 (𝑥1, . . . , 𝑥𝑛)) = 𝑏𝑧 + 𝑒𝑧 , where 𝑏𝑧 ∈ {0, 1} and

|𝑒𝑧 | < 3 · (𝐵 + 0.25)2𝑑 · 𝑒2 + 2 · (𝐵 + 0.25)3𝑑 · 𝑒3

Proof. Consider the expression 𝑤 = 𝑏𝑤 + 𝑒𝑤 = 𝑓 (𝑥1, . . . , 𝑥𝑛),
where 𝑏𝑤 ∈ 0, 1 represents the result obtained by applying the

function 𝑓 to binary inputs. Assuming that the error incurred when

applying a gate is 𝐵𝑒 +𝑒𝑐𝑘𝑘𝑠 < (𝐵+0.25)𝑒 , we can establish a bound

on the final error 𝑒𝑤 as 𝑒𝑤 < (𝐵 + 0.25)𝑑 · 𝑒 . When applying the

cleanup utility ℎ1, the resulting value 𝑧 is:

𝑧 = ℎ1 (𝑤) = ℎ1 (𝑏𝑤 + 𝑒𝑤) = −2(𝑏𝑤 + 𝑒𝑤)3 + 3(𝑏𝑤 + 𝑒𝑤)2

= −2𝑏3𝑤 − 6𝑏2𝑤𝑒𝑤 + 3𝑏2𝑤 − 6𝑏𝑤𝑒2𝑤 + 6𝑏𝑤𝑒𝑤 − 2𝑒3𝑤 + 3𝑒2𝑤

=

{
3𝑒2𝑤 − 2𝑒3𝑤 𝑏𝑤 = 0

1 − 3𝑒2𝑤 − 2𝑒3𝑤 𝑏𝑤 = 1

and

|𝑒𝑧 | = |𝑧 − 𝑏𝑤 | < |3(𝐵 + 0.25)2𝑑𝑒2 ± 2(𝐵 + 0.25)3𝑑𝑒3 |

< 3(𝐵 + 0.25)2𝑑 · 𝑒2 + 2(𝐵 + 0.25)3𝑑 · 𝑒3

□

We can now use the lemma to find the largest 𝑑 for which 𝑒𝑧 < 𝑒 .

This will allow stability of the evaluation process. While this can be

solved analytically, the results are not displayed nicely, and instead

we chose to use a SageMath script to plot Fig. 5. The graph illus-

trates the relationship between the logarithm of the error bound

(log
2
(𝑒)) on the x-axis and the corresponding maximum value of

𝑑 allowed before invoking the ℎ1 () function. Three different func-
tions, are considered: a function that solely performs AND gates,

a function that only performs XOR gates, and a function that pri-

marily performs XOR gates, except for the last three multiplication

levels, where it incorporates AND gates. The last function is the one

we have in our AES-CTR implementation. As can be seen, calling

ℎ1 only at the end of every AES round (which has a multiplication

depth of 7) is possible when the initial error satisfies 𝑒 < 2
−29

. In

our experiments, we chose a scale of 2
42

and since the initial 𝐻𝐸

noise is only a few bits it guarantees that our initial error meets the

requirement.

Remark 3. The analysis provided in this section relies on the worst
case scenario. In practice, it is possible to derive bounds that depend
on the error expectation and are achieved with some probability. We
leave this research to future work.

6 AUTHENTICATED TRANSCIPHERING (AT)
This section informally define the notion of AT. This definition will

be presented in a step-by-step manner, where each step describes

an expanded threat model encompassing additional capabilities.

In the basic FHE scenario, there exists a user and an untrusted

semi-honest environment, such as the cloud. The user generates the

FHE secret, public, and evaluation keys. The secret key is securely

stored in a private location, while the user publishes the public and

evaluation keys to the cloud. To utilize the cloud FHE service, the

user encrypts data using the FHE secret key or the public key and

uploads the encrypted data to the cloud. Subsequently, the cloud

performs operations on the data, such as running a DNN inference,

and returns the encrypted results to the user. The user can then

decrypt and view the results using their private key.

Modern FHE schemes are designed to be either IND-CPA secure

(e.g., BGV [14] or B/FV [13, 38]) or IND-CPA
𝐷

secure [55] like

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Maximum 𝑑 (y-axis) as a function of log
2
(𝑒) (x-axis).

Three functions (𝑓) are considered: 𝑓 with AND gates only
(𝐵 = 5), 𝑓 with XOR gates only (𝐵 = 2.25), and 𝑓 with XOR
gates except for the last three levels (𝐵 = 5/2.5).

CKKS. In either case, these schemes offer semantic security to the

uploaded ciphertexts, meaning that the cloud gains no knowledge

about the user’s data solely by observing the ciphertexts.

In the context of hybrid encryption, we expand upon the afore-

mentioned scenario by introducing a partition in the cloud infras-

tructure, dividing it into two distinct entities with varying capa-

bilities. Specifically, we consider a semi-honest FHE service that

adheres to the established protocol, while characterizing the re-

maining components of the cloud as malicious. In particular, we

identify the database that stores AES ciphertexts of the client as a

malicious entity.

In this setup, a user initiates a request to the FHE service, specify-

ing a list of keys to be utilized for accessing data from the database.

The FHE service, in turn, communicates with the database to acquire

the ciphertexts associated with the provided keys. To ensure the

integrity of the ciphertexts, certain assumptions are made. Specifi-

cally, it is assumed that the user has encrypted the data using an

AEAD scheme, and the keys form a part of the additional authen-

tication data (AAD) associated with the ciphertext. This enables

the FHE service to authenticate the data on behalf of the user. We

refer to the combination of AEAD and FHE construction as AT. The

concept of AT was also explored in [10] with the Grain128-AEAD

implementation. Below we provide further discussion on AT that

leads to our near-standardized implementations in Sections 7, 8.

The fundamental concept underlying AT is to ensure that the au-

thentication tag propagates seamlessly from the AEAD ciphertexts

to the FHE decryption process, where decryption failure occurs

if the original AEAD tag check would have failed. This objective

can be accomplished through two distinct approaches. The first

approach involves transmitting both the consumed tags by the FHE

service and the tags generated during the AEAD decryption un-

der FHE process to the user. Alternatively, the second approach

utilizes a single bit sent (encrypted) from the server to the client

to indicate the validity of the returned results. In the first option,

the client is responsible for comparing the two lists of tags and

releasing the FHE decrypted results only if the lists are identical.

This places some computational burden on the client. Conversely,

in the second option, only one bit is sent, which saves bandwidth

and computation to the client but increases the overhead on the

server side.

In the context of AT, there are two crucial aspects that deserve

attention. First, it is imperative to ensure the confidentiality of

the AES key encrypted under FHE from any potential adversary.

Even though the key is encrypted under FHE, if an adversary gains

access to this key, they can encrypt their own ciphertexts, thereby

compromising the authenticity guarantees of the scheme. This

concern does not apply to the FHE service itself since we assume it

to be semi-honest. Moreover, regardless of the situation, the FHE

service can always provide a bit of choice to the client, thereby

indicating whether the returned ciphertext is valid or not. Note also

that revealing the encrypted key to an adversary does not harm

privacy of the AT scheme because the adversary still does not hold

the FHE secret key and thus cannot decrypt FHE ciphertexts.

Alternatives to AT. There exist alternatives to the aforementioned

construction, such as employing asymmetric encryption instead of

symmetric encryption in conjunction with the FHE scheme. How-

ever, this alternative solution is less practical compared to using

AEAD, primarily due to the prevalence of AEAD usage among

users in current systems. Adopting asymmetric encryption would

require significant modifications in software or, in some cases, even

hardware, to encrypt or reencrypt all existing data under the asym-

metric scheme. Additionally, the expansion rate of data would no

longer remain at a 1:1 ratio, as with AEAD, which deviates from

the goal of compression that was initially pursued.

Another option, which faces similar challenges involves request-

ing the user to sign each symmetric or AEAD ciphertext. While this

approach enables the FHE service to efficiently validate the authen-

ticity of the data (in plaintext), it suffers from the same practical

issues as the previous alternative. Furthermore, the existing stan-

dardized signature schemes are either not post-quantum secure or

require significant space, rendering them unsuitable for integration

into IoT devices. Considering these factors, it becomes evident that

the use of AEAD within the AT scheme presents a more practical

and efficient solution.

Verifiable authenticated transciphering (VAT). Once we estab-
lished what an AT is, we need also to say what guarantees it does

not provide. FHE schemes are susceptible to malleability issues,

which allows malicious entities to manipulate the ciphertext data.

For example, operations like subtracting a ciphertext from itself

or multiplying it by a plaintext value are possible without inform-

ing the original data owner. While there are methods available to

protect the integrity of FHE ciphertexts, such as using verifiable

computation (VC) or trusted execution environments (TEEs) like

Intel

®

SGX [53] or ARM

®

Trustzone [25], these approaches are

still considered impractical, and the latter requires involving third-

party entities in the user trusted computing base (TCB), e.g, Intel.

As a result, most prior works have assumed a semi-honest cloud
that faithfully executes computations on the encrypted ciphertexts

without deviation.

In the context of AT, we also make the semi-honest assumption

on the FHE service. As a result, the authenticity guarantees pro-

vided by AT pertain solely to the inputs obtained from external

storage or other services, rather than ensuring the integrity of the

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

computations performed by the FHE service itself. A compelling

area for further research lies in the combination of VC techniques

with AT, which can yield intriguing possibilities. We propose the

term verifiable authenticated transciphering (VAT) as a potential

name for this novel approach.

Remark 4. AT is not limited to one client or one client key per FHE
computation. The client can ask the FHE service to collect data that
was encrypted using multiple AES keys that may belong to different
users. As long as the server holds the required keys encrypted under
FHE, it can combine them in the evaluation process.

Remark 5. As a desirable practice, it is preferable for the FHE
service to promptly delete the content of any unauthenticated de-
crypted data as soon as it becomes aware of its authenticity status,
even when under FHE. By doing so, the server minimizes the poten-
tial risk posed by attackers who may capture ciphertexts containing
potentially maliciously crafted data.

7 AES-GCM
We start with some background on AES-GCM and then continue

by describing our implementation.

7.1 Background
The Galois / counter mode (GCM) [36] is a mode of operation

specifically developed for symmetric block ciphers, such as AES.

Unlike other modes like CTR, ECB, and CBC, which primarily aim

for confidentiality, GCM is classified as an AEAD scheme. As such,

it provides guarantees for both confidentiality and integrity. This

is accomplished through the combination of the AES-CTR mode

with a GHASH function, which ensures the authenticity of the data

being processed.

Presently, AES-GCM has gained widespread adoption due to its

high throughput rates on modern processors. It is among the few al-

lowed ciphers when using TLS 1.3 [61] and is highly recommended

by prominent companies libraries like AWS encryption SDK [8].

Additionally, in terms of ciphertext expansion rate, AES-GCM in-

curs a minimal overhead of only an additional 128-bit tag compared

to AES-CTR ciphertexts. Fig. 6 illustrates the AES-GCM scheme,

where it highlights the parts encrypted under FHE.

The GHASH function is defined over the Galois field F𝐺𝐶𝑀 =

𝐺𝐹 (2128) with a polynomial reduction 𝑥128 + 𝑥7 + 𝑥2 + 𝑥 + 1. To
generate the authentication tag the ciphertext blocks are XORed

and multiplied by an encrypted value 𝐻 = 𝐴𝐸𝑆𝑘 (0128) in F𝐺𝐶𝑀 .

An illustration of the AES-GCM AEAD scheme within the con-

text of FHE is presented in Fig. 6. The figure provides a visual

representation of the components that are encrypted with AEAD,

encrypted with FHE, or remain in plaintext. It is important to note

that at the end of the process, both the ciphertexts and the authenti-

cation tag are preserved in an encrypted form under FHE. Moreover,

because 𝐻 = 𝐴𝐸𝑆𝑘 (0128) is encrypted, the entire tag computation

must be done under FHE.

7.2 An implementation of AES-GCM
Our implementation of the AES-CTR mode is discussed in detail

in Sec. 4.2. This implementation serves as the foundation for our

Figure 6: An illustration of the AES-GCM AEAD scheme
within the context of FHE. Green blocks represent plaintext
blocks, blue blocks represent AES-GCM encryption methods,
yellow blocks represent AES-GCM encrypted blocks, and red
blocks represent the AES-GCM decrypted plaintext that re-
mains encrypted under FHE.

de f gf_mul (c t , p t) :

z = np . z e r o s (p t . shape , d type=np . i n t 3 2)

v = c t . copy ()

f o r i i n range (1 2 8) :

z = np . power ((z − (p t [i] ∗ v)) , 2)

c = v [1 2 7 , :]

v = np . r o l l (v , 1 , a x i s =0)

v [0] = c

v [1] = (c − v [1]) ∗ ∗ 2

v [2] = (c − v [2]) ∗ ∗ 2

v [7] = (c − v [7]) ∗ ∗ 2

r e t u r n z

Figure 7: An illustration of our GHASH implementation us-
ing SageMath and Numpy.

AES-GCM implementation, as well as an additional implementation

of the GHASH function under FHE.

The code presented in Fig. 7 provides an overview of our GHASH

implementation. It is implemented using SageMath with Numpy

and incorporates a basic GF-mul algorithm. This code is later adapted

to operate on real FHE ciphertexts. The multiplication function

takes two elements from 𝐺𝐹 (2128) as input, where 𝑐𝑡 represents
a ciphertext and 𝑝𝑡 represents a plaintext. The function computes

the product 𝑐𝑡 · 𝑝𝑡 within𝐺𝐹 (2128), while also accommodating the

CKKS scheme by replacing XOR operations with (𝑥 − 𝑦)2 opera-
tions. Furthermore, it assumes that each bit in the first axis of the

array corresponds to a distinct ciphertext, enabling the FHE ro-

tate operation (𝑛𝑝.𝑟𝑜𝑙𝑙) to be executed without incurring additional

computational cost.

HTBL. Consider the AAD data 𝐴 = 𝑎1, . . . , 𝑎𝑚 and ciphertext data

𝐶 = 𝑐1, . . . , 𝑐𝑛 as elements from 𝐺𝐹 (2128) on which we apply the

function GHASH(𝐴,𝐶,𝐻), defined as:

GHASH(𝐴,𝐶,𝐻) =
𝑚∑︁
𝑖=1

𝑎𝑖 · 𝐻 𝑖 +
𝑛∑︁
𝑖=1

𝑐𝑖 · 𝐻𝑚+𝑖

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Fig. 6 presents an alternative approach to compute the GHASH tag,

utilizing Horner’s rule, which states that

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝐻 𝑖 = (𝑥1 · 𝐻) ⊕ 𝑥2) · 𝐻 . . . ⊕ 𝑥𝑛) · 𝐻

This technique is commonly employed to avoid the expensive com-

putation of powers of 𝐻 . However, due to the SIMD nature of FHE,

we adopt a different commonly used strategy by precomputing a

table called 𝐻𝑇𝐵𝐿 that stores the 𝑠 powers of 𝐻 , where 𝑠 represents

the number of slots in the FHE ciphertext. Note that even though a

new nonce or IV are required per ciphertext, the 𝐻𝑇𝐵𝐿 is the same

for all ciphertexts under the same AES-GCM key. This means that

a user can precompute the 𝐻𝑇𝐵𝐿 once, maybe at an offline stage,

and use in many different occasions in the online phase.

There are two options for computing HTBL, either the client

precomputes it and sends it encrypted under FHE to the server, or

the client encrypts only 𝐻 , and the server computes all the relevant

powers of 𝐻 . This computation requires log
2
𝑠 GF multiplications.

Precomputing the data on the client side offers the advantage of

faster computations in plaintext, and in any case, the bandwidth

remains the same as at least one FHE ciphertext needs to be trans-

mitted from the client to the server. However, this approach places

an additional burden on the client, which sometimes needs to be

avoided. Another option is to combine the two approaches sending

only partial 𝐻𝑇𝐵𝐿 and complete it if needed on the server.

The size of𝐻𝑇𝐵𝐿 is similar to the size of an AES ciphertext under

FHE encryption, i.e., ∼ 12 MB ∗128 = 1.5 GB. If the number of AES

blocks to be processed under the same key is more than 32,768, i.e.,

it fits in more than one ciphertext, one can either use the Horner

rule, or precompute the power of 𝐻 also for the extra slots.

8 ASCON
Background. Ascon [32] stands as an alternative to AES-GCM

in the presence of lightweight and low-end devices. Recently, it

was selected by NIST for standardization [59]. Additionally, Ascon

emerged as the top choice for AE in the CAESAR competition [31].

What makes Ascon particularly appealing is its ease of implemen-

tation in both software and hardware. With a compact state size of

320 bits (comprised of five 64-bit words), Ascon can benefit from

parallelization through SIMD operations. Consequently, it exhibits

compatibility not only with high-end CPUs but also with FHE. An-

other advantage of Ascon is its avoidance of look-up tables, an

original motivation stemming from the need to ensure constant-

time implementations that avoid timing-based information leaks.

This property also aligns with our implementation, which uses

CKKS that does not natively support look-up tables.

The encryption process of Ascon involves iteratively applying a

round transformation based on the substitute permutation network

(SPN) to the Ascon state. This state is composed of five 64-bit words

(𝑥0, . . . , 𝑥5), resulting in a total of 320 bits. The process also involves

four distinct phases: an initial phase comprising 12 permutation

rounds to establish the ciphertext state, a final phase consisting of

an additional 12 rounds to complete the encryption process.

In between, the encryption of plaintext blocks, Ascon128 and

Ascon128a utilize 6 rounds to process blocks of size 64-bit and

128-bit, respectively, for the AAD and ciphertext data. Each round

x0

x1

x2

x3

x4

1
1
1
1
1

1

x0

x1

x2

x3

x4

Figure 8: Schematic representation of the Ascon s-box, image
was taken from [32]. 𝑥0, . . . , 𝑥4 are 64-bit word elements.

encompasses three essential steps: the addition of round constants,

a non-linear substitution layer (depicted in Fig. 8), and a linear diffu-

sion layer described by equations 4 to 8. This systematic approach

ensures the secure transformation of data during encryption.

𝑥0 := 𝑥0 ⊕ (𝑥0 ≫ 19) ⊕ (𝑥0 ≫ 28) (4)

𝑥1 := 𝑥1 ⊕ (𝑥1 ≫ 61) ⊕ (𝑥1 ≫ 39) (5)

𝑥2 := 𝑥2 ⊕ (𝑥2 ≫ 01) ⊕ (𝑥2 ≫ 06) (6)

𝑥3 := 𝑥3 ⊕ (𝑥3 ≫ 10) ⊕ (𝑥3 ≫ 17) (7)

𝑥4 := 𝑥4 ⊕ (𝑥4 ≫ 07) ⊕ (𝑥4 ≫ 41) (8)

Implementing Ascon. For the purpose of Ascon decryption

within the context of FHE, we made a decision to employ a 64-bit

word sliced implementation instead of a bit-sliced implementation

as we did for AES. This choice was motivated by the fact that the

320-bit state would require the utilization of 320 ciphertexts, result-

ing in a total size of approximately 12 MB × 320 ≈ 3.84 GB, which

was less practical. Instead, a strategy was adopted wherein only

five ciphertexts were employed, with a total size of approximately

60 MB. This configuration allowed for the parallel decryption of a

batch consisting of 32, 768/64 = 512 Ascon blocks in parallel.

However, unlike AES-CTR/GCM, where parallel operations can

be performed on different blocks of the same ciphertext, the adapt-

ing state of Ascon necessitated the decryption of blocks from dif-

ferent ciphertexts. These blocks either employed different keys

or different nonces. Similar to the AES-CTR implementation, the

placement of Ascon keys within the relevant slots in the FHE ci-

phertexts can either be done directly by the clients or using masks

on the server side. In summary, the advantage of Ascon lies in its

relatively small number of ciphertexts, while the limitation lies

in the requirement to operate on orthogonal Ascon blocks during

HE-based decryption.

Overall, the multiplication depth associated with each Ascon

round in our implementation is 9 as follows: The addition of round

constants: 1 XOR; the non-linear substitution layer: 4 (3 XORs and 1

AND); the linear diffusion layer: 2 XORs; and the cleanup function

ℎ1 (): 2. The total multiplication depth is therefore (12 + 12 + 6 ∗
𝑚) ∗ 9 = 216 + 54𝑚, where𝑚 is the number of AAD and ciphertext

blocks. The number of bootstraps is (24 + 6𝑚) ∗ 5 = 120 + 30𝑚 due

to the 5 ciphertexts that hold the Ascon state.

9 EXPERIMENTS
Experimental setup. We considered two platforms for the ex-

periments: a) GPU: A100 SXM4 80 GB GPU, on a server with an

AMD® EPYC 7763 64-Core Processor 2.45GHz machine with 64

cores (128 threads), where we used a single CPU thread by setting

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

)

Table 2: A comparison of decryption methods under FHE.

Process Sec Cipher Size Latency Block size Blocks Amortized lat. Peak RAM

unit bits (KB) (min) (bits) (#) (mSec/block) usage (GB)

CPU

128

Ascon 4 21 64 2
9

2,460 20

CTR 512 20 128 2
15

37 69

256 CTR 512 28.58 128 2
15

52 74

GPU

128

Ascon 4 0.43 64 2
9

50.8 22

Ascon 512 11.5 64 2
16

10.49 23

CTR 512 1.65 128 2
15 3 14

GCM 512 6.95 128 2
15 13 14

256

CTR 512 2.3 128 2
15

4.2 14

GCM 512 7.66 128 2
15

14 15

OMP_NUM_THREADS=1. and; b) CPU: An Intel® Xeon® CPU E5-

2699 v4 @ 2.20GHz machine with 44 cores (88 threads) and 750GB

memory. The experiments were conducted using HElayers [2], a

software development kit (SDK) for privacy-preserving computa-

tions that offers various programming capabilities for developers

working with FHE. Each experiment underwent 10 repetitions, and

the presented outcome reflects the minimum recorded running time.

We configured HElayers to utilize a bootstrappable HEaaN context,

leveraging the CryptoLab HEaaN library, with a security level of

128 bits. The employed ciphertexts had a capacity of 32,768 slots,

facilitating concurrent processing of multiple data elements. The

multiplication depth was set to 12, with the fractional part precision

(scale) configured to 42 bits, and the integer part precision (number

of additional bits in the first prime) set to 18 bits. Furthermore, the

chain index after bootstrap was set to 12, while the minimal chain

index for bootstrap was established at 3.

Experiments results. Table 2 presents
2
the benchmark results

for the decryption process of various block ciphers in different

modes of operation. For comparison with SotA see Fig. 2 and the

discussion in Sec. 2. The chosen data sizes, specifically 512KB for

AES-CTR/GCM and 4KB for Ascon, correspond to the number of

blocks required to fill the ciphertexts representing the block cipher

states: 128 ciphertexts for AES-CTR/GCM and 5 ciphertexts for

Ascon. These sizes were selected to maximize the utilization of our

implementation, as lower values would leave unused slots in the

ciphertexts and result in under-utilization. It is important to note

that the decryption time will double if the data size is doubled, as

our implementation fully utilizes the GPU. For a fair comparison

between our AES-GCM and Ascon implementations we also in-

clude the runtime of decrypting 512 KB using Ascon, where we

increased the number of blocks in the original 512 ciphertext. Fig.

9 illustrates how the amortized latency is reduced when increasing

the ciphertexts size. The reason is that cost of the constant overhead

of the initialization and finalization steps, which include 12 per-

mutation rounds each becomes negligible with the ciphertext size.

Particularly, one permutation round takes around 1.125 seconds.

The latency on the other hand increases linearly.

We make the assumption that users who intend to harness the

capabilities of FHE will utilize specialized devices such as GPUs,

and potentially in the future, FPGAs or ASICs. Accordingly, we

present the reported results for all our constructions on a GPU

device. To provide a point of reference regarding the performance

disparity between GPUs and CPUs, we also include the runtime

2
Initial AES-CTR/GCM results were also presented in a poster [3].

Figure 9: Latency and amortized latency of Ascon for a batch
of 512 ciphertexts and different number of blocks (either
AAD or ciphertext data).

of the CPU implementation for AES-CTR. As depicted in the table,

even with 88 threads, the CPU implementation is nearly 12.12×
slower compared to the GPU implementation using a single thread.

The reported latency values are given in minutes, while the

amortized latency values are reported in milliseconds, which repre-

sents a significant improvement compared to the previous methods

outlined in Fig. 2. It is evident that the fastest implementation

among the tested implementations is AES-CTR, as it solely pro-

vides confidentiality guarantees. Conversely, AES-GCM and Ascon

offer both confidentiality and authenticity capabilities, resulting in

slower performance. Among the two, our AES-GCM implementa-

tion demonstrated faster speeds. It should be noted that AES-GCM

operates on a block size of 16 bytes, whereas we implemented As-

con flavor that operates on a block size of 8 bytes. When comparing

amortized latency per 16 bytes, the reported value for Ascon 20.98

mSec (by doubling the 10.49 mSec latency per 8 bytes) is higher than

that for AES-GCM (13 mSec). Another observation is that in our

experiment we used a GPU with a single CPU thread, in practice

the computation of the AES-CTR and the GHASH functions can

be parallelized, which will result in latency of 6.95 − 1.65 = 5.33

minutes and amortized latency of 9.76 milli-seconds.

10 AN END2END IMPLEMENTATION
Our end-to-end process is illustrated in Fig. 10. In this demonstra-

tion, we utilize our implementations of AES-GCM-256 and CKKS.

The objective is to perform an inference operation on a DNN, specif-

ically ResNet-50, using a large image with dimensions 224× 224× 3,
which is currently the state-of-the-art when considering inference

over FHE. We have also experimented with AES-CTR, but the flow

for AES-GCM is more complex due to the additional requirement of

integrity checks. Therefore, we focus on describing the AES-GCM

based flow in detail. It is worth noting that using Ascon instead of

AES-GCM would result in a similar flow.

The demonstration begins with a client who employs AES-GCM

to encrypt the sample data, here, an image consisting of 224× 224×
3 = 150, 528 pixels represented as 32-bit floating-point elements.

The total size of the data is approximately 588 KB, and the encryp-

tion size closely matches that of the plaintext (taking into account

the overhead of adding a 128-bit tag). Finally, the user saves the

data in some database, in our case, it was our local file system.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 10: An illustration of an end-to-end flow using AES-GCM and CKKS.

Subsequently, a server process was executed on the same ma-

chine, which received an AES ciphertext to be decrypted. The total

size of the ciphertext, 588 KB, can be accommodated within 2 units

of 512 KB (in tile tensor shape notation, [128, 150,528∗4
32,768], see App.

B for more info on tile tensors). In other words, 2 blocks of 128

FHE ciphertexts are required to store the AES-encrypted data. In

our implementation, we load all the 256 ciphertexts (approximately

3.072 GB) into memory. Alternatively, a lazy evaluation mode could

be employed, where blocks of 1.5 GB are loaded at a time.

Upon completing the decryption process, we obtained the origi-

nal data encrypted under FHE in a bit-sliced representation, along

with the authentication tag. We first compared the original AES-

GCMplaintext tag with the resulting tag using an 𝐼𝑠𝐸𝑞() FHE utility,
which generates an authentication indicator. This indicator is then

transmitted to the client, who can utilize it during the decryption

process to determine whether to release the inference results or

not. At this point we also decrypted the results and measured the

generated noise after the AES-GCM decryption process. The aver-

age noise (𝐴𝑉𝐺 (|𝑝𝑡 − FHE.Dec(𝑐𝑡) |)) observed was 1.16 × 10−10,
with an even smaller standard deviation of 7.30562 × 10−17. These
measurements confirm the expected behavior discussed in Sec. 5.

Prior to executing the inference step, two additional steps were

incorporated into the process. First, we needed to convert the bit-

sliced data into numerical representation, which is discuss later in

greater details. Once the data was prepared, it was necessary to

ensure that it was packed using the same packing methodology

selected for the inference operation, where the specific packing

methodology employed depends on the model to be executed.

To accomplish this, the server initially loaded the final applica-

tion (model inference) and queried it to determine the expected

input format of the data. Utilizing this information, the server per-

formed a permutation of the elements of the input ciphertext to

their respective destinations. The overhead of the permutation de-

pends on the number of rotations that need to be done on the input

data and vary between different applications. Luckily it may only

consume one multiplication depth due to the use of masking, which

means that often no extra bootstraps are required on the data. We

provide more insights below

To execute the inference operation, we leveraged the existing

AI over FHE capability provided by HElayers [2], as documented

in [9]. Specifically, we utilized their pre-trained ResNet-50 model

that is compatible with FHE computations and trained on the Ima-

geNet dataset. Notably, the latency and accuracy achieved in our

implementation closely aligned with the results reported in [9].

This outcome was anticipated since our approach introduced no

additional overhead to the inference process, and the negligible

error introduced during the decryption process had minimal impact

on the overall accuracy.

From bits to numbers. Upon completing the decryption process,

we store the serialized data in a bit-sliced representation. However,

subsequent applications require the data to be casted back to its

original data type, which can include signed or unsigned integers,

floating-point numbers, or fixed-point elements with sizes of 8, 16,

32, or 64 bits. In our implementation, we assume that knowledge of

the original data type is common, similar to many other applications

that utilize AES encryption. Nevertheless, if necessary, it is possible

to include this information as an AAD of the AES ciphertexts.

Note that not all conversions are feasible due to the inherent

error involved in the restoration process. For instance, if the FHE

ciphertext’s integer part consists of 16 bits, it does not make sense

to restore a 32-bit integer within it, unless we have some guarantees

on the input upper bound. Similarly, if both the integer part and the

fractional part are 32 bits each, attempting to restore 32-bit integers

would not be meaningful, as we would need to multiply the most

significant bit (MSB) by 2
32
. This operation would result in the error

also growing by 2
32
, potentially corrupting the lower bits of the

integer. Therefore, it is crucial to consider the scheme parameters

before attempting such conversions. Fortunately, many applications

require the integer part to have a relatively small number of bits,

allowing most of the data to be allocated to the fractional part. We

stress that the restoration process may introduce some level of error,

and careful consideration of the scheme’s limitations is necessary

to ensure accurate and meaningful conversions.

Alg. 1 presents a methodology for reconstructing numbers in

scenarios where the desired type is a fixed-point or integer represen-

tation. It takes as input an array of bits 𝑖𝑛 that encodes the number

and precisely positions each bit according to its designated loca-

tion. In order to mitigate potential errors arising from zero-valued

bits, the algorithm employs a quadratic operation that effectively

restores the original error magnitude. The choice of whether to

perform one or two square operations dependence on the FHE

configuration and specifically, the error bound 𝑒 .

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

)

Algorithm 1 Constructing numbers from bits

Input: (𝑖𝑛) an array of 𝑛 encrypted bits, (𝑒) the error bound.
Output: (𝑜𝑢𝑡) an integer with 𝑛 bits and error below 𝑒 .

1: procedure ConstructInt
2: 𝑜𝑢𝑡 = 𝑖𝑛0 + 2𝑖𝑛1
3: for 𝑖 = 2 to 𝑛 − 1 do
4: if 𝑖 < − log

2
(𝑒)

2
then

5: 𝑏 =

(
2
⌊𝑖/2⌋ · 𝑖𝑛𝑖

)
2

6: 𝑏 = 𝐼𝑠𝑂𝑑𝑑 (𝑖) ? 2𝑏 : 𝑏

7: else
8: 𝑏 = 2

𝑖−(4⌊𝑖/4⌋) ·
(
2
⌊𝑖/4⌋ · 𝑖𝑛𝑖

)
4

9: 𝑜𝑢𝑡 = 𝑜𝑢𝑡 + 𝑏 ⊲ Here, 𝑜𝑢𝑡 = 𝑜𝑢𝑡 + 2𝑖𝑖𝑛𝑖
10: return 𝑜𝑢𝑡

Packing the data. The overhead associated with organizing the

AES-decrypted data for consumption by subsequent applications,

such as model inference, primarily involves rotating and masking

operations. The extent of this overhead depends on the number

of rotations needed for the input data and can vary across differ-

ent applications. Fortunately, in many scenarios, this overhead is

limited to a single multiplication depth due to masking techniques.

Consequently, additional bootstraps are typically unnecessary.

There are methods to mitigate this extra permutation cost. For

instance, if the client possesses knowledge of the expected packing

requirements, they can encrypt the data with AES in the desired

format. However, in most cases, this approach will not be feasible

since data is often stored well in advance of its usage by the tar-

get model. Consequently, the specific model type and, hence, the

required input packing style are typically unknown in advanced.

There are additional approaches that can expedite the process.

First, compilers such as HElayers [2] could optimize the end-to-end

process by considering the permutation costs when selecting the

packing style to be used. By incorporating knowledge of the per-

mutation overhead, compilers can make more informed decisions

that minimize the overall computational requirements. Second, data

preparation for packing can be performed earlier, specifically when

the data is retrieved from the database. At this stage, the server can

apply permutations to the AES ciphertext blocks, aligning them in

a manner that reduces the subsequent number of required permuta-

tions. This approach is applicable to our AES-GCM implementation,

as the encrypted HTBL powers and the IV+CTR inputs for the AES

encryption calls can be permuted in the same way. However, this

cannot be achieved with Ascon due to its serialization characteristic.

11 DISCUSSION
Our demonstration establishes the feasibility and practicality of an

end-to-end AT approach that enables an inference process. How-

ever, it is essential to acknowledge the additional components re-

quired by products that will utilize our implementation. These

components include a key management system (KMS) for securely

storing the AES, FHE, and AES encrypted under FHE keys. Addi-

tionally, a public key infrastructure (PKI) is necessary to manage

the transfer of keys and validate their authenticity.

These additional components play a crucial role in ensuring the

security and integrity of the system. Without proper safeguards,

a malicious adversary could potentially provide the server with

a manipulated ciphertext and a malicious encryption of the AES

key under FHE. While the ciphertexts may pass authentication, the

resulting inference results would be compromised and incorrect.

Using scheme switching. An intriguing research avenue involves
investigating the use of e.g., the B/FV scheme [13, 38] instead of

CKKS [18] for AES decryption, followed by scheme switching from

B/FV to CKKS for performing the inference operation. Exploring

the optimal point at which to perform the scheme switching, such

as before the bits-to-numbers conversion or after, or even after

the permutation step, presents an interesting direction for further

research. We did not explored this option, as such scheme switching

implementation is not yet available in modern FHE libraries.

Using AES-CTR only. The primary focus of our paper is on

AT, and we propose the utilization of AES-GCM or Ascon for this

purpose. However, there are certain scenarios where the use of AES-

CTR alone is sufficient. One such example is when the sample data

is transmitted directly to the server through a secure channel, such

as TLS 1.3 [61]. In such cases, the client and server can rely on TLS

1.3 for data authentication, and no further guarantees are necessary.

In this context, AES-CTR serves mainly to enable efficient and

compressed data transmission, as opposed to encrypting the data

directly under FHE. In this case the data is encrypted twice once

with AES-CTR and another time with the AES-GCM.

Other AEADs. Our choice to implement AES-GCM and Ascon was

influenced by the fact that these schemes have either already been

standardized or are on the verge of being standardized by NIST.

However, there is an intriguing alternative known as Poly1305-

ChaCha, which is also a TLS 1.3 recommended AEAD scheme.

Upon examining its design, we observed that Poly1305-ChaCha in-

volves numerous transitions between integers and bits. Specifically,

it performs integer addition and immediately follows it with an

XOR operation on the results. As mentioned earlier, the process of

composing integers from bits and subsequently decomposing them

for the XOR operation can be computationally expensive under

the CKKS scheme. It remains an interesting alternative worthy of

further investigation and evaluation in scenarios where the cost of

transitioning between integers and bits is less of a concern.

12 CONCLUSION
We explored the properties of a recent security notion that we term

AT, which enhances the use case of hybrid encryption by incorpo-

rating an integrity layer to the inputs of the symmetric cipher. We

have discussed the advantages and disadvantages of this approach,

highlighting its potential benefits and limitations. Additionally, we

have proposed a stronger notion called VAT, which represents an

intriguing avenue for future research and development.

To demonstrate the practical feasibility of near-standardized

hybrid encryption and AT, we have presented a novel implemen-

tation of an end-to-end DNN inference application that employs

transciphering using standardized AEAD algorithms, specifically

AES-GCM and Ascon. Our experimental results showcase that,

when leveraging GPUs, the application achieves satisfactory execu-

tion times for various applications. We anticipate that upcoming

FHE accelerators will further enhance the speed and efficiency of

our solution. This implies that within a relatively short time frame,

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

approximately one to two years from now, when the FHE standard-

ization process is finalized, users will be able to adopt standardized

hybrid encryption, eliminating certain barriers associated with the

adoption of FHE in general use cases.

REFERENCES
[1] 2018. California Consumer Privacy Act. Statutes of California. https://leginfo.

legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375 California

Assembly Bill 375.

[2] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash,

Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, et al. 2023. HElay-

ers: A tile tensors framework for large neural networks on encrypted data. PoPETs
2023 (2023), 325–342. Issue 1. https://doi.org/10.56553/popets-2023-0020

[3] Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri

Soceanu. 2023. E2E near-standard hybrid encryption. https://homomorphice

ncryption.org/6th-homomorphicencryption-org-standards-meeting/ Poster

session at 6th HomomorphicEncryption.org Standards Meeting, Seoul, South

korea.

[4] Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri

Soceanu. 2023. Poster: Efficient AES-GCM Decryption Under Homomorphic

Encryption. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (Copenhagen, Denmark) (CCS ’23). Association for

Computing Machinery, New York, NY, USA, 3567–3569. https://doi.org/10.114

5/3576915.3624377

[5] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada. https://Homomorphi

cEncryption.org

[6] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In Advances in Cryptology –
EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 430–454. https://doi.org/10.1007/978-3-662-

46800-5_17

[7] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. 2022. Chaghri - A

FHE-Friendly Block Cipher. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 139–150. https:

//doi.org/10.1145/3548606.3559364

[8] AWS. 2023. AWS Encryption SDK. https://docs.aws.amazon.com/encryption-

sdk/latest/developer-guide/faq.html Last accessed Jun 2023.

[9] Moran Baruch, Nir Drucker, Gilad Ezov, Eyal Kushnir, Jenny Lerner, Omri

Soceanu, and Itamar Zimerman. 2023. Sensitive Tuning of Large Scale CNNs for

E2E Secure Prediction using Homomorphic Encryption. arXiv:2304.14836 [cs.LG]

[10] Adda-Akram Bendoukha, Aymen Boudguiga, and Renaud Sirdey. 2022. Revisiting

Stream-Cipher-Based Homomorphic Transciphering in the TFHE Era. In Founda-
tions and Practice of Security, Esma Aïmeur, Maryline Laurent, Reda Yaich, Benoît

Dupont, and Joaquin Garcia-Alfaro (Eds.). Springer International Publishing,

Cham, 19–33. https://doi.org/10.1007/978-3-031-08147-7_2

[11] Joan Boyar, Philip Matthews, and René Peralta. 2013. Logic Minimization Tech-

niques with Applications to Cryptology. Journal of Cryptology 26, 2 (2013),

280–312. https://doi.org/10.1007/s00145-012-9124-7

[12] Joan Boyar and René Peralta. 2012. A Small Depth-16 Circuit for the AES S-

Box. In Information Security and Privacy Research, Dimitris Gritzalis, Steven

Furnell, and Marianthi Theoharidou (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 287–298. https://doi.org/10.1007/978-3-642-30436-1_24

[13] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-

ing from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012, Reihaneh
Safavi-Naini and Ran Canetti (Eds.), Vol. 7417 LNCS. Springer Berlin Heidelberg,

Berlin, Heidelberg, 868–886. https://doi.org/10.1007/978-3-642-32009-5_50

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)

Fully Homomorphic Encryption without Bootstrapping. ACM Transactions on
Computation Theory 6, 3 (Jul 2014), 1–36. https://doi.org/10.1145/2633600

[15] D. Canright. 2005. AVery Compact S-Box for AES. InCryptographic Hardware and
Embedded Systems – CHES 2005, Josyula R. Rao and Berk Sunar (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 441–455. https://doi.org/10.1007/115452

62_32

[16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María

Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. 2018. Stream Ciphers: A

Practical Solution for Efficient Homomorphic-Ciphertext Compression. Journal
of Cryptology 31, 3 (2018), 885–916. https://doi.org/10.1007/s00145-017-9273-9

[17] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède

Lepoint, Mehdi Tibouchi, and Aaram Yun. 2013. Batch Fully Homomorphic

Encryption over the Integers. In Advances in Cryptology – EUROCRYPT 2013,

Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 315–335. https://doi.org/10.1007/978-3-642-38348-9_20

[18] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, Springer, Cham, 409–437. https://doi.org/10.1007/978-3-319-70694-

8_15

[19] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient Homomor-

phic Comparison Methods with Optimal Complexity. In Advances in Cryptology –
ASIACRYPT 2020, ShihoMoriai and HuaxiongWang (Eds.). Springer International

Publishing, Cham, 221–256. https://doi.org/10.1007/978-3-030-64834-3_8

[20] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient homomor-

phic comparison methods with optimal complexity. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
Springer, Cham, 221–256. https://doi.org/10.1007/978-3-030-64834-3_8

[21] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33, 1 (2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[22] Jihoon Cho, Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Joohee Lee, Jooy-

oung Lee, Dukjae Moon, and Hyojin Yoon. 2021. Transciphering Framework

for Approximate Homomorphic Encryption. In Advances in Cryptology – ASI-
ACRYPT 2021, Mehdi Tibouchi and HuaxiongWang (Eds.). Springer International

Publishing, Cham, 640–669. https://doi.org/10.1007/978-3-030-92078-4_22

[23] Carlos Cid, John Petter Indrøy, and Håvard Raddum. 2022. FASTA – A Stream

Cipher for Fast FHE Evaluation. In Topics in Cryptology – CT-RSA 2022, Steven D.

Galbraith (Ed.). Springer International Publishing, Cham, 451–483. https://doi.

org/10.1007/978-3-030-95312-6_19

[24] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2014. Scale-

Invariant Fully Homomorphic Encryption over the Integers. In Public-Key Cryp-
tography – PKC 2014, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 311–328. https://doi.org/10.1007/978-3-642-54631-0_18

[25] −. ARMCorporation. 2009. ARM Security Technology - Building a Secure System

using TrustZone Technology Whitepaper. http://infocenter.arm.com/help/topic/

com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security

_whitepaper.pdf.

[26] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Stan-

daert. 2022. Towards Case-Optimized Hybrid Homomorphic Encryption. In

Advances in Cryptology – ASIACRYPT 2022, Shweta Agrawal and Dongdai Lin

(Eds.). Springer Nature Switzerland, Cham, 32–67.

[27] Ronald Cramer and Victor Shoup. 2003. Design and Analysis of Practical Public-

Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack.

SIAM J. Comput. 33, 1 (2003), 167–226. https://doi.org/10.1137/S0097539702403

773

[28] CryptoLab. 2023. HEaaN: Homomorphic Encryption for Arithmetic of Approxi-

mate Numbers, version 0.2.0. https://www.cryptolab.co.kr/products/heaan-he/

[29] Christophe De Cannière and Bart Preneel. 2008. Trivium. Springer Berlin

Heidelberg, Berlin, Heidelberg, 244–266. https://doi.org/10.1007/978-3-540-

68351-3_18

[30] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gre-

gor Leander, Eik List, Florian Mendel, and Christian Rechberger. 2018. Rasta: A

Cipher with Low ANDdepth and Few ANDs per Bit. In Advances in Cryptology –
CRYPTO 2018, Hovav Shacham and Alexandra Boldyreva (Eds.). Springer Interna-

tional Publishing, Cham, 662–692. https://doi.org/10.1007/978-3-319-96884-1_22

[31] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

2016. Ascon v1.2. Submission to Round 3 of the CAESAR competition. https:

//competitions.cr.yp.to/round3/asconv12.pdf

[32] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

2019. Ascon v1.2. Submission to Round 1 of the NIST Lightweight Cryptography

project. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography

/documents/round-1/spec-doc/ascon-spec.pdf

[33] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,

Markus Schofnegger, and Roman Walch. 2021. Pasta: A Case for Hybrid Ho-

momorphic Encryption. Cryptology ePrint Archive, Paper 2021/731. https:

//eprint.iacr.org/2021/731

[34] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. 2022. BLEACH:

Cleaning Errors in Discrete Computations over CKKS. Cryptology ePrint Archive,

Paper 2022/1298. https://eprint.iacr.org/2022/1298

[35] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In Advances in Cryptology – EUROCRYPT
2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 617–640. https://doi.org/10.1007/978-3-662-46800-5_24

[36] Morris Dworkin. 2007. Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC. https://doi.org/10.6028/NIST.SP.800-

38d

[37] EU General Data Protection Regulation. 2016. Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 April 2016 on the protection

of natural persons with regard to the processing of personal data and on the

free movement of such data, and repealing Directive 95/46/EC (General Data

14

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375
https://doi.org/10.56553/popets-2023-0020
https://homomorphicencryption.org/6th-homomorphicencryption-org-standards-meeting/
https://homomorphicencryption.org/6th-homomorphicencryption-org-standards-meeting/
https://doi.org/10.1145/3576915.3624377
https://doi.org/10.1145/3576915.3624377
https://HomomorphicEncryption.org
https://HomomorphicEncryption.org
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/faq.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/faq.html
https://arxiv.org/abs/2304.14836
https://doi.org/10.1007/978-3-031-08147-7_2
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-92078-4_22
https://doi.org/10.1007/978-3-030-95312-6_19
https://doi.org/10.1007/978-3-030-95312-6_19
https://doi.org/10.1007/978-3-642-54631-0_18
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://www.cryptolab.co.kr/products/heaan-he/
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-319-96884-1_22
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://eprint.iacr.org/2021/731
https://eprint.iacr.org/2021/731
https://eprint.iacr.org/2022/1298
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.6028/NIST.SP.800-38d
https://doi.org/10.6028/NIST.SP.800-38d

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

)

Protection Regulation). Official Journal of the European Union 119 (2016). http:

//data.europa.eu/eli/reg/2016/679/oj

[38] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomor-

phic Encryption. Proceedings of the 15th international conference on Practice and
Theory in Public Key Cryptography (2012), 1–16. https://eprint.iacr.org/2012/144

[39] Hayato Fujii, Félix Carvalho Rodrigues, and Julio López. 2020. Fast AES Imple-

mentation Using ARMv8 ASIMD Without Cryptography Extension. In Informa-
tion Security and Cryptology – ICISC 2019, Jae Hong Seo (Ed.). Springer Interna-

tional Publishing, Cham, 84–101. https://doi.org/10.1007/978-3-030-40921-0_5

[40] Gartner. 2021. Gartner Identifies Top Security and Risk Management Trends for
2021. Technical Report. Gartner. https://www.gartner.com/en/newsroom/press-

releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t

[41] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation

of the AES Circuit. In Advances in Cryptology – CRYPTO 2012, Reihaneh Safavi-

Naini and Ran Canetti (Eds.), Vol. 7417 LNCS. Springer Berlin Heidelberg, Berlin,

Heidelberg, 850–867. https://doi.org/10.1007/978-3-642-32009-5_49

[42] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2015. Homomorphic Evaluation

of the AES Circuit. Cryptology ePrint Archive, Paper 2012/099. https://eprint.i

acr.org/archive/2012/099/20150103:190644

[43] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. 2023. HELM:

Navigating Homomorphic Encryption through Gates and Lookup Tables. Cryp-

tology ePrint Archive, Paper 2023/1382. https://eprint.iacr.org/2023/1382

[44] Lorenzo Grassi, Irati Manterola Ayala, Martha Norberg Hovd, Morten Øygarden,

Håvard Raddum, and Qingju Wang. 2023. Cryptanalysis of Symmetric Primitives

over Rings and a Key Recovery Attack on Rubato. Cryptology ePrint Archive,

Paper 2023/822. https://eprint.iacr.org/2023/822

[45] Martin ?gren, Martin Hell, Thomas Johansson, and Willi Meier. 2011. Grain-128a:

a new version of Grain-128 with optional authentication. International Journal
of Wireless and Mobile Computing 5, 1 (2011), 48–59. https://doi.org/10.1504/IJ

WMC.2011.044106

[46] Shay Gueron. 2009. Intel’s New AES Instructions for Enhanced Performance

and Security. In Fast Software Encryption, Orr Dunkelman (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 51–66. https://doi.org/10.1007/978-3-642-03317-

9_4

[47] Shay Gueron. 2010. Intel® Advanced Encryption Standard (AES) New In-

structions Set Rev. 3.01. urlhttps://www.intel.com.bo/content/dam/doc/white-

paper/advanced-encryption-standard-new-instructions-set-paper.pdf. Intel Soft-
ware Network (2010).

[48] Jincheol Ha, Seongkwang Kim, Wonseok Choi, Jooyoung Lee, Dukjae Moon,

Hyojin Yoon, and Jihoon Cho. 2020. Masta: An HE-Friendly Cipher Using

Modular Arithmetic. IEEE Access 8 (2020), 194741–194751. https://doi.org/10.1

109/ACCESS.2020.3033564

[49] Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee, and Mincheol

Son. 2022. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption (Full
Version). Technical Report Report 2022/537. https://eprint.iacr.org/2022/537

[50] Shai Halevi. 2017. Homomorphic Encryption. In Tutorials on the Foundations
of Cryptography: Dedicated to Oded Goldreich, Yehuda Lindell (Ed.). Springer

International Publishing, Cham, 219–276. https://doi.org/10.1007/978-3-319-

57048-8_5

[51] Phil Hebborn and Gregor Leander. 2020. Dasta – Alternative Linear Layer for

Rasta. IACR Transactions on Symmetric Cryptology 2020, 3 (Sep. 2020), 46–86.

https://doi.org/10.13154/tosc.v2020.i3.46-86

[52] IBM. 2020. IBM z15 Performance of Cryptographic Operations. https://www.ib

m.com/downloads/cas/6K2653EJ

[53] Simon Johnson, Vincent Scarlata, Carlos Rozas, Ernie Brickell, and FrankMckeen.

2016. Intel

®

Software Guard Extensions: EPID Provisioning and Attestation

Services. White Paper (April 2016). https://software.intel.com/sites/default/files

/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatati

on%20final.pdf

[54] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-

Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional Neural

Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convo-

lutions. In Proceedings of the 39th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Ste-

fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 12403–12422. https://proceedings.mlr.press/v162/lee22e.html

[55] Baiyu Li and Daniele Micciancio. 2021. On the Security of Homomorphic En-

cryption on Approximate Numbers. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer International
Publishing, Cham, 648–677. https://doi.org/10.1007/978-3-030-77870-5_23

[56] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices

and Learning with Errors over Rings. In Advances in Cryptology – EUROCRYPT
2010, Henri Gilbert (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–23.

https://doi.org/10.1007/978-3-642-13190-5_1

[57] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Car-

let. 2016. Towards Stream Ciphers for Efficient FHE with Low-Noise Cipher-

texts. In Advances in Cryptology – EUROCRYPT 2016, Marc Fischlin and Jean-

Sébastien Coron (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 311–343.

https://doi.org/10.1007/978-3-662-49890-3_13

[58] NIST. 2001. FIPS PUB 197: Advanced encryption standard (AES). , 311 pages.

https://doi.org/10.6028/NIST.FIPS.197

[59] NIST. 2023. Lightweight Cryptography. https://csrc.nist.gov/Projects/lightweig

ht-cryptography Last accessed 28 June 2023.

[60] Chester Rebeiro, David Selvakumar, and A. S. L. Devi. 2006. Bitslice Implemen-

tation of AES. In Cryptology and Network Security, David Pointcheval, Yi Mu,

and Kefei Chen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 203–212.

https://doi.org/10.1007/11935070_14

[61] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. https://doi.org/10.17487/RFC8446

[62] N P Smart and F Vercauteren. 2014. Fully homomorphic SIMD operations. Designs,
Codes and Cryptography 71, 1 (2014), 57–81. https://doi.org/10.1007/s10623-

012-9720-4

[63] ICT standardization committee. 2019. Homomorphic Encryption for Arithmetic

of Approximate Numbers. https://committee.tta.or.kr/data/standard_view.jsp?s

econdDepthCode=PG501&firstDepthCode=TC5&pk_num=TTAK.KO-12.034

7&commit_code=PG501 TTAK.KO-12.0347, Telecommunications Association

Standard (TTAS).

[64] Roy Stracovsky, Rasoul Akhavan, and Florian Mahdavi Kerschbaum. 2022. Faster

Evaluation of AES using TFHE. https://drive.google.com/file/d/1WMBjjM416

BXGoiLf16gPn6q5aLt4zZqi/view FHE.org 2022, Last accessed July 2023.

[65] The HEBench Organization. 2022. HEBench. https://hebench.github.io/

[66] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.

2023. A Homomorphic AES Evaluation in Less than 30 Seconds by Means of

TFHE. In Proceedings of the 11th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography (, Copenhagen, Denmark,) (WAHC ’23). Association
for Computing Machinery, New York, NY, USA, 79–90. https://doi.org/10.1145/

3605759.3625260

[67] Ruida Wang, Yundi Wen, Zhihao Li, Xianhui Lu, Benqiang Wei, Kun Liu, and

Kunpeng Wang. 2024. Circuit Bootstrapping: Faster and Smaller. Cryptology

ePrint Archive, Paper 2024/323. https://eprint.iacr.org/2024/323

[68] Benqiang Wei, Ruida Wang, Zhihao Li, Qinju Liu, and Xianhui Lu. 2023. Fregata:

Faster Homomorphic Evaluation of AES via TFHE. In Information Security, Elias
Athanasopoulos and Bart Mennink (Eds.). Springer Nature Switzerland, Cham,

392–412.

A EFFICIENT LOOKUP TABLE WITH LIMITED
VALUE RANGE

Consider a vector 𝑣 consisting of 𝑛 elements, where each element

satisfies the condition 𝑎 ≤ 𝑣𝑖 ≤ 𝑎+𝑏. We are given an address 𝑥 , rep-

resented in binary form as 𝑥𝑖 , such that 𝑥 =
∑⌈log

2
𝑛⌉

𝑖=0
𝑥𝑖2

𝑖
. The ob-

jective is to preprocess 𝑣 in a way that facilitates efficient computa-

tion of 𝑣𝑥 under FHE, even when the binary values 𝑥0, . . . , 𝑥 ⌈log
2
𝑛⌉

are encrypted.

A straightforward approach to calculate 𝑣𝑥 is as follows:

𝑣𝑥 =

𝑛∑︁
𝑖=0

IsEq(𝑥, 𝑖) · 𝑣𝑖 (9)

Here, IsEq represents a polynomial that yields an approximation of 1

when 𝑐1 = 𝑐2 and approximately 0 otherwise. It is important to note

that evaluating IsEq typically incurs a significant computational

cost and this naive method requires performing 𝑛 evaluations of

IsEq, resulting in potential inefficiency.

We propose a method that offers a significant improvement

over the aforementioned approach. To achieve this, we make the

assumption that 𝑎 = 0 and observe that we can treat the elements

of vector 𝑣 as being within the range 0 ≤ 𝑣𝑖 ≤ 𝑏. The rationale
behind this assumption is that we can introduce a new vector 𝑣 ′,
where 𝑣 ′

𝑖
= 𝑣𝑖 −𝑎, for all 𝑖 . By doing so, we can compute 𝑣𝑥 as 𝑣 ′𝑥 +𝑎.

Denote by 𝑥𝑖 = 1 − 𝑥𝑖 then
15

http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-40921-0_5
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://doi.org/10.1007/978-3-642-32009-5_49
https://eprint.iacr.org/archive/2012/099/20150103:190644
https://eprint.iacr.org/archive/2012/099/20150103:190644
https://eprint.iacr.org/2023/1382
https://eprint.iacr.org/2023/822
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1109/ACCESS.2020.3033564
https://doi.org/10.1109/ACCESS.2020.3033564
https://eprint.iacr.org/2022/537
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://www.ibm.com/downloads/cas/6K2653EJ
https://www.ibm.com/downloads/cas/6K2653EJ
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://doi.org/10.1007/11935070_14
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://committee.tta.or.kr/data/standard_view.jsp?secondDepthCode=PG501&firstDepthCode=TC5&pk_num=TTAK.KO-12.0347&commit_code=PG501
https://committee.tta.or.kr/data/standard_view.jsp?secondDepthCode=PG501&firstDepthCode=TC5&pk_num=TTAK.KO-12.0347&commit_code=PG501
https://committee.tta.or.kr/data/standard_view.jsp?secondDepthCode=PG501&firstDepthCode=TC5&pk_num=TTAK.KO-12.0347&commit_code=PG501
https://drive.google.com/file/d/1WMBjjM416BXGoiLf16gPn6q5aLt4zZqi/view
https://drive.google.com/file/d/1WMBjjM416BXGoiLf16gPn6q5aLt4zZqi/view
https://hebench.github.io/
https://doi.org/10.1145/3605759.3625260
https://doi.org/10.1145/3605759.3625260
https://eprint.iacr.org/2024/323

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Proceedings on Privacy Enhancing Technologies YYYY(X) Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

𝑣𝑥 =

(
𝑥
log𝑛 · · · 𝑥1𝑥0

)
𝑣0 +

(
𝑥
log𝑛 · · · 𝑥1𝑥0

)
𝑣1+(

𝑥
log𝑛 · · · 𝑥2𝑥1𝑥0

)
𝑣2 +

(
𝑥
log𝑛 · · · 𝑥2𝑥1𝑥0

)
𝑣3+

. . . +
(
𝑥
log𝑛 · · · 𝑥1𝑥0

)
𝑣𝑛

=
∑︁

𝑐𝑚𝑖
𝑚𝑖 ,

where𝑚1, . . . ,𝑚𝑛 represent 𝑛 monomials, namely

1, 𝑥0, 𝑥1, . . . , 𝑥log𝑛, 𝑥0𝑥1, . . . , 𝑥0𝑥1 . . . 𝑥log𝑛

and the coefficients 𝑐𝑖 depend on the values of 𝑣 and can be com-

puted using the formula:

𝑐𝑚 =
∑︁
𝑗

𝑣 𝑗 𝑓𝑚 (𝑗) . (10)

For example, 𝑐1 = 𝑣0 and 𝑐𝑥𝑖 = 𝑣2𝑖 − 𝑣0, for any 𝑖 .
The coefficients 𝑐𝑚 and the functions 𝑓𝑚 possess certain prop-

erties: a) for a monomial 𝑚 with 𝑘 variables, the summation in

Equation 10 contains 2
𝑘
terms for which 𝑓𝑚 (𝑖) ≠ 0; b) Except for

the monomial𝑚 = 1, the number of occurrences where 𝑓𝑚 (𝑗) = 1

is equal to the number of occurrences where 𝑓𝑚 (𝑗) = −1. It follows
that 𝑐𝑚 have a binomial distribution with E[𝑐𝑚] = 0.

A.1 Computing all monomials efficiently
To compute all the monomials

1, 𝑥1, . . . , 𝑥log𝑛, 𝑥1𝑥2, 𝑥1𝑥3, . . . , 𝑥1𝑥2 . . . 𝑥log𝑛

, a recursive approach can be employed.

We start with the givenmonomials 1, 𝑥1, . . . , 𝑥log𝑛 as input. Then,

we recursively compute a monomial𝑚 by multiplying two existing

monomials, denoted as𝑚1 and𝑚2, where the number of variables

in𝑚1 and𝑚2 is approximately half of those in𝑚. This recursive

process continues until all desired monomials are computed. The

number of multiplications required in this process is 𝑛 − log𝑛 − 1,
and the depth of the computation is log𝑛.

Our proposed method offers several advantages over the ap-

proach described in Equation 9:

(1) It requires fewer ciphertext-ciphertextmultiplications. Specif-

ically, our method requires 𝑛 − log𝑛 − 1 multiplications,

which is significantly fewer compared to the 𝑛 log𝑛 multi-

plications required by the other method.

(2) Due to the Binomial distribution nature of the coefficients

𝑐𝑚 , many monomials have coefficients of zero value. This

means that the computation of these monomials can be

skipped entirely, leading to further reduction in the number

of required multiplications.

(3) In addition to zero-valued coefficients, many monomials

have coefficients of 1 or -1. Since multiplication by these

scalar values does not require actual multiplications, the

computation becomes even more efficient.

A.2 AES S-box as an example
We tested our method on computing an AES S-box, which showed

slightly improvement over the method described in Sec. 4.2. Com-

puting S-box requires a lookup table of 256 entries, where each

Figure 11: The number of monomials (y-axis) with a coeffi-
cient 𝑐𝑚 (x-axis) dervied from the values of the AES S-box.

value is from the range [0, 255]. A boolean function is then per-

formed on the bits of the value read from the table. To perform this

efficiently, implementations split the table into 8 tables where each

table holds a single bit of the output.

We tested our method on an AES S-box that involves a lookup

table with 256 entries, where each entry corresponds to a unique

value in the range of [0, 255]. A boolean function is applied to the

bits of the value retrieved from the table. As in Sec. 4.2, to optimize

this computation, we divided the table into 8 sub-tables, with each

sub-table responsible for a single output bit of the original values.

Fig. 11 shows the distribution of the coefficients.

Based on our evaluation, our proposed methodology exhibited a

moderate advancement over the implementation of Sec. 4.2 when

implemented for the computation of the AES S-box. However, it

also incurred supplementary overhead in the form of coding the

boolean functions. Consequently, we made a decision to forgo this

optimization during the experimentation phase, as elaborated in Sec.

9, and include it solely as an appendix for the sake of completeness.

B TILE TENSORS
Ciphertext packing involves how plaintext data is packed within

one or more FHE ciphertexts before encryption. This packing can

range from simple major-row packing to more complex methods

like tile tensors [2]. The chosen packing method significantly affects

the speed of function evaluation. For instance, if a plaintext vector

𝑥 = (1, 2, 3, 4, 5, 6, 7, 8) is packed into one ciphertext 𝑐 encrypting all
8 elements in parallel in a SIMD fashion, evaluating 𝑓 (𝑥) = 𝑥2 only
requires one multiplication, 𝑟𝑒𝑠 = 𝑐2. Conversely, if each element

of 𝑥 is packed into a separate ciphertext 𝑐1, . . . , 𝑐8, the number of

required multiplications increases with the number of ciphertexts,

𝑟𝑒𝑠 = (𝑐2
1
, 𝑐2
2
, . . . , 𝑐2

8
).

Tile tensors [2] aims to address the optimized packing challenge.

It is a data structure that involves various packing algorithms, meta-

data for describing these algorithms, and generalized operators for

performing operations on packed data. Tile tensors consist of a

tensor packed within tiles, where each tile is a one-dimensional

vector operated on in SIMD fashion. In the context of FHE, every

tile is a ciphertext. The shape of a tile tensor describes both the

shape of the packed tensor inside it and the packing details. For

instance, a tile tensor 𝑇𝑀 with the shape [5
2
, 6
4
] signifies that 𝑇𝑀

packs a tensor (matrix)𝑀 of shape 5 × 6 in multiple tiles, each has

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

E2E near-standard and practical authenticated transciphering Proceedings on Privacy Enhancing Technologies YYYY(X

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

)

a shape of 2 × 4. In the example above the required number of tiles

is six arranged in a two dimensional array of size

⌈
5

2

⌉
×
⌈
6

4

⌉
= 3 × 2.

As another example, consider a tile tensor 𝑆𝑀 of shape [5
1
, 6
8
]

that also has𝑀 as its logical packed tensor but this time in 5 tiles

of shape 1 × 8, one tile per row of𝑀 . Here, each row of𝑀 is stored

in its own separate tile, and because the tile size is 8, only six slots

are filled with data from the original tensor, where the rest are set

to 0.

Finally, a tile tensor 𝑇𝑉 of shape [5
2
, ∗
4
] means that a vector 𝑉 of

shape 5 × 1 is packed in tiles of shape 2 × 4, where the ∗ indicates
that the vector is duplicated 4 times over the second dimension.

Consequently, the total number of tiles is

⌈
5

2

⌉
× 4 = 3 × 4. To

understand tile tensor and its notation better we refer the reader

[2].

C HANDLING AUTHENTICATION TAGS
UNDER CKKS.

In a CKKS-based AT, handling the AEAD tag requires compar-

ing the recomputed tag with the input tag under FHE. This com-

parison yields an encryption of an approximated selector 𝑐𝑠𝑒𝑙 =

FHE. Enc(𝑠𝑒𝑙), where 𝑠𝑒𝑙 ∈ [−𝜖, 𝜖] ∪ [1−𝜖, 1+𝜖], i.e., in {0, 1} with
some small noise 𝜖 . Subsequently, the AT should return

𝑐𝑎𝑢𝑡ℎ =

{
FHE. Enc(0) FHE.Dec(𝑐𝑠𝑒𝑙) ∈ [𝜖, 𝜖]
FHE. Enc(𝑚) FHE.Dec(𝑐𝑠𝑒𝑙) ∈ [1 − 𝜖, 1 + 𝜖]

where𝑚 is the decrypted AES message, and 𝑐 = FHE. Enc(𝑚).
In exact schemes, where FHE.Dec(𝑐𝑠𝑒𝑙) ∈ {0, 1} such as TFHE

[21] or BGV [14], this is simple, by just performing 𝑐𝑎𝑢𝑡ℎ = 𝑐 · 𝑐𝑠𝑒𝑙 .
However, in CKKS the situation is more complex. Here, when

FHE.Dec(𝑐𝑠𝑒𝑙) ∈ [1−𝜖, 1+𝜖] then FHE.Dec(𝑐𝑎𝑢𝑡ℎ) = FHE.Dec(𝑐)+
𝜖′, which reveals the expected and allowed AES decryption data

up to some small 𝜖 . However, when FHE.Dec(𝑐𝑠𝑒𝑙) ∈ [−𝜖, 𝜖] then
𝑐𝑎𝑢𝑡ℎ = FHE. Enc(0 + 𝜖′), where 𝜖′ may leak information on 𝑚

(the corrupted AEAD plaintext), which is forbidden by the AEAD

definition.

To prevent the above leakage we took a different approach, in-

stead of zeroising 𝑐 we have decided to add a large uniform random

data 𝑟 (e.g., in the range [0, 264]) independent of 𝑐 to mask it:

𝑐𝑎𝑢𝑡ℎ =

{
𝑐 + 𝑟 𝑐𝑠𝑒𝑙 = FHE. Enc(0)
𝑐 + 0 𝑐𝑠𝑒𝑙 = FHE. Enc(1)

One way to perform this operation is by multiplying 𝑟 with 1 −
𝑐𝑠𝑒𝑙 . Unfortunately, this approach does not work. When 𝑐𝑠𝑒𝑙 =

FHE. Enc(1) then 1 − 𝑐𝑠𝑒𝑙 = FHE. Enc(0) and when 𝜖 is larger than

a particular bound, e.g., 𝜖 > 2
−32

, the result 𝑟 · FHE. Enc(0) is
an ancrpytion of a number in [2−32, 232] which when added to 𝑐

can destroy the value of the underlying plaintext message𝑚. In

addition, when 𝑐𝑠𝑒𝑙 = FHE. Enc(0) then 1 − 𝑐𝑠𝑒𝑙 = FHE. Enc(1),
also here a large 𝜖 may leak information on the key used during

the tag computation.

Consequently, we decided to use the following alternative. We

first generate a random number 𝑟 represented as a vector of bits.

We multiply every bit of 𝑟 by 1− 𝑐𝑠𝑒𝑙 and clean it using BLEACH to

maintain the error bounds. Subsequently, we apply Algorithm 1 to

construct 𝑟 from its masked bits. The results are FHE. Enc(0) when
𝑐𝑠𝑒𝑙 = 1 and FHE. Enc(𝑟) otherwise as expected. The fact that Alg.

1 may yield approximated results is not an issue as 𝑟 is expected to

be chosen uniformly at random.

Remark 6. An AT system should return an indicator to the user
whether the data is valid or not because even after zeroising or destruc-
ting corrupted AEAD data, the user cannot necessarily distinguish an
FHE decrypted 0 or an FHE decrypted random value from valid data.
Nevertheless, the AT system should also aim to nullify the data before
using it in further computation to avoid leaking information through
the accumulated error values. It might seem that because the data is
FHE encrypted, no harm can be done by leaving the nullification pro-
cess to the user. However, when the same FHE key pair is used within
many different processes an adversary may capture an FHE ciphertext
that includes corrupted AEAD data, move it to a different process, and
integrate it into the system using the malleability property of FHE.
Consequently, it is desired to nullify the FHE ciphertexts as soon as the
tag-checking process ends, to minimize the potential attack surface.

In contrast, when multiple FHE ciphertexts are required to be nulli-
fied, it may be preferred to defer the nullification process, until the
evaluated circuits reach a point where it has a smaller number of
ciphetexts to nullify. The situation gets even more complicated when
multiple tags are involved, e.g., in a system that involves multiple
AEAD ciphertext inputs. This security-latency tradeoff as well as other
tradeoffs should be considered in the threat model of every different
applications.

17

	Abstract
	1 Introduction
	2 Related work.
	3 Preliminaries and notation
	3.1 Homomorphic Encryption
	3.2 Authenticated Encryption

	4 Advanced Encryption Standard (AES)
	4.1 The AES block cipher
	4.2 Implementing AES-CTR over HE

	5 Binary circuits over CKKS
	6 Authenticated Transciphering (AT)
	7 AES-GCM
	7.1 Background
	7.2 An implementation of AES-GCM

	8 Ascon
	9 Experiments
	10 An End2End implementation
	11 Discussion
	12 Conclusion
	References
	A Efficient lookup table with limited value range
	A.1 Computing all monomials efficiently
	A.2 AES S-box as an example

	B Tile Tensors
	C handling authentication tags under CKKS.

