
Communication-Efficient Secure Logistic Regression

Amit Agarwal
UIUC, Champaign
Google, New York

amita2@illinois.edu

Stanislav Peceny
Georgia Tech, Atlanta

Google, New York
stan.peceny@gatech.edu

Mariana Raykova
Google, New York

marianar@google.com

Phillipp Schoppmann
Google, New York

schoppmann@google.com

Karn Seth
Google, New York
karn@google.com

Abstract—We present a novel construction that enables two
parties to securely train a logistic regression model on
private secret-shared data. Our goal is to minimize online
communication and round complexity, while still allowing
for an efficient offline phase.

As part of our construction, we develop many building
blocks of independent interest. These include a new ap-
proximation technique for the sigmoid function that results
in a secure protocol with better communication, protocols
for secure powers evaluation and secure spline computation
on fixed-point values, and a new comparison protocol that
optimizes online communication. We also present a new
two-party protocol for generating keys for distributed point
functions (DPFs) over arithmetic sharing, where previous
constructions do this only for Boolean outputs.

We implement our protocol in an end-to-end system and
benchmark its efficiency. We can securely evaluate a batch
of 103 sigmoids with ≈ 0.5 MB of online communication, 4
online rounds, and ≈ 1.6 seconds of online time over WAN.
This is ≈ 30× less in online communication, ≈ 31× fewer
online rounds, and ≈ 5.5× less online time than the well-
known MP-SPDZ’s protocol. Our system can train a logistic
regression model over 6 epochs and a database containing
70, 000 samples and 15 features with 208.09 MB of online
communication and 9.68 minutes of online time. We compare
our logistic regression training against MP-SPDZ over a
synthetic dataset of 1000 samples and 10 features and show
an improvement of ≈ 130× in online communication and
≈ 4.75× in online time over WAN. We converge to virtually
the same model as plaintext in all cases. We open-source our
system and include extensive tests.

1. Introduction

One of the most ubiquitous ways to understand and use
large amounts of data is to train models that capture their
most significant general properties. In many settings the
dataset used for the model training is owned by different
parties that have agreed to cooperate and create a common
model across their datasets but do not want to share
record level data. Secure multi-party computation (MPC)
[45], [82] enables distributed processing of their joint data
which guarantees that neither party learns anything more
about the data than its designated output.

We consider the setting of two party computation
(2PC) for secure logistic regression training where each
party holds a cryptographic share of the input data. Secure
protocols in this setting can be used to enable two parties
to train a logistic regression model on their joint data by
first secret-sharing their inputs. But they also enable pro-
cessing of data where neither of the computation parties
owns the dataset and the receiver of the output may be
a different party, assuming the computation parties are
not colluding. The latter setting is relevant in scenarios
where the dataset consists of entries collected across a
large number of users and no single party could have
access to the record-level data. In this scenario the data
stewardship is distributed across two parties which are
in charge of executing a secure computation protocol for
the agreed upon functionality. Apart from keeping the
input data confidential from any single entity, this model
also restricts the data to a specific use case, which the
computing parties have to agree on in advance.

Outsourcing a secure computation to a set of non-
colluding servers has been applied in practice several
times in the past. The first practical application of MPC,
which was used to run a sugar beet auction in Denmark in
2009 [11], relied on three “virtual auctioneers”, Danisko,
DKS and SIMAP, who had shares of the inputs of all
sellers and bidders and executed an MPC protocol for the
auction. A second example is a study that was run by the
Estonian government, to test whether students working
during studies is correlated with worse performance and
dropouts [9]. This study needed to join tax records with
education records which are held by different government
entities and are not shared. To do this in a privacy pre-
serving manner they executed an MPC with three parties:
the Estonian Information System’s Authority, the Min-
istry of Finance IT center, and the company Cybernetica.
The two databases were shared among the three parties
who executed an MPC protocol implementing the study
methodology.

The two-server setting, which we focus on in this
work, was leveraged in the system Prio [29] which imple-
ments a distributed private aggregation protocol where two
non-colluding parties receive shares from individual user
devices and compute an aggregate histogram over these
inputs. This system was later used by Mozilla Firefox to
collect browser telemetry [28] where the two aggregators

1

https://github.com/google/fss_machine_learning

were run by Mozilla and the Internet Security Research
Group (ISRG). The same design underlies the Private An-
alytics system implemented by Google and Apple in their
Exposure Notifications system [5], where the aggregators
are the National Cancer Institute (NCI) at the National
Institutes of Health (NIH), and ISRG.

An ongoing effort by Google Chrome, called Privacy
Sandbox [48], is developing privacy preserving measure-
ment APIs to support advertising use cases after the
deprecation of third party cookies. One of these APIs,
the Attribution API [47], considers a similar measurement
goal, which is to compute aggregate measurements across
attributed conversions from all users. Again, MPC with
distributed data stewardship can be used for this kind of
measurement [52].

While the previous two examples show that privately
aggregating user data into histograms is useful by it-
self, the functionality needs for measurement systems go
far beyond, and require more complex model training.
Here, communication between the two computing parties
quickly becomes the most expensive part of the system.
For example, while it may be beneficial for privacy to
place the two servers into data centers operated by dif-
ferent cloud providers (e.g., AWS and Google Cloud in
the case of ENPA [5]), this incurs egress charges for all
traffic between the two servers, which can be significantly
higher than intra-cloud traffic costs. These cloud network
costs significantly outweigh computation costs in most
settings. Low online communication cost is therefore a
crucial design goal for practical secure training protocols.

Logistic Regression. Logistic regression is a tool used for
many modeling and measurement settings. It is often used
for binary classification and prediction in medical [15],
[40], engineering [66], and finance [3] applications. It
was the functionality of choice in Criteo’s challenge for
effective use of some of the privacy preserving APIs
proposed by Chrome [44] and also in iDASH secure
genome analysis competition [80]. While not as powerful
as Deep Neural Networks (DNNs), it turns out to still be
broadly useful for important applications so we focus on
it in this work.

Online-offline Computation Model. Our constructions
consider the online-offline computation model [39] which
aims to minimize the complexity of the protocol that is on
the critical path of processing inputs when they become
available, by outsourcing some of the computation into an
input-independent offline phase which can be executed at
any time prior to the online stage. The main metric that
we optimize for in our constructions is communication
complexity which, as we discussed above, could be a
major cost in many cross platform two-party computation
settings.

We consider two settings. The first one assumes a
trusted offline preprocessing that can be executed cen-
trally. This is relevant in scenarios where there is a party
which can be trusted to honestly compute the different
types of correlated randomness such as multiplication
triples, function secret sharing (FSS) keys, and others.
For example, in some scenarios regulator parties might be
considered trusted for the purposes of this preprocessing.
Another way to think about trusted preprocessing is mea-
surement settings over large numbers of clients, where the

offline phase is distributed across the clients each of which
evaluates a small amount of the required preprocessing
and submits the output together with its data shares to
the two computation servers. Another possible realization
of this setting is in the well-known three party honest
majority setting where one of the parties acts as the dealer
for generating and distributing the offline preprocessing
material across the remaining two parties which then carry
out the online part of the secure computation.

The second setting that we address does not assume
a trusted party for the offline stage and proposes that
the offline preprocessing is also generated using secure
computation between two computation parties. While it
is well-known that MPC can be used to distribute any
computation that a trusted party could perform [45], [82],
efficiency is a concern. We therefore investigate how to
efficiently perform the offline phase of our protocols using
MPC, though with a greater emphasis on keeping the
online phase as cheap as possible.

Differentially Private Output In our scenario, the two
computation parties may reveal the output logistic model
to a designated output receiver, or alternatively may hold
the model shares and later answer inference queries in
a distributed manner. While we are not aware of any
attacks that use a logistic regression model to recover
the input database, the question of how much information
different models reveal about the data used for training is
an active research area. Making the output differentially
private [36] is one approach to guarantee that it cannot be
used to extract individual records. Thus, we also consider
differentially private logistic regression training in our
distributed protocol.

Our Contributions.

New Secure Logistic Regression. We present new construc-
tions for two party secure logistic regression training over
a database that is cryptographically shared between the
two parties. Our constructions optimize the online com-
munication cost of existing approaches (≈ 130× reduction
over MP-SPDZ [58]) while maintaining accuracy close
to plaintext training. We present two different protocols:
the first one optimizes solely for online communication,
while the second one trades off some of the efficiency
in the online phase for supporting efficient distributed
computation in the offline phase. Both constructions can
facilitate a differentially private output model.
Accurate Secure Sigmoid. The core technical component
in our logistic regression construction is a new protocol for
secure sigmoid evaluation on input that is shared between
two parties. It uses a new approximation approach for the
sigmoid functionality which achieves 10−4 error using 20
fractional bits. The final protocol offers improved com-
munication cost for its online phase. This cost is ≈ 30×
and ≈ 38× smaller than the communication of the state-
of-the-art sigmoid construction of MP-SPDZ [58] and
SIRNN [72], respectively. Secure evaluation of a batch
of 103 sigmoids requires 1-1.51 seconds over LAN and
includes 0.5-1.18 MB of communication.
Communication-Efficient Constant Round Secure Compar-
ison. A main building block for our sigmoid construction
is a new comparison protocol for ℓ-bit numbers which

2

uses a new reduction to small bit length comparison,
a novel all-prefix AND sub-protocol along with inner
product that works in constant number of rounds for
online computation. It uses only three communication
rounds in total whereas the state-of-the-art SynCirc uses
rounds logarithmic in ℓ. The online communication for
128-bit numbers comparison is only 522 bits and has
an improvement of ≈ 1.3 − 2.6× over SynCirc. Secure
comparison is a core building block in a broad range of
functionalities far beyond the scope of this paper, such
as auctions, database search, biometric authentication,
combinatorial problems. This construction may therefore
be of independent interest. As a concrete estimate of
our improvement, our new secure comparison protocol
can be used to execute Batcher’s widely used sorting
network [6] in a semi-honest 2-party setting on a 104

sized array of 64 bit integers using just 13.69 MB of
communication whereas prior works such as SynCirc [68],
CrypTFlow2 [73], Couteau16 [30] will require 17.88 MB,
36.32 MB and 63.37 MB respectively.
New Techniques for (i)DPFs. The communication and
round efficiency of our constructions leverage (incremen-
tal) distributed point functions ((i)DPFs) [13], [19] tech-
niques inside our MPC protocols in new ways. We present
a new technique for computing the all-prefix Boolean
AND of n secret shared bits using iDPFs, which achieves
the round efficiency of our new secure comparison pro-
tocol. We also present a new construction for two-party
generation of distributed point function (DPF) keys with
arithmetically shared output values, which is used for
distributed offline preprocessing.
Efficient Constructions with Fixed-Point Inputs. The ac-
curacy of our computation relies on fixed-point repre-
sentation of shared values. We present new constructions
for spline evaluation and secure powers computation with
fixed point input representation. The latter is used for
secure Taylor approximation by adapting a prior work [62]
which works only for integers.
Implementation and Evaluation. We present end-to-end
implementation of our protocols, which we open-source
to the community1. Our implementation combines tech-
niques from FSS and secret-sharing-based MPC, and in-
cludes extensive unit and end-to-end tests. We evaluate
the costs of our logistic regression training algorithm and
its building blocks such as our novel secure comparison
and sigmoid approximation. We can train a model over
cryptographically shared data of 70, 000 samples with 15
features in less than 10min with ≈ 200MB of communica-
tion, which amounts to 1.95c cost over WAN. We achieve
accuracy close to the plaintext trained model (less than 1%
difference). We reduce online communication over state of
the art by ≈ 130× for logistic regression training.

1.1. Our Approach

We outline the main ideas of our approach in this sec-
tion and present detailed related work discussion towards
the end in Section 8.

Secure Logistic Regression (Section 3). Our construction
uses stochastic gradient descent (SGD), which is an itera-

1. https://github.com/google/fss machine learning

tive training algorithm. Each iteration for the model update
consists of matrix operations and a sigmoid evaluation.

Secure Sigmoid Evaluation (Section 4 and Section 5).
We introduce a new construction for secure sigmoid eval-
uation where the input is shared between two parties.
It leverages a new approximation method for the sig-
moid function that relies on three different approximation
functions for different input intervals. In particular, for
the input interval [0, 1), we use spline approximation
which splits the interval in several pieces, each of which
is approximated with a linear function. For the interval
between 1 and a configurable threshold we use Taylor
approximation. For large values above the threshold we
approximate the sigmoid value with 1. Negative inputs
are handled symmetrically.

To reduce communication of the online phase of our
protocol we rely on techniques from function secret shar-
ing [19] which enable non-interactive computation. In
particular we use the multiple interval containment (MIC)
gate [16] to identify which interval the input falls into in
order to use the approximation function. We also use the
MIC gate within the spline approximation on the interval
[0, 1) to choose the right linear function.

Distributed Comparison Function (Appendix E).
MIC gates leverage distributed comparison functions
(DCFs) [16] which rely on function secret sharing [20].
We introduce a reduction from DCFs to incremental dis-
tributed point functions (iDPFs) [13], which is conceptu-
ally simpler than the previous construction by [16].

Secure Powers Computation with Fixed-Point Repre-
sentation (Appendix L.4). A sigmoid is computed as
1/(1+e−x). Our sigmoid approximation for values above
1 has two main components: secure exponentiation for
evaluation of r = e−x followed by a secure protocol for
powers computation that enables the polynomial evalua-
tion for the Taylor series for 1/(1+r). For the first part we
leverage secure exponentiation of Kelkar et al. [57]. For
the second part we present a new construction inspired
by the HoneyBadgerMPC secure powers protocol [62],
which we extend to work with fractional values in fixed-
point representation.

Online-Offline Balanced Protocol (Section 6). The most
costly part of our offline computation is the generation of
FSS keys, which are needed for MIC gates. In the setting
without trusted preprocessing these keys need to be gen-
erated using two-party computation, presenting significant
costs challenging the offline phase feasibility. Existing
approaches either rely on general-purpose MPC, which is
expensive because of the need to securely evaluate a PRG,
or they use the Doerner-Shelat technique [34], which
requires computation exponential in the number of input
bits. When applying the MIC gate to spline approximation,
this is not an issue because the inputs can be made short
by truncation, leveraging the fact that the input is a fixed
point number with absolute value ≤ 1. Nevertheless, in the
interval containment functionality, which identifies which
type of sigmoid approximation needs to be used, this is no
longer the case. This is because we do not have any simple
way to reduce the input size. Hence, we would need an
FSS gate with a large input domain, which would have
extremely high offline computation.

3

https://github.com/google/fss_machine_learning

Secure Comparison (Section 6.1). To overcome this
challenge we modify the protocol to use a secure com-
parison functionality instead of MIC to determine the
first level of input partitions. We introduce a compari-
son construction with a highly communication-efficient,
constant round online phase while only having modest
computation complexity. It relies on a new reduction from
n-bit numbers comparison to comparison on smaller bit
numbers combined with a functionality that computes
the AND over the bits in all bit prefixes of a number.
We present a new single online round construction for
the latter functionality, where the input is split among
two parties, which uses iDPFs. The resulting protocol
improves over the online communication of Rathee et al.’s
CrypTFlow2 [74] by ≈ 2.6×, SynCirc [68] by ≈ 1.3×
and Couteau [30] by ≈ 4.6× for 64-bit inputs and appro-
priate parameters. We also reduce the number of online
communication rounds by similar factors, i.e., from 6, 4
and 12 rounds respectively to 3.

Secure comparison is a fundamental building block for
higher-level privacy-preserving applications. Couteau [30]
presents an extensive list of such applications including
oblivious sorting, database search constructions, private
set intersection, oblivious RAM, machine learning for
applications such as classification, feature extraction, and
generating private recommendations.

Secure DPF Key Generation (Appendix F). In Ap-
pendix F, we give a new 2-party protocol for generat-
ing DPF keys for arithmetic-shared outputs using MPC.
This is an important extension to [34], who only handle
Boolean-shared outputs. Our construction only requires a
single additional oblivious transfer in the offline phase,
independent of the size of the output shares.

2. Preliminaries

Notation. Given a finite set S, x ← S indicates that an
element x is sampled uniformly at random from S. For
any positive integer n, Zn denotes the set of integers
modulo n. [k] denotes the set of integers {1, . . . , k}. We
use 1{b} to denote the indicator function that outputs 1
when b is true and 0 otherwise. λ indicates computational
security parameter. For a vector v, vi...j denotes the
vector with elements vi, . . . , vj . Likewise, for a matrix
M , Mi...j denotes the matrix containing rows i through
j from M .

Fixed-Point Representation. A fixed-point representation
is parameterized by a tuple (R, w, s,Fix) where R is a
ring, w represents the bitwidth, s represents the scale (or
the fractional bitwidth), and Fix : R → R is a function
mapping x ∈ R to its fixed-point representation x̂ ∈ R. In
this work, we will work over the ring ZL where L = 2ℓ

and s ≤ w < ℓ. Similar to previous works [24], we define
our mapping function Fix(x) = ⌊x · 2s⌋ mod L. In this
mapping, all real numbers having absolute value at most
2w−s have a corresponding fixed-point representation
in the ring. Specifically, non-negative real numbers
are mapped to [0, 2w) whereas negative real numbers
are mapped to (L − 2w, L) in their two’s complement
representation. Let R∗ = [0, 2w) ∪ (L − 2w, L) denote
the part of the ring where fixed-point numbers are

represented. Note that two distinct real values might
have the same fixed point representation because of the
limited fractional bitwidth. We will use x̃ to denote
the corresponding real-value for a fixed-point value
x. We use Rmin and Rmax to denote the maximum
negative and maximum positive values representable in R.

Secure Computation. Secure computation protocols en-
able functionalities where parties can compute a function
on their joint private inputs in a way that guarantees only
the output of the computation is revealed. Our protocol
constructions are in a two-party setting and provide semi-
honest security [45], i.e., the parties are assumed to follow
the prescribed protocol. We denote the two parties by
P0 and P1. The security in such a model is captured by
the standard real/ideal paradigm whereby the view of an
adversary in the real-world, that corrupts one of the parties
(either P0 or P1), can be efficiently simulated in the ideal
world where parties interact with an ideal functionality. A
detailed description of the security model can be found in
Appendix K.

The protocol Π may be divided into an offline
preprocessing phase Πoffline (independent of parties’
inputs) and an online phase Πonline that depends on
parties’ inputs. In practical settings, Πoffline may be
performed by a trusted third party, or by the parties
executing an MPC protocol. However, Πonline is always
performed by parties using MPC. Due to space constraints,
we defer the formal proofs of security of our protocols
to Appendix K. The costs of a protocol Π are captured
by three standard metrics: computation, communication
and rounds of interaction. Unless otherwise specified,
we measure computation cost per party, communication
cost across both parties, and rounds of interaction in a
simultaneous synchronous message model (where both
parties proceed synchronously and are allowed to send
each other a message in the same round). When the
protocol is divided into an offline and online phase, these
cost metrics are independently calculated for each phase.

Secret Sharing. We use JxKR to denote an additive
sharing of x in ring R. We drop the superscript R when
it is clear from context. We write JxK = (JxK0, JxK1)
to denote that P0 and P1 get shares JxK0 and JxK1
respectively, such that JxK0 + JxK1 = x in R. An
additive sharing is random if JxK0 and JxK1 are uniformly
distributed in R subject to JxK0 + JxK1 = x. When
we discuss additive shares, we generally mean random
additive shares. Additive shares are also called arithmetic
shares. Analogously, we use ⟨b⟩ to denote a random
XOR-sharing of a bit b ∈ {0, 1}, consisting of bits ⟨b⟩0
and ⟨b⟩1 such that ⟨b⟩0 ⊕ ⟨b⟩1 = b.

Truncation. Suppose parties are holding additive-sharing
of a fixed-point value x̂ where the scale is s bits. Then they
can use Ftruncate to reduce the scale to s′ bits where 0 ≤
s′ ≤ s. An efficient instantiation of Ftruncate was described
in SecureML [64]: Suppose x0 and x1 are the shares of
x̂ held by party P0 and P1 respectively. Then, to perform
the truncate operation, both parties can locally truncate the
last s−s′ bits of their individual shares to get new shares
x′
0 and x′

1. Let x′ denote the true truncated value of x after
truncating the last s− s′ bits. SecureML [64] shows that

4

Recon(x′
0, x

′
1) ∈ {x′ − 1, x′, x′ + 1}. In other words, this

non-interactive truncation protocol incurs a small error in
the least significant bit of the fractional part of the FXP
value. For our purposes, this error is tolerable as the FXP
representation itself admits an error in the least significant
bit of the fractional part compared to the actual real value.
Apart from this, there is also a failure probability of 2w+1

2ℓ

associated with the protocol, which can be made arbitrary
small by choosing w and ℓ appropriately. Appendix J
explains how this failure probability affects our protocols.

2.1. Logistic Regression

Logistic regression is a probabilistic classifier and
a supervised learning algorithm [56]. The classification
function f takes an observation, which is a vector of
features x⃗i, and outputs the class y with highest likelihood.
It leverages the sigmoid functionality σ(z) = 1

1−e−z to
assign probability determining the class to an input feature
vector x⃗, using the weight vector w⃗ and a bias term b,
which form the model. More specifically, σ(⃗(x) · w⃗ + b)
outputs the probability of mapping x⃗ to the class 1.

The learning process for logistic regression takes a
set of labeled training samples (x⃗i, yi) and aims to learn
parameters w⃗ that make the predictions y′i as close as
possible to the true labels yi. This is done by minimizing
the (regularized) cross-entropy loss function LCE(y, y

′) =
−(y log y′ + (1− y) log 1− y′), which measures the dis-
tance between predicted and true value.

Stochastic gradient descent is one such technique that
computes the optimal weights w by minimizing the aver-
age loss LCE over the n training samples:

w̃ = argminw
1

n

n∑
i=1

LCE(f(xi,w), yi).

This is done by computing the gradient gi ←
∇wLCE(f(xi,w), yi) of the loss function on a random
batch of B training points. The model is then updated as
w← w− α

B

∑
i∈[B]

gi. This procedure is repeated until LCE

is minimized (or sufficiently small).
In the context of secure computation protocols we will

run a fixed number of epochs to avoid leakage about
the private samples based on the time for convergence.
We will use a minibatch and a fullbatch technique. The
minibatch technique, in each step of gradient descent, uses
a fixed subset of B samples. This is unlike the fullbatch
technique that uses all n samples. In minibatch, each
step of gradient descent is called an iteration. The set
of iterations that process a full batch is called an epoch.
In other words, the gradient descent is run over multiple
epochs each consisting of a fixed number of iterations.

In practice, the regularized cross-entropy loss is often
used:

LCE(y, y
′) = −(y log y′ + (1− y) log 1− y′)− λ

2
||w||2

The regularization parameter λ guides the model to-
wards weights with smaller magnitude, which reduces
overfitting in practice.

2.2. Multiplication Triples

Let parties hold additive shares of x, y ∈ R. Then
they can use functionality FMult to get additive shares of
z ∈ R such that z = x · y. In the pre-processing model,
FMult can be efficiently realized by generating Beaver
triples in the offline phase, and then consuming them in
the online phase. This incurs online communication of 2
ring elements per-party.

For multiplying an n×m matrix X with another m×k
matrix Y, there is a special matrix multiplication protocol
based on matrix Beaver triples [57] which incurs an
online communication of 2(nm+mk) per party. We will
use FmatMult to abstractly represent a functionality which
enables multiplication of two additively shared matrices.
For multiplying a n × m matrix X with a sequence of
matrices {Yi}i∈[n] where Yi has dimension m×ki, there
exists another optimization based on correlated matrix
Beaver triples and incurs an online communication of
2(nm + m

∑
i ki) per party. We will use FcorrMatMult to

represent this functionality.
These functionalities can be extended to real numbers

represented in fixed-point format by adding an additional
truncation protocol at the end, where s least significant
bits are truncated from the result in order to adjust the
fractional scale. We use the non-interactive SecureML
truncation [64] described in Section 2.

2.3. Two-Party Computation Functionalities

Multiplexer. Following [73], we will use FMUX to denote
a multiplexer functionality. Suppose parties hold arith-
metic shares of x and Boolean sharing of a selection bit
b. Then they can use FMUX to get an (fresh) arithmetic
sharing of x if b = 1, and arithmetic sharing of 0
otherwise. A protocol for FMUX can be realized using
2 simultaneous OTs [73]. In some scenarios, a variant
of FMUX, denoted by FMUX2, might be more useful. It
takes arithmetic shares of x0 and x1, along with Boolean
sharing of a selection bit b, and outputs a (fresh) sharing
of x0 if b = 0, and a (fresh) sharing of x1 otherwise.
A protocol for FMUX2 can be realized using a single call
to FMUX as follows: Parties locally compute a sharing of
x1 − x0, invoke FMUX on it with the sharing of b, and
finally locally add the sharing of x0 to their output from
FMUX.

2.4. Function Secret Sharing

We use Boyle et al.’s definition of function secret sharing
(FSS) [19]. A 2-party FSS is an algorithm that efficiently
splits a function f into two additive shares f0 and f1.
These shares must satisfy the following two properties:
(1) fi hides f and (2) f0(x) + f1(x) = f(x) for every
input x. Output reconstruction in (2) is additive. Formally:

Definition 1. A 2-party FSS scheme is a pair of algo-
rithms (Gen,Eval) such that:

• Gen(1λ, f̂), where f̂ is a description of a function f ,
outputs a pair of keys (k0, k1). f̂ explicitly includes
the input group description Gin and the output group
description Gout.

5

• Eval(b, kb, x), given party index b, a key kb defining
fb : Gin → Gout outputs fb(x) ∈ Gout.

Distributed point function (DPF) [19] is an FSS for a
point function that evaluates non-zero on a single point.
A DPF allows a compressed 2-party secret-sharing of
a point function. Incremental distributed point functions
(iDPFs) [13] are a generalization of DPFs which al-
low compressed sharing of a binary tree with 2n leaves
and a unique special path from root to leaf, i.e., there
is a single non-zero path in the tree, ending at leaf
α, whose nodes have non-zero values β1, . . . , βn. More
specifically, iDPF allows a 2-party secret-sharing of an
all-prefix point function fα,β̄ , where α ∈ {0, 1}n, β̄ =
((G1, β1), . . . , (Gn, βn)), and for each ℓ ∈ [n]:

fα,β̄ :
⋃

ℓ∈[n]

{0, 1}ℓ →
⋃

ℓ∈[n]

Gℓ, and

fα,β̄(x1, . . . , xℓ) =

{
βℓ if (x1, . . . , xℓ) = (α1, . . . , αℓ)

0 otherwise

Distributed Comparison Function (DCF) is an FSS scheme
for a function f<

α,β , which outputs β if x < α and 0
otherwise.

Secure Computation via FSS. Boyle et. al. [16], [21]
showed that the FSS paradigm can be used to efficiently
evaluate some function families in 2PC in the prepro-
cessing model, where Gen and Eval correspond to the
offline and online phase, respectively. Functions can be
computed on secret-shared inputs and outputs using FSS
gates together with a single round of communication.
Functions supported include FEQ,FCMP and FMIC for
securely computing equality, comparison and multiple-
interval-containment respectively. The equality and com-
parison functionalities are self-explanatory. For FMIC, par-
ties know a series of k public intervals, and the output of
FMIC(x) is a k-element secret-shared vector which is 1 in
a position when x lies in the interval, and 0 otherwise.
We note that we can accommodate either Boolean-shared
or arithmetic-shared outputs. Due to lack of space, we
present formal definitions and details for these function-
alities in Appendix A and Appendix B.

3. Secure Logistic Regression

We aim to develop concretely-efficient secure two-
party computation protocols for logistic regression train-
ing, focusing on online communication and rounds of
interaction. The setting is as follows: There are two parties
(servers), each holding a share of private dataset X , con-
sisting of n examples (rows) and k features (columns),
and a sharing of the vector of n labels y. They wish
to train a logistic regression model w and end up with
a sharing of w. The two parties are non-colluding and
semi-honest. In this setting, the security of a protocol
Π is formally captured via the real-ideal paradigm as
mentioned in Section 2 and detailed in Appendix K.

Like previous works [64], [78], we leverage arithmetic
secret-sharing (see Section 2) and train the model w
with stochastic gradient descent (SGD). Our protocol is
described in Algorithm 1. It makes heavy use of correlated

matrix-vector multiplication using Beaver triples, and cru-
cially depends on an implementation of the sigmoid func-
tion in MPC.

Our novel contributions lie in the construction of the
sigmoid protocol FSigmoid using a mix of MPC primitives
including DCFs, DPFs, Taylor approximation, and effi-
cient secure exponentiation.

Algorithm 1: Logistic Regression Protocol
Public inputs: Number of epochs T , dataset

dimensions n, k, batch size B, learning rate α,
regularization parameter λ, fixed-point parameters
(R, w, s,Fix).

Private inputs: Secret-shared dataset JXK ∈ Rn×k

and labels JyK ∈ Rn where X and y are in
fixed-point representation.

Private outputs: Secret-shared trained model after T
epochs JwTK where wT is in fixed-point
representation.

1 Let Jw0K be the initial secret-shared model with
arbitrary weights.

2 for t = 1 to T :
3 for b = 1 to ⌊n/B⌋ :
4 i← (b− 1) ·B + 1
5 j ← min(n, b ·B)
6 JXBK← JXi...jK
7 JuK← FcorrMatMult

(
JXBK, Jwt−1K

)
8 JsK← FSigmoid(JuK)
9 JdK← JsK− Jyi...jK

10 JgK← FcorrMatMult

(
JXB

⊤K, JdK
)

11 JwtK← Jwt−1K− (α/B) · (JgK + λ · Jwt−1K)
12 return JwTK.

4. Secure Sigmoid

The key challenge of computing a single step of SGD
is evaluating real-valued sigmoid function. It requires
computing (1) exponentiation of a public base to a secret
exponent as well as (2) division by a secret divisor:

S(x) =
1

1 + e−x

Division is sometimes approximated via Gold-
schmidt’s [46] method, which is expensive. Alternatively,
exponentiation can be approximated by decomposing the
exponent into bits [31], which is costly, or via low-degree
polynomials [4], which is inaccurate.

In this section, we present our sigmoid functionality
(Algorithm 2) which is actually the sigmoid approxima-
tion we achieve. We describe how we securely implement
this approximate functionality, pointing to Appendix L.1
and Appendix L.4 for detail on how we implement the
more complex components of our functionality.

4.1. Sigmoid Approximation

The sigmoid function is ’symmetric’ around the y-
axis. More specifically, S(x) + S(−x) = 1 for all x ∈ R.
This implies we can focus on evaluating S(x) and then
compute S(−x) = 1−S(x) locally. For x ≥ 0, we need to
compute both division and exponentiation in MPC. First,
we show how we bypass directly computing division.

6

Note that 1
1+e−x is in the form 1

1+r . Hence, we can
apply d-degree Taylor series approximation:

1

1 + r
= 1− r + r2 − r3 + . . .+ rd

This approximation requires to compute additions and
powers of r. As a result, it can be expressed as an arith-
metic circuit, and thus is MPC-friendly. While addition is
a virtually free local operation, computing powers is an
expensive interactive operation. We present a concretely
efficient protocol for computing powers in Appendix L.4
based on the protocol of [62]. Our protocol computes
all powers of r (irrespective of the degree) in only 2
communication rounds.

However, this approximation works well only when
r ≪ 1. We therefore use this approximation only on
the interval [0, 1

e]. As r = e−x, we use this technique
when x ≥ 1. In order to compute e−x, we use the
1-round exponentiation technique of [57]. We note that
the exponentiation protocol from [57] assumes a known
(arbitrary) bound on how negative the exponent can be.
So in order to comply with that assumption, we do not
use this exponentiation protocol if the exponent is too
negative. Rather, we just set the sigmoid output directly
to 1. We fix the bound as s/ log2(e), i.e. whenever
x ≥ s/ log2(e), we set the sigmoid output to 1. This bound
can be justified by observing that for any x ≥ s/ log2(e),
e−x < 2−s. Hence the fixed point representation of the
result of exponentiation is exactly 0 in this case.

Now, it remains to explain how we evaluate sigmoid
for x ∈ [0, 1). We evaluate a spline defined piecewise by
lines via the FSS spline gate as explained in Appendix L.1
2. For security, neither party should learn which technique
is used to compute sigmoid (i.e. in which interval x
belongs). Thus, all evaluations are run simultaneously. At
the end, the right output is obliviously selected and secret-
shared between the parties.

5. Secure Sigmoid with Trusted Setup

In this section, we describe the details of our ap-
proach for securely computing the sigmoid approximation
described in Algorithm 2 with a focus on minimizing
the online communication cost. The setting is as follows:
there are two parties (servers), each holding a share of
private input x, and they wish to end up with a share of
u := Sigmoid(x) where Sigmoid is computed as defined
in Algorithm 2. The two parties are non-colluding and
semi-honest. In this setting, the security of a protocol
Π is formally captured via the real-ideal paradigm as
mentioned in Section 2 and detailed in Appendix K.

In designing our protocol, we assume that the offline
phase of our protocol is part of a trusted setup phase 3. In

2. One could imagine using only splines to approximate sigmoid on
the entire (−∞,∞) interval as has been done in prior works [64] How-
ever, this would require a large number of spline intervals and potentially
higher degree splines for the approximation to work well, thus increasing
the cost of protocol. Therefore, in our heterogeneous approach, we use
the spline based approximation only for the smaller interval [−1, 1]. For
the remaining interval, we use the new exponentiation combined with
Taylor series based approximation.

3. Regardless of how the trusted setup phase is actually realized, it
is assumed that this setup phase is performed by an entity which is not
colluding with any party.

Algorithm 2: Approximate Sigmoid
Parameters:
Let m be the number of lines defining a spline.
Let s be the number of fractional bits.
Let d be the degree of Taylor series approximation.

Private input:
Let x ∈ R be the sigmoid input.

Sigmoid(x) :

1 if x < 0 then
2 S ← 1− Sigmoid(−x).
3 else
4 if x < 1 then
5 S ← Spline(m, [0, 1))
6 else
7 if x log2(e) ≥ s then
8 S ← 1
9 else

10 r ← e−x

11 S = 1
1+r
← 1− r + r2 − . . . (−1)drd

12 return S

practical settings, such a trusted setup can be performed
by a trusted third party. Another possibility, when the
intermediate models are protected by DP (see Algorithm 9
in Appendix G), is to outsource the setup phase to (semi-
honest) clients. These clients may provide a portion of
the precomputed setup alongside the inputs they upload to
the two MPC parties. In case a trusted setup is infeasible,
we discuss how to perform the offline phase in MPC as
well in Section 6.

Our sigmoid approximation will work by first us-
ing FMIC to determine if the shares of the input x
lie in the range [0, 1), [1, s

log2(e)
), [s

log2(e)
,∞), or the

negative equivalents of these ranges. FMIC yields arith-
metic shares of 1 if x was in that range, and arith-
metic shares of 0 otherwise. In parallel, we com-
pute the sigmoid approximations on each range us-
ing the tailored technique for that range described
above (spline-approximation, exponentiation-and-Taylor-
Approximation, or hardcoding), using the S(−x) = 1 −
S(x) identity for the negative intervals. We then compute
a dot product of the outputs of FMIC with the outputs of
the tailored sigmoid computations to “select” the output
of sigmoid on x using the approximation corresponding
to the interval in which x lies. This dot product can
be computed using standard Beaver multiplication [8]. In
Appendix L we discuss how to build the tailored sigmoid
implementations for each interval.

6. Secure Sigmoid with Distributed Setup

In the previous section, we outlined a secure sigmoid
construction which is highly communication efficient in
the online phase assuming parties have access to a trusted
offline setup phase, possibly using a trusted third party.
However, in the real world, such a trusted third party
might not be always available or, in some cases, even
undesirable. In such scenarios, it becomes essential that
the two parties be able to securely emulate the trusted
offline phase in an efficient manner.

7

Looking back at our construction in the previous sec-
tion, we observe that the FSS preprocessing forms the
bottleneck cost of securely emulating the trusted offline
phase in a 2PC setting. This happens because the FSS
key generation algorithm involves the usage of a PRG,
and naively running the FSS key generation algorithm
inside 2PC will involve the cost of computing the PRG
circuit (e.g. AES) using 2PC. This will typically 4 blow
up the communication cost of the offline phase by at least
linear in the size of PRG circuit. An alternative approach
by Doerner et. al. [34] ingeniously avoids executing the
PRG circuit inside 2PC at the cost of exponential (in the
bit length of FSS inputs) computational cost making it
feasible only for small input sizes e.g. less than 20 bits.

In this section, we will discuss an alternative approach
for computing sigmoid which will enable a communi-
cation efficient offline phase while adding a mild com-
munication overhead in the online phase. We do this by
simply replacing the offline-expensive MIC gate (which
is based on FSS) with a novel communication efficient
secure comparison protocol.

In the previous construction, we have used the FSS
based FMIC functionality at two different places. We use
FMIC to determine if the shares of input x lie in the range
[0, 1), [1, s

log2(e)
), [s

log2(e)
,∞), or the negative equivalents

of these ranges. Besides this, we also use FMIC as a sub-
protocol inside the secure spline functionality. Our new
construction will be nearly a drop-in replacement for the
first FMIC functionality based on FSS. As mentioned in
Appendix L.1, the second spline only needs to operate on
the fractional bits of the input and thus can be instantiated
on a much smaller domain of s bits. Thus, we retain the
second FMIC as we can use [34] to efficiently generate
FSS keys in the distributed setting when s ≤ 20.

However, one difference is that our construction re-
turns XOR Boolean shares rather than arithmetic shares
of a Boolean value. This means that rather than a Beaver-
multiplication based dot-product, we instead use FMUX on
the outputs of comparison in order to select the tailored
sigmoid evaluation on the interval corresponding to input
x. The parties will use the output of our new comparison
as FMUX input to either retrieve shares of the sigmoid
evaluation on the interval, or shares of 0, and then add
together these shares across all intervals to select the
sigmoid result.

6.1. Secure Comparison

Suppose party P0 and P1 have a private input x and y
respectively. The output of a secure comparison function-
ality, henceforth denoted as FCMP, is a boolean sharing
of 1{x < y}, a bit indicating the result of comparison,
where x and y are bitstrings of length ℓ (interpreted as
unsigned bit representation of positive integers). Formally,

4. This is true for approaches like Garbled Circuit or standard GMW-
style secret-sharing based MPC. However, by assuming hardness of prob-
lems based on algebraic structures with richer homomorphic properties
(e.g. LWE, LPN etc), one can reduce the communication below the
circuit size. Currently, these approaches however are computationally
much more inefficient than standard MPC approaches to be practical.

Fℓ
CMP(x, y)→ (b0, b1), where x, y ∈ {0, 1}ℓ and b0, b1 is

a Boolean sharing of bit b := 1{x < y}.5
A common approach to computing secure comparison

is divide-and-conquer [30], [42], [73], which first splits
the larger input strings into smaller strings, performs
comparisons on these smaller strings, and then combines
the results. However, these protocols have non-constant
number of rounds in the online phase due to a logarithmic
depth recursion tree. Cheetah [53] optimizes the offline
communication of [73] using VOLE-style OT extension
which is orthogonal to our focus on online efficiency.

Another line of work based on function secret sharing
(FSS) [16] performs secure comparison using a distributed
comparison function (DCF). This technique allows an
online optimal protocol for secure comparison having 1
round and 1 element of communication per party. How-
ever, the caveat of directly using FSS to perform com-
parison is the expensive cost of running the FSS offline
phase in 2PC. While Doerner and Shelat [34] propose an
elegant approach for performing FSS offline phase, their
technique is efficient only for small domains (i.e. input bit
lengths less than 20). This is because it requires locally
computing an exponential (in input bit length) number
of PRGs. There is at this moment no better concretely
communication-efficient technique in the literature for
conducting the FSS offline phase.

Another line of work originating from ABY [32] and
its successors ABY 2.0 [67] and SynCirc [68] solve secure
comparison by running a GMW-style MPC on a (variant
of) Boolean adder circuit. These techniques have round
complexity proportional to the depth of the circuit which
is O(log ℓ) whereas our protocol is constant round (at
most 3). In Table 4, we compare the cost of our protocol
with SynCirc (the most optimized work in this direction).
Rabbit [63] solves the secure comparison problem in the
dishonest majority multiparty setting using Boolean adder
circuit and other techniques, has higher communication
cost and O(log ℓ) rounds.

In our approach, we start by looking at the decompo-
sition of comparison problem for ℓ-bit strings in terms of
comparison and equality operations on smaller sub-strings
as described in Garay et al. [42]. Formally, for x = x1||x2

and y = y1||y2, where x, y ∈ {0, 1}ℓ are ℓ-bit strings, the
following relationship holds:

x < y = (x1 < y1)⊕
(
(x1 = y1) ∧ (x2 < y2)

)
(1)

In general, we can extend the above decomposition to
q pieces in the following way. Let x = x1|| . . . ||xq and
y = y1|| . . . ||yq where xi, yi are m-bit strings, q = ℓ

m
(for ease of exposition, assume m divides ℓ). Then, the
following relationship holds:

x < y = (x1 < y1)

⊕
(
(x1 = y1) ∧ (x2 < y2)

)
⊕ . . .

⊕
(
(x1 = y1) ∧ . . . ∧ (xq−1 = yq−1) ∧ (xq < yq)

)
(2)

5. An alternative formulation of secure comparison lets the two parties
hold secret shares of x and y as input and learn a secret shared bit
b representing the comparison output. However, as mentioned in [30],
this problem can be non-interactively and black-box reduced to FCMP

without any overhead. In our actual implementation within sigmoid use-
case, we will use this alternative formulation.

8

Looking ahead, the reason for splitting ℓ length bit-
string into smaller sub-strings of length m bits is to
leverage the power of FSS gates for small input domains
(e.g. m = 16 bits) which have an efficient offline phase.

Assuming, ℓi = xi

?
< yi and ei = xi

?
= yi, we can rewrite

the above equivalence as:

x < y = ℓ1 ⊕ (e1 ∧ ℓ2) ⊕ . . . ⊕ (e1 ∧ . . . ∧ eq−1 ∧ ℓq)

= ⟨1 e1 e1 ∧ e2 . . . e1 ∧ e2 ∧ eq−1⟩·
⟨ℓ1 . . . ℓq⟩

(3)
At a high-level, our protocol:

1) Uses q independent FSS comparison gates (based on
DCF) for m bit input and 1 bit output to compute
ℓ1, . . . , ℓq.

2) Uses q−1 independent FSS equality gates (based on
DPF) for m bit input and 1 bit output to compute
e1, . . . , eq−1.

3) Given e1, . . . , eq−1, uses a single iDPF for q − 1 bit
input and 1 bit output in order to compute the all-
prefix AND of ei values i.e. e1, e1 ∧ e2, e1 ∧ e2 ∧ e3,
etc.

4) Finally, computes a dot product between two bit
vectors, each of length q, to get the final result.

Step 1 and Step 2 follow directly from FSS gates for
comparison and equality constructed in [16] and described
in Appendix B . Step 4 can be performed in a standard
way using bit Beaver triples. We elaborate on Step 3, i.e.
how to use the iDPF in order to compute the all-prefix
AND of ei values. We first observe: A single DPF can
be easily used to compute the Boolean AND of k bits
b1, . . . , bk. The observation is that the AND of k bits can
be represented as a point function in the following way:

AND(b1, . . . , bk) ≡ f(b) =

{
1 ; b = 2k − 1

0 ; otherwise

where b = b1|| . . . ||bk.
Note that in our context, we want to compute the AND

on ei values. A naive solution is to use q−1 independent
DPFs to compute all the prefix AND values i.e. e1, e1 ∧
e2, e1 ∧ e2 ∧ e3 and so on. However, since the ANDs are
correlated and have an incremental pattern, we can instead
use a single iDPF to perform the above task much more
efficiently. Let’s consider the following point function:

f(e) =

{
1 ; e = 2q−1 − 1

0 ; otherwise

where e = e1||e2|| . . . ||eq−1.
If we create an iDPF for this point function, and invoke

it on the input x = e1|| . . . ||ek, we will get 1 as the output
iff e1|| . . . ||ek is a k length substring of 2q−1−1. This will
happen iff AND(e1, . . . , ek) = 1. Since an iDPF supports
incremental evaluation by design, we can evaluate a single
iDPF on e1, . . . , ek for all k ∈ [q− 1] and retrieve the all
prefix AND evaluation.

As mentioned in Section 2.4, using an FSS scheme
for function f in the context of MPC is done via the
corresponding offset function which works on the masked
input value x̃ := x + rin instead of the actual private
value x. The input mask rin is defined in the offline
phase and is used to define the parameters for FSS key

generation. In [16], [21], the authors use this technique
to create an equality check gate and comparison gate
via FSS schemes such as DPF and DCF respectively.
However, leveraging iDPF in order to create useful MPC
gates has been unexplored. In the preceding paragraph, we
outlined the way an iDPF can be leveraged for computing
the all-prefix AND of multiple bits. However, to use
this idea in the context of MPC, we need to operate on
masked input and somehow encode the mask inside the
iDPF without affecting the correctness. Here we observe
that the typical way of masking via group addition i.e.
x̃ := x + rin and then trying to set the special point
α = 2q−1 − 1 + rin does not work. This is because
if x1|| . . . ||xk is a length k prefix of 2q−1 − 1, then it
doesn’t imply that x̃1|| . . . ||x̃k is also a length k prefix
of α. This means that instantiating a iDPF at α and then
performing incremental evaluations on the masked input
would not lead to the correct prefix AND result. Our
solution to this problem is to use XOR masking instead of
the usual group addition based masking. Specifically, we
define the masked input x̃ := x⊕ rin and then instantiate
an iDPF with the special point α = (2q−1 − 1) ⊕ rin.
It is easy to see that with this masking technique, the
following equivalence holds: x1|| . . . ||xk is a length k
prefix of 2q−1 − 1 iff x̃1|| . . . ||x̃k is a length k prefix of
α. We describe the protocol

∏
CMP formally in Figure 2

in Appendix C. For binary outputs, the protocol requires
4ℓ − 2m + 6q − 6 bits of online communication and 3
rounds, where m ∈ [1, ℓ] is a parameter for the sub-
string/block length 6.

7. Experimental Evaluation

Implementation Details. We implemented our construc-
tions in C++ with the Bazel build system [7]. Our im-
plementation is end-to-end, including server and client
code, as well as network communication implemented
using gRPC’s asynchronous APIs. In our codebase we
include an efficient implementation of distributed point
and comparison functions, which makes use of hardware-
backed AES-NI instructions and optimizes CPU pipelin-
ing by batching multiple DPF/DCF evaluations together.
It also features an implementation of the interactive DPF
key generation protocol described in Appendix F. Finally,
our implementation has extensive tests, written in the
GoogleTest library [49], for all building blocks alongside
end-to-end tests.
Experimental Setup. We ran our experiments on two
compute-optimized c2-standard-8 Google Cloud instances
with 32 GB RAM and Intel Xeon CPU at 3.1 GHz clock
rate (except for experiments run on the Criteo datasets,
where we used compute-optimized c2-standard-60 in-
stances with 240 GB RAM and same CPU). Our imple-
mentation runs on a single thread and uses a single core of
each instance. In the LAN setting, both instances were de-
ployed in the us-central1 region where the mean network
latency was 0.12ms and the bandwidth was ≈ 2.1GB/s.
In the WAN setting, one instance was in us-central1 while
the other was in us-west2. The mean network latency was

6. The online communication can be reduced to 2ℓ − 2m + 6q − 6
by sharing the masks for FSS comparison and equality gates used in the
first round.

9

44.70ms and the bandwidth ≈ 65MB/s. All runtimes
and communication are end-to-end totals and include both
the client and server costs. The client and the server
execute their computation simultaneously in each round.
They proceed to next round once both parties completed
computation and transferred messages to one another.
Cloud costs. We include the monetary cost of running our
protocols on the Google Cloud Platform (GCP), using the
prices listed on GCP website. For computational cost, we
use the CPU spot price of $0.02 per-hour for pre-emptible
virtual machines, and use network cost of $0.08 per GB
for egress to the internet. This reflects batch computation
with parties situated in different cloud providers, as has
been used in other works [54].

7.1. Sigmoid Experiments

Approximating the sigmoid function is the most chal-
lenging and costly component of gradient descent. For that
reason, we benchmark our sigmoid protocols separately. In
this section, we refer to our sigmoid protocol with trusted
offline setup (Section 5) as v1 and our sigmoid protocol
with distributed offline setup (Section 6) as v2. We show
runtime, communication and monetary cost in Table 17,
for 102, 103, and 104 sigmoid inputs and the following
parameters: 20 fractional bits, 31-bit width (integer plus
fractional), 63-bit ring size, 10 spline intervals in [0, 1),
and Taylor series of degree 10. The sigmoids are executed
in a single batch.

TABLE 1: Comparison of the online cost of our sigmoids
with trusted (v1) and distributed (v2) offline setup to
SIRNN and MP-SPDZ’s accurate sigmoid implementa-
tions in the latest MP-SPDZ version 0.3.7.

Technique Time for # Instances (sec) Comm. per # Rounds USD Cost
102 103 104 Instance (KB) per 103 runs

LAN
Sigmoid v1 0.08 1.00 10.80 0.50 4 0.004c
Sigmoid v2 0.13 1.51 16.46 1.18 6 0.009c
MP-SPDZ 0.05 0.29 - 15.32 124 0.117c
Est. SIRNN 0.01 0.03 0.18 19.22 ≈100 0.146c

WAN
Sigmoid v1 0.40 1.62 11.79 0.50 4 0.004c
Sigmoid v2 0.61 2.32 17.88 1.18 6 0.010c
MP-SPDZ 7.12 9.02 - 15.32 124 0.121c
Est. SIRNN 4.50 4.52 4.67 19.22 ≈100 0.149c

Benchmark Comparisons. We compare to the most re-
cent secure sigmoid protocols in Table 1. We focus on ac-
curate sigmoid approximations as inaccurate approxima-
tions often result in worse models than in standard logistic
regression (see Section 7.2). Our comparison includes
SIRNN [72], whose sigmoid protocol strictly improves
over other state-of-the-art sigmoid approximations such as
MiniONN [61] and DeepSecure [76]. We also compare
to the sigmoid approximation presented in MP-SPDZ8

[58]. We retrieved the SIRNN values directly from [72]

7. We were unable to compile 104 sigmoid executions into the byte-
code used by the MP-SPDZ virtual machine as our device ran out of
memory.

8. MP-SPDZ presents different sigmoid approximations. We focus
our comparison on their accurate sigmoid approximation, which directly
computes exponentiation and reciprocal in MPC.

and extrapolated the cost for our network settings9. For
MP-SPDZ, we ran their sigmoid implementation in the
trusted dealer mode.

We observe a gain of ≈ 38/16× (v1/v2) in commu-
nication efficiency over SIRNN and ≈ 30/13× over MP-
SPDZ. We also reduce the rounds for sigmoid (≈ 25/16×
over SIRNN and ≈ 31/21× over MP-SPDZ). Our v1
sigmoid requires 4 rounds and our v2 sigmoid requires 6
rounds; we estimate that SIRNN uses ≈ 100 communica-
tion rounds (although round complexity is not discussed
in SIRNN) and MP-SPDZ uses 124 rounds. While our
construction has higher computation than SIRNN and MP-
SPDZ, we have better monetary costs. We decrease costs
by ≈ 36.5× over SIRNN and by ≈ 29.3× over MP-SPDZ
on LAN. On a higher latency WAN, we decrease costs by
≈ 37.3× over SIRNN and by ≈ 30.3× over MP-SPDZ.
SecFloat [70], a concurrent work, does not explicitly
provide a sigmoid protocol but our estimate is that it will
require 271 rounds and 47.5 KB of communication (as it
uses 187 rounds and 37.23 KB per exponentiation and 84
rounds and 10.27 KB per division) whereas we use only
4/6 rounds 0.5KB/1.18KB of communication for v1/v2,
respectively.

The improved sigmoid costs also impact inference,
where the cost is the sum of a single matrix-vector mul-
tiplication and a single sigmoid evaluation. For example,
inference on a single example of 10 features requires one-
time communication of 1.25KB (recall this cost can be
paid once as the model does not change) and 1.752KB per
each example. For 106 examples this amounts to 1.67GB
and costs $0.13 assuming communication is the only cloud
cost. For comparison, using SIRNN’s sigmoid would cost
$0.47. We note that the increased running time of our
protocol, as indicated in Table 1, is due to the local
computations involving FSS which consists of AES calls.
This gap can be reduced by possibly using multi-threading
across batches (which prior works appear to already do).
In this work, our focus was not solely on optimizing
computation but primarily on reducing communication
and the round complexity.
Offline Cost Estimate. We now provide an analytical
estimate of the offline costs involved in our sigmoid
protocol. For the v1 setting, we measure offline cost as
the storage cost of preprocessing material per party which
consists of the following components:
• MIC gate: Requires key size (ℓ·λ+ℓ2+3ℓ+λ)+2·nI ·ℓ

bits where nI is the number of MIC intervals [16]. For
ℓ = 63 and nI = 6, we get a key size of 1.6 KB.

• Exponentiation: Requires a correlation consisting of 2
field elements of at most ℓ bits [57]. For ℓ = 63, the
cost is 0.015 KB.

• Polynomial: Requires a correlation consiting of (shares
of) d incremental powers of a random ring element. For
ℓ = 63, we get a cost of 0.077 KB.

9. Note that SIRNN does not have offline phase. The entire protocol
cost is online. We extrapolated the SIRNN costs in the following way:
SIRNN takes 0.08sec on 0.8ms RTT network, so the total rounds will
be ≈ 100. In our setting, the LAN and WAN latencies are 0.12ms and
44.7ms, respectively. Therefore, the estimated LAN and WAN SIRNN
runtime would be 0.01s (0.12ms * 100) and 4.5s (44.7ms * 100) for 100
instances. Furthermore, SIRNN has a communication cost of 4.88KB
assuming 16 bit ring. Since our experiments were performed over 63
bit ring, we scaled the SIRNN cost by 4× for fair comparison.

10

https://cloud.google.com/pricing/list

• Spline: Requires a MIC gate key for 10 intervals and 1
Beaver triple. For ℓ = 63, we get a cost of 0.56 KB.

• Dot product: For performing dot product of two vectors
of length 6, we require 6 Beaver triples. For ℓ = 63,
we get a cost of 0.046 KB.

In the v1 sigmoid, we use 1 MIC gate, 2 exponen-
tiations, 2 polynomial calls, 2 spline calls and 1 dot
product. This requires a total storage cost of 2.95 KB per
party and an estimated running time of 4.2 µs (based on
the bottleneck computation cost of generating FSS keys
for MIC gate and Spline)10. In comparison, MP-SPDZ
requires a storage cost of 80 KB per party and running
time of 949 µs when executed in trusted dealer model.

For the v2 setting, the offline cost is measured by
the total communication cost and running time needed
to generate the required preprocessing material in MPC.
In the following, we assume that the amortized cost of
generating a Beaver triple for ℓ = 63 bit ring is 0.4375
KB [75] and a bit Beaver triple is 0.0175 KB [73]. The v2
sigmoid protocol consists of the following components:
• Mux : Requires 2 calls to Ideal OT in online phase. For

this, it suffices to have 2 ROT correlations generated in
the offline phase, requiring 2λ + 4ℓ bits of communi-
cation. For ℓ = 63, the communication is 0.062 KB.

• Exponentiation: The required correlation can be gener-
ated using 2 Beaver multiplications for 0.936 KB.

• Polynomial: The required correlation for d = 10 de-
gree polynomial can be generated using d fixed point
multiplication. Each fixed point multiplication would
require a Beaver multiplication followed by truncation.
We estimated the cost of each truncation from [73] for
l = 63 and s = 20 to be 1.5 KB. Given each Beaver
triple requires around 0.5 KB to generate and consume,
the estimated cost of each fixed point multiplication is
approximately 2 KB. For 10 fixed point multiplications,
we get a cost of ≈ 20 KB.

• Spline: Requires an MIC gate key on domain size s =
20 bits for 10 intervals with output size of ℓ = 63 bits,
and 1 Beaver triple. Using the protocols described in
Appendix B and Appendix F for MIC key generation,
the offline cost is 5.81 KB.

• MIC based on
∏

CMP: For 6 intervals, we need 7
∏

CMP
invocations and 6 FAND invocations (performed with
bit Beaver triples). The estimated theoretical offline
cost for our

∏
CMP is 21.74 KB based on Table 4

in Appendix C. Adding up the costs, we will require
≈ 152 KB to generate preprocessing needed for MIC
based on

∏
CMP.

In the v2 sigmoid protocol, we invoke 1 MIC based
on

∏
CMP, 2 exponentiations, 2 polynomial calls, 2 spline

calls and 6 MUX calls. This requires an offline commu-
nication cost of 205 KB.

We now turn towards the running time of the offline
phase which includes the cost of secret-sharing based
primitives and the cost of FSS-based primitives. The
secret-shared based primitives rely on OT which can be
cheaply generated using OT extension. From libOT [69]
benchmarks, we observed a running time of 75 ns for
each OT after excluding the cost of base OTs (which takes
less than a second). For FSS based primitives, the offline

10. Here we assume an estimate of 360 million AES calls per second
on a single-core 3.6 GHz machine (10 machine cycles per AES) [16].

computation cost is dominated by FSS key generation
which involves approximately 2n calls to AES for n-
bit FSS inputs using Doerner Shelat technique. Based
on the estimate of 360 million AES calls per second (as
reported in [16]), we decided what value of n would be
reasonable/feasible. In the v2 sigmoid protocol, we invoke
FSS when computing the Spline MIC gate on s = 20-
bit inputs. We also invoke FSS gates as part of

∏
CMP

protocol. For our parameter setting, each invocation of∏
CMP requires 4 DCF and 4 DPF keys on 16 bit inputs

and also an iDPF key on 4 bit input. In total, the theoretical
estimated running time comes out to be approximately 16
ms for generating FSS correlations needed for a single
sigmoid. Note that our v1 sigmoid protocol requires FSS
keys on 64 bit domains whose offline phase, if executed
securely in two party setting, would require running time
of more than 1010 seconds using Doerner Shelat technique
which is infeasible. This is the reason why we proposed
a new protocol for v2 setting which can support feasible
offline costs.

We also implemented a baseline version (without any
optimizations) of the arithmetic extension of Doerner-
Shelat’s protocol [34], explained in Appendix F, and
benchmarked it for 64-bit output groups. Assuming OT
correlations have been pre-generated, we get the following
costs. In the LAN setting, we observed a running time
of 0.29 seconds and 4.17 KB communication for 16-bit
input domain. For 20-bit input domain, we get a running
time of 3.44 seconds and 5.19 KB communication. In the
WAN setting, the communication cost remains same but
the running time becomes 6.12 seconds and 10.79 seconds
for 16 bit and 20 bit inputs respectively.

7.2. Logistic Regression Experiments

We evaluated our logistic regression experiments on
five datasets. We do basic preprocessing on the datasets
with the help of Scikit-learn’s ML library (remove rows
with missing features, normalize features with Scikit-
learn’s StandardScaler, shuffle the rows, etc.). To fa-
cilitate testing, we split each dataset into a training set
(70%) and a testing set (30%). We present the training
parameters used in our experiments in Table 2.

TABLE 2: Datasets and their corresponding training pa-
rameters used in our experiments. We fixed the number of
epochs to 6 and ran grid search to determine parameters
such as the prediction threshold and the learning rate.

Titanic Arcene Gisette Criteo Uplift 1 Criteo Uplift 2
Training Size 500 70 4200 70000 70000
Testing Size 214 30 1800 30000 30000
Total Size 714 100 6000 100000 100000
Features 6 10000 5000 15 15

Learning Rate α 1 0.1 1 1 1
Regularization λ 0.0001 0.0001 0.1 0.0001 0.0001

Prediction Threshold 0.43 0.18 0.64 0.67 0.86
Epochs 6 6 6 6 6

We used the following datasets: Titanic [38] predicts
if a passenger would survive the Titanic shipwreck,
Arcene [51] predicts if a patient has cancer, Gisette
[51] distinguishes the digits 4 and 9, Criteo Uplift [33]
predicts whether a user targeted by advertising purchases
a product (i.e. converts). We used two versions of the
Criteo dataset. In Criteo Uplift 1, we used a random
subset of the original dataset. This dataset was highly

11

imbalanced. From 105 data points, there were only 470
conversions. In Criteo Uplift 2, we sampled the examples
such that 10% of the labels were positive. I.e., there were
104 positive labels.

Accuracy Evaluation. We compare accuracy of our
2PC protocols against a plaintext Python floating-point
implementation in Table 6. We use parameters from
Table 2 and train for 6 epochs, which is enough for the
plaintext algorithm to converge. Our 2PC protocols are
close to plaintext logistic regression in all cases.

Performance Evaluation. We present our end-to-end
runtime and communication costs for the online phase in
Table 7. All versions use the parameters from Table 2,
and run for 6 epochs. Our runtimes and communication
are totals for both parties. We observe that our costs
grow nearly linearly with the number of examples, but
are relatively independent of the number of features. This
emphasizes that sigmoid is a significant portion of our
protocol costs.

Comparison to Previous Works. We first note that some
key works in the area have relatively coarse sigmoid
approximations, and we do not do a detailed comparison
with these works. These works include the piecewise
approximations of SecureML (3 pieces) [64] and MP-
SPDZ (5 pieces) [58]. As a result of these coarse approx-
imations, SecureML and MP-SPDZ do not closely match
plaintext logistic regression: Running logistic regression
in plaintext with SecureML’s and MP-SPDZ’s sigmoid ap-
proximations on a subset of the Criteo uplift dataset with
100, 000 examples and 470 positive examples (trained on
6 epochs with minibatches of 100 examples) yields 0
and ≈ 0.42 F1 score, respectively, while Python plaintext
(and training in plaintext with our approximation) yields
≈ 0.48 (0.47 when run in MPC). ABY2.0 [67] improves
on the efficiency of SecureML’s logistic regression by
reducing the online runtime, but uses the same coarse
sigmoid approximation.

Note that even if we settled for the sigmoid approx-
imation used in SecureML and ABY2.0 (and similarly
MP-SPDZ), our work would still offer an improvement
in online communication. This is because their sigmoid
approximation essentially reduces to secure comparisons
and AND gates. Our improved comparison protocol (see
in Table 4) would reduce their training costs.

Turning to accurate logistic regression approximations,
MP-SPDZ [58] has one sigmoid approximation that results
in comparable accuracy to our protocol. We ran the offline
and online phase of MP-SPDZ’s logistic regression train-
ing for one fullbatch epoch on a dataset of 1000 examples
and 10 features and compared to our logistic regression
implementation. Our offline phase costs use our earlier
sigmoid offline estimates and [57]’s implementation of
correlated Beaver triples. We compare MP-SPDZ’s Semi-
2k (semi-honest 2-party) protocol with our v2 protocol and
MP-SPDZ’s Dealer (semi-honest 2-party with a dealer)
protocol with our v1 protocol. We present the results in
Table 3. SIRNN [72] implements sigmoid, but not logistic
regression, so we only compare with their sigmoid in
Section 7.1.

TABLE 3: Comparison of 1 epoch of our secure logistic
regression with v1 and v2 sigmoid against MP-SPDZ
v0.3.7 with their accurate sigmoid version run in the
Dealer (c.f. v1) and Semi2k (c.f. v2) setting. The offline
phase costs of our protocol are estimates (see text).

2PC v1 MP-SPDZ Dealer 2PC v2 MP-SPDZ Semi2k
Dataset (1000× 10)

Offline Comm (MB) 2.96 218.59 226.66 4159.12
Online Comm (MB) 0.50 65.00 1.12 65.00
Offline LAN (sec) 0.16 0.41 19.75 16.00
Online LAN (sec) 2.16 0.42 4.73 0.38
Offline WAN (sec) 0.24 3.25 27.21 740.67
Online WAN (sec) 2.85 13.55 6.21 12.70

7.3. Secure Comparison Experiments

Analytical Comparison. In Table 4, we benchmark the
offline and online analytical communication costs of our
new comparison protocol

∏
CMP for different values of ℓ

(bit length of the inputs). We set m = 16 as the parameter
in our protocol and estimated the offline cost based on the
cost of generating DPF, DCF and iDPF keys for single
bit output via the Doerner Shelat technique described
in [16], [34]. We compare it against CrypTFlow2 [73]
(where we set m = 4 as used by the authors11), SynCirc
[68] and Couteau’s protocol [30]. Note that if ℓ ≤ m,
then we set m = ℓ. Our offline costs exclude the cost of
base OT. For SynCirc [68], we could not obtain values
for ℓ = 4, 8, 128 bits as the paper doesn’t report costs for
these cases.

Performance Comparison. We compare our secure com-
parison protocol

∏
CMP against [16]’s FSS comparison

gate which presents the lowest known online communi-
cation, but the offline phase is computationally infeasible
for 64-bit inputs. We show that with a relatively small
increase to our costs (2× online communication and a
runtime increase from 364ms to 532ms on a LAN network
and a batch of 1000 comparisons), we can make the
offline phase computationally feasible (see discussion in
Section 6.1). If we use our DCF batching optimization, we
reduce the FSS comparison runtime on LAN to 18.72ms
(i.e. ≈ 19.4× improvement) and

∏
CMP’s runtime to

205.26ms (i.e. ≈ 2.6× improvement). We present our
experiments in Table 5.

8. Related Work

There is an extremely large number of works in the
field of secure learning, differing across several dimen-
sions. These dimensions include the type of model being
computed (linear/logistic/poisson regression, deep neural
nets), the way data is distributed across parties (secret-
shared, vertically partitioned, horizontally partitioned, fed-
erated), and the type of security provided (differentially
private with central or local DP, MPC with semi-honest,
malicious security, honest majority, and so on) [2], [12],
[22], [26], [37], [43], [57]–[59], [64], [64], [67], [71],
[72], [76], [79], [81]. We focus our discussion on the
state-of-the-art works that best match our setting and offer
informative comparisons. Specifically, we focus on works
that compute logistic regression using secure computation

11. Higher values of m in CrypTFlow2 lead to an exponential increase
in the online communication cost.

12

TABLE 4: Concrete analytical communication and round costs of our comparison protocol vs. prior works as functions
of bit length ℓ. The offline costs exclude the costs of base OTs. CryptFlow2 [73] and our approach have an additional
parameter m denoting the block size. We fix m = 4 for CryptFlow2 (as suggested by the authors) and m = 16 for our
approach.

Our Approach (m = 16) CrypTFlow2 (m = 4) [73] SynCirc [68] Couteau16 [30]

ℓ comm. rounds comm. rounds comm. rounds comm. rounds
Offline Phase

4 0.75 KB 80 rounds 0.03 KB 1 round - - 0.19 KB 2 rounds
8 1.51 KB 80 rounds 0.08 KB 1 round - - 0.44 KB 2 rounds
16 3.02 KB 80 rounds 0.19 KB 1 round 3.43 KB 1 round 1.02 KB 2 rounds
32 9.07 KB 80 rounds 0.43 KB 1 round 8.82 KB 1 round 1.85 KB 3 rounds
64 21.74 KB 80 rounds 0.93 KB 1 round 16.07 KB 1 round 3.83 KB 3 rounds

128 46.71 KB 80 rounds 1.95 KB 1 round - - 6.36 KB 3 rounds
Online Phase

4 8 bits 1 round 20 bits 2 rounds - - 30 bits 2 rounds
8 16 bits 1 round 60 bits 3 rounds - - 162 bits 6 rounds
16 32 bits 1 round 142 bits 4 rounds 84 bits 3 rounds 308 bits 6 rounds
32 100 bits 2 rounds 308 bits 5 rounds 178 bits 3 rounds 530 bits 12 rounds
64 242 bits 3 rounds 642 bits 6 rounds 316 bits 4 rounds 1120 bits 12 rounds

128 522 bits 3 rounds 1312 bits 7 rounds - - 2101 bits 12 rounds

TABLE 5: Comparison of our new
∏

CMP protocol to the
FSS protocol [16] on a batch of 1000 inputs.∏

CMP FSS Comparison [16]
LAN (ms) 532 364
WAN (ms) 671 410

Communication (KB) 29.55 15.63

TABLE 6: Accuracy comparison of our secure 2PC al-
gorithms (executed interactively on 2 machines) with the
insecure non-interactive algorithm implementing the stan-
dard Section 2.1 gradient descent in Python floating point.

Insecure Python 2PC Approach v1 2PC Approach v2
Titanic Dataset

F1 Score 0.77551 0.77551 0.77551
Accuracy 0.79439 0.79439 0.79439

Arcene Dataset
F1 Score 0.76923 0.76923 0.76923
Accuracy 0.8 0.8 0.8

Gisette Dataset
F1 Score 0.96987 0.96540 0.96540
Accuracy 0.97056 0.96611 0.96611

Criteo Uplift 1 Dataset
F1 Score 0.47910 0.46336 0.46336
Accuracy 0.993 0.992 0.992

Criteo Uplift 2 Dataset
F1 Score 0.86367 0.86155 0.86155
Accuracy 0.971 0.970 0.970

in the semi-honest setting, with data secret-shared among
the computing parties. We restrict ourselves to works
that have 2 or 3 servers only. The number of works in
this setting is relatively manageable, and we group them
into 3 categories in our discussion: those with a highly
accurate sigmoid approximation, those with a coarse sig-
moid approximation, and those based on homomorphic
encryption.

For works with highly accurate sigmoid approxima-
tions, we restrain our detailed comparison to 2 key works,
MP-SPDZ [58] and SIRNN [72], which are the state of
the art in this area, to our best understanding. Our key
difference with both of these works is our approach to
sigmoid computation. MP-SPDZ takes the approach of
computing exponentiation and division in MPC, which
results in a large number of rounds. SIRNN does essen-
tially the same, using novel protocols for each. They use

TABLE 7: Online costs of running our secure 2PC gradi-
ent descent (executed interactively on 2 machines) for 6
epochs on 4 datasets with 20 fractional bits of precision.

2PC v1 2PC v2 2PC with DP v1 2PC with DP v2
Titanic Dataset (500× 6)

Comm (MB) 1.49 3.38 1.49 3.38
LAN (sec) 2.74 4.54 2.73 4.39
WAN (sec) 5.06 6.77 4.83 6.61

LAN Cost (USD) 0.01c 0.03c 0.01c 0.03c
WAN Cost (USD) 0.01c 0.03c 0.01c 0.03c

Arcene Dataset (70× 10000)
Comm (MB) 1.24 1.50 1.18 1.45
LAN (sec) 1.71 1.84 1.39 1.53
WAN (sec) 4.60 5.24 4.04 4.79

LAN Cost (USD) 0.01c 0.01c 0.00c 0.01c
WAN Cost (USD) 0.01c 0.01c 0.01c 0.01c

Gisette Dataset (4200× 5000)
Comm (MB) 13.00 28.88 12.97 28.85
LAN (sec) 66.59 78.64 56.30 69.94
WAN (sec) 84.90 97.67 68.23 81.12

LAN Cost (USD) 0.14c 0.27c 0.13c 0.26c
WAN Cost (USD) 0.15c 0.28c 0.14c 0.27c

Criteo Uplift 1/2 Datasets (70000× 15)
Comm (MB) 208.09 472.61 208.09 472.61
LAN (min) 9.44 17.64 9.40 17.61
WAN (min) 9.68 17.97 9.69 17.78

LAN Cost (USD) 1.94c 4.28c 1.94c 4.28c
WAN Cost (USD) 1.95c 4.29c 1.95c 4.28c

a clever approach of adjusting the fixed-point precision
to reduce the costs, and introduce a novel Lookup-Table
based exponentiation together with a novel adaptation of
Goldschmidt’s division. However, both these approaches
end up taking a large number of rounds (≈ dozens)
because of the complexity of division and exponentiation
in MPC. Our key improvement is to achieve high accuracy
with a constant number of rounds and less communication
using a combination of FSS primitives and a customized
sigmoid approach with different approximations computed
over different intervals. A detailed experimental compar-
ison can be found in Section 7.1 and Section 7.2.

There are also works such as SecureML [64] and
ABY2.0 [67] which use a much coarser sigmoid approx-
imation. As a result, both works have worse accuracy on
logistic regression. We are focused on preserving accuracy
of logistic regression, and so do not engage in a detailed
comparison with these works. We observe briefly these
works rely mainly on AND gates and secure comparisons.
Since we propose an improved secure comparison, replac-

13

ing the secure comparisons in [64], [67] with those in our
work is likely to offer an improvement. This is discussed
further with concrete accuracy numbers in Section 7.2.
We discuss some other works that fall into this category
of “inaccurate sigmoid” in Appendix D.

There are several works which leverage homomorphic
encryption in order to compute Logistic Regression, for
example [22] and [26]. These works are interesting be-
cause they do not require interaction between parties: one
party performs the computation on the entire encrypted
dataset. However, this approach comes with a large
computational and communication overhead compared to
MPC-based approaches (where the communication means
the size of the initial encrypted datasets). We see this as
a significantly different approach and setting, and so we
do not perform a detailed comparison with them in the
evaluation section. This is consistent with the approach
taken by the MPC-based works we cite above. Froelicher
et. al. [41] use multi-party FHE [65] for data analysis but
they do not consider secure training of a logistic regression
model. Separately from logistic regression and sigmoid
computation, there are several related works focused on
developing Function-Secret-Sharing or adjacent primitives
[16], [21], [67], and using them for machine learning
[77]. Our work is influenced by several of these papers,
and our techniques can be seen as building on theirs,
specifically by combining them with secret-sharing-MPC
based approaches.

Another of our key contributions is a new secure
comparison. This is rich area of research [16], [30], [32],
[42], [67], [68], [73], since comparison is critical for the
nonlinear computations in machine learning tasks. We go
over the most relevant related works directly in Section 6.1
where we present our new secure comparison protocol. We
explain how our approach differs from and builds on these
works.

Finally, we discuss an important paper which became
public concurrently with our work, LLAMA [50], which
builds on SIRNN [72] by using FSS to reduce the cost of
comparisons in the online phase, similarly to us. Since
the work is concurrent, we do not provide a detailed
comparison in the evaluation section, but describe the key
differences here. One difference lies in the way LLAMA
computes sigmoid. While we use a custom approximation
to the sigmoid function, LLAMA uses a single spline gate
that computes a degree-2 polynomial over each interval,
using enough intervals so as to to ensure that their chosen
accuracy metric (ULP error) is small (≤ 4). They use the
spline gate from [16], and also run into its key limitation:
this spline construction only works on integer values,
because the underlying polynomial evaluation does not
perform truncated multiplication needed for fixed point
values. The LLAMA authors get around this by assuming
the ring is large enough to accommodate d untruncated
multiplications, where d is the polynomial degree, and
then perform a truncation in a single separate round. In
contrast, our work gives a new protocol for computing
polynomials over secret-shared fixed point numbers that
implicitly handles truncation. In this way, we can work
with smaller rings (for a given d), thereby gaining ef-
ficiency. We note that our fix only works for fixed-point
numbers that have no integer part (i.e. have absolute value
< 1), but this turns out to be fine for our use: we only use

polynomial approximations for a fixed region of the input
where this condition holds. Another difference, from a
performance standpoint, is that the proposed sigmoid pro-
tocol in LLAMA requires large amount of preprocessing
material - around 132 KB12 whereas ours is only 2.95
KB (44× less) as mentioned in Section 7.1. One of the
key factors behind this reduction is our novel sigmoid
approximation which departs from “spline-only” based
approximation (that LLAMA and other referred papers
use). Another major difference is that LLAMA doesn’t
consider the v2 setting at all in their sigmoid design.
If one were to directly port their protocol to run in the
v2 setting for ℓ = 63 bit ring, the estimated offline
computation cost to generate the FSS keys using Doerner-
Shelat 2PC [34] would require more than 1010 seconds,
making it practically infeasible.

9. Conclusion

We show that techniques from FSS can be combined
with secret-sharing MPC to build a novel secure logistic
regression training protocol with better accuracy and per-
formance tradeoffs. Our key contribution is a 2PC-friendly
sigmoid approximation. An interesting open problem is to
further optimize the offline costs of the sigmoid protocol
by developing silent preprocessing inspired techniques
[17], [18] targeted specifically towards sigmoid friendly
correlations.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan,
Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[2] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià
Gascón. Quotient: two-party secure neural network training and
prediction. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 1231–1247,
2019.

[3] S. Akinci, E. Kaynak, E. Atilgan, and Ş. Aksoy. Where does
the logistic regression analysis stand in marketing literature? a
comparison of the market positioning of prominent marketing
journals. European Journal of Marketing, 2007.

[4] Abdelrahaman Aly and Nigel P. Smart. Benchmarking privacy pre-
serving scientific operations. In Robert H. Deng, Valérie Gauthier-
Umaña, Martı́n Ochoa, and Moti Yung, editors, ACNS 19, volume
11464 of LNCS, pages 509–529. Springer, Heidelberg, June 2019.

[5] Apple and Google. Exposure notifications private analyt-
ics. https://github.com/google/exposure-notifications-android/blob/
master/doc/ENPA.pdf, 2021.

[6] Kenneth E Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer
conference, pages 307–314, 1968.

[7] Bazel. Bazel. https://bazel.build/, 2022.

[8] Donald Beaver. Efficient multiparty protocols using circuit ran-
domization. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[9] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville
Sokk, and Riivo Talviste. Students and taxes: a privacy-preserving
study using secure computation. Proc. Priv. Enhancing Technol.,
2016.

12. The authors report 33 KB for 16 bit ring. Since we use 63 bit
ring in this work, we scale their reported value by 4×.

14

https://github.com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf
https://github.com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf
https://bazel.build/

[10] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From
input private to universally composable secure multi-party compu-
tation primitives. In 2014 IEEE 27th Computer Security Founda-
tions Symposium, pages 184–198. IEEE, 2014.

[11] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin
Geisler, Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multiparty
computation goes live. In Roger Dingledine and Philippe Golle,
editors, Financial Cryptography and Data Security, 13th Interna-
tional Conference, 2009.

[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry
Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub
Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of Machine
Learning and Systems, 1:374–388, 2019.

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Lightweight techniques for private heavy hitters. In
2021 IEEE Symposium on Security and Privacy (SP), pages 762–
776. IEEE, 2021.

[14] Christina Boura, Ilaria Chillotti, Nicolas Gama, Dimitar Jetchev,
Stanislav Peceny, and Alexander Petric. High-precision privacy-
preserving real-valued function evaluation. In Financial Cryp-
tography and Data Security: 22nd International Conference, FC
2018, Nieuwpoort, Curaçao, February 26–March 2, 2018, Revised
Selected Papers 22, pages 183–202. Springer, 2018.

[15] Carl Boyd, Mary Ann Tolson, and Wayne S. Copes. Evaluating
trauma care. The Journal of Trauma: Injury, Infection, and Critical
Care, 1987.

[16] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval
Ishai, Nishant Kumar, and Mayank Rathee. Function secret sharing
for mixed-mode and fixed-point secure computation. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of LNCS, pages 871–900. Springer, Heidel-
berg, October 2021.

[17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, Peter Rindal, and Peter Scholl. Efficient two-round ot
extension and silent non-interactive secure computation. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 291–308, 2019.

[18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Efficient pseudorandom correlation gener-
ators: Silent ot extension and more. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part
III 39, pages 489–518. Springer, 2019.

[19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret shar-
ing. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367.
Springer, Heidelberg, April 2015.

[20] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 1292–1303. ACM Press, October
2016.

[21] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with
preprocessing via function secret sharing. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS,
pages 341–371. Springer, Heidelberg, December 2019.

[22] Junyoung Byun, Woojin Lee, and Jaewook Lee. Parameter-free
he-friendly logistic regression. Advances in Neural Information
Processing Systems, 34:8457–8468, 2021.

[23] Sergiu Carpov, Kevin Deforth, Nicolas Gama, Mariya Georgieva,
Dimitar Jetchev, Jonathan Katz, Iraklis Leontiadis, M Moham-
madi, Abson Sae-Tang, and Marius Vuille. Manticore: Efficient
framework for scalable secure multiparty computation protocols.
Cryptology ePrint Archive, 2021.

[24] Octavian Catrina and Amitabh Saxena. Secure computation with
fixed-point numbers. In Financial Cryptography and Data Secu-
rity: 14th International Conference, FC 2010, Tenerife, Canary
Islands, January 25-28, 2010, Revised Selected Papers 14, pages
35–50. Springer, 2010.

[25] Jeffrey Champion, abhi shelat, and Jonathan Ullman. Securely
sampling biased coins with applications to differential privacy. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019.

[26] Jung Hee Cheon, Wootae Kim, and Jai Hyun Park. Efficient
homomorphic evaluation on large interval. Cryptology ePrint
Archive, 2022.

[27] Rishav Chourasia, Jiayuan Ye, and Reza Shokri. Differential
privacy dynamics of langevin diffusion and noisy gradient descent.
In Advances in Neural Information Processing Systems, 2021.

[28] Henry Corrigan-Gibbs. Privacy-preserving firefox telemetry with
prio. https://rwc.iacr.org/2020/slides/Gibbs.pdf, 2020.

[29] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX
Symposium on Networked Systems Design and Implementation,
(NSDI), 2017. https://crypto.stanford.edu/prio/ (accessed 2020-12-
09).

[30] Geoffroy Couteau. New protocols for secure equality test and
comparison. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 303–320. Springer,
Heidelberg, July 2018.

[31] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and
Tomas Toft. Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponentiation. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 285–304. Springer, Heidelberg, March 2006.

[32] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a
framework for efficient mixed-protocol secure two-party computa-
tion. In NDSS, 2015.

[33] Diemert Eustache, Betlei Artem, Christophe Renaudin, and Amini
Massih-Reza. A large scale benchmark for uplift modeling. In
Proceedings of the AdKDD and TargetAd Workshop, KDD, Lon-
don,United Kingdom, August, 20, 2018. ACM, 2018.

[34] Jack Doerner and abhi shelat. Scaling ORAM for secure compu-
tation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 523–535. ACM
Press, October / November 2017.

[35] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via dis-
tributed noise generation. In Proceedings of the 24th Annual
International Conference on The Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT’06, 2006.

[36] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Shai
Halevi and Tal Rabin, editors, Theory of Cryptography, 2006.

[37] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining
on vertically partitioned databases. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 528–544. Springer,
Heidelberg, August 2004.

[38] Haas Charles Eaton John. Titanic: Triumph and tragedy. In W. W.
Norton & Company, 1994.

[39] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A prag-
matic introduction to secure multi-party computation. Found.
Trends Priv. Secur., 2018.

[40] David A. Freedman. Statistical Models: Theory and Practice.
Cambridge University Press, 2 edition, 2009.

[41] David Froelicher, Juan R Troncoso-Pastoriza, Jean Louis Rais-
aro, Michel A Cuendet, Joao Sa Sousa, Hyunghoon Cho, Bon-
nie Berger, Jacques Fellay, and Jean-Pierre Hubaux. Truly
privacy-preserving federated analytics for precision medicine with
multiparty homomorphic encryption. Nature communications,
12(1):5910, 2021.

[42] Juan Garay, Berry Schoenmakers, and José Villegas. Practical and
secure solutions for integer comparison. In International Workshop
on Public Key Cryptography, pages 330–342. Springer, 2007.

[43] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana
Raykova, Jack Doerner, Samee Zahur, and David Evans. Privacy-
preserving distributed linear regression on high-dimensional data.
PoPETs, 2017(4):345–364, October 2017.

15

https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://crypto.stanford.edu/prio/

[44] Alexandre Gilotte. Results from the criteo-adkdd-2021 challenge,
2021.

[45] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, 2009.

[46] Robert E. Goldschmidt. Applications of division by convergence.
Master’s thesis, MIT, 1964.

[47] Google. https://developer.chrome.com/docs/privacy-
sandbox/attribution-reporting/. https://developer.chrome.com/
docs/privacy-sandbox/attribution-reporting/, 2022.

[48] Google. Privacy sandbox. https://privacysandbox.com/intl/en us/,
2022.

[49] Google. Googletest – google testing and mocking framework.
https://github.com/google/googletest, 2023.

[50] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and
Divya Gupta. Llama: A low latency math library for secure
inference. Proceedings on Privacy Enhancing Technologies, 4:274–
294, 2022.

[51] Guyon Isabelle, Gunn Steve, Ben-Hur Asa, and Dror Gideon.
Result analysis of the nips 2003 feature selection challenge. In
NIPS, 2004, 2004.

[52] Charlie Harrison, Mariana Raykova, Michael Kleeber, John
Delaney, and Andres Munoz Medina. Multi-browser
aggregation service explainer. https://github.com/WICG/
conversion-measurement-api/blob/main/SERVICE.md, 2020.

[53] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding.
Cheetah: Lean and fast secure two-party deep neural network
inference. IACR Cryptol. ePrint Arch., 2022:207, 2022.

[54] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel,
Shobhit Saxena, Karn Seth, Mariana Raykova, David Shana-
han, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In 2020 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 370–389. IEEE,
2020.

[55] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan
Gu. Distributed learning without distress: Privacy-preserving em-
pirical risk minimization. In Advances in Neural Information
Processing Systems, 2018.

[56] Daniel Jurafsky and James H. Martin. Speech and Language
Processing (3rd Edition). 2009.

[57] Mahimna Kelkar, Phi Hung Le, Mariana Raykova, and Karn Seth.
Secure poisson regression. In 31st USENIX Security Symposium
(USENIX Security 22), Boston, MA, August 2022. USENIX As-
sociation.

[58] Marcel Keller. Mp-spdz: A versatile framework for multi-party
computation. In Proceedings of the 2020 ACM SIGSAC confer-
ence on computer and communications security, pages 1575–1590,
2020.

[59] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sen-
gupta, Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure
multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34, 2021.

[60] Yehuda Lindell. How to simulate it–a tutorial on the simulation
proof technique. Tutorials on the Foundations of Cryptography,
pages 277–346, 2017.

[61] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious
neural network predictions via minionn transformations. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 619–631, 2017.

[62] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul
Govind, Aniket Kate, and Andrew K. Miller. HoneyBadgerMPC
and AsynchroMix: Practical asynchronous MPC and its application
to anonymous communication. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 887–903. ACM Press, November 2019.

[63] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer
Wagh. Rabbit: Efficient comparison for secure multi-party com-
putation. In Nikita Borisov and Claudia Diaz, editors, Financial
Cryptography and Data Security, pages 249–270, Berlin, Heidel-
berg, 2021. Springer Berlin Heidelberg.

[64] Payman Mohassel and Yupeng Zhang. SecureML: A system
for scalable privacy-preserving machine learning. In 2017 IEEE
Symposium on Security and Privacy, pages 19–38. IEEE Computer
Society Press, May 2017.

[65] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe
Bossuat, and Jean-Pierre Hubaux. Multiparty homomorphic
encryption from ring-learning-with-errors. Proceedings on
Privacy Enhancing Technologies, 2021(CONF):291–311, 2021.

[66] Sanjay Kumar Palei and Samir Kumar Das. Logistic regression
model for prediction of roof fall risks in bord and pillar workings
in coal mines: An approach. Safety Science, 2009.

[67] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. ABY2.0: Improved mixed-protocol secure two-party
computation. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 2165–2182. USENIX Association,
August 2021.

[68] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. Syncirc: Efficient synthesis of depth-optimized circuits
for secure computation. In 2021 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 147–157.
IEEE, 2021.

[69] Lance Roy Peter Rindal. libOTe: an efficient, portable, and easy
to use Oblivious Transfer Library. https://github.com/osu-crypto/
libOTe.

[70] Deevashwer Rathee, Anwesh Bhattacharya, Rahul Sharma, Divya
Gupta, Nishanth Chandran, and Aseem Rastogi. Secfloat: Accurate
floating-point meets secure 2-party computation. Cryptology ePrint
Archive, 2022.

[71] Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda.
Faster PCA and linear regression through hypercubes in HElib.
Cryptology ePrint Archive, Report 2018/801, 2018. https://eprint.
iacr.org/2018/801.

[72] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli,
Divya Gupta, Rahul Sharma, Nishanth Chandran, and Aseem Ras-
togi. SiRnn: A math library for secure RNN inference. In 2021
IEEE Symposium on Security and Privacy, pages 1003–1020. IEEE
Computer Society Press, May 2021.

[73] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth
Chandran, Divya Gupta, Aseem Rastogi, and Rahul Sharma.
CrypTFlow2: Practical 2-party secure inference. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 325–342. ACM Press, November 2020.

[74] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth
Chandran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Crypt-
flow2: Practical 2-party secure inference. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 325–342, 2020.

[75] Deevashwer Rathee, Thomas Schneider, and KK Shukla. Improved
multiplication triple generation over rings via rlwe-based ahe. In
International Conference on Cryptology and Network Security,
pages 347–359. Springer, 2019.

[76] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar.
Deepsecure: Scalable provably-secure deep learning. In Proceed-
ings of the 55th annual design automation conference, pages 1–6,
2018.

[77] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis
Bach. Ariann: Low-interaction privacy-preserving deep learning
via function secret sharing. Proceedings on Privacy Enhancing
Technologies, 2022(1):291–316, 2020.

[78] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny
Pinkas. Make some ROOM for the zeros: Data sparsity in secure
distributed machine learning. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 1335–1350. ACM Press, November 2019.

[79] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushile-
vitz, Prateek Mittal, and Tal Rabin. Falcon: Honest-majority
maliciously secure framework for private deep learning. arXiv
preprint arXiv:2004.02229, 2020.

[80] XiaoFeng Wang, Haixu Tang, Shuang Wang, Xiaoqian Jiang, Wen-
hao Wang, Diyue Bu, Lei Wang, Yicheng Jiang, and Chenghong
Wang. idash secure genome analysis competition 2017, 2018.

16

https://developer.chrome.com/docs/privacy-sandbox/attribution-reporting/
https://developer.chrome.com/docs/privacy-sandbox/attribution-reporting/
https://privacysandbox.com/intl/en_us/
https://github.com/google/googletest
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://eprint.iacr.org/2018/801
https://eprint.iacr.org/2018/801

[81] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen,
and Han Yu. Federated learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 13(3):1–207, 2019.

[82] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
Foundations of Computer Science, 1986., 27th Annual Symposium
on, pages 162–167. IEEE, 1986.

[83] Jiayuan Ye and Reza Shokri. Differentially private learning needs
hidden state (or much faster convergence). CoRR, abs/2203.05363,
2022.

A. Definitions: iDPF, DCF, DDCF

Incremental Distributed Point Functions. Introduced by
Boneh et al. [13], incremental distributed point functions
(iDPF) are a generalization of the standard distributed
point function (DPF). At a high level, a DPF is a com-
pressed pseudorandom 2-party secret-sharing of a unit
vector of length 2n. More specifically, DPF allows a
compressed 2-party secret-sharing of a point function fα,β
where α ∈ {0, 1}n, β ∈ F, and:

fα,β(x) =

{
β if x = α

0 otherwise

Such a secret sharing is represented by a pair of keys
(k0, k1) where key kb is the share held by Party Pb.
Incremental DPFs (iDPF) are a generalization of DPF
which allow compressed sharing of a binary tree with 2n

leaves and a unique special path from root to leaf. I.e.,
there is a single non-zero path in the tree, ending at leaf
α, whose nodes have non-zero values β1, . . . , βn. More
specifically, iDPF allows a 2-party secret-sharing of an
all-prefix point function fα,β̄ , where α ∈ {0, 1}n, β̄ =
((G1, β1), . . . , (Gn, βn)), and for each ℓ ∈ [n]:

fα,β̄ :
⋃

ℓ∈[n]

{0, 1}ℓ →
⋃

ℓ∈[n]

Gℓ, and

fα,β̄(x1, . . . , xℓ) =

{
βℓ if (x1, . . . , xℓ) = (α1, . . . , αℓ)

0 otherwise

We sometimes allow an iDPF to be evaluated over the
empty prefix. We now present iDPF formally, see Figure 1
for more intuition. We closely follow the definitions of
Boneh et al. [13], with one major difference being that we
expose the EvalNext function as part of our definition. We
will use this in our reduction from distributed comparison
functions to iDPFs.

Definition 2. A 2-party iDPF scheme is a tuple of three al-
gorithms (Genidpf ,EvalNextidpf ,EvalPrefixidpf) such that:

• Genidpf(1λ, (α, (G1, β1), . . . , (Gn, βn))) is a PPT
key generation algorithm that given security
parameter 1λ and a function description
(α, (G1, β1), . . . , (Gn, βn)), outputs a pair of keys
and public parameters (k0, k1, pp = (pp1, . . . , ppn)).
Recall that α ∈ {0, 1}n represents the index of the
leaf at the bottom of the non-zero path while β1 ∈
G1, . . . , βn ∈ Gn correspond to the values on the
nodes of the non-zero path (apart from the root node).
pp includes the public values λ, n, (G1, . . . ,Gn).

• EvalNextidpf(b, stℓ−1
b , ppℓ, xℓ) is a polynomial time

incremental evaluation algorithm that given a party
id b ∈ {0, 1}, secret state stℓ−1

b , public parameters

Figure 1: Incremental DPF gives compact secret sharing
of values on the nodes of a binary tree with a single non-
zero path. In this example, α = 101 and the values on the
path to the leaf at index α are β1, β2, β3. All other nodes
are 0. This figure shows the reconstructed secret shares
Eval(0, k0, ·) ⊕ Eval(1, k1, ·). The keys are generated as
(k0, k1)← Genidpf(α, β1, β2, β3).

ppℓ, and input evaluation bit xℓ ∈ {0, 1}, outputs an
updated state and output share (stℓb, y

ℓ
b).

Intuitively, EvalNext represents the evaluation on
some partial value x ∈ {0, 1}ℓ−1 and outputs a secret
sharing yℓb of the value on the x||xℓth node of the
binary tree and an updated state stℓb.

• EvalPrefixidpf(b, kb, pp, (x1, . . . , xℓ)) is a polynomial
time prefix evaluation algorithm that given a party id
b ∈ {0, 1}, iDPF key kb, public parameters pp, and
input prefix
(x1, . . . , xℓ) ∈ {0, 1}ℓ, outputs an additive secret
sharing of the output value yℓb.

Next, we present iDPF correctness and security.

Definition 3. (Gen,EvalNext,EvalPrefix) from Defini-
tion 2 is an iDPF scheme if it satisfies the following
requirements:

• Correctness. For all λ, n ∈ N, α ∈ {0, 1}n, abelian
groups and values β̄ = ((G1, β1), . . . , (Gn, βn)),
level ℓ ∈ [n], and input prefix (x1, . . . , xℓ ∈ {0, 1}ℓ),
the following requirements hold:
– EvalNext: Pr[yℓ0 + yℓ1 = fα,β̄(x1, . . . , xℓ)] = 1,

where probability is taken over:
(k0, k1, pp)←

Genidpf(1λ, (α, (G1, β1), . . . , (Gn, βn))),
And for each b ∈ {0, 1}, yℓb is:
1) st0b ← kb
2) for j = 1 to ℓ:
3) (stjb, y

j
b)← EvalNextidpf(b, stj−1

b , ppj , xj)
4) return yℓb

– EvalPrefix: Pr[yℓ0 + yℓ1 = fα,β̄(x1, . . . , xℓ)] = 1,
where probability is taken over:
(k0, k1, pp)←

Genidpf(1λ, (α, (G1, β1), . . . , (Gn, βn))),
And for each b ∈ {0, 1}:
yℓb ← EvalPrefixidpf(b, kb, pp, (x1, . . . , xℓ))

• Security. For every b ∈ {0, 1}, there is a PPT simula-
tor Simb, such that for every sequence ((α, β̄)λ)λ∈N
of polynomial size all-prefix point functions and
polynomial size input sequence xλ, the outputs of
the Real and Ideal experiments are computationally
indistinguishable:

17

– Realλ:
(k0, k1, pp)←

Genidpf(1λ, (α, (G1, β1), . . . , (Gn, βn))),
Output (kb, pp)

– Idealλ:
Output Simb(1

λ, (n,G1, . . . ,Gn))

A naive approach to constructing iDPF would be to
generate one DPF key for each prefix length, i.e. a total
of n independent keys. Then, evaluate x ∈ {0, 1}ℓ with
the ℓth key. This solution would yield key size quadratic
in the input length n. [13] gives a more direct construction
with key size linear in n.

Theorem A.1 (Concrete cost of iDPF [13]). Given a PRG
G : {0, 1}λ → {0, 1}2λ+2, there exists a iDPF scheme
with key-size λ + (λ + 2)n +

∑
i∈[n] mi bits, where n is

the bit-length of α and mi is the bit-length of βi. For m′
i =

1+ ⌈mi/λ⌉, the key generation algorithm Gen invokes G
at most 2

∑
i∈[n] m

′
i times and the algorithm Eval invokes

G at most
∑

i∈[|x|] m
′
i times.

Distributed Comparison Function (DCF). A DCF is
a central building block of many FSS gates including
interval containment, spline, and comparison. It is a FSS
scheme for a function f<

α,β , which outputs β if x < α
and 0 otherwise. For a vector of size 2n, the current most
efficient construction has a key size ≈ n(λ+ n) [16].

In this work, we introduce a new simple DCF con-
struction by black-box reducing it to iDPF. We believe
this construction is of independent interest and present it
in Appendix E.
Dual Distributed Comparison Function (DDCF).
DDCF is a variant of DCF and a class of functions
fα,β1,β2 : {0, 1}n → G. Parameterized by α, β1, β2,
DDCF outputs β1 for 0 ≤ x < α and β2 for x ≥ α.
DDCF can be constructed from DCF using fα,β1,β2 =
β2 + f<

α,β1−β2
(x).

B. Functionalities Based on FSS

We will now describe some of the functionalities
which can be realized efficiently with Function Secret
Sharing. We note that gates based on FSS operate on
masked inputs and produce masked outputs (instead of
standard secret-sharing MPC gates which operate on in-
put shares and produce output shares). Specifically, a
masked value xmask for a secret input x is computed as
xmask := x + r, where r is a uniform random element
from the same domain as x. The mask r is sampled
during an offline phase and is used in constructing the
pre-processing material for FSS based gates. As described
in [16], we can easily convert from a masked value to a
secret-shared value by letting parties hold a secret-sharing
of the mask from the offline phase.
Equality Gate. Let x, y ∈ UN be inputs to the equality
gate. The output is a Boolean sharing 1{x = y}. More
formally:

FEQ(x, y)→ (b0, b1)

where x, y ∈ UN

and b0, b1 is a Boolean sharing of bit b := 1{x = y}

Boyle et. al. [21] constructed an equality gate by
making two observations. First, x = y can be evaluated
by zero-testing x− y, i.e. 1{x− y = 0}. Second, equality
test can be reduced to a single DPF call. Recall that the
inputs to FSS gates are masked. I.e., let x, y be the masked
inputs and rin0 , r

in
1 their masks. Then, equality holds when

x − rin0 = y − rin1 , or equivalently, x − y = rin0 − rin1 . In
other words, we evaluate a DPF function that evaluates to
β = 1 when α = rin0 − rin1 , 0 otherwise. We present the
full construction in Algorithm 3.

Algorithm 3: FSS Gate for FEQ

Input: P0, P1 hold xmask := x+ rin0 , where
xmask ∈ G1, and ymask := y + rin1 , where y ∈ G2

Output: P0, P1 learn a uniform Boolean sharing
bmask = b⊕ rout, where b := 1{x = y}.

// Part I: Offline Phase.
Geneqn (1λ, rin0 , r

in
1 , r

out):
1 Let rin0 ∈ G1 and rin1 ∈ G2.
2 Let α← rin0 − rin1 , β = 1.
3 k′

0, k
′
1 ← GenDPF(1λ, α, β)

4 Sample random additive shares rout0 , rout1 ← JroutK.
5 Let kb = k′

b||routb .
6 return (k0, k1)

// Part II: Online Phase.
Evaleqn (b, kb, xmask, ymask):

7 Parse kb = k′
b||routb .

8 return EvalDPF(b, k′
b, xmask − ymask) + routb

Comparison Gate. Let x ∈ UN , y ∈ UN be inputs to
the comparison gate. The output is a Boolean sharing
1{x < y}. We present the comparison gate of Boyle et.
al. [16] in Algorithm 4. This comparison gate requires a
single invocation of DDCF, and thus a single invocation of
DCF. Note that we slightly modify the protocol to make it
syntactically compatible with our secure comparison. I.e.,
we (1) write the comparison for x < y rather than [16]’s
x > y and (2) the output group is U2 instead of UN .

Algorithm 4: FSS Gate for Fn
CMP

Input: P0, P1 hold xmask := x+ rin0 , where
xmask ∈ G1, and ymask := y + rin1 , where y ∈ G2

Output: P0, P1 learn a uniform boolean sharing
bmask = b⊕ rout, where b := 1{x < y}.

// Part I: Offline Phase.
Gencmp

n (1λ, rin0 , r
in
1 , r

out):
1 Let y = (2n − (rin0 − rin1)) ∈ UN and

α(n−1) = y[0,n−1).
2 (k

(n−1)
0 , k

(n−1)
1)← GenDDCF

n−1

(
1λ, α(n−1), β1, β2,U2

)
,

where β1 = 1⊕ y[n−1], β2 = y[n−1] ∈ U2.
3 Sample random rout0 , rout1 ← UN s.t. rout0 ⊕ rout1 = rout.
4 For b ∈ {0, 1}, let kb = k

(n−1)
b ||routb .

5 return (k0, k1)

// Part II: Online Phase.
Evalcmp

n (b, kb, xmask, ymask):
6 Parse kb = k

(n−1)
b ||routb .

7 Set z = (xmask − ymask) ∈ UN .
8 Set m(n−1)

b ← EvalDDCF
n−1 (b, k

(n−1)
b , z(n−1)), where

z(n−1) = 2n−1 − z[0,n−1) − 1.
9 return b · z[n−1] +m

(n−1)
b − 2 · z[n−1] ·m(n−1)

b + routb

18

Multiple Interval Containment (MIC) Gate. Boyle et.
al. [16] presented an FSS gate for the FMIC functionality.
Such a functionality is parameterized by a set of m
intervals {pi, qi}i∈[m] where pi, qi ∈ UN . It takes as input
a masked value xmask, and outputs a sequence of bits {bi}
where bi = 1{pi ≤ x ≤ qi}.

Algorithm 5: FSS Gate for FMIC

Input: P0, P1 hold xmask := x+ rin0 , where
xmask ∈ G1, and ymask := y + rin1 , where y ∈ G2

Output: P0, P1 learn a uniform arithmetic sharing of
bimask = bi + routi , where bi := 1{pi ≤ x ≤ qi}.

// Part I: Offline Phase.
Genmic

n,m,{pi,qi}i(1
λ, rin, {routi }i∈[m]):

1 Let γ = (N − 1) + rin

2 (k
(N−1)
0 , k

(N−1)
1)← GenDCF

n (1λ, γ, 1,UN)
3 for i = 1 to m :
4 Set q′i = qi + 1, α(p)

i = pi + rin, α(q)
i = qi + rin,

α
(q′)
i = qi + 1 + rin.

5 Sample random zi,0, zi,1 ← UN such that:
zi,0 + zi,1 = rout + 1{α(p)

i > α
(q)
i } − 1{α(p)

i >

pi}+ 1{α(q′)
i > q′i}+ 1{α(q)

i = N − 1}
6 For b ∈ {0, 1}, let kb = k

(N−1)
b ||{zi,b}i

7 return (k0, k1)

// Part II: Online Phase.
Evalmic

n,m,,{pi,qi}i(b, kb, xmask):
8 Parse kb = k

(N−1)
b ||{zi,b}i.

9 for i = 1 to m :
10 Set q′i = qi + 1 mod N .
11 Set x(p)

i = x+ (N − 1− pi) and
x
(q′)
i = x+ (N − 1− q′i).

12 Set s(p)i,b ← EvalDCF
n (b, k

(N−1)
b , x

(p)
i).

13 Set s(q
′)

i,b ← EvalDCF
n (b, k

(N−1)
b , x

(q′)
i).

14 yi,b = b · (1{xmask > pi} − 1{xmask >

q′i} − s
(p)
i,b + s

(q′)
i,b + zi,b).

15 return {yi,b}i

C. Secure Comparison Protocol

In Figure 2, we describe our formal secure comparison
protocol explained in Section 6.1.

D. Related Works

Boura et. al. [14] introduce a novel and exciting sig-
moid approximation, which works well in most settings,
but is inaccurate unlike our work on the full interval.
I.e., their approximation with trigonometric polynomials
suffers from Gibbs phenomenon resulting in inaccurate
results for some inputs. We note that the follow-up work
[23] uses a direct computation of sigmoid for higher
precision, and uses iterative techniques to do so. This
paper does not discuss communication rounds, and we
note that their experiments are run on ultra low-latency
0.3ms network, and hence interaction cost is not reflected.

E. Black-Box Reduction from DCF to iDPF

We now describe our reduction from DCFs to iDPFs.
Our construction is based on the following intuition. Sup-

pose the two parties have shares Jvn−1K of an (n − 1)-
bit DCF f<

α1...αn−1,β
evaluated at the n − 1-bit prefix

x1, ..., xn−1 of x. They now want to get JvnK, i.e., shares
of the output of the n-bit DCF f<

α,β on input x. There are
four cases.

1) x1, . . . , xn−1 ̸= α1, . . . , αn−1. Then no matter what
αn and xn are, vn = vn−1.

2) x1, . . . , xn−1 = α1, . . . , αn−1, and αn = 0. Then no
matter what xn is, x ≥ α, and so vn = vn−1 = 0.

3) x1, . . . , xn−1 = α1, . . . , αn−1, and αn = 1, xn = 1.
Then x = α and therefore vn = vn−1 = 0.

4) x1, . . . , xn−1 = α1, . . . , αn−1, and αn = 1, xn = 0.
Then vn−1 = 0, but vn = β.

Observe that only in the last case, vn ̸= vn−1, and more
precisely, vn = vn−1+β. Now if we can construct shares
of a value δ, such that δ = 0 in cases (1)–(3), and δ =
β in case (4), then vn = vn−1 + δ, which allows us to
recursively build a DCF for arbitrary n.

Our main observation is that we can use a n − 1-bit
DPF, evaluated on x1, . . . , xn−1, to obtain shares of δ.
Observe that in case (1), any DPF will satisfy δ = 0. To
distinguish between case (2) on one side, and (3) and (4)
on the other, we only need to look at αn, and set the DPF
value to be 0 when αn = 0, and β otherwise. Finally,
observe that the distinction between (3) and (4) can be
made at evaluation time, since it only depends on x. That
is, we only use the DPF result at all if xn = 0, and set
δ = 0 otherwise.

Algorithm 6 shows our construction in detail. In ad-
dition to the two DPF keys, the two parties obtain an
additional secret-shared value, which can be interpreted
as the iDPF evaluation at the empty prefix. It is used
to initialize v1. For i = 2, . . . , n, vi is then constructed
from vi − 1 and δ = (1 − x) · yi, where yi is the iDPF
evaluation at level i. Correctness follows by the above
recursion argument.

Theorem E.1 (Concrete cost of DCF using iDPF). Given
a PRG G : {0, 1}λ → {0, 1}2λ+2, there exists a DCF
scheme with key-size n(λ +m + 2) − 2 bits, where n is
the bit-length of α and m is the bit-length of β. For m′ =
1 + ⌈m/λ⌉, the key generation algorithm Gen invokes G
at most 2(n− 1)m′ times and the algorithm Eval invokes
G at most (n− 1)m′ times.

Efficiency. Note that in our reduction, βi at each level of
iDPF is either set to β or 0. Therefore, for all i ∈ [n],
|βi| = |β| = m.

Following from Theorem A.1 and the fact that we can
set the iDPF domain size to be n− 1 (instead of n), the
key-size turns out to be λ + (λ + 2)(n − 1) + (n − 1)m
bits. Since we require an additional sharing of β1, the total
DCF key size becomes λ+(λ+2)(n−1)+(n−1)m+m
bits which simplifies to n(m+ λ+ 2)− 2 bits.

The cost of GenDCF and EvalDCF algorithms can be
computed based on the underlying cost of GeniDPF and
EvaliDPF algorithms. Following from the Theorem A.1
and the fact that we can set the domain size of iDPF
to be n − 1, the total PRG invocations in GeniDPF (and
hence in GenDCF) turns out to be 2(n − 1)m′ where
m′ = 1+⌈m/λ⌉. In EvalDCF, we perform an EvalNextiDPF

at each of the n − 1 prefixes of the input x which will
cost

∑
j∈[2,n] m

′ = (n− 1)m′ PRG evaluations.

19

Figure 2: Constant round secure comparison protocol
∏

CMP for ℓ-bit inputs.

Comparison with original DCF construction. Boyle
et al. [16] presented a direct construction of DCF by
carefully modifying and making non black-box changes to
a prior DPF construction [20]. We provide a conceptually
simpler DCF construction by making black-box use of
iDPFs (which have a richer structure than DPF). As an
added benefit, the key size of our DCF construction is
smaller than Boyle et al. [16] by λ+m+2 bits. In terms
of computation, our construction doesn’t require any PRG
evaluations at the first bits, and so it saves m′ = ⌊m/λ⌋
PRG evaluations.

F. Efficient 2PC Generation of FSS Keys

As we have seen, our secure comparison protocol
invokes FSS primitives such as DPF, DCF and iDPF.
Besides this, our secure spline protocol invokes FMIC

which in-turn relies on a DCF. In order to implement the
offline phase of our protocol, we also need to generate
keys for these FSS primitives efficiently in a 2PC setting.
Note that as described in Appendix E, DCF can be black-
box reduced to iDPF. Furthermore, DPF is just a special
case of a iDPF. So it suffices to design an efficient 2PC
offline phase for generating iDPF keys.

A straight-forward way to generate these keys in MPC

20

Algorithm 6: DCF to iDPF Reduction
GenDCF

n (1λ, α, β) :

1 Let α = α1, . . . , αn ∈ {0, 1}n be the bit
decomposition of α

2 Let {β1, . . . , βn} be a sequence of values such that:
βi := β if αi = 1, and 0 otherwise.

3 (k0, k1, pp)← GeniDPF
n−1(α, β2, . . . , βn)

4 Choose random Jβ1K0, Jβ1K1 such that
Jβ1K0 + Jβ1K1 = β1.

5 return
(
(k0, Jβ1K0), (k1, Jβ1K1), pp

)
EvalDCF

n

(
b, (kb, Jβ1Kb), pp, x

)
:

1 Let x = x1, . . . , xn ∈ {0, 1}n be the bit
decomposition of x

2 Let v1 = (1− x1) · Jβ1Kb, st1 = kb
3 for i = 2 to n :
4 (sti, yi)← EvalNextiDPF

n−1(b, sti−1, kb, x1 . . . xi−1)
5 vi ← vi−1 + (1− xi) · yi
6 return vn−1

is to implement GeniDPF using a generic MPC compiler.
This, however, has the drawback of requiring PRG calls
inside the MPC, making this approach inefficient in prac-
tice. [34] presents a construction that does not require
secure PRG evaluations. While, it comes at a computation
cost that is linear in the domain size (i.e., exponential in
the input size), and its round complexity is linear in the
input size, it is still efficient enough in our case, where
the domain for any single DCF is small.

However, the original Doerner-shelat construction is
not sufficient to obtain FSS keys that generate arithmetic
shares for domains larger than one bit. This is often the
format required to compose with other secret-sharing-
based MPC protocols, which is also the case for our
construction. Specifically, this is needed when we invoke
the MIC gate as part of our secure spline protocol.

While one option is to convert from Boolean to
arithmetic shares after the DPF evaluation in the online
computation, this would require additional rounds of inter-
action and communication. In the spirit of reducing online
communication as far as possible without sacrificing of-
fline performance, we instead develop a new construction
for generating DPF keys with arithmetic output shares
directly.

Also note that while previous work [16] claims a
construction of Doerner-shelat for DCFs with arbitrary
output groups, their construction is missing a crucial step,
namely the computation of t∗ in Step 10 of Fig. 9 of [16].
The main challenge for this construction is the fact that
in order to compute the value correction words included
in the DPF keys, the parties need to identify which one
of them holds share 1 and which one holds share 0 of the
control bit corresponding to the node on the evaluation
path at every level. There are 2ℓ nodes at level ℓ, and each
party can locally evaluate its shares for all nodes, but the
parties do not know which node is on the evaluation path.

So we need to implement this oblivious selection of
the shares of appropriate node whose index is shared
between the two parties. We leverage the following ob-
servation. The value of the control bit is one only for
nodes that lie on the evaluation path and is zero for all

other nodes. Since we have binary shares, this means that
for all nodes not on the evaluation path, the shares of the
two parties are equal. This means that if each party sums
up its shares for the control bits of all nodes in the last
level, the resulting values will differ by one and the party
who has the larger value holds a share 1 of the control
bit of the evaluation path node in the last level, while the
other party has share 0.

We can solve the problem by comparing the two
sums of shares of control bits at the last level, but in
as we are trying to generate these DPF keys in order to
solve a comparison problem more efficiently, so this is
less satisfying. Our second observation is that since these
values differ just by one, it is sufficient to consider only
their last two bits to compute the comparison bit. This
allows us to compute t∗ using a single AND-Gate.

We present the details our Doerner-shelat construction
for iDPFs with arbitrary output groups in Algorithm 7.
The two parties hold secret shares of α and {βi}i∈[n], and
would like to generate the iDPF keys for fα,{βi}i∈[n]

. In
order to get a protocol for distributed DCF key generation,
observe that we only need to compute shares β1, . . . βn in
Algorithm 6 given α1, . . . , αn and β. As βi = αi · β,
this reduces to n parallel calls to FMUX. Finally, observe
that in groups where −x = x (such as boolean sharing),
JW 0

CW K = JW 1
CW K in Step 11, and so the last FMUX2 call

can be saved in that case, making the entire second MPC
linear.

G. Adding Differential Privacy

In this section, we discuss how our solution can also
provide differential privacy for its output, which limits
the leakage from the final model about individual train-
ing samples. As we mentioned in the introduction, our
approach allows that the two computation parties obtain
cryptographic shares of the logistic regression parameters
which they use to jointly answer inference queries. So
one option for enabling differential privacy will be at that
query level.

However, we consider here the case where the trained
regression model is released to a single party and the goal
is to guarantee DP for the model parameters. Since our
training construction used SGD, we will also use the DP-
SGD approach introduced by Abadi et al. [1] for general
SGD ML training and the instantiation of Jayaraman et.
al. [55] for the setting of logistic regression presented
in Algorithm 8. Jayaraman et. al. [55] provides a two
party computation protocol for secure training of logistic
regression when the input data is horizontally partitioned
between the two parties. We adapt their framework to the
setting where the input is fully secret-shared between the
two parties.

In Algorithm 9 we give the pseudocode for implement-
ing the DP-SGD algorithm in MPC. The MPC protocol is
similar to the non-DP algorithm in Algorithm 1, except in
each iteration, the computation parties make the gradient
differentially private using noise perturbation. We assume
that this noise is generated in an offline phase where
computation parties get secret shares for noise vectors.
In the online phase, they add these shares of noise to
the gradient update. Techniques for two-party generation

21

Algorithm 7: Secure Distributed GeniDPF

Inputs: Each party holds additive shares of
α ∈ {0, 1}n (bitwise) and {βi}i∈[n] where βi ∈ Gi

Output: iDPF keys for fα,{βi}i∈[n]

Parameters: Let G : {0, 1}λ → {0, 1}2(λ+1) and
Convert : {0, 1}λ → {0, 1}λ+1 be PRGs.

Each party Pb performs the following:
1 Sample s∅b ∈ {0, 1}λ, set t∅b = b.
2 for ℓ = 1 to n :
3 For all w ∈ {0, 1}ℓ−1, compute

sw,L
b ||tw,L

b ||sw,R
b ||tw,R

b = G(swb).
4 Compute sLb ||tLb ||sRb ||tRb =⊕

w∈{0,1}l−1 s
w,L
b ||tw,L

b ||sw,R
b ||tw,R

b .
5 Secure Computation:

- Inputs: Boolean sharing of αℓ, arithmetic sharing
of {sLb , sRb , tLb , tRb }b∈{0,1}.

- Compute :

JsRK← JsR0 K⊕ JsR1 K

JsLK← JsL0 K⊕ JsL1 K

JsCW K← FMUX2

(
JsRK, JsLK, JαℓK

)
JtLCW K← JtL0 K⊕ JtL1 K⊕ JαℓK⊕ J1K

JtRCW K← JtR0 K⊕ JtR1 K⊕ JαℓK

- Output sCW , tLCW , tRCW to both
6 For all w ∈ {0, 1}ℓ−1, set

s̃
w||0
b ||s̃w||1

b ← (sw,L
b ||sw,R

b)⊕ twb · (sCW ||sCW)
7 For all w ∈ {0, 1}ℓ−1, set

t
w||0
b ||tw||1

b ← (tw,L
b ||tw,R

b)⊕ twb · (tLCW ||tRCW)
8 For all w ∈ {0, 1}ℓ, set swb ||Ww

b ← Convert(s̃wb)
9 Compute W ℓ

b ←
∑

w∈{0,1}l
Ww

b .

10 Compute T ℓ
b ← b+ (−1)b ·

∑
w∈{0,1}ℓ

twb .

Let τ0
b and τ1

b denote the two least significant bits
of Tb.

11 Secure Computation:
- Inputs: Arithmetic sharing of βℓ, private inputs
W ℓ

b , τ
0
b , τ

1
b for Party Pb.

- Compute:

Jt∗K← 1⊕ τ1
0 ⊕ τ1

1 ⊕ (τ0
0 · τ0

1)

JW 0
CW K← JβlK−W l

0 +W l
1

JW 1
CW K← −JβlK +W l

0 −W l
1

JWCW K← FMUX2

(
JW 0

CW K, JW 1
CW K, Jt∗K

)
.

- Output WCW to both
12 Set CW ℓ ← sCW ||tLCW ||tRCW ||WCW

13 Output kb ← s∅b ||CW 1|| . . . ||CWn

of DP noise were presented by Dwork at al. [35] and
Champion et al. [25].

If we only want to guarantee DP from the output of
the secure logistic regression training, then we can reveal
the DP gradient update to the two computation parties as
shown in Algorithm 9. This would enable some efficiency
optimization replacing a secure matrix multiplication with
a plaintext matrix multiplication. While this approach
still provides DP for the output, it is not known what
is the exact privacy comparison between revealing only
the final DP output model and all intermediate DP gradi-
ent updates. However, recent works [27], [83] show that
keeping the DP-SGD intermediate states hidden allows
for faster convergence and spending less privacy budget
for strongly convex loss functions for noisy stochastic
gradient descent. Our DP secure computation training
algorithm supports hiding these intermediate states at the
same online communication cost.

Algorithm 8: DP-SGD
Public inputs: Number of epochs T , Dataset size n,

Batch size B, Lipschitz value G = 1, Smoothness
value L = 0.25, Learning rate α = 1/L, DP
parameters ϵ and δ

Private inputs: Dataset X,y having k features

1 Let w0 be the initial model with arbitrary weights
2 for t = 1 to T :
3 Compute gradient

gt ← 1
B
XT

B × (Sigmoid(XB ×wt−1)−YB)
4 Perturb gradient g̃t ← gt +N (0, σ2Ip) where

σ2 = 8G2T log(1/δ)

n2ϵ2

5 Update model wt ← wt−1 − α · g̃t

6 return wT

Algorithm 9: DP-SGD Logistic Regression Pro-
tocol

Public inputs: Number of epochs T , dataset
dimensions n, k, batch size B, Lipschitz value
G = 1, smoothness value L = 0.25, learning rate
α = 1/L, DP parameters ϵ and δ, regularization
parameter λ, fixed-point parameters (R, w, s,Fix).

Private inputs: Secret-shared dataset JXK ∈ Rn×k

and labels JyK ∈ Rn where X and y are in
fixed-point representation. Secret shares JrtK ∈ Rk of
noise drawn from N (0, σ2Ip), for each t ∈ [T]
where rt is in fixed-point representation.

Private outputs: Secret-shared differentially private
trained model after T epochs JwTK where wT is in
fixed-point representation.

1 Let w0 be the initial model with arbitrary weights.
2 for t = 1 to T :
3 for b = 1 to ⌊n/B⌋ :
4 i← (b− 1) ·B + 1
5 j ← min(n, b ·B)
6 JXBK← JXi...jK
7 JuK← JXBK ·wt−1

8 JsK← FSigmoid(u)
9 JdK← JsK− Jyi...jK

10 JgK← FmatMult

(
JXB

⊤K, JdK
)

11 JwtK← Jwt−1K−(α/B)·(JgK+λ·Jwt−1K)+JrtK
12 wt ← Reconstruct(JwtK)
13 return wT.

22

Figure 3: The sigmoid function computed insecurely using
the direct formula 1

1+e−x over floating-point numbers.

Jayaraman et. al. [55] also present an output-
perturbation DP technique for logistic regression, which
adds noise only to the final model, rather than at each level
of gradient descent. We note that our original protocol in
Algorithm 1 can easily be modified to use the output per-
turbation technique, by having both parties collaboratively
generate shares of the output perturbation noise and add
it to their respective shares of the output before revealing
them.

As noted in [55], adding the noise iteratively to the
gradient or directly to the output may have different im-
pact on the accuracy of the final model depending on the
setting, though adding noise iteratively generally results
in more accurate models. We are able to support both
options between Algorithms 1 (with output-perturbation
at the end of training) and Algorithm 9.

H. Additional Figures

In this section, we show the sigmoid function com-
puted insecurely (non-interactively outside of secure com-
putation) using the direct formula 1

1+e−x in Figure 3. We
further demonstrate how our v1 approximation of sigmoid,
also computed insecurely, compares to the insecure ap-
proximations in SecureML (piecewise approximation of
3 pieces) and MP-SPDZ (also piecewise approximation
but of 5 pieces) in Figure 4. In Figure 5, we measure the
absolute error of our secure sigmoid implementation (both
v1 and v2). The absolute error is defined as the difference
between the output of our secure sigmoid implementation
(over fixed point inputs with 20 fractional bits) and the
baseline implementation of insecure sigmoid using the
direct formula 1

1+e−x (over floating point inputs). We do
this experiment for input values in range [−20, 20] at
increments of 0.1.

I. Online Communication Bottleneck of Se-
cure Logistic Regression

In each iteration of logistic regression, we perform
sigmoid evaluations proportional to the batch size along
with 2 correlated matrix multiplications (Line 7 and Line
10 in Algorithm 1). Assuming n training examples, batch
size B, number of epochs T , we first discuss the cost
associated with the correlated matrix multiplications.

In the online phase, there is a one-time cost of 2nk
ring elements of communication (associated with the
dataset X). Additionally, the per iteration (inner loop)

Figure 4: Comparison of our v1 sigmoid approximation
to SecureML’s and MP-SPDZ’s piecewise approximations,
executed non-interactively outside of secure computation.

Figure 5: The y-axis shows the absolute error (scaled
by 10−5) of our secure sigmoid implementation (sigmoid
v1 and sigmoid v2) for different values of inputs on the
x-axis ranging from [−20, 20]. Recall the absolute error
is defined as the difference between the output of our
secure sigmoid implementation (over fixed point inputs
with 20 fractional bits) and the baseline implementation
of insecure sigmoid using the direct formula 1

1+e−x (over
floating point inputs). For all input values outside the
range [−20, 20], the absolute error is less than 10−8.

communication cost of multiplying XB with wt−1 (Line 7
in Algorithm 1) is 2k elements, and the cost of multiplying
XB

⊤ with d (Line 10 in Algorithm 1) is 2B elements.
Hence, we have a communication of 2k + 2B elements
per iteration. Since there are T · ⌊n/B⌋ iterations, the
total communication cost of matrix multiplications for
the entire logisitic regression training comes out to be
2nk + T · ⌊n/B⌋ (2k + 2B) elements.

23

Note that the sigmoid is invoked on B inputs per
iteration (and n per epoch). Therefore, the total online
cost of sigmoid across T epochs is T · n · s, where s is
the number of ring elements communicated per sigmoid.
Hence, sigmoid becomes a bottleneck, in terms of online
communication cost, whenever the following condition is
satisfied:

T · n · s > 2nk + T · (2kn
B

+ 2n)

=⇒ s > 2(
k

T
+

k

B
+ 1)

The above condition is often true for large datasets
(i.e. where B ≫ k) and/or when per sigmoid communi-
cation cost is high (which is true for prior accurate secure
sigmoid implementations because of its nonlinear nature).

Note that in terms of latency (round complexity), the
sigmoid computation dominates the matrix multiplication.
This is because each matrix multiplication only requires
1 round of communication whereas accurate sigmoid ap-
proximation typically requires more rounds (in our case
it requires 4 rounds for trusted offline (dealer) setting and
6 rounds for distributed (2PC) offline setting).

J. Failure Probability

The non-interactive fixed point truncation protocol
from [64] and the single round exponentiation protocol
from [57] are probabilistic i.e. with some probability, that
can be made arbitrary low by increasing the ring size,
the output of these protocols can be incorrect. Since we
use these two primitives as sub-protocols in our logistic
regression protocol, it also induces an error probability on
the overall training algorithm.

Each invocation of the non-interactive fixed point trun-
cation protocol [64] has an error probability of ptrunc =
2w+1

2ℓ
. We use this as a subprotocol in every instance

of fixed point multiplication to adjust the scale. In each
matrix multiplication, we truncate once after the accumu-
lation (i.e. for multiplying matrix M1 with matrix M2, we
do the usual Beaver multiplication without truncation to
get a matrix M3, and then truncate each element of M3 by
appropriate scale). This ensures (as pointed out in [64])
that the probability of errors introduced due to truncation
is low and the error union bound scales proportional
to |M3| (instead of being proportional to |M1| · |M2|
which would have been the case if we truncate before
accumulating).

With that, we first computing the number of trunca-
tions in the logistic regression training due to matrix mul-
tiplications and sigmoid-specific operations. The number
of truncations performed during the two matrix multipli-
cations in logistic regression (line 7 and 10 in Algorithm
1) per iteration is B + k, i.e. depends on the size of the
multiplication output. Recall that we evaluate sigmoid on
6 intervals. On two of these intervals, we perform inde-
pendent Taylor approximations computed using the secure
polynomial protocol. In each invocation of the polynomial
protocol, we perform d2+d

2 truncations per input in the
batch, where d is the degree of the Taylor approximation.
In our experiments, we set d = 10 which results in a total
of 110 ·B truncations. On two other intervals, we invoke

an independent instance of Secure Spline. In each spline
invocation, we have one truncation per spline interval. In
our experiments, we set the number of intervals to 10,
which results in a total of 20 · B truncations. Adding up
the truncations from matrix multiplication, Taylor series
approximation and spline invocation, we get a total of
131 ·B + k truncations per iteration.

Additionally, each exponentiation protocol from [57]
has a failure probability pexp ≈ 2w+1

2ℓ
. We invoke the

exponentiation protocol twice per input in the batch, hence
a total of 2B exponentiations per iteration.

Now we can bound the total failure probability of one
iteration of training by 2Bpexp + (131B + k)ptrunc using
union bound. Assuming t is the total number of iterations
in the training and plugging the values of pexp and ptrunc,
we get a total failure probability bound across all iterations
as (133B+k) · 2

w+1

2ℓ
· t. Compared to SecureML [64], our

failure probability only reduces the security by ≈ 7 bits
while providing a much more accurate training (due to
our better sigmoid approximation).

K. Semi-Honest Secure Two-Party Computa-
tion

The following description of semi-honest two-party
computation is standard in the literature and has been
taken from [60].
Semi-Honest Adversary. The model that we consider in
this work is that of two-party computation in the pres-
ence of static semi-honest adversaries. Such an adversary
controls one of the parties (statically, and so at the onset
of the computation) and follows the protocol specification
exactly. However, it may try to learn more information
than allowed by looking at the transcript of messages that
it received and its internal state. A protocol that is secure
in the presence of semi-honest adversaries guarantees that
there is no inadvertent leakage of information. Semi-
honest secure protocols are often designed as the first
step towards achieving the stronger notion of malicious
security.
Two-Party Computation (2PC). A two-party protocol
problem is cast by specifying a possibly random process
that maps pairs of inputs to pairs of outputs (one for each
party). We refer to such a process as a functionality and
denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗,
where f = (f1, f2). That is, for every pair of inputs
x, y ∈ {0, 1}∗, the output-pair is a random variable
(f1(x, y), f2(x, y)) ranging over pairs of strings. The first
party (with input x) wishes to obtain f1(x, y) and the
second party (with input y) wishes to obtain f2(x, y).
Privacy by Simulation. As expected, we wish to for-
malize the idea that a protocol is secure if whatever can
be computed by a party participating in the protocol can
be computed based on its input and output only. This
is formalized according to the simulation paradigm by
requiring the existence of a simulator who generates the
view of a party in the execution. However, since the parties
here have input and output, the simulator must be given
a party’s input and output in order to generate the view.
Thus, security here is formalized by saying that a party’s
view in a protocol execution be simulatable given its input
and output. This formulation implies that the parties learn

24

nothing from the protocol execution beyond what they can
derive from their input and prescribed output.

One important point to note is that since the parties
are semi-honest, it is guaranteed that they use the actual
inputs written on their input tapes. This is important since
it means that the output is well defined, and not dependent
on the adversary. Specifically, for inputs x, y, the output
is defined to be f(x, y), and so the simulator can be given
this value.
Definition of Security. We begin with the following
notation:

• Let f = (f1, f2) be a probabilistic polynomial-
time functionality and let π be a two-party protocol
for computing f . (Throughout, whenever we con-
sider a functionality, we always assume that it is
polynomially-time computable.)

• The view of the ith party (i ∈ {1, 2}) during
an execution of π on (x, y) and security param-
eter λ is denoted by viewπ

i (x, y, λ) and equals
(w, ri;m

i
1, . . . ,m

i
t), where w ∈ {x, y} (its input

depending on the value of i), ri equals the contents
of the ith party’s internal random tape, and mi

j rep-
resents the jth message that it received.

• The output of the ith party during an execution
of π on (x, y) and security parameter λ is de-
noted by outputπi (x, y, λ) and can be computed
from its own view of the execution. We denote the
joint output of both parties by outputπ(x, y, λ) =
(outputπ1 (x, y, λ), output

π
2 (x, y, λ)).

Definition 4. Let f = (f1, f2) be a functionality. We say
that a protocol π securely computes f in the presence of
static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms S1 and S2 such that

{
(S1(1λ, x, f1(x, y)), f(x, y))

}
x,y,λ

c≡{
(viewπ

1 (x, y, λ), output
π(x, y, λ))

}
x,y,λ

, and {
(S2(1λ, x, f2(x, y)), f(x, y))

}
x,y,λ

c≡{
(viewπ

2 (x, y, λ), output
π(x, y, λ))

}
x,y,λ

where x, y ∈ {0, 1}∗ such that |x| = |y|, λ ∈ N,
and

c≡ denotes computational indistinguishability of the
ensembles for all large enough values of λ.

Secure Fixed-Point Computation. Let f : R → R
be a real-valued function. Examples of such f include
multiplication of two real-valued numbers, computing a
polynomial with real coefficients on a real-valued number,
sigmoid etc. Since it is not possible to compute f exactly
with infinite precision, we instead compute it over a fixed-
point domain F. Specifically, we compute a different
function f̂ : F → F which computes an approximation
of f . Our specific choice of F is described in Section 2
which is standard.

In the context of 2PC, we are interested in com-
puting a functionality Ff̂ which takes in secret shares

of some fixed-point input x ∈ F and outputs a secret-
sharing of f̂(x). In our paper, we describe protocols Πf̂
for securely computing such fixed-point functionalities
where the description of f̂ is sometimes implicit in the
protocol description. The approximate nature of f̂ w.r.t.
to f comes from the fact that: 1) we are only allowed
to perform operations on fixed point values, 2) the inter-
mediate computations in Πf̂ might have some error. The
latter case is true in our protocols (such as Secure Powers,
Secure Polynomial, Secure Sigmoid) as it relies on the
non-interactive approximate truncation protocol from prior
work [64]13 as a subprotocol.
Security Proof (Sketch). Our final protocol for secure
logistic regression invokes subprotocols for secure matrix
multiplication and secure sigmoid. The protocol for secure
sigmoid in turn invokes additional subprotocols such as
secure spline, secure exponentiation, secure polynomial
evaluation and secure MIC (Multiple Interval Contain-
ment). Let Πf̂ be a particular subprotocol where f̂ is the
approximate function that it is computing. For example,
Πf̂ can be our secure polynomial protocol from Ap-
pendix L.5 where f̂ would be the (implicit) approximate
polynomial evaluation function. All of our protocols are
designed in the preprocessing model where the protocol
Π depends on some correlated randomness available from
the offline phase. Let Ff̂ denote a functionality which
takes as input secret shares of some fixed-point value
x ∈ F and outputs a secret-sharing of f̂(x). Let Foffline

f̂
denote the setup functionality which generates the prepro-
cessing material required for securely computing f̂ and
sends it to the parties.

We can argue that Πf̂ securely computes Ff̂ in the
Foffline

f̂
hybrid model. We note that all of our subprotocols

in this paper, except for secure comparison, make use
of the non-interactive secure truncation protocol from
SecureML [64] for performing fixed point multiplication.
Therefore, for proving security of such subprotocols, we
will abstract away the truncation protocol as an ideal func-
tionality Ftruncate and prove security in a hybrid model
where Ftruncate is available in addition to Foffline

f̂
. The

exact function implemented by Ftruncate is implicit in the
protocol description of SecureML [64].

For proving security, we need to construct a simulator
Sf̂ which simulates the protocol in the ideal world. This
needs to be done in two steps - first, we need to simulate
the preprocessing material, and secondly, we need to
simulate the online protocol interaction. For subprotocols
which are not based on FSS (such as secure matrix
multiplication, secure polynomial evaluation and secure
exponentiation), the preprocessing material can be simu-
lated honestly by having the Sf̂ internally execute Foffline

f̂
and sending the adversary its part of the preprocessing
material. For simulating the preprocessing material of
FSS-based protocols (such as secure spline, secure com-
parison, secure MIC), we can execute a simualtor SFSS

13. Although it is possible to use exact truncation protocols from the
literature at the cost of increased rounds of interaction, we made a choice
to stick with the non-interactive approximate truncation protocol [64] for
efficiency reasons and the fact that this approximation only introduces
atmost 1 bit of error in the least significant bit of the fractional part
which can be offset by increasing the precision scale.

25

for generating fake FSS keys. Such a simulator is already
provided in prior works for DPF [20], DCF [16] and
iDPF [13] and its security relies on the assumption of
One Way Function (OWF). We note that in all of our
subprotocols, simulating the view of the adversary in the
online protocol is straightforward as parties only exchange
uniformly random elements which can be perfectly simu-
lated. In the overall protocol for secure logistic regression,
we can invoke the simulator for all of the underlying
subprotocols in order to simulate the view of adversary.
For technical reasons, as pointed out in [10], a resharing
step needs to be added in the end of secure logistic regres-
sion protocol to upgrade from view-indistinguishability to
indistinguishability of the joint distribution of adversary’s
view and honest party’s output. Practically, this can be
cheaply done by having P0 and P1 locally sample a
random value r0 and r1 respectively from the domain of
the weight vector, sending it across to the other party, and
then adding r0 + r1 locally to their output shares.

L. Secure Sigmoid with Trusted Setup

In this section we provide the details of the sigmoid
construction in the trusted setup model from Section 5.

L.1. Secure Spline Computation

A spline is a special function defined piecewise by
polynomials. Formally, a spline function S : R → R on
an interval [a, b) is specified as a partition of m intervals
{ai, bi}i∈[m] with a d-degree polynomial pi defined for
each of the intervals. The value of the function S on
input x ∈ [a, b] is equal to pi(x) where a ≤ x < b.
For our specific use-case of sigmoid approximation, we
use degree 1 polynomials on m intervals. Note that such
a polynomial Q(x) is of the form Q(x) = ax + b where
a, b are publicly known values. Given a secret-sharing of
x, parties can locally compute a sharing of Q(x). Note
that when computing Q over fixed-point input x, we need
to perform a truncate operation on the product ax before
adding it to b. This can be performed using the non-
interactive truncation protocol described in Section 2.

For constructing a spline protocol, we will let the par-
ties locally evaluate degree 1 polynomials Qi defined for
each of the m intervals. Let Q⃗ represent a length m vector
containing the result of evaluating Qi on x for each of
the m intervals. Now, parties can use MIC gate described
earlier to generate shares of a vector B⃗ = [b1, b2, . . . , bm]
where bi = 1{pi ≤ x ≤ q}. Finally, they can take a dot-
product between Q⃗ and B⃗ to derive the actual spline result.
Such a dot-product can be securely implemented using
a single call to FmatMult. Thus, the total communication
cost of securely evaluating a spline is 2+4m elements of
communication. This can be performed in 2 online rounds
where the first round is used for MIC gate evaluation and
the second round is used for FmatMult. In Appendix L.2 ,
we describe an optimized protocol for performing the dot-
product (for the specific case of splines) which reduces
the overall communication of spline to just 6 elements
of communication. Crucially, this optimization makes the
online communication cost of spline independent of the
number of intervals m.

Note that in our sigmoid approximation described in
Algorithm 2, we use spline only when the input is between
[0, 1). This means that the spline protocol only needs to be
executed on the fractional bits of the input. In other words,
given a positive fixed point input x, let y = x mod 2s. It
is easy to see that y represents the fractional bits of x.
In the secret-shared setting, parties can locally compute
JyK := JxK mod 2s to derive a sharing of the fractional
bits of x in the smaller ring R = Z2s . Now parties can
use (shares of) y for evaluating the MIC component of the
spline protocol, thus reducing the domain size of the MIC
from ℓ bits to s bits. This observation will be needed later
in Section 6. If we set the output domain of MIC to be
Z2ℓ and compute the Q⃗ over R = Z2ℓ , we can ensure that
the final output of spline protocol is shared in R = Z2ℓ

to be compatible for further computations.

L.2. Optimized Dot Product

We compute sigmoid on the [0, 1) interval by eval-
uating a spline of one degree polynomials of the form
aix + bi, where ai and bi are public coefficients. At a
high level, we evaluate JxK on each interval i and then
select only the interval output where x actually belongs.
More specifically, each party can evaluate the spline on
each interval with the same input JxK to get Jaix + biK
using local operations. For n intervals, P0, P1 hold:

Ja1x+ b1K, . . . , Janx+ bnK

We then use a FSS multi-interval containment gate to
get a sharing of one-hot encoded vector d, with 1 only at
the interval t where the input belongs, 0 elsewhere. E.g.,
if x belongs to interval t = 3, P0 and P1 hold:

JdK = J0, 0, 1, 0, . . . , 0K

Now we want to compute the dot product of these
two vectors to get a sharing of evaluating x on the proper
interval. Naively multiplying the two vectors pairwise
requires communicating 4n ring elements. We now show
how to reduce the communication to just 4 elements (i.e.
independent of the number of intervals).

Note that ai and bi are public. Hence, P0 and P1 can
locally compute:

JatK← Jd1Ka1 + . . .+ JdnKan

JbtK← Jd1Kb1 + . . .+ JdnKbn

Now P0, P1 do a single Beaver triple multiplication
and compute:

Jatx+ btK

Importantly, this single product requires communicating a
total of only 4 ring elements.

L.3. Spline Concrete Instantiation Details

We approximate sigmoid on [0, 1) by splitting the
interval into m equally sized intervals. To do so, we define
a series of m + 1 points {αi}i∈[m+1] where α1 = 0 <
α2 < . . . < αm < αm+1 = 1 and αi+1 − αi =

1
m for all

i ∈ [m]. Then we define m linear univariate polynomials

26

whose coefficients w denote as {ai, bi}i∈[m]. The sigmoid
approximation is then computed as follows:

Sigmoid(x) =

a1x+ b1 α1 ≤ x < α2

a2x+ b2 α2 ≤ x < α3

. . .

am−1x+ bm−1 αm−1 ≤ x < αm

amx+ bm αm ≤ x < αm+1

The coefficient values for the ith interval are computed
by interpolating a line between the coordinates (αi, σ(αi))
and (αi+1, σ(αi+1)), where σ(·) denotes the exact sig-
moid function. Table 8 describes the specific values for the
coefficients that were used in our experiments for m = 10
intervals. Note that the values of the coefficients in Table 8
are the exact real number values which are converted into
a fixed point representation when performing the secure
computation.

i ai bi

1 0.24979187478940013 0.5
2 0.24854809833537939 0.5001243776454021
3 0.24608519499181072 0.5006169583141158
4 0.24245143300792976 0.5017070869092801
5 0.23771671089402596 0.5036009757548416
6 0.23196975023940808 0.5064744560821506
7 0.2253146594237077 0.5104675105715708
8 0.2178670895944635 0.5156808094520418
9 0.20975021497391394 0.5221743091484814
10 0.2010907600500101 0.5299678185799949

TABLE 8: Spline parameters for instantiating our sigmoid
approximation. We use the fixed-point representation of
these values with s = 20 fractional bits.

The value m = 10 was decided by evaluating the
spline approximation for different values of m and check-
ing the average ULP error (defined w.r.t. a fixed fractional
scale of s = 20 bits), as used in [70], for sigmoid inputs
drawn uniformly at random in [0, 1). For m = 10, we
obtained an average ULP error of 46 which corresponds to
an absolute error of less than 0.00005. This seemed to be
a reasonable cutoff for the accuracy of logistic regression
hence we made the choice of m = 10. Note that the online
communication cost and rounds of our secure sigmoid
protocol is independent of m.

As mentioned in Section 4.1, we use the spline-based
approximation only on the interval [0, 1) (which automat-
ically also provides an approximation on (−1, 0] due to
the symmetric nature of sigmoid curve) and use exponen-
tiation combined with Taylor-series based approximation
on the interval [1,∞) (and symmetrically on (−∞,−1]).
We chose this approach rather than using only splines to
approximate sigmoid on the entire (−∞,∞) interval, as
has been done in prior works [64], as it would require a
large number of spline intervals14 and potentially higher
degree splines for the approximation to work well, thus
increasing the cost of protocol.

14. As an estimate, our experiments indicated that performing a degree
1 spline-based approximation of sigmoid on [−10, 10] will yield an
average ULP error of 479434 (defined w.r.t. a fixed fractional scale of
s = 20 bits) even after using an enormous m = 107 intervals. This
corresponds to an average absolute error of 0.46, which is quite large.

In the v1 setting (i.e. secure sigmoid with trusted
offline setup), this increase in cost would be reflected in
the amount of FSS preprocessing material that parties need
to store. Specifically, for m intervals and d degree splines,
the cost would be proportional to md without accounting
for fixed-point related issues [16].

In the v2 setting (i.e. secure sigmoid with distributed
offline setup), we would have to replace the DCF under-
lying FSS based spline gate with m instances of a secure
comparison protocol supporting efficient offline phase for
large bit-lengths (e.g. our protocol in Section 6.1). This is
because the FSS based spline gate would require a DCF
key for ℓ bit inputs where ℓ is the bit-length of the ring.
However, generating such a key using 2PC is currently
practical for only small values of ℓ (such as ℓ ≤ 20). Note
that we do not run into this issue when doing the spline-
based approximation on [0, 1) as the underlying FSS is
only invoked on the fractional part of the input which can
be cast into a smaller ring of s bits where s represents the
scale of fixed-point representation.

L.4. Secure Powers Evaluation

To evaluate a Taylor series approximation inside
MPC, we need a procedure to securely compute a d-
degree polynomial which, in turn, requires computing the
(secret-shares of) consecutive powers {x, x2, . . . , xd} for
a (secret-shared) input x. Naively, one could invoke FMult

repeatedly d times to generate these powers. However,
this makes the communication-cost proportional to the
degree d. In [62], the authors proposed a novel proto-
col to generate all d powers using a single element of
online communication per party, where the masked value
xmask = x − r is revealed. The protocol leverages a new
type of offline pre-processing correlation called “random
powers”. In such a correlation, parties have a sharing of
{r, r2, . . . , rd} for a uniformly random r ∈ R. For a
(secret-shared) input x in the online phase, the parties
“consume” these special correlations in order to generate
a sharing of {x, x2, . . . , xd}. The main observation in the
protocol is the following relationship:

JxirjK = Jri+jK + xmask

(i−1∑
ℓ=0

Jxi−1−ℓrj+ℓK
)

(4)

The aforementioned protocol works only for integer
inputs (mapped to ring elements in the natural way) and
it is unclear how to directly extend it to inputs represented
in fixed-point format. The main challenge is that Equation
4 now needs to be evaluated over real numbers instead
of ring elements in order to get the correct result. We
observe that emulating the evaluation of Equation 4 over
reals inside a ring requires the following: (i) Performing
fixed point multiplications instead of ring multiplication
(i.e. we need to perform a truncation operation after every
ring multiplication to adjust the scale15), (ii) Ensuring that
none of the intermediate values in the computation wrap
around the ring, since a multiplication wrapping prior to

15. A potential option is to perform all multiplications first (without
truncations) and only do truncations at the very end, but this approach
would require the ring size to be proportional to the degree d (in order
to accommodate the intermediate increase in the scale), and hence will
be inefficient.

27

truncation corrupts the share. While incorporating the first
condition into Equation 4 might seem straightforward, it
is less obvious how to incorporate the second condition.
The reason is that the term ri+j will almost always wrap
around the ring when r is sampled from the fixed-point
region of the ring. Note that this wrap-around is not an
issue when evaluating Equation 4 over integers.

We observe that in our specific use-case of sigmoid
evaluation, the input x to the powers protocol is of the
form e−z . As we have already discussed that considering
only z ≥ 0 suffices for sigmoid evaluation (due to its
symmetric nature), this means that we can assume that x
is always a real numbered value between (0, 1].

With this observation in place, we are able to incorpo-
rate condition (ii) mentioned earlier in the following way:
Instead of sampling r from the entire fixed-point region of
the ring, we sample it only from the region representing
real numbers between [0, 1). While this ensures that the
fixed point representations of powers of r don’t wrap
around the ring, it creates another issue: Revealing the
(fixed-point representation of) masked value xmask is no
longer secure. The reason is that the distribution of the
fixed-point representation of xmask is no longer uniform
over the ring.

To get around the above issue, we make the following
observation: Although it is insecure to reveal xmask in its
entirety, it is fine to reveal the absolute fractional value
of xmask, denoted by xfracMask, because this distribution
is still uniform. Then the actual value of xmask is either
+xfracMask if x ≥ r, and −xfracMask otherwise. We also
observe that parties can locally compute a sharing of bit
t = 1{x ≥ r} as shown in Line 7 in Algorithm 10.

In the actual protocol, we invoke a fixed-point adapted
version of the powers protocol from [62] on both
+xfracMask and −xfracMask. Then parties can select the
correct set of powers using a multiplexer where the se-
lection bit is set to t. We describe our complete protocol
in Algorithm 10 where we use FMUX2 as a black-box.

When FMUX2 is replaced by an actual 2-round OT
protocol, the first round of OT can be parallelized with
Line 2 by invoking FMUX2 on (pci , p

1⊕c
i , f) instead, thus

making the selection bit of FMUX2 independent of the
result of reconstruction on Line 2. Hence, the overall
protocol will require 2 online rounds. The per-party online
communication cost is s bits for Line 2 and 1+2kℓ when
realizing FMUX2 using OT as described earlier. Thus the
total communication happens to be 2(s+ 1 + 2kℓ) bits.

L.5. Secure Polynomial Evaluation

Suppose parties hold a secret-sharing (fixed-point rep-
resentation) of a real value x and would like to evaluate
a polynomial Q(x) =

∑d
i=1 aix

i, where the coefficients
ai ∈ R are publicly known. A straightforward way to
do so is the following: Parties invoke ΠfxpPowers to learn
sharing of {x, x2, . . . , xk}, and then perform a local linear
sum of the shares of xi weighted by the coefficients ai.
Thus, the overall procedure would require the same online
communication as ΠfxpPowers. We observe that one could
do better by modifying ΠfxpPowers as follows: in Line 9,
instead of invoking FMUX2 for all i ∈ [k], parties can first
locally compute a weighted linear sum P 0 =

∑k
i=0 aip

0
i

Algorithm 10: Fixed-Point Powers Protocol
ΠfxpPowers :

Input : JxK, where x ∈ [0, 2s) and x̃ ∈ [0, 1)

Output : JŷK, Jŷ2K, . . . , JŷkK, where y = x̃

Precomputation: Jr̂K, Jr̂2K, . . . , Jr̂kK, where r ∈ R and
r ← [0, 1)

1 Jx− rK← JxK− JrK
2 xfracMask := Recon(Jx− rKs), where Jx− rKs is the s

least significant bits of Jx− rK and Recon happens in
the ring Z2s .

3 Let ⟨c⟩ be a default sharing of bit c denoting the
public carry bit in the most significant place during
the above additive reconstruction.

4 {p0i }i∈[k] ← ΠmaskPowers(x
0
fracMask), where

x0
mask := 0ℓ−s||xmask

5 {p1i }i∈[k] ← ΠmaskPowers(x
1
fracMask), where

x1
mask := 1ℓ−s||xmask

// The value of x− r is x0
fracMask if x ≥ r, else x1

fracMask.
6 Let f denote the bit of Jx− rK at location s+ 1 from

LSB.
7 ⟨t⟩ := ⟨c⟩ ⊕ f
8 // d = 0 if x ≥ r, and 1 otherwise
9 ∀i ∈ [k] : resi ← FMUX2(p

0
i , p

1
i , ⟨t⟩).

// Parties use the t bit to select the correct set of powers.
10 return res1, res2, . . . , resk

. .
// Local subprocedure invoked by each party Pi

ΠmaskPowers :

Input: xmask where xmask ∈ [0, 2s)

Output: JŷK, Jŷ2K, . . . , JŷkK, where y = x̃mask

1 A←
Initialize empty 2D array of dimension (k + 1)× (k + 1)

2 for i = 0 to k :
3 A0,i ← Jr̂iK
4 for ℓ = 1 to k :

// Compute all Ai,j where ℓ = i+ j
5 sum← 0
6 for i = 1 to ℓ :
7 j ← ℓ− i
8 sum += Ai−1,j

// Invariant : sum =
∑

k<iJ ̂yi−1−krj+kK
9 Ai,j ← Jr̂i+jK + FfxpMult(xmask, sum)

// Invariant: Ai,j will store JŷirjK following Equation 4
10 return A1,0, A2,0, . . . , Ak,0

and P 1 =
∑k

i=0 aip
1
i , and then use a single invocation

of FMUX2 on inputs (P 0, P 1, ⟨t⟩). This reduces the total
communication of the protocol to only 2(s+1+2ℓ) bits,
making it independent of the degree d of the polynomial
Q. We refer to this optimized protocol as ΠfxpPoly.

28

	Introduction
	Our Approach

	Preliminaries
	Logistic Regression
	Multiplication Triples
	Two-Party Computation Functionalities
	Function Secret Sharing

	Secure Logistic Regression
	Secure Sigmoid
	Sigmoid Approximation

	Secure Sigmoid with Trusted Setup
	Secure Sigmoid with Distributed Setup
	Secure Comparison

	Experimental Evaluation
	Sigmoid Experiments
	Logistic Regression Experiments
	Secure Comparison Experiments

	Related Work
	Conclusion
	References
	 A: Definitions: iDPF, DCF, DDCF
	 B: Functionalities Based on FSS
	 C: Secure Comparison Protocol
	 D: Related Works
	 E: Black-Box Reduction from DCF to iDPF
	 F: Efficient 2PC Generation of FSS Keys
	 G: Adding Differential Privacy
	 H: Additional Figures
	 I: Online Communication Bottleneck of Secure Logistic Regression
	 J: Failure Probability
	 K: Semi-Honest Secure Two-Party Computation
	 L: Secure Sigmoid with Trusted Setup
	Secure Spline Computation
	Optimized Dot Product
	Spline Concrete Instantiation Details
	Secure Powers Evaluation
	Secure Polynomial Evaluation

