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Abstract

We put forth a new paradigm for program obfuscation, where obfuscated programs are endowed with
proofs of “well-formedness.” In addition to asserting existence of an underlying plaintext program with
an attested structure and functionality, these proofs also prevent mauling attacks, whereby an adversary
surreptitiously creates an obfuscated program based on secrets which are embedded in a given obfuscated
program. We call this new guarantee Chosen Obfuscation Attack (COA) security.

We define and construct general-purpose COA-secure Probabilistic Indistinguishability Obfuscators
for circuits, assuming sub-exponential IO for circuits and one-way functions. To demonstrate the power of
the new notion, we use it to realize, in the plain model:

* A new form of software watermarking, which provides significantly broader protection than current
schemes and features a keyless, public verification process.

» Completely CCA encryption, which is a strengthening of completely non-malleable encryption.

We also show, based on the same assumptions, a generic method for enhancing any obfuscation mecha-
nism that guarantees semantic-style hiding to one that provides COA security.
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1 Introduction

General-purpose program obfuscation (developed in [3, 12, 16, 5, 13, 10] and many other works) holds great
promise for enhancing the security of software: Software can be distributed and executed without fear of
exposing sensitive design secrets or keys hidden in the code. Furthermore, when executing obfuscated
software, all intermediate states are guaranteed to remain hidden, even when both the hardware and the
software components of the underlying platform are adversarial.

However, ubiquitous use of program obfuscation might actually have a negative effect on other secu-
rity aspects of software: verifying properties of an obfuscated program may be significantly harder - it is
essentially reduced to black-box testing the program. This is highly unsatisfactory, especially in situations
where the source of the program is untrusted. Indeed, the very property that makes obfuscation a boon for
software creators - namely the ability to hide secrets both in the code and in the functionality - is a bane for
users of the software, unless those users put complete trust in the software creators and vendors.

To the best of our knowledge, the only existing general notion of obfuscation that provides the ability to
verify properties of obfuscated programs is verifiable indistinguishability obfuscation [2]. However, that notion
provides only limited hiding guarantees: indistinguishability of the obfuscated versions of two functionally
equivalent programs is guaranteed only if there is a short witness of their equivalence. Furthermore, it pro-
vides no guarantees against adversaries that maul programs that were honestly generated and obfuscated.

Another concern is that the use of program obfuscation makes it harder to verify whether a given pro-
gram depends on other programs in “illegitimate ways”, where legitimacy (and lack thereof) relates to both
structural and functional dependence between programs. For instance, obfuscation might facilitate software
plagiarism by hiding the fact that program A runs some (potentially proprietary) program B as a subrou-
tine, without publicly disclosing this fact. Furthermore, obfuscation may help an adversary hide the fact
that a program A that they are publishing is a mauled version of B - i.e. that A’s functionality surreptitiously
depends on the functionality of B. The latter can be a concern even regardless of how B is implemented!.

Countering mauling attacks on obfuscated programs has so far been studied only in the restricted setting
of virtual black box obfuscation of point functions and related functionalities [8, 22], and is susceptible
to strong impossiblity results [4]. In particular, to the best of our knowledge no viable notion of non-
malleability of general-purpose obfuscation has been proposed.

Defending against program plagiarism has also been studied in the context of software watermarking
[4]. However, that line of work has concentrated on detecting illicit programs that very closely preserve the
functionality of the watermarked program [9] (or else preseve some cryptographic use of it [15]), and does
not address more general forms of plagiarism —e.g., generating a seemingly legitimate obfuscated program
that illicitly uses a plagiarized program as a subroutine, or even changing some internal parameters while
preserving the overall design.

1.1 Our Contributions
We first summarize our main contributions and then elaborate on each one.

* Definitions: We define several variants of verifiable and non-malleable obfuscation: First we formulate
a new notion of verifiable obfuscation, that provides significantly stronger hiding guarantees than
[2]. Next, incorporating non-malleability, we propose a notion of verifiable obfuscation that’s secure
against chosen obfuscation attacks (COA), and offers hiding guarantees akin to those of Probabilistic
Indistinguishability Obfuscation [7]. Finally we generalize the above notion to a general verifiability
and non-malleability fortifier that transforms any notion of obfuscation (our of a large class of common
notions) into one that preserves the same level of hiding, while adding verifiability and COA security.

1One might expect that existing notions of obfuscation, such as indistinguishability obfuscation (I0), already defend against such
mauling attacks. However, this expectation fails for programs whose code includes random keys that affect the functionality. For
instance, IO does not appear to rule out the possibility that an adversary, given an obfuscated version of a puncturable pseudorandom
function with a random key k, manages to generate another obfuscated program that computes the same function but with key (k+1).



e Constructions: We construct COA obfuscation, assuming subexponentially secure iO and one-way
functions. More generally, we show how to enhance (or, fortify) any one out of a class of measures of
secure obfuscation to provide COA security.

o Applications: COA-secure obfuscation is directly applicable in situations where a user wishes to verify
predicates involving the structure and functionality of an obfuscated program. In addition, we use
COA-secure obfuscation to construct software watermarking mechanisms that provide a new and pow-
erful notion of security. Finally, we use COA-secure obfuscation to construct a completely CCA-secure
public-key encryption scheme, which is a new notion of security that naturally strengthens completely
non-malleable public-key encryption [11], which in turn augments non-malleablity to consider mauling
attacks against both the ciphertext and the public key.

1.2 Defining COA Obfuscation

The first main contribution of this work is in developing a security notion for general-purpose program
obfuscation that incorporates meaningful secrecy, verifiability, and non-malleability guarantees, while still
being realizable under (strong but) plausible hardness assumptions.

Several challenges face such an endeavor. First, simply requiring the ability to verify general properties
of an obfuscated program, while hiding “everything else” about the program immediately runs into known
impossibility results regarding one-message arguments in the plain model. In particular, standard notions
such as zero-knowledge, witness hiding, or even strong witness indistingushablity are not obtainable in
general. Following [18], we get around this apparent barrier by allowing the verification to be randomized,
and relaxing the soundness guarantee to only require that, in each execution, the verification process either
fails, or else outputs some program that’s guaranteed to have the attested property. That is, we allow the
verification process, given a purported proof, to output different programs in different executions. Fur-
thermore, while an honest obfuscator is guaranteed that the verification process always outputs a program
whose functionality equals that of the plaintext program, there may well exist (adversarially generated)
proofs that cause different runs of the verification process to output programs with different functionali-
ties. As argued within, and demonstrated by the applications, this randomized verifiability notion is still
useful.

Developing an appropriate notion of non-malleability for general program obfuscation proves equally
challenging. In particular, it is not a priori clear how to capture non-malleability with respect to the func-
tionality of programs without resorting to simulation-based formalisms (as done in [8, 22]), which would
in turn be subject to general impossibility akin to VBB-obfuscation [4].

We get around this difficulty by adapting the notion of CCA-secure commitments (namely, commit-
ments that are secure against chosen commitment attacks [6]), which are in turn an extension of the notion
of CCA-secure public-key encryption [25, 26], to the setting of indistinguishability obfuscation. Indeed,
as there, an indistingushability-based definition which considers adversaries that have access to (poten-
tially inefficient) oracle that conditionally inverts the cryptographic transform at hand, turns out to capture
non-malleability in a strong way.

More specifically, to capture verifability we consider obfuscators O that take as input a program C' along
with a predicate ¢ that represents some attestation on the structure and functionality of C.

The process of executing an obfuscated program is now preceded by running a randomized verification
algorithm V' that, given a purported obfuscated program C, outputs either a reject symbol, or else another
program C. We then require:

Completeness: Whenever ¢(C) holds, V(O(C, ¢), ¢) = C, where C is functionally equivalent to C.

Soundness: For all strings C and predicates ¢ it holds that, except for negligible probability, either V (C, ¢) #L
or else V(C, ¢) = C where C is functionally equivalent to a program C' such that ¢(C') holds.

Said otherwise, our notion postulates a two-step process for generating obfuscated programs: The first
step is performed by the obfuscating party and generates a semi-functional program C = O(C,¢). The



second step is performed by the party intending to run the obfuscated program, and returns a fully functional
program C = V(O(C, ¢), ¢) that’s functionally equivalent to C. While soundness guarantees that, for any
C, the random variable C = V(O(C, ¢) is almost always functionally equivalent to a program C' such that
#(C) holds, it is stressed that different draws from C might well have different functionality.

Next we proceed to formulizing the hiding requirement. We would like to require that, for “sufficiently
similar” programs Cj, C1, polytime adversaries be unable to distinguish O(Cy, ¢) from O(C4, ¢), even when
given access to a de-obfuscation oracle. That is, an adversary should be unable to guess b when given a chal-
lenge program C* = O(Cy, ¢) for b +— {0, 1}, along with access to an oracle Dy ¢~ (-) that operates as follows:
Dy c-(C*) =L. For C # C*, D samples C = V(é’i(b). and returns an arbitrary (say, the lexicographically
first) program C that is functionally equivalent to C, and such that ¢(C) holds. If no such program C exists
then L is returned.

It remains to determine what makes programs Cy, C; “sufficiently similar”. One natural option, cor-
responding to indistinguishability obfuscation (iO), considers any pair Cy, C; of functionally equivalent
programs that satisfy ¢ and have the same size. However, we use a somewhat more general formulation,
which turns out to be natural to work with in the context of our applications. This formulation, which
corresponds to a slight simplification of the X-Ind-plO notion of obfucation of probabilistic circuits [7], pro-
ceeds as follows. We consider samplers that sample triples (C, C1, z), where Cj and C} are programs with
input domain {0, 1}"* and z is some auxiliary information. A sampler Samp(x) — (Co, C1, z) is admissible
for ¢ if both Cjy and C satisfy ¢ and in addition any poly(x) adversary A, given z and oracle access to Cj,
can predict b with advantage at most 1 + negl(27%). That is, we require:

Hiding: For any polytime adversary A and sampler Samp that is admissible for ¢, we consider the experi-
ment where A is given C* = O(Ch, ¢), z for (Cy, C1, z) < Samp(k) and b < {0, 1}, as well access to a
deobfuscation oracle Dy, ¢+ (-). Obfuscator O is hiding if A guesses b only with advantage negl(x).

Informally, the reasoning for why COA security guarantees non-malleability is the same as in the case of
CCA commitment and CCA encryption: An adversary that manages to “maul” its challenge progrom C into
a program C’ that passes verification and such that the preimages of the resulting Verify(C') and Verify(C")
are related in some non-trivial way, can readily use this ability to break COA security, by applying D(C") to
obtain the plaintext program that is related to the preimage of its challenge C*. It is stressed that here the
“non trivial relation” may include both structural and functional properties of the plaintext programs.

Finally, an obfuscator (O, V) is said to be COA-Secure with respect to predicate ¢ if it satisfies complete-
ness, soundness, and hiding.

COA fortification. We also consider an alternative approach to obtaining verifiability and non-malleability,
which proceeds by provding a general transformation that fortifies existing obfuscators so as to provide ver-
ifiability and non-malleability relative to their existing hiding guarantees. We elaborate more within.

1.3 Applications of COA obfuscation

COA-secure obfuscation is directly applicable in situations where a user wishes to make sure that it has a
program that satisfies a certain set of properties — and is agnostic to whether the program has any addi-
tional properties other than those asserted.

We further demonstrate the usefulness of this notion via two applications: The first is a new notion of
program watermarking which essentially enables tamper-detection for a large class of watermarked circuits
and tampering attacks. The second is a new notion of security for encryption schemes, called completely-
CCA-secure encryption. The new notion naturally strengthens completely non-malleable encryption of [11],
namely encryption that remain secure even in the presence of an oracle that decrypts adversarially chosen
ciphertexts with respect to adversarially chosen public keys.



A new approach to software watermarking. Existing approaches to watermarking (e.g. [19, 9, 14, 15, 20])
concentrate on a watermarking process where the watermark is embedded in a program by way of chang-
ing its functionality on few “"hidden” inputs. Similarly, detecting whether a given program bears a water-
mark is determined exclusively via inspecting the functionality of the program. So far, this approach has
only been succesfully used to detect “counterfeit” programs that are close in functionality to a watermarked
program (where the notion of closeness varies somewhat in different contexts). Furthermore, it requires a
key generation process where the owner of the program generates a private key that’s used for watermark-
ing and an associated public key that’s used for watermark detection.

We propose an alternative approach where the process of detecting whether a given program bears a
watermark is done via a combination of inspecting the functionality of the program and verifying its struc-
tural properties. This allows us to avoid the use of dedicated keys, and make the functional changes minimal
(and obvious). More importantly, it allows for detecting a significantly broader spectrum of plagiarism and
piracy of software than mere functional similarity.

On the down side, our approach mandates that legitimate users of software use software that has some
specific structure - in the sense that software that lacks the structure is considered counterfeit (or, at least
suspect) by default. Still, this structure is fixed, public, easy to preserve and detect, and does not restrict the
functionality of programs.

Specifically, we define and construct structural watermarking. Essentially, a marking algorithms A and
a testing algorithm 7 are a structural watermarking scheme with respect to a class C of programs, a distri-
bution D over programs in C, a set M of watermarks, and a relation R on pairs of programs, if the following
conditions hold:

Completeness: First, given any program C € C and a mark m € M, algorithm M generates a program c
that bears the watermark m, in the sense that T'(C) = (C, m), where C is functionally equivalent to C.

Unremovability: No polytime adversary, given C=M (C,m) where C is drawn from D and m is a mark
of the adversary’s choice, can feasibly generate a counterfeit program C* where T'(C*) = (C*,m/) for
m’ # m, and either C* is not functionally equivalent to any program in C or else C* is functionally
equivalent to a program C* € C such that R(C, C*) holds.

This notion is incomparable with aforementioned literature on watermarking, in that it considers pro-
grams that were not generated via the prescribed watermarking algorithm as ‘counterfeit by default’.

Nevertheless, unlike all prior definitions, both the watermarking and the detection algorithms are fixed
and keyless, which means they are inherently public and universal. This calls for a use case where software
vendors watermark all software and software users are expected to check for existence of watermarks by
default. In such a setting, structural watermatrking prevents a significantly larger class of “software piracy”
attacks than prior work, which was all tailored for programs realizing specific cryptographic functionalities
such as PRFs, digital signatures or encryption schemes.

In particular, our notion prevents any attack where the “forbidden correlation” between the counterfeit
and the original program may be defined via a relation that considers both the structure and the functionality
of the tampered program and the original watermarked program. It can thus be used to prevent situations
where the plagiarized program has very different functionality than the watermarked one, and yet uses the
watermarked program as a subroutine or otherwise incorporates in its code the watermarked program (or
pieces of it) in ways that are not explicitly allowed by the prescribed relation.

It is stressed however that our notion restricts attention to situations where the legitimate execution
of programs involves the derivation of the fully executable program from a given “master copy” via the
prescribed derivation algorithm, and retaining the master copy for further inspection.

We then use subexponential COA obfuscation to construct watermarking schemes for any function fam-
ily C, distribution D, and relation R where:

(a) the description of a program C' « D is “one way” with respect to the functionality of the program (i.e.
the description is uniquely determined, yet hard to efficiently extract, given sufficiently many input-output
pairs), and:



(b) R is such that whenever R(C, C*) holds, knowledge of C* enables breaking the one-wayness of C. That
is, there is an algorithm that computes the description of C, given only C* and oracle access to C.

As a concrete example, we consider watermarking a PRF family D where for any two keys k # £’
the functions Cy, Cy are distinct, and the relation R(C%, Cy/) holds whenever k = f(k’) for any injective
function on keys (eg, f(k) = k, or f(k) = k + 1, etc.). Alternatively, if D is “key-injective,” then R can hold
whenever C(z) = C’'(z) on some known input z. Alternatively, R can hold whenever C’ is of the form
D(C%(+)), where D is a known algorithm that generates a sample from some distribution using randomness
provided in its input.

Application to Completely CCA Encryption. Fischlin [11] observes that many known public-key encryp-
tion - even non-malleable ones - allow for attacks where an adversary, given a legitimately generated public
key pk and ciphertext ¢ = Enc(pk, m), can generate a “mauled” pair (pk’, ¢’) where ¢/ = Enc(pk’, m') for a
message m’ that is related to m in some adversarial way. He then proceeded to define encryption schemes
that thwart such attacks, and constructed such schemes (called completely non-malleable) in the random ora-
cle model. He also showed that completely non-malleable encryption is impossible to realize via black-box
reductions to falsifiable polynomial-time hardness assumptions in the plain model (i.e., without any trusted
setup assumptions).

We formulate completely CCA (CCCA) secure encryption, which naturally extends completely non-malleable
encryption analogously to the way CCA encryption extends non-malleable encryption. That is, our notion
requires that an adversary, given (pk*, c*) where (pk*, sk*) < Gen() and ¢* = Enc(pk*,m;), for adver-
sarially chosen mg,m; and b < {0, 1}, be unable to guess b significantly better than random, even when
given access to the following oracle D: Given any pair (pk, ¢) such that pk is not ‘obviously fake’, and either
pk # pk* or ¢ # ¢*, D returns the most probable m such that ¢ = Enc(pk,m), or L if no such m exists. (A
string pk is ‘obviously fake’ if Enc(pk, m) =1 for any m, except for negligible probability.) It is stressed
that the adversary can query D adaptively with different (possibly related) combinations of public keys
and ciphertexts.

We then show that the following adaptation of the Sahai-Waters CCA secure encryption [27] is CCCA
secure, in the plain model: First, we replace the plain iO obfuscator of [27] with a COA-secure obfuscator
with respect to a predicate ¢ that attests for the correct structure of the obfuscated program. Next, we
augment the encryption algorithm by the following “sanity check”: Recall that in [27] the public key is an
obfuscated program, which means that in our case the public key is a semi- -functional obfuscated program
C. To encrypt a message m, the encryption algorithm will run V(C ) (where V' is the verification step of
the COA obfuscation) » times, obtaining fully functional programs Cy, ..., Cy. Tt will then pick a random r
and compute ¢; = @(m7 r), i = l..k. If all the ¢;’s are equal, the final ciphertext is ¢;. Else the encryption
algorithm outputs L.

We note that, while our proof does proceed via black-box reductions to game-based assumptions, Fis-
chlin’s impossibility result of is evaded by the fact that the security of our COA obfuscation is proven
by reduction to the sub-exponential security of the underlying IO and one way functions. (In a way, this
demonstrates the necessity of our reliance on sub-exponential hardness to begin with.)

1.4 Constructing COA obfuscation

Our construction uses three main components. The first component is a program obfuscation scheme that
guarantees polynomial slowdown, functionality preservation, and some form of hiding. (For simplicity
of exposition, consider indistingushability obfuscators; however, as argued below, the construction and
analysis generalize to a large class of hiding properties of the underlying obfuscation scheme.)

The second component is non-interactive distributionally indistinguishable (NIDI) proofs [18]. These
are one-message protocols for a prover P, and verifier V;, for a language L € NP, whereby both the
prover and the verifier are randomized, and the prover can help the verifier generate instances drawn
from a given (secret) distribution D, which is the projection on the first component of a distribution D



over pairs (z,w) € Ry, while guaranteeing that: (a). Both the full distribution D and the projection on
w of the sampled points remain hidden from the verifier, namely if D, ~ D’ then P.(D) =~ Pr(D'); (b).
all instances that the verifier draws from the distribution are in L, namely for any purported proof , if
Vi(m) = D where D #1, then D describes a distribution over z € L. In [18], NIDI proofs for NP are
constructed from subexponentially secure 1O for circuits and one way functions.

Randomized Verifiability. As a first step towards constructing COA obfuscation, we construct 10 with
plain randomized verifiability. For this purpose we use an IO obfuscator O, a NIDI for NP, and a non-
interactive statistically binding commitment scheme Com. Specifically, to verifiably obfuscate a circuit C*
with respect to some property ¢, consider the NIDI (Pp,, V) for the following language and distribution:

¢ The language L = {(C~', ) : 3C, ropg, Teom st. 9(C) =1, C = O(C,rops),c = Com(C,reom)}

e The distribution D€ which outputs L if ¢(C*) = 0, and otherwise draws 7oy, r'con, at random and
OutPUts ((0(07 rObf)a C’om(C, rcom))v (07 Tobf, Tcom))-

The obfuscator now outputs C = P, (D). The obfuscation verifier runs V7 (C).

Soundness follows from the soundness of the underlying NIDI and the functionality preservation of the
underlying obfuscation scheme. Plain (non-COA) hiding follows from the hiding of the commitment, the
NIDI, and the underlying obfuscation. The statistical binding property of t he commitment is used to argue
completeness - specifically in the definition of the language L that’s the starting point of the NIDI.

Obtaining COA security. COA security is obtained via the same construction, where the commitment
is upgraded to CCA-secure non-interactive commitment. CCA-secure commitments, introduced by [6],
guarantee hiding even against an adversary that has access to a de-commitment oracle that returns the
committed plaintext given any valid commitment string (or transcript) that’s different from the challenge
one. Khurana [18] constructs non-interactive CCA secure commitment schemes from NIDI arguments.

Robust NIDI. At high level, the reduction from an attacker that breaks the COA security of the obfus-
cation to an adversary that breaks the CCA security of the underlying commitment is straightforward.
However, there is a caveat: The use of CCA-secure commitment schemes means that a stronger form of
NIDI is needed to begin with: We need the NIDI to be robust against certain forms of inefficient attacks.
(We borrow the term from [6] where it was used in a similar sense.) Specifically, robust NIDI w.r.t. an oracle
O retains its indistinguishability preservation guarantee for distinguishers that have access to O.

Our construction of a robust NIDI follows the outline in [18], except that we instantiate all primitives
with those that retain their security guarantees in the presence of the oracle O. In what follows, we outline
this construction.

In a nutshell, a NIDI consists of an iO-obfuscated program that obtains as input the first message of
an appropriate two-message proof system (satisfying ZK with superpolynomial simulation), and outputs
a statement sampled from the input distribution, together with a proof. In [18], it was shown that the
resulting system hides the distribution from which statements are sampled. Our construction of robust
NIDIs modifies this template by requiring the underlying iO and ZK proof to be secure in the presence of
the oracle Q. For any oracle with a finite truth table, we achieve this by assuming subexponential security
of the underlying primitives, eg., by setting the iO security parameter large enough such that iO becomes
secure against adversaries that store the underlying truth table.

General fortification of obfuscators. As can be seen from the above description, the construction and
analysis is relatively agnostic to the specific hiding property obtained by the underlying obfuscator. In other
words, the construction can be viewed as a general way to “fortify” a given obfuscator O that guarantees
some hiding property X to an obfuscator O’ that guarantees a "COA version” of X.



In particular, when the underlying obfuscator is an X-Ind-pIO obfuscator of probabilistic circuits [7],
the resulting obfuscator is COA-secure as defined in Section 1.2. The construction is then completed by
recalling that [7] construct X-Ind-pIO obfuscators for general circuits from sub-exponentially secure IO and
one way functions.

2 Preliminaries

We use z < S to denote uniform sampling of  from the set S. [n] is used to denote the set {1,2,...n}.
For z,y € {0,1}", (z,y) denotes the inner product of z,y, i.e. if z = z[l...n|,y = y[l...n], (z,y) =
D, e[n) Ti " Yi- Functional equivalance of two circuits C, C5 is denoted by C; = C5. We refer to a circuit class
as C = {Cx }ren, where C, consists of a set of circuits. In addition, whenever we consider a circuit class, we
assume that it has a corresponding efficient predicate to check membership in the class, i.e. for circuit class
C = {Cy } wen, there is a corresponding efficient predicate ¢¢ s.t. ¢¢c(x,C) = 1if C € C,, and 0 otherwise. For
a distribution D on domain X, Supp(D) denotes the support of D on X'. We define puncturable PRFs and
key-injectivity for puncturable PRFs below:

Definition 2.1 (Puncturable PRF). For sets {0,1}" and {0, 1}", a puncturable PRF with key space K consists
of a tuple of algorithms (PRF.Eval,
PRF.Puncture, PRF.pEval) that satisfy the following two conditions.

¢ Functionality preserving under puncturing. For every z* € {0,1}", every z € {0,1}" \ {z*}, and all
K € K, we have: PRF.Eval(K,z) = PRF.pEval(K{z*}, z), where K{z*} <— PRF.Puncture(K, z*).

¢ Pseudorandomness at punctured points. For every z* € {0,1}", every z € {0,1}" \ {z*}, and any
PPT adversary A, it holds that

Pr[A(K{z*}, PRF.Eval(K,z")) = 1] — Pr[A(K{z"}, Uy) = 1]| = negl(k),

where K + K, K{z*} + PRF.Puncture(K, z*), and Uy, is the uniform distribution over {0, 1}*.

2.1 Non-Interactive Distributionally Indistinguishable (NIDI) Arguments.

In a NIDI argument for an NP language L, the prover algorithm P is given a distribution D for sampling
member-witness pairs, and it generates a program = which can be used (by the verifier algorithm V) to
verifiably generate a member of the language £. The hiding property of a NIDI is that if two distributions D,
and D are such that the members they generate are indistinguishable from each other (when the witnesses
are held back), then the program 7 generated by the NIDI prover remains similarly indistinguishable, upto
a “gap” e. We formally recall the definition of this primitive from [18] below.

Definition 2.2 (Non-Interactive Distributionally-Indistinguishable (NIDI) Arguments). A pair of PPT al-
gorithms (P, V) is a non-interactive distributionally-indistinguishable (NIDI) argument for NP language £
with associated relation R if there exist non-interactive algorithms P and V that satisfy:

» Completeness: For every poly(k)-sampleable distribution’? D = (X, W) over instance-witness pairs
in R, such that Supp(X) C L,

7 € Supp (P(1%,D)) = V(1%,7) € Supp(X).

* Soundness: For every ensemble of polynomial-length strings {7}, there exists a negligible function
1 such that
Pr[@#L)A(@¢ L) < plw).

V(17 ,7y)

2Here, we slightly abuse notation and use D to also denote a circuit that on input uniform randomness, outputs a sample from the
distribution D.



¢ ¢-Gap Distributional Indistinguishability: There exists an efficient transformation 7" on distinguish-
ers such that for every poly(x)-sampleable pair of distributions Dy = (Xp, Wp) and D; = (X, W;) over
instance-witness pairs in R where Supp(X;) U Supp(&X:) C £, and every distinguisher D with

‘ Pr[D(P(1%,Dy)) = 1] — Pr[D(P(1%, D)) = 1]] = u(k)
the distinguisher D" = T'(D) satisfies:
‘Pr[D’(XO) — 1] - Pr[D' (X)) = 1]\ > e(k) - v(k).

Theorem 2.1. [18] Assuming the existence of sub-exponentially secure one-way functions and sub-exponentially se-
cure indistinguishability obfuscation, there exist NIDI arguments satisfying e-gap distributional indistinguishability,
for every e(k) = 27°08" %), for g constant ¢ > 1.

2.2 CCA Commitments

A chosen-commitment attack (CCA) secure commitment scheme [6] is a commitment scheme, which re-
mains hiding for commitments even in the presence of a (computationally inefficient) “decommitment
oracle” cCA.DeCom that opens all commitments that do not match the challenge commitment. For the
decommitment oracle to be well-defined, we shall require that the commitment is perfectly binding: for all
ro, 1 and mg # my we have that CCA.Com(mg;rg) # CCA.Com(my;71).

A CCA secure commitment scheme is parameterized by a message length M = M (k); we shall con-
sider the message space to be {0,1}*, where M is polynomial. As defined below, a non-interactive CCA
commitment scheme consists of an efficient randomized algorithm CCA.Com (with an implicit “canonical
opening”). We let CCA.DeCom denote the function that maps an output of CCA.Com to the message under-
lying it (or L if no such message exists).

Definition 2.3. An e(x)-secure non-interactive CCA commitment scheme over a message space {0, I}M(“) con-
sists of a randomized algorithm CCA.Com and a deterministic algorithm CCA.DeCom, satisfying the follow-
ing.
e Correctness. For all m € {0,1}* and r € {0, 1}* we have that
CCA.DeCom(cCA.Com(1%, m;r)) = m.
(This implies perfect binding.)
* Efficiency. CCA.Com runs in time poly(x), while CCA.DeCom runs in time 2°(%),

* ¢(k)-Security. For a message m € {0,1}™ and a distinguisher D, let

CcCA cca.DeCom o Filt, _
PDm = Pr D e (1%, ¢) = 1],
c+—CCA.Com(1%,m)

where Filt, is the identity function on all inputs except ¢, on which it outputs L. Then, for all polyno-
mials s there is a negligible function v such that, for all m, ms € {0,1}* and all distinguishers D of
size at most s(k),

PDmy ~ Poma| < €(R)V(K).
Theorem 2.2. [18] Assuming sub-exponentially secure indistinguishability obfuscation and either

o Sub-exponential (classical) hardness of DDH and sub-exponential quantum hardness of LWE (as used in [17]),
or

* Sub-exponential time-lock puzzles based on the RSW assumption (as used in [24])
there exist non-interactive CCA commitments satisfying Definition 2.3.

The assumptions in the aforementioned theorem can also be reduced by using time-lock puzzles based
on iO and the existence of hard-to-parallelize languages.



2.3 Obfuscation

An obfuscator O is a randomized program that probabilistically maps a circuit from some family {C }.cn to

another functionally equivalent circuit. We shall require an obfuscator to satisfy the following correctness

and efficiency properties (with probability 1):

Functionality Preservation. For all kK € Nand all C € C,, O(1",C) = C (where = indicates that the two
circuits are functionally equivalent).

Polynomial Slowdown. There exists a polynomial p such that for all x € Nand all C' € C,, |O(1%,C)| <
p(]C|) (where | - | denotes the size of a circuit).

Efficient Obfuscation. O is a polynomial time algorithm. Generally, we shall also assume that the circuits
in C,; are of size at most polynomial in x.
Security. For a sampler Samp and a distinguisher D, we define, for b € {1, 2},
oampb . Pr [D C,z) = 1}
pO’D (C1,C2,2z)+Samp(17) ( ’ )

C+O(1%,Ch)

Samp . | Samp,1 Samp,2
and AdvoyD =1|po.p —Po.p

M

Then, an obfuscator O is said to be (S, D) secure, if for all Samp € Sand D € D, AdvSamp is negligible. In
particular, for indistinguishability obfuscation (i0), S is the class of samplers which output (Cl, Cs, z) where
Cy = Cy and z = (C1,Cs), and D consists of all PPT distinguishers.

Following [7]® we define a class of samplers, called admissible samplers, that only requires that it is
(very) hard for a PPT adversary to distinguish between oracle access to C and to C;. Here the distinguish-
ing probability is required to be negligible even after amplifying by a factor of 2%, with x being the number
of bits of inputs for the circuits.

Definition 2.4 (Admissible Samplers). For any adversary A let

A = Pr A% (2)=1], be{1,2
ba (01702,Z)<—Samp(1'€)[ ( ) ]’ { ) }

Samp,x , | Samp,1,k Samp,2,k
and Adv), = |p - P .

A sampler Samp over C = {C, }.en Where all C' € C, take x-bit inputs, is called admissible if there exists a
negligible function . s.t. for any non-uniform PPT adversary A, Advsamp " < (k) - 277, for all sufficiently
large .

Definition 2.5 (plO Obfuscators). An obfuscator O for a circuit family {Cy }.en is said to be plO if it is
functionality preserving, has polynomial slowdown, and in addition for any admissible sampler Samp and
any non-uniform PPT adversary A, Adv>2™" < (k) for all sufficiently large x, where

SR = P O(Cy),2) =1], be {1,2
Py (C1,C2,z)£Samp(1'f) [A( ( b)a Z) ] ) S { ) }
and  Adv™" = [pRmPe — pSmPel )

As shown in [7], assuming the existence of sub-exponentially secure iO and sub-exponentially secure
puncturable PRFs, plO schemes exist for any polynomial sized circuit family, that is secure against a class D
of sub-exponential time distinguishers. (We note that the above defnition of plO obfuscation corresponds
to X-Ind pIO in [7].)

Next we define injective obfuscators.

3 Admissible samplers are a special case of X-Ind sampler defined in [7], where it is parametrized by a function X (k) < 2*. The
definition of admissible samplers corresponds to setting X (k) = 2" and restricting to (deterministic) circuits taking x-bit inputs.



Definition 2.6 (Injective Obfuscator). An obfuscator O for a circuit family {C, }.cn is said to be injective if
Vk1, k2, C1, C2
O(lﬁl,cl;’f‘l) = O(1n2,02;7"2) 75 1l = Cl = 02.
We remark that it is easy to convert any obfuscator into an injective obfuscator (without affecting its

hiding properties) simply by attaching a perfectly binding commitment of the circuit to its original obfus-
cation.

3 Defining COA obfuscation

We define COA-secure obfuscation in Section 3.1. In Sections 3.2 and 3.2 we define the more general notion
of verifiability fortification and COA fortification of existing obfuscators. Towards this, first, we will need
the following definition of circuit samplers.

Definition 3.1 (¢-Satisfying Samplers). Let C = {C }.en be a circuit class and ¢ be a predicate. We say that
a randomized algorithm Samp is a ¢-satisfying sampler over C if, for all large enough «, Samp(1*) outputs
(C4, Cy, z) such that, with probability 1, C;,Cy € C, and, ¢(C1) = ¢(Cs) = 1.

3.1 COA-Secure Obfuscation

Definition 3.2 (Admissible ¢-satisfying Samplers). A sampler algorithm Samp(1*) is an admissible ¢-satisfying
sampler over C if it is both admissible (according to Definition 2.4) and ¢-satisfying (according to Defini-
tion 3.1) over C.

Definition 3.3 (COA-Secure Obfuscation). A COA-secure obfuscation for a circuit class C = {C }xeny W.r.t.
a predicate ¢ is a pair of PPT algorithms (cO.0bf, cO.Ver) defined as follows*:

o cO.0bf(1%,C, ¢) — C. This takes as input the security parameter x, a circuit C' € C,, a predicate ¢,
and outputs an encoding C.

e cO.Ver(1%,C, ¢) — {C U L}. This takes as input a string C,a predicate ¢, and outputs either a circuit
C or areject symbol L.

Furthermore, these algorithms satisfy the following correctness, verifiability and security properties.

¢ Perfect Correctness. For every x € N and circuit C' € C,; s.t. ¢(C) =1,
if C + cO.Ver(1%,c0.0bf(1%,C, ¢), ¢), then C = C.

* Verifiability. For every ensemble of polynomial-length strings {II, } .cn, there exists a negligible func-
tion v(+) such that:

 Pr {5#LA<§§CECK:¢(C):1/\GEC)}:1/(,%).
C4—cO.Ner(1% I1,.,¢)

¢ COA Security. Let O be an oracle defined as follows: O(«, C) outputs the lexicographically first circuit
C € C,; such that ¢(C) = 1 and C is functionally equivalent to C.

For any sampler algorithm Samp, and an oracle distinguisher D, for b € {1, 2}, let

qf(aomtlg,b“% — Pr |:D©(K,,) o0 cO.Ver(1”,-,¢) oF”té (1H’ C’ Z) =1 ,
’ (C1,C2,2z)+Samp(1")
C+cO.0bf(1%,Ch,d)
Samp,x .__ | Samp,l,k Samp,2,k
COAAdVCO,D T ch,D - ch,D

4Both the algorithms cO.Obf and cO.Ver take as input a predicate. This is to capture the uniformity of the algorithms w.r.t. ¢.
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where Filt5 denotes a function that behaves as the identity function on all inputs except C, on which
it outputs L. (That is, given any program m # C, D returns the lexicographically first circuit C, with
#(C) = 1, that is functionally equivalent to C, where C' < cO.Ver(m, ¢).)

Then, there exists a T-sized transformation 7 (on distinguisher circuits) such that for any admissible
¢-satisfying sampler Samp (according to Definition 3.2) and distinguisher D, it holds that:

Advgy i > €() - COAAdvVE"

where Adv?;”;_'?D) is as defined in (2).

While the above definition of COA security is w.r.t. admissible samplers, we can also define COA secu-
rity more generally as an add-on for obfuscation schemes O whose security could be w.r.t. other samplers.
Before presenting this notion of fortifying any obfuscation scheme with COA security, we introduce a sim-
pler (but already useful) notion of fortifying an obfuscation scheme by adding verifiability.

3.2 Fortification of general injective Obfuscators

This section gives a variant of the notion of COA obfuscation that allows starting from any given functionality-
preserving compiler on programs and adding a layer of non-malleable verifiability while preserving any
existing hiding properties of the underlying compiler. This definition is incomparable to the one given in
the previous section: While the present definitional approach is more general in that it applies to any hiding
property of the underlying obfuscator, it is also more restrictive in that it only applies to obfuscators that
are injective to begin with.

We split the fortification in two stages: a first stage that provides only verifiability, and a second stage
that adds non-malleability (or, COA security).

Given an obfuscation scheme O, we define its verifiability fortification w.r.t. a predicate ¢ as a pair of
algorithms (vO.Obf, vO.Verify). The verification algorithm guarantees that, given a string II (purportedly
generated by v©.0bf), if C' + vO.Verify(I) and C' # L, then there exists a circuit C' which satisfies the
predicate ¢ s.t. C = O(C;r) for some randomness 7.

Definition 3.4 (Verifiability Fortification for Obfuscation). Let O be an obfuscator for a circuit class C =
{Cx }ren and ¢ be an efficiently computable predicate on circuits. An e-gap verifiability fortification of O w.r.t.
¢, is a tuple of PPT algorithms vO = (vO.0bf, vO.Verify) that satisfy the following;:

¢ Correctness. For every « € N and every circuit C € C,, such that ¢(C) = 1,

B Pr C=C]=1.
C+v0O Verify(1%,00.0bf(1%,C,¢),$)

* Verifiability. For every ensemble of polynomial-length strings {II, } .en, there exists a negligible func-
tion v(-) such that:

Pr [é;uA (ﬂ(Cecmr):gﬁ(C) - 1A5=0(c;r))] = u(k).

5(—1}(94Verify(1"i J, )

¢ -Gap Indistinguishability of Obfuscated Circuits. There exists an efficient transformation 7 (on
distinguisher circuits) such that for any ¢-satisfying sampler Samp (Definition 3.1) over {C,}. and
distinguisher D,

Samp Samp
AdVO,T(D) > ¢(k) “AdVo Obe. D

where Adv?,rfg, (for (0", D") = (O, T (D)) or (vO.0bf, D)) is as defined in (1).
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COA Fortification. We now define COA fortification cO for an obfuscation scheme O w.r.t. a predicate
¢. Apart from the natural correctness property, we require that cO satisfies verifiability w.r.t. predicate ¢
just like verifiability fortification. In addition, we want cO to satisfy “gap COA security”, which intuitively
means that any distinguisher D that distiguishes between ¢O.Obf(C1) and ¢O.Obf(Cy) given access to a
circuit deobfuscation oracle can be converted to a distinguisher that distinguishes O(C4 ) from O(C5) without
access to any oracle. In our construction, our transformation between distinguishers is not necessarily of
polynomial size in the security parameter  — therefore, in addition to € as before, we parameterize the gap
security in our definition by T' = T'(k) to capture the (in)efficiency of this transformation.

Definition 3.5 (COA Fortification for Injective Obfuscators). Let O be an injective obfuscator for a circuit
class C = {Cx }ren and ¢ be an efficiently computable predicate on circuits. A (T, €)-gap COA fortification of
O w.r.t. ¢ is a pair of PPT algorithms cO = (cO.0bf, cO.Ver) as follows:

* ¢O.0bf(1%,C, ¢) — C. This is a randomized algorithm that on input security parameter , a circuit
C € C,, and a predicate ¢, outputs an encoding C.

e cO. Ver(l“ C,¢) — {C U L}. This is a randomized | algorithm that on input security parameter , a
string C,and a predicate ¢, outputs either a circuit C or a reject symbol L.

These algorithms satisfy the following correctness and security properties.

¢ Perfect Correctness. For every x € N and every circuit C' € C,, such that ¢(C) =1,

B Pr [Brst.C =015 C;r) =
C+cO . Ver(1%,c0.0bf(1%,C,¢),d)

* Verifiability. For every ensemble of polynomial-length strings {II,; } .cn, there exists a negligible func-
tion v(+) such that:

P {é;éj_/\ (ﬂ(Cecmr);¢(0)=1Aé=0(1“,0;r))} = v(k).
C+cO.Ver(1% 11, ,¢)

C if3(C € r)st.C =015 C;r)
1 otherwise.

injective). For any ¢-satisfying sampler Samp (see Definition 3.1), and an oracle circuit D, for b € {1, 2},

e (T,¢)-Gap Security. Let O~1(C) = (well-defined since O is

let
Samp,b . _ Pr [Do*loco.ver(m.,qa)ant@ 15 O o) — 1}
4co,p (C1,C,2)<Samp(1™) (1%,C,2)
C+cO.0bf(1%,Cp,¢)
Samp | Samp,1 Samp,2
COAAch(’)D - qc(’)D _ch,D ‘

where Filt5 denotes a function that behaves as the identity function on all inputs except C, on which
it outputs L.

Then, there exists a T-sized transformation 7 (on distinguisher circuits) such that for any admissible
sampler Samp over {C, }, and distinguisher D,

Sam Sam
AdVETE > e(k) - COAAAVES,

where Adv?;"}p(p) is as defined in (1).

Remark 3.1. One could consider a (possibly) stronger definition that allows the sampler Samp used in

defining COAAdvSamp to also make de-obfuscation queries. We note that for worst-case indistinguishability
notions for O (hke |O) this does not make any difference, as the (non-uniform) sampler can output the
optimal pair of circuits.
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Remark 3.2. We remark that for any 7 = T'(k) > poly(k), any € = e(k) < negl(), (T, ¢)-gap COA fortifi-
cation for any injective (T, €)-secure plO implies COA-secure obfuscation according to Definition 3.3. Here
(T, €)-security indicates that the advantage of any poly(T)-sized adversary in the plO security game is at
most negl(e).

4 Robust NIDI

Robust NIDI arguments w.r.t. an oracle O are an extension of NIDI arguments (Definition 2.2), whereby
the gap distributional indistinguishability requirement of NIDI is further strengthened to hold even if the
distinguisher has access to the oracle Q. (The completeness and soundness guarantees remain unchanged.)
In other words, any distinguisher DY, distinguishing the proofs generated by prover P on input the dis-
tributions on instance-witness pairs - Dy = (X, Wy) or D1 = (X1, W), can be converted to an efficient
distinguisher 7'(D)® which distinguishes the underlying instances &; or X; upto a “gap” e. We formally
define the same below.

Definition 4.1 (Robust NIDI Arguments). Let £ be an NP language with an associated relation R, and O
be an arbitrary oracle. A NIDI argument for £, (P, V) is said to be robust w.r.t. O if it satisfies the following:

¢ «Gap Robust Distributional Indistinguishability: There exists an efficient transformation 7" on
distinguishers such that for every poly(x)-sampleable pair of distributions Dy = (X, Wy) and D; =
(X1, Wh) over instance-witness pairs in R, where Supp(Xy) U Supp(X1) C £, and every distinguisher
D with
| PH[D®(P(1*, Dy)) = 1] = Pr[D®(P(1", Dy)) = 1]| = v(r)

the distinguisher D = T'(D) satisfies:

‘Pr[f)@(é’(o) — 1] - Pr[DO(x1) = 1]\ > e(k) - v(k).

The completeness and soundness guarantees are the same as that of a NIDIL.

We construct robust NIDI arguments for any finite® oracle O = {O, }.en by modifying the construction
in [18] to ensure that all the underlying primitives remain secure in the presence of oracle Q. Our approach
to achieve this is to rely on complexity leveraging, although it may be possible to leverage other axes of
hardness in order to instantiate the underlying primitives, with those that remain secure in the presence
of O.

Construction 4.1. Let € > 0 be an arbitrary small constant s.t. € < 6 and:

o There exists a one-way function f with an efficiently recognizable range, i.e., given y there is an efficient
(PPT) algorithm to check whether there exists a value x such that f(x) = y. Note that permutations have this
property, because every y is in the range of the permutation.

 There exists a perfectly correct, sub-exponentially secure public-key encryption scheme with key generation,
encryption and decryption algorithms (KeyGen, Enc, Dec) that for large enough security parameter k, satisfy
the following - the advantage of every poly (2 )-size adversary in the IND-CPA game is negl(2*").

e There exists a sub-exponentially secure indistinguishability obfuscation scheme (i0.Obf,iO.Eval), that for
large enough security parameter k, satisfies the following - the advantage of every poly(2*")-size adversary in
the obfuscation security game is negl(2*").

5By ‘finite’, we mean that there exists a constant ¢ > 1 s.t. for large enough r the oracle O, can be represented as a truth-table of
size at most 27°.
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o There exists a sub-exponentially secure puncturable PRF that for large enough security parameter k, satisfies
the following - the advantage of every poly(2*")-size adversary in the puncturable PRF indistinguishability
game is negl(2*°).

® There exist sub-exponentially secure NIWIs that for large enough security parameter k, satisfies the following
- the advantage of every poly(2*")-size adversary in the NIWI indistinguishability game is negl(2*").

We construct the required robust non-interactive distributionally-indistinguishable (N1DI) argument below, where
letting R ¢ denote the relation corresponding to NP language L we define

Lnw = {(pk,dm,y) 2 3(r, s, sk) s.t. ((d,r) € R,;)\/((pk,sk) +— KeyGen(s) ANy = f(Decsk(c)))}

Let ¢ > 1 be a constant s.t. for large enough & the oracle O, can be represented as a truth-table of size at most 2n°,
® The prove algorithm P (1%, D, L) does the following:
- Setk = kK*<.
Sample s « {0, 1} and set (pk, sk) < KeyGen(1*, s).
Sample K < {0,1}*, R + {0,1}*.
Generate program Py, i p . defined in Figure 1.
Compute P = i0.0bf (1%, Py ik p.r; R).
Output (pk, ﬁ).

Hardwired: Public key pk, Puncturable PRF Key K, Distribution D, Language L.

Input: Query y € {0,1}".
1. If y ¢ Range(f), output L. Otherwise, continue.

Set (T1,7‘2,7”3) = PRF(K, y).
Setd = D(Tl).
Set ¢ = Enc,, (0%;72).

Set x = (pk,d, c,y), w = (r1,0%*). Then compute e = NIWLP (1%, z, w, Lnwi; 73).-

A

Output (z, e).

Figure 1: Program P, x p .-

o The verify algorithm V(1%, 7, L) on input a proof = = (pk, P) does the following:

Sample v + {0,1}" and set y = f(v).

Compute out = i0.Eval(P, y). Parse out = (z,e) and parse x = (pk,d, c,y).
IFNIWLY (1% 2, e, L) rejects, output | and stop.

Else output d.

Theorem 4.1. Fix any finite oracle O = {Q }wen. Then the above construction satisfies Definition 4.1.

The rest of this section is dedicated to proving Theorem 4.1. Many parts of what follows closely resemble
the NIDI construction in [18], with some changes to achieve security against an oracle-aided adversary.
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Lemma 4.1. Construction 4.1 satisfies completeness according to Definition 4.1.

Proof. The proof follows by observing that due to perfect correctness of iO, V(r, £) for = = (pk, P) obtains
(z,e) from P, where © = (pk,d,c,y). By perfect correctness of NIWI, V will output d with probability 1.
Recall that d = D(r;) by construction, and therefore d € Supp(D). O

Lemma 4.2. Construction 4.1 satisfies soundness according to Definition 4.1.

Proof. Suppose there exists a poly(x)-sized (non-uniform) prover P* that outputs string 7* € {0,1}*, and
suppose there exists a polynomial p(-) such that:

Pr[(V(1%,m, L) £ L) A (Y%7, 0) ¢ £)|m - P*] = L
(k)
Then, we construct a non-uniform adversary .4* that contradicts one-wayness of the function f. A* obtains
non-uniformly a purported NIDI proof * for language £, where 7* = (pk*, P), and also non-uniformly
obtains the secret key sk* for pk* (if one exists). Otherwise, it sets sk* to 0*.
Next, A* obtains a string y and does the following to compute f~(y):

e Compute out = i0.Eval(P, y). Parse out = (z*, ¢*) and parse
x* = (pk:*7 d*7c*7y)'

e Output z = Decgp (¢*).

Now by assumption,

K K * L
Pr (VA% m £) £ 1) A (VL) ¢ L) P 2
which by our construction implies that
Pr |:<N|W|.V(JT*,€*,£N|W|) acceptS) A (V(lﬁ,ﬂ'a[‘) € [,)‘7'(' — 'P*:| > ]ﬁ (3)

By (perfect) soundness of the NIWI, NIWIL.V(z*, e*, Lnwi) accepts iff * € Lywi, or equivalently for z* =
(pk;*) d*7c*7y*)l

A(r*, s, sk™) s.t. <(d*,r*) € R[;> \/ ((pk*7 sk*) < KeyGen(s*) Ay = f(Decsk*(c*))> 4)
Combining equations (3) and (4),
Pr l(ﬂ(r*, s*, sk*) s.t. ((d*,r*) € Re) \/ ((pk*, sk™) < KeyGen(s*) Ay =

1
p(k)

f(DeCsk:*(C*)))> A (V(l“,w, L) ¢ L)] >

By noting that d* ¢ £ implies that there does not exist r* such that ((d*,7*) € R.), we have:

Pr (3(r*,s*,sk*) s. t. (pk*, sk™) < KeyGen(s*) Ay = f(Decsk*(c*))) /\
N 1
("#2)] > e
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which in particular implies that for (pk*, P) and corresponding sk* set non-uniformly by A,

which implies that with probability at least ﬁ, the output of A*(y), which is z = Decgy+ (c*) as discussed

L

Pr [(H(T*,S*,Sk*) s. t. (pk*, sk™) «+ KeyGen(s*) Ay = f(Decgp~ (c*)))] > (%)

above, is such that f(z) = y.

Therefore A*(y) runs in time poly(k) = poly(k®/¢) = poly(x) and contradicts one-wayness of the function

f, as desired. This completes the proof.

Lemma 4.3. Construction 4.1 satisfies robust distributional indistinguishability for 2~" _hard distributions according

to Definition 4.1

Proof. We will now define a sequence of (2% + 1) hybrid distributions,
(Hybrid,, Hybrid,, . .., Hybrid,. ) such that Hybrid, = P(1%, Dy, £) and Hybrid,. = P(1%, D1, L).

For each i € [0, 2"], the distribution Hybrid, depends on (1%, Dy, D1, L, ¢, €) and is defined as follows:

e Setk =k-.

<
€

e Sample s + {0, 1}* and set (pk, sk) < KeyGen(1*,s).

Sample K <+ {0,1}*, R < {0,1}*.

* Generate program P, . 1, - defined in Figure 2.

e Compute P =i0.0bf(1¥, P, 1 i R).

Output (pk, P).

2.
3.

N o U

Hardwired: Public key pk, Index ¢ € [0,2"], Puncturable PRF Key K, Distributions (D, D),
Language L.

Input: Query y € {0,1}".
1.

If y ¢ Range(f), output L. Otherwise, continue.
Set (7’1, T2, 7”3) = PRF(K, y)

Ify <1, setd:Dl(rl).

Ify > i, setd = Do(Tl).

Set ¢ = Enc,, (0% 72).
Set x = (pk,d, c,y), w = (r1,0?*). Then compute e = NIWLP (1%, 2, w, Lnwi; 73).-

Output (z, e).

We now prove that for every ¢ € [1,2"] and every (non-uniform) poly(2°)-sized distinguisher A there

Figure 2: Program P, ;- p .

exists a negligible function y(-) such that:

Pr[AQ(Hybridi_l) =1] - Pr[A@(Hybridi) =1]| = M(Zke)
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To prove this claim, we consider a sequence of additional sub-hybrids between Hybrid;_; and Hybrid, called
(Hybrid; 4 1, ..., Hybrid;_; ;5) where:

Hybrid; _; ; = Hybrid; , and Hybrid; , ;5 = Hybrid,
* Hybrid;,_, ; = Hybrid, ;.
* Hybrid,_; , depends on (1%,Dy, D1, L, c,¢) and is defined as follows: (we underline the difference
between Hybrid, ; ; and Hybrid, ; 5)
- Setk = k*.
— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).
- Sample K + {0,1}*, R « {0,1}*.
- Set (ry,r3,r5) = PRF(K, ).
— Set d* = Dy (r}) and ¢* = Enc,;(0%;73).

- Set z* = (pk,d*,c*,i), w* = (r},0%*). Then compute e* =
N|W|.P(1k,aﬁ*,w*,ﬁmv\”;’l‘g).

- Generate program }5;,;}73’ £o(a% ) defined in Figure 3.

— Compute P= iO.Obf(?;,;kDL(I*_’e*); R).

— Output (pk, P).

Hardwired: Public key pk, Index i € [2%], Punctured PRF Key K {i}, (z*, e*), Distributions (D, D1),
Language L.

Input: Query y € {0,1}".
1. If y ¢ Range(f), output L. Otherwise, continue.

2. If y = 4, output (z*, *) and stop.

Compute (r1,72,73) = PRF(K, y).
Ify < (i—1),setd="Di(ry).

If y > i,setd = Dy(ry).

Set ¢ = Ency, (075 72).

Set z = (pk,d, c,y), w = (r1,0%**). Then compute e = NIWLP(1*, 2, w, Lywi; 73)-

® N o g B W

Output (z,€).

. . Di—1
Figure 3: Program Pth’D’L’(ﬂ’e*).

Claim 4.1. For every (non-uniform) poly(2*")-sized distinguisher A there exists a negligible function y(-)
such that:
PF[AO(Hybridifl,l) =1] - Pr[AQ(HybridFLQ) = 1] = p(2")
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Proof. Note that the programs P;I;}(,’D, ¢ and ]5;,;}&1)’ £, (2~ ) have identical functionality, and the

oracle O can be implemented by a circuit of size 2*°. Therefore, by sub-exponential security of indis-
tinguishability obfuscation (with security parameter k), for every ¢ € [1,2"] and every (non-uniform)
poly(2*) = poly(2"")-sized distinguisher A there exists a negligible function y; (-) such that:

Pr[A®(Hybrid,_; ;) = 1] — Pr[A®(Hybrid,_; ,) = 1]| < 11 (2¥")

Hybrid; ; 5 is identical to Hybrid; , , except that (r},r3,73) < {0, 1}3".

Claim 4.2. For every (non-uniform) poly(2*")-sized distinguisher A there exists a negligible function y(-)
such that:
Pr[A®(Hybrid; , 5) = 1] — Pr[A®(Hybrid, ; 3) = 1]| = pu(2*")

Proof. Note that the oracle O can be implemented by a circuit of size 2°° = 2*". Then by sub-
exponential security of the puncturable PRF (with security parameter k), we have directly that for
every i € [1,2%] and every (non-uniform) poly(2¥") = poly(2*")-sized distinguisher .A there exists a
negligible function 15 (-) such that:

Pr[A®(Hybridi_172) =1]- PY[AQ(Hyb"idi—L?)) =1]| < pa(2)

Hybrid; , 4 is defined as follows: (we underline the difference between Hybrid; ; 5 and Hybrid,; ; ,)

~ Setk = .

— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).

- Sample K + {0,1}*, R « {0, 1}*.

- Set (r},r3,73) + {0,1}27Fk,

— Compute (in time upto 2*) value sj such that f(s}) = 1.

- Set d* = D1 (r}) and ¢* = Enc,i(s7;73).

- Set z* = (pk,d*,c*,i), w* = (r},0%%). Then compute
e* = NIWI.’P(lk,x*,w*,£N|W|;7"§).

- Generate program 15;,3(7@7 £.(a- -y defined in Figure 3.

- Compute P = iO.Obf(ﬁ;ﬁK,D,L,(w*,e*); R).

- Output (pk, P).

Claim 4.3. For every (non-uniform) poly(2"")-sized distinguisher A there exists a negligible function ()
such that:
Pr[A®(Hybrid; , 3) = 1] — Pr[A®(Hybrid, , ,) = 1]| = u(2"")

Proof. We will prove this claim based on the sub-exponential IND-CPA security of the encryption
scheme against non-uniform adversaries. Towards a contradiction, suppose there exists a poly(2"") =
poly(2*°) sized distinguisher A and a polynomial p(-) such that

Pr[AQ(Hybridi—m) =1] - PT[A(D(Hybridi_lA) =1|= p(2k°)
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Then there exists a non-uniform poly(2*°) sized adversary A’ that fixes s; = f~!(i), then begins the
experiment. It obtains ¢* from the CPA challenger as either Enc,(07; r3) or Encyi(s3; r3) It completes
the rest of the experiment according to Hybrid, _; 5 except setting ¢* according to the ciphertext ob-
tained from the external challenger. It implements the oracle O for A (this requires size 2%°). It then
mirrors the output of A given the resulting distribution, which implies that

! K., % o 12 . % o 1
’Pr[.A (Encpr(0%;73)) = 1] — Pr[A'(Encpi(s];rs)) = 1]’ > m

which gives a contradiction, as desired. Therefore, by sub-exponential IND-CPA security of the en-
cryption scheme (with security parameter k), for every i € [1,2"] and every (non-uniform) poly(2~")-
sized distinguisher A there exists a negligible function p3(-) such that:

| PrLA® (Hybrid,_y ) = 1] = PrLA®(Hybrid, _; 1) = 1]| < za(2")
O

Hybrid; ; 5 is defined as follows: (we underline the difference between Hybrid; ; , and Hybrid,; ; 5)

Itel

- Setk = kt.

— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).

- Sample K + {0,1}*, R « {0, 1}*.

- Set (r},r3,73) + {0,1}27+k,

- Compute (in time upto 2*) value sj such that f(s7) = 4.

- Set d* = D1(r}) and ¢* = Enc,i(s7;73).

- Set z* = (pk,d*, c*,i), w* = (0%, s, sk). Then compute
e* = NIWLP (1%, 2% w*, Lawi; 73)-

- Generate program ﬁ;;}(’p’ £,(z+ o) defined in Figure 3.
R).

- Compute P= i0.0bf(ﬁ;;}{ DLz e)
— Output (pk, P).

Claim 4.4. For every (non-uniform) poly(2"")-sized distinguisher A there exists a negligible function ()
such that: .
Pr[A®(Hybrid; , ,) = 1] — Pr[A®(Hybrid, , 5) = 1]| = pu(2*")

Proof. We will prove this claim based on the sub-exponential witness indistinguishability of the NIWI
against non-uniform adversaries. Towards a contradiction, suppose there exists a distinguisher .A and
a polynomial p(-) such that

Pr[A% (Hybrid; ; ,) = 1] — Pr[A”(Hybrid; _, 5) =1]| > p(2¥7)

Then there exists a non-uniform adversary A’ that non-uniformly fixes s; = f~!(i), then begins the
experiment. It obtains e* from the CPA challenger either using witness w* = (r},0%*) as in Hybrid; _; 4,
or using witness w* = (0%, s, sk) as in Hybrid, _, 5. It completes the rest of the experiment according
to Hybrid; _; , except setting e* according to the NIWI obtained from the external challenger. It imple-

ments the oracle O for A (this requires size 2°°). It then mirrors the output of A given the resulting
distribution, which implies that

PI‘[A/(’LU* _ (TT702k)) _ 1] . PY[A/(U}* — (Ok’s’sk)) = 1] > p(2k.5)
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which gives a contradiction, as desired. Therefore, by sub-exponential security of the NIWI (with
security parameter k), for every i € [1,2%] and every (non-uniform) poly(2~")-sized distinguisher .A
there exists a negligible function p4(-) such that:

Pr[A®(Hybrid;_ 4) = 1] — Pr[A®(Hybrid,_; 5) = 1]| < pa(2*")
O

Hybrid; ; ¢ is defined as follows: (we underline the difference between Hybrid; _; 5 and Hybrid,; _; ¢)

~ Setk = k<.

— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).

- Sample K + {0,1}*, R « {0,1}*.

- Set (r},r3,73) + {0,1}25+k,

- Compute (in time upto 2*) value sj such that f(s7) = 4.
- Set d* = D1 (r}) and ¢* = Enc,i(s7;73).

- Setz* = (pk,d*, c*,i), w* = (0%, s, sk). Then compute
e* = NIWLP (1%, 2%, w*, Lawi; 73)-

- Generate program ?;l:}(ﬂ £,(a+ ) defined in Figure 3.
- Compute P = iO.Obf(ﬁ;;}K)D’ﬁ’(w*’e*); R).

- Output (pk, P).

Claim 4.5. For every (non-uniform) poly(2*")-sized distinguisher A there exists a negligible function y(-)
such that:
| PrLA (Hybrid,_y 5) = 1] = PrLA®(Hybrid, _, ) = 1] = (2"

Proof. We will prove this claim based on 2%’ _hardness of (Do, D1) against non-uniform adversaries.
Towards a contradiction, suppose there exists a distinguisher .4 and a polynomial p(-) such that

| PrLA (Hybrid,_y 5) = 1] = Pr[A®(Hybrid,_, o) = 1] > p(2F)

Then there exists a (non-uniform) adversary A’ that non-uniformly fixes s; = f~!(i), then begins the
experiment. It obtains d* from an external challenger sampled either as Dy (r*) as in Hybrid,_; 5, or as
Dy (r*) as in Hybrid; _; 4. It completes the rest of the experiment according to Hybrid; _; 5 except setting
d* according to the sample obtained from the external challenger. It then mirrors the output of A
given the resulting distribution, which implies that

1 1

PrA(d" =Do(r)) = 1] = PrlA(d" = Da(r) = 1]| 2 ey > oy

which follows because € < §, and gives a contradiction to the ok’ -hardness of (Dg, D), as desired.

Therefore, by sub-exponential indistinguishability between the distributions (Dg, D;) (with security
parameter k), for every i € [1,2%] and every (non-uniform) poly(2~")-sized distinguisher .A there exists
a negligible function s5(-) such that:

Pr[A°(Hybrid,_, 5) = 1] — Pr[A®(Hybrid;_, ¢) = 1]| < p5(2*")
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* Hybrid; , 7 is defined as follows: (we underline the difference between Hybrid; ; 5 and Hybrid, _; 7)

~ Setk = k.
— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).
- Sample K + {0,1}*, R « {0, 1}*.
- Set (r},r3,73) + {0,125+,
— Compute (in time upto 2*) value sj such that f(s}) = 1.
— Set d* = D1(r}) and ¢* = Enc,i(s7;73).
- Set 2* = (pk,d*, c*,i), w* = (r},0%"). Then compute
e* = NIWLP (1% a* w*, Lawi; 75)-

- Generate program ﬁ;;i(p £.(a= -y defined in Figure 3.

- Compute P= iO.Obf(]B;,;%DL(z*’e*); R).

— Output (pk, P).
Claim 4.6. For every (non-uniform) poly(2"")-sized distinguisher A there exists a negligible function ()

such that:
Pr[A°(Hybrid;_; 4) = 1] — Pr[A®(Hybrid; _, ;) = 1]| = u(2"")

Proof. By sub-exponential witness indistinguishability of the NIWI against non-uniform adversaries
(and following an identical argument to that of the indistinguishability between Hybrid, ; , and

Hybrid, _; 5), for every i € [1,2"] and every (non-uniform) poly(2*°)-sized distinguisher A there ex-
ists a negligible function y(-) such that:

Pr[A°(Hybrid;_, 4) = 1] — Pr[A®(Hybrid;_; ;) = 1]| < ps(2*")

* Hybrid;_, g is defined as follows: (we underline the difference between Hybrid; _; ; and Hybrid,; _; g)

~ Seth = kt.

— Sample s + {0, 1}* and set (pk, sk) < KeyGen(s).
- Sample K + {0,1}*, R < {0, 1}*.

- Set (r},r3,73) + {0,1}27+k,

— Do not compute value sj such that f(s}) = 1.

— Set d* = D1 (r}) and ¢* = Enc,;(0%;73).

- Set z* = (pk,d*,c*,i), w* = (r},0%"). Then compute
e* = N|W|.P(1k,$*,w*,£N|W|;T§).

- Generate program ﬁ;;}{,n £,(a+ ) defined in Figure 3.

x k)

- Compute P = iO.Obf(ﬁ[’f;’%D’ﬁ’(m*,e*); R).

— Output (pk, P).

Claim 4.7. For every (non-uniform) poly(2"")-sized distinguisher A there exists a negligible function ()
such that:
Pr[A®(Hybrid; , ;) = 1] — Pr[A®(Hybrid,_, ¢) = 1]| = u(2"")
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Proof. By sub-exponential IND-CPA security of the encryption scheme against non-uniform adver-
saries (and following an identical argument to that of the indistinguishability between Hybrid, ; 3

and Hybrid; , 4), for every i € [1,2"] and every (non-uniform) poly(2+°)-sized distinguisher A there
exists a negligible function y7(-) such that:

Pr[A®(Hybrid;_; 5) = 1] — Pr[A®(Hybrid;_; 4) = 1]| < p7(2¥)

* Hybrid, ; 4 is identical to Hybrid, ; g except that (17,75, 73) = PRF(K, ).

Claim 4.8. For every (non-uniform) poly(2*")-sized distinguisher A there exists a negligible function y(-)
such that:
Pr[A%(Hybrid, _, 5) = 1] — PrA° (Hybrid,_, 5) = 1] = u(2"")

Proof. By sub-exponential security of the puncturable PRF (with security parameter k), we have di-
rectly that for every i € [1,2"] and every (non-uniform) poly(2*")-sized distinguisher A there exists a
negligible function ps(-) such that:

Pr[A(Hybrid; _; 5) = 1] — Pr[A(Hybrid; _; 4) = 1]| < ps(2")

® Hybrid,_; ;o = Hybrid,.

Claim 4.9. For every (non-uniform) poly(2"")-sized distinguisher A there exists a negligible function ()

such that:
Pr[A©(Hybridi—1,9) =1] - PY[A@(Hyb"idi—Llo) =1]| = H(Qk’)
Proof. Note that now the programs P;,% Kxp.cand 15;1;11973 £,(a ) have identical functionality. There-

fore, by sub-exponential security of indistinguishability obfuscation (with security parameter k), for
every i € [1,2%] and every (non-uniform) poly(2*")-sized distinguisher A there exists a negligible
function pug(+) such that:
Pr[A®(Hybridi7179) =1]- Pr[A@(HybridFLlO) =1]| < ﬂ9(2k6)
O

By combining all the above claims, we have that for every i € [1,2%] and every (non-uniform) poly(2"")-
sized distinguisher A there exists a negligible function p(-) such that:

| PrLA® (Hybrid,_y) = 1] — Pr[A° (Hybrid,) = 1]| < u(2"")

Since k¢ = x°, we therefore have that for every (non-uniform) poly(2~°)-sized distinguisher A (and in
particular also for every poly(k)-sized distinguisher .A) there exists a negligible function p’ such that:

‘Pr[A@)(Hybrido) = 1] — Pr[A®(Hybrid,..) = 1]‘ < 2%u(25°) = i (k)
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5 Constructing COA Secure Obfuscation

We present and analyze our construction of COA obfuscators. Our construction actually shows how to
fortify functionality-preserving obfuscators with any underlying hiding property. COA obfuscators as in
Definition 3.3 are obtained as a corollary.

Construction 5.1. We require the following primitives:

e Let ccacom denote an €(r)-secure CCA commitment scheme according to Definition 2.3 and let O denote the
(deterministic, inefficient) oracle that implements the CCA.DeCom algorithm for ccacom. That is, on input a
commitment string com, the oracle QO outputs either a message m € {0,1}* or L. Also, let T' = poly(|m|, 2")
(where |m| denotes the size of message space for ccacom).

o Let r-NIDI denote a robust NIDI w.r.t. oracle O for language L4, defined below.

o Let O denote the underlying obfuscator for our COA fortification. We will assume that this obfuscator is secure
against poly(T')-sized adversaries. This can be achieved by appropriately scaling the security parameter for O,
since O is assumed to be subexponentially secure.

e Define language L4, = {{O,c} : 3(C,r1,7r2) : O = O(C;r1) N ¢ = ccacom(C;73) A ¢(C) =1}
The algorithm cO.0bf (1%, C, ¢) does the following:

o Define distribution Dc(r1||r2) = {O(C;11), ¢ = ccacom(C'; r2)} for uniformly sampled r1,ro.

e Output w < r-NIDI.P(1%, D¢, L) computed using uniform randomness .
The algorithm cONer(1%,C, ¢) does the following:

e Sample randomness rg.

* Output y < r-NIDLV(1%, m;7R).

We show:

Theorem 5.1. For any (T'(k),e(k)), if the underlying commitment scheme is e(k)-CCA-secure as in Definition
2.3 and with decommitment oracle that’s implementable in time T'(k), and the underlying NIDI is €(x)-gap robust
w.r.t. the decommitment oracle for the CCA commitments (see Definition 4.1), then the above construction is a
(T'(k), e(r)/4)-gap COA fortification for any injective obfuscation as in Definition 3.5.

Corollary 5.1. Assuming the existence of sub-exponentially secure one-way functions and sub-exponentially se-
cure indistinguishability obfuscation, there exists COA-secure obfuscation for all polynomial-sized circuits, satisfying
Definition 3.3.

Proof. (Sketch) By [7], assuming the existence of sub-exponentially secure iO and sub-exponentially secure
puncturable PRFs, there exist subexponentially secure plO schemes for any polynomial sized circuit family.
That is, there exists a constant § > 0 such that for T = 2%, and every poly(T)-sized distinguisher D,
Advls)fg: P, = negl(T") where Samp is an admissible sampler according to Definition 2.4.°

Furthermore, for ¢(x) = 2-°0°¢°(%)) and some constant ¢ > 1, there exist ¢(x)-secure CCA commitments
satisfying Definition 2.3 for which the decommitment oracle can be implemented in time 7'(x), and by
Theorem 4.1 there exist robust NIDI arguments satisfying €(x) gap distributional indistinguishability w.r.t.
the decommitment oracle for the CCA commitments. Then, the theorem above implies that there exists

(2“5 ,27o00"(®))_gap COA fortification for any injective obfuscation and in particular, for the injective plO

6This scheme can be made injective by attaching a perfectly binding commitment of the circuit to its original obfuscation, but notice
that this step is in fact not necessary: the CCA commitment which is part of the fortification process provides sufficient injectivity for
the COA game to make sense and for the proof to go through.
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scheme described above. This results in a COA-secure obfuscation scheme, whose correctness and verifi-
ability are immediate from those of the COA fortification. Furthermore, by definition of fortification, this
means there is a T-sized transformation 7 on distinguishers such that for any admissible sampler Samp
and distinguisher D,

AQVET > €(r) - COAAdVERD

This implies that for any 7-sized distinguisher D, COAAde?Qm% = negl(k). O

Now, assume that for (k) = 27°1°8°(%)) and some constant ¢ > 1, there exist ¢(k)-secure CCA commit-
ments satisfying Definition 2.3 for which the decommitment oracle can be implemented in time 7'(x) where

T(k) = 2%° for some constant § > 0, and by Theorem 4.1 there exist robust NIDI arguments satisfying e(x)
gap distributional indistinguishability w.r.t. the decommitment oracle for the CCA commitments. Then, the

theorem above implies that there exist (2" 2-0log"(x)) )-gap COA fortification for any injective obfuscation.
Furthermore, the corollary implies that if in addition there exist subexponential IO and one way functions
then there exist COA-secure obfuscators for circuits.

5.1 Proof of Theorem 5.1

The proof proceeds via the following sequence of hybrid games.

Hybrid,, : This hybrid corresponds to the COA obfuscation security game with b = 1. For any ¢-satisfying

sampler Samp let HybOAdvi?Q"?% denote the probability that the oracle-aided adversary outputs 1 in this
experiment, which is the term

Samp,1 ,_ O~ tocONeroFilts (A .\ _
deop = <ql,cg,z>P£Samp<1*'~> P °(C,2) = 1}
C-c0O.0bf(1%,C1)
from Definition 3.5.
Hybrid, : This hybrid is identical to Hybrid,, except that the deobfuscation oracle executes r-NIDI.V(1¥, 7;,)
and obtains output either L, or a pair (5 ,¢) where C is an obfuscated circuit and ¢ is a non-malleable com-
mitment string. If r-NIDI.V(1%, ;) outputs L, the deobfuscation oracle returns | to the adversary. Other-

wise, it invokes the decommitment oracle CCA.DeCom on c. Let HyblAdvig"_'% denote the probability that
the oracle-aided adversary outputs 1 in this experiment.

Claim 5.1. For every (non-uniform) poly(x)-sized adversary A, there exists a negligible function p(-) such that for
large enough k € N,
[Hyby Adv,5"5, — HyboAdvesTh| < pi(r)

Proof. Suppose the claim is not true. We will prove that this hybrid is indistinguishable from previous
hybrid due to soundness of the robust NID], as per Definition 4.1, and perfect injectivity of the obfuscation
and non-malleable commitment. Indeed, suppose there exists a polynomial p(-) such that

1
Hyb, Adv>g's — Hyb, Advoss | > ——
[Hyb, cO,D ¥Dg COD| p(#)
Because the two games are identical except one inverts the obfuscation and the other inverts the commit-
ment, denoting D’s oracle queries by C’l, C’g, .. C’n,

Pr[Ji € [n] s.t. cO.Ver(C) # L /\ r-NIDLV(C;) = (C'¢)
1
p(r)

This contradicts soundness of the r-NIDI. O

/\ HC,r1,7me) st C = O(C;ry), ¢ = ccacom(C; 1)) >
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Hybrid, : This hybrid is identical to Hybrid,, except that the challenger sets b = 2.
The difference between this game and Hybrid; is that in Hybrid; for d € {1,2}, the adversary obtains
r-NIDLP(1%, D¢, ).

Claim 5.2. For every (non-uniform) poly(r)-sized adversary A, there exists a negligible function yu(-) such that for
large enough k € N,
[Hyb, Advas, — Hyby Advo's| < u(x)

Proof. Suppose towards a contradiction that there exists a poly(x)-sized adversary .A and polynomial p(-)
such that for large enough x € N,
1
Hyb, Adv>g's — Hyb, AdvosR | > ——
|Hyb, cO,D y Veo, Dl > o(#)
By the e-gap robust indistinguishability of r-NIDI w.r.t. the decommitment oracle O, we have that for
every poly(k)-size distinguisher D with
1

|PHDO(P(1", Dey)) = 1] = PrD (PO, Do) = 1| 2 o

there exists a distinguisher D = T(D) of size poly(k) that satisfies:

Ho _ 1] _ pp[DO -1l > e(r)
[PeDO (1) = 1] — Pe{DO(%;) = 1]| > )
where X; = O(Ch;r), ccacom(Cy; ') and Xy = O(Cs;r), ccacom(Ca; 1’) where (r, ') are sampled uniformly.
We will now prove that D? either contradicts security of the CCA commitment or that (7' ¢)-Gap se-
curity of the COA holds. To see this, consider an intermediate distribution X12 = O(Ch; ), ccacom(Ca; 1)
where (r,7’) are sampled uniformly. By the above statement, we have that either

Pr[DO(Xy) = 1] — Pr[DP (X)) = ‘2 ()
‘ [ ( 1) ] [ ( 12) ] 2}7( Ii)
or )
Pr[DO(X Pr[DO(X,) = 1 ‘ >
| Pr{D(A12) = 1] ~ Pr[D° (%) 20
In the former case, D contradicts the CCA security of ccacom. In the latter case, since the oracle O can be
implemented in time 7', D distinguishes the underlying obfuscations. O

Hybrid; : This hybrid corresponds to the COA obfuscation security game with b = 2.
Note that Hybrid; is identical to Hybrid,, except that the deobfuscation oracle executes r-NIDI. V(F )

and obtains output either L, or a pair (C,¢) where C is an obfuscated circuit and ¢ is a non-malleable
commitment string. If r-NIDL.V(1* 7;) outputs L, the deobfuscation oracle returns L to the adversary.

Otherwise, it invokes the deobfuscation oracle O~! on C.

Claim 5.3. For every (non-uniform) poly(k)-sized adversary A, there exists a negligible function p(-) such that for
large enough k € N,

[Hyby Adva™s, — Hyby Advos's | < pi(x)

Proof. Because the two games are identical except one inverts the obfuscation and the other inverts the com-
mitment, the proof of this claim follows by the soundness of r-NIDI, identically to the indistinguishability
claim between Hybrid, and Hybrid;. O

We conclude that the transform from the proof of indistinguishability between HbeAdvam% and Hyb; Adv E?Qm%

results in an adversary DO that runs in time T, and achieves at least an advantage of /4 in distinguishing
obfuscated programs. This implies (T, ¢/4)-gap security of the fortification.
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5.2 Proof of verifiability

Since cO.Ver(m, Ly) = r-NIDLY(1%,7;7rr) for uniform 7z, and since, by soundness of r-NIDI, for every
ensemble of polynomial-length strings {II,,}, there exists a negligible function 4 such that

Pr (& # L) A & L)) < (),

z+r-NIDLV (1% I1,;,L )

the verifiability of cO follows immediately.

6 Completely CCA-secure Encryption

In the context of public-key encryption schemes, non-malleability is traditionally aimed to prevent sit-
uations whereby an attacker, given “honestly generated” public encryption key pk and ciphertext ¢ =
Enc(pk, m,r) for an some message m and randomness r, manages to generate a ciphertext ¢’ such that
Dec(sk,c’) = m/, where sk is the secret key associated with pk and m/ is related to m in some predefined
way. Security against chosen ciphertext attacks (CCA2) extends non-malleability by preventing situations
whereby an attacker creates any new ciphertext ¢’ such that learning m’ = Dec(sk, ¢’) would enable the
attacker to break semantic security of the scheme - regardless of how (or whether) m’ relates to some previ-
ously encrypted m.

Fischlin [11] (and later also Ventre and Visconti [29]) considered a natural extension of non-malleable
public-key encryption, which prevents situations whereby an attacker , given pk and ciphertext c = Enc(pk, m,r),
manages to generate a pair (pk’, ¢’) that “look legitimate”, and furthermore “¢’ is an encryption of m’ under
public key pk’, whereas m/’ relates to m in some predefined way. Note that the clause “c’ is an encryption
of m'” may be interpreted in a number of ways, and may not even be always well defined. Indeed, Fis-
chlin and Ventre and Visconti further provide a number of possible interpretations and study the resulting
notions. Furthermore, their primary notion, where “¢’ is an encryption of m'” means “there exists r such
that ¢ = Enc(pk’,m’,r)”, is shown to imply that such encryption schemes can double up as non-malleable
commitment schemes. On the down side, without additional set-up assumptions, this notion is shown to
be uninstantiable by way of any reduction to a standard (polynomial-time) game-based assumption.

C-CCA encryption aims to extend completely non-malleable encryption in the same way that CCA2
encryption extends non-malleable encryption. (Alternatively, C-CCA encryption extends CCA2 encryption
in the same way that complete non-malleable encryption extends non-malleable encryption.) This is done
as follows:

First, to avoid edge cases where “¢’ is an encryption of m’” is undefined ( e.g. encryption schemes that
allow any message to result in any ciphertext with a tiny-but-positive probability), we require the encryp-
tion algorithm to explicitly decide whether a purported public-key is legitimate; furthermore, ciphertexts
that were generated honestly using public key that was recognized as legitimate should be decrypted cor-
rectly - namely any public key pk that’s recognized as legitimate should be associated with a legitimate
secret key sk such that Dec(sk, Enc(pk, m,r)) = m. Note that that this should hold even if pk is not in the
image of the key generation algorithm.

Next, we extend CCA2 security to prevent even those situations whereby an attacker creates a new pair
(pk', ) such that pk’ is considered legitimate and learning m’ = Dec(sk, ¢’) would enable the attacker to
break semantic security of the scheme. As in the case of CCA2, this holds regardless of how (or whether)
m/’ relates to some previously encrypted m.

While we do not know whether C-CCA formally implies Fischlin’s complete non-malleability (mainly
due to those definitional edge cases), it is significantly more powerful. In particular, it implies a variant
of complete CCA commitment, and is susceptible to the same uninstantiability results in the plain model.
(Our construction bypasses these uninstantiability due to the use of subexponentially hard primitives.)
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6.1 Defining completely CCA-secure encryption

Definition 6.1 (C-CCA-security). An encryption scheme PKE = (KeyGen, Enc, Dec) is Completely CCA
(C-CCA) secure for a message-space family M = {M,. },, if there is a negligible function y(-) such that:

Correctness: [Dec(sk, Enc(k, pk,m)) = m] > 1 — u(x) for all K € N, m € M,,. Furthermore,

P
(pk,sk)(—KgyGen(l")
we allow Enc to output a special failure symbol L, such that Dec(sk, L) = L for all sk, and L ¢ M.

Unique decryptability: A string pk € {0, 1}7°(%) is useless if Pr[Enc(k, pk,m) # 1] < u(k) for any m €

M,.. Then, for any pk € {0, 1}P°¥(*) that is not useless there is a unique sk such that Pr[Dec(sk, Enc(k, pk,m))

m] > 1 — u(k) for all m € M,, and furthermore (pk’,sk) < KeyGen(1%,r) for some r, pk’. We call sk
the opening of pk.

Complete CCA security: A function D, o= o+ (pk, ¢) is a valid C-CCA decryption oracle for PKE if whenever
(pk,¢) # (pk™, ¢*) and pk is not useless, Dy, k-~ (pk, ¢) = Dec(sk, ¢), where sk is the opening of pk.

Then there exists a valid C-CCA decryption oracle D such that for any PPT adversary A, for all suffi-
ciently large x,

C-Cca 1

AdV%CIEas,Ap(’i) = PT[EXPPK&A,D(“) =1] - B} < p(k),
where Exppicz 4 p(k) denotes the following experiment:

1. Let (pk™,sk™) + KeyGen(1%).

2. Let (mg,myq, s) < APr»e 1 (pk™).

3. Let ¢* < Enc(k, pk*, mp-) where b* <5 {0,1}.
4. Letlt/ < APrwr.c (s, c*).

5. Return 1if b’ = b*.

6.2 C-CCA secure PKE in the Plain model

The starting point of our C-CCA secure PKE scheme is the iO-based CCA-secure encryption scheme of Sahai
and Waters [28]. We first instantiate that scheme with a COA obfuscator (with an appropriate correctness
predicate). Next, we add to the encryption algorithm a simple sanity check that allows recognizing and
rejecting “obviously bogus” public keys.

Construction 6.1. Let:
e M, ={0,1}¢"),

Fy 2 {0, 13709 % {0,1}2% — {0, 1}4%) and Fy - {0,1}70) x {0,132 — {0,117 be two puncturable
pseudo-random function families, with n()-bit keys for security parameter r, that have 2~° - security against
(non-uniform) poly(k)-sized adversaries for an arbitrary small constant e > 0. Furthermore, for any « €
{0, 1}25+48) and distinct K, K’ € {0, 1}"%), we have that Fy(K,z) # Fy(K', z).

G :{0,1}* — {0,1}2" be a PRG which is 2" - secure against (non-uniform) adversaries.

¢(C) be the predicate asserting that C'is a circuit of the form of Figure 4 with F'y, F5 and G as specified above.
o Let cO = (cO.0bf, cO.Ver) be a COA-secure obfuscator with respect to predicate ¢.

The encryption scheme PICE = (KeyGen, Enc, Dec) where the three algorithms are as defined below:
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KeyGen(1%) :
— Sample keys Ky, Ky < {0,137,
— Output pk = P, sk = (K1, Ky), Hardwired: Keys Ky, Ky € {0,1}7").

where P < cO.0bf(1", P, k,,¢), and the program Input: Message m € {0, 1}, random r € {0,1}".
Px, k, is defined in Figure 4.

Enc(1", pk,m) L. Let er = G(r)
—Fori=1,...,k, let ]57 g cO,\ier(ln’ pk, ¢). 2. Let ey = Fy(Ky,e1) &m
— Sample r < {0,1}", let 0; + P;(m,r)fori=1...x

—Ifoy =+ = oy, then output oy. Else output L. 3. Let c3 = F5(Ka, caea)

4. Output ¢ = (c1, c2,c3).

Dec(sk = (Kl, KQ),G‘ = (Cl, Co, 03)).'
—If 3 # Fa(Ka, c1]ce) output L. Figure 4: Program Pk, k,.
Else, output m' = F1(Ky,¢1) @ c2

Theorem 6.1. Assume that F'y, F», G are subexponentially secure puncturable pseudorandom functions and pseudo-
random generator as specified above, and that O is COA secure for circuits, with respect to the predicate ¢. Then the
above encryption scheme is Complete CCA secure as in Definition 6.1.

Proof. Correctness is immediate. To see unique decryptability of PKE = (KeyGen, Enc, Dec), consider a
putative public key pk € {0,1}PY(%), and let P g cO.Ver(1%,pk, ¢). From the soundness of cO we know
that, barring negligible probability events, whenever P # 1 itholds that P is functionally equivalent to the
program Pk, k, for some Ky, Ky € {0,1}7%). Let k* = (K}, K3) be the most probable value for these keys,
thatis (Kj,K3) = arg maxg, Ks) Pr[? g cOVer(1", pk, gb)&l?’ = Py, K-

Recall that Enc generates ~ independent samples from P and outputs a ciphertext different than L only
if all the resulting ciphertexts are identical. Furthermore, the structure of Pk, k, guarantees that, whenever
Ko # K3, P, ko (m,7) # Pk k; for all m, . It follows that whenever Enc outputs a ciphertext different than
1, all x samples of P were functionally equivalent to the same Fx, k,.

This means that if pk is not useless, then Pr[P < c¢O.Ver(1%, pk, ¢) & P = Pxs k3] > 2/3. It follows that
k* = (K7, K%) is the opening of pk.

C-CCA security is shown by constructing, given an adversary Ac.. that wins in the C-CCA game
against the scheme with advantage ¢, an admissible and ¢-satisfying sampler Samp (see Definition 2.4),
and an adversary A, that wins with advantage e the COA security game of Definition 6.1 with respect to
Samp.

As a first step, it is instructive to consider the symmetric encryption scheme (E, D) that underlies PXE =
(KeyGen, Enc, Dec). That is, E(k, m,r) = P, k,(m,r), where k = (Ky, Kz) and Pk, k, is presented in Figure
4. Similarly, D(k,c) = Dec(k,c). Observe that, as long as the PPRF families F}, F; and the PRG G are
subexponentially secure, (E, D) is a subexponentially secure CCA scheme. (Recall that CCA security for
symmetric encryption provides the adversary with both encryption and decryption oracles.) Furthermore,
it has the additional property that decrypting any ciphertext ¢ with a random key results in L except for
subexponentially small probability. That is, Pry[Dec(k, ¢) #.L] < u(k) for any ¢, where p is subexponentially
small.

The idea in constructing Samp is to have it generate triples of the form

(E(ko,"), E(k1,°), Z)

where ko, k; are two randomly chosen encryption keys, and Z is a distribution over obfuscated programs
whose code has both ko, k1, and: (a) given two messages mg,m; € {0, 1}‘{('@ and a valid ecryption un-
der kj, the program returns a challenge ciphertext ¢; that encrypts m;, and (b) the program implements
encryption and decryption oracles under both kg, k;. (Jumping ahead, this will enable an adversary that
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has a program ¢ < Z and oracle access to E(kp, -) to essentially implement a CCA-attack on (£, D) with
challenge ciphertext that’s an encryption of m;,.)

We proceed to define Z more precisely. Let F' be a subexponentially secure puncturable PRF whose
range is the same as the domain of keys of (E, D), and consider the distribution over programs W =
{Whko.k1,p,5,7 }» presented in Figure 5.

State: Encryption keys k;, k1., encryption randomness p, PRF key s.

Function:
® On input (‘Enc’,m,r), compute r, = F;('Enc’,m,r,7), rm—_, = Fs('Enc’,m,r,1—7), ¢, =
E(kp,m,r.), c1—r = E(ky,m,r1_.). Return ¢,, ¢; .

® On input (“Chal’, mg, m1, ¢), if there exists exactly one value b € {0,1} such that D(ky,c) #L
then return ¢* = E(ky, mp, p). Else return ¢* =_1.

* Oninput (‘Dec’, ¢), if ¢ = ¢* then return L. Else, if there exists exactly one value b € {0, 1} such
that D(ks, ¢) #L then return D(ky, ). Else return L.

Figure 5: Program Wy, 1, ,.s,-» where ko, k; are encryption keys for (E, D), p is a random input for F, s is a
key for F', and 7 is a toggle bit. Note that 7 does not affect the functionality of the program; it’s purpose is
to “randomize the code”.

Now, let O be a plO obfuscator for circuits (as in Definition 2.5) and let Z = {Zj, &, p,s,-}, Where
o Jor.p,s,0 = O(Wig k1 ,p,s,~) be the family of programs obtained by applying O to the programs in Wi, i, p.s7(-)-

Claim 6.1. The sampler Samp(x) = (E(ko,-), E(k1,"); Zko k1 ,p,s,r) 15 admissible and ¢-satisfying.

Proof. Samp is ¢-satisfying by construction. Intuitively, admissibility follows from the fact that (F, D) is
CCA secure, and so an adversary cannot tell whether a given ciphertext ¢* is an encryption of mg or my,
even when given access to a program (sampled from Z) that provides encryption and decryption service
other than decrypting c*.

More formally, the proof proceeds as follows: Let the family W' = {W; , _} be identical to W,
except that in response to input (‘Chal’, mg, m1,¢), Wy . computesc; = E(k1,mg, 1) (rather than ¢; =
E(k1,m1,71)). That is, the challenge ciphertext ¢* is always an encryption of my. Let Z' = {Z],
where leco,kl,p,s,‘r = O(Wl;o,k:l,p,s,r)'

We first observe that having oracle access to a program chosen from W is indistinguishable from having
oracle access to a program chosen from W’'. Furthermore, the distinguishing advantage is subexponentially
small in the security parameter. In other words, the sampler Samp,(x) — (W, W’) is admissible. (This
follows from the structure of the programs and the subexponential security of the PPRFs in use.)

Now;, consider an adversary A that wins the admissibility game with respect to Samp with advantage e.
Using A, we construct an adversary A’ that distinguishes between Z and Z’ with advantage e. Since Samp,,
is admissible, adversary A" would contradict the premise that O is plO.

Adversary A’ proceeds as follows. Given a program ( (which is taken either from Z or from Z’), A’
chooses b < {0,1} and runs A with input ¢, while emulating oracle access to E(ky,-). That is, when A
sends query (m,r) to its oracle, A’ chooses a random 7/, obtains ¢y, c; < ((‘Enc’,m,r’), and returns ¢, to
A. Finally, if A guesses b correctly, then A’ decides that ¢ is drawn from Zy, i, s, €lse ¢ is drawn from
Z]/eo,krl,p,s,T'

We complete the proof of the claim by observing that if ¢ is drawn from Zj, x, , s~ then A sees an inter-
action that is subexponentially close to an interaction in the admissibility game for Samp, thus A predicts b

with probability 1/2 4 ¢.” On the other hand, if ¢ is drawn from Z;, ,  __ then the view of A is statistically

o,kl,p,s,r}’

"The subexponential difference results from the fact that in the latter case .A sees an encryption oracle that responds to a query
(m,r) with E(k,m,r’) where r’ = Fs(r), whereas in the former case the value r’ is computed as »’ = Fs(r"’), where r” is an
independently chosen random value.
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independent from b. (Indeed, A is given oracle access to E(k;, -) and auxiliary input drawn from Z;_, . .
But the distributions k), W,gm ks and k1, Wi, &, ,p,s,~ are identical: Fix some values for kg, k1, p, s; then the
programs Wi &, p.s,0 and Wg, ro , 5.1 are the same.) O

It remains to construct the COA adversary A... given the putative C-CCA adversary Ac.c.. Recall
that A, is given a program ( sampled from Zy, i, p.s,-, @ program 7* which is sampled either from
cO.0bf(E(ko,-), ¢) or from cO.Obf(E(k1,-), ¢), and access to deobfuscation oracle D that, given any valid

program 7 # 7*, first samples 7 & cO.Ver(m, ¢), and then returns the lexicographically first circuit C' with
¢(C) = 1, that is functionally equivalent to 7.

Adversary Ao, runs Ac, with public encryption key pk™ = 7*. When A, generates its encryption
challenge my, m1, Acoa first obtains ¢y = 7*(0, r) for a random r, and then computes ¢* = ((‘Chal’, mg, m1, co).
Next, Acoa returns c* to Accca as the challenge ciphertext. Decryption queries (pk, ¢) of A, are answered
as follows:

1. If pk = 7* then respond with ¢{(‘Dec’, ¢).

2. If pk # 7%, then Aco, runs D(pk) for « times. Let C1, ..., C,, denote the resulting programs. For each C;
which is of the form Py, let m; = Dec(k;, ¢). If there exists some m; #_L then A, returns the plurality
value among the m;’s. Else Ay, returns L.

Finally, Ao, outputs the same bit as Accca.

We complete the proof by observing that, for b = 0,1, when 7* = ¢O.Obf(E(ky, -)), the view of Accc, in
the above execution is identical to its view in an actual C-CCA experiment, with a valid decryption oracle
D, and where the challenge ciphertext c* is an encryption of m,.

To see why the responses of A, to the decryption queries of A.., are identical to those of a valid
C-CCA decryption oracle, consider a query (pk,c) made by Ac., where pk # 7* is not useless, and let
(K3, K%) be the opening of pk.

Recall that A, obtains x samples of Px, k, that’s functionally equivalent to P g cO.Ver(1%, pk, ¢), and
outputs the plurality value out of the x decrypted values Dec((K1, Kz), ¢). However, Prs . o1+ pi.0) [P =

Py k;] = 2/3, and for any (K, K5) # (KT, K3) we have Pry, ) ver(1+ pk.o) P = Py k] < 1/3. Tt follows
that the plurality value differs from Dec((K}, K%), ¢) only with negligible probability. O

7 Structural Watermarking

In this section, we describe an application of COA-secure obfuscation to building watermarking schemes.
As sketched and motivated in the Introduction, we present a new notion of watermarking, called structural
watermarking, which is keyless, modifies the functionality of programs in a minimal way, and considers a
broad class of counterfeiting attacks. We then show how COA-secure obfuscation can be used to construct
structural watermarking schemes for a broad class of functionalities.

A structural watermarking scheme is specified with respect to an underlying class C of programs, the
underlying family (or, distribution) of programs to be watermarked, and a “closeness relation” that deter-
mines the boundaries of “allowable similarity” between pairs of programs. More specifically:

Definition 7.1 (Structural Watermarking). Let C = {Cy }.en be a circuit class s.t. C,; consists of circuits with
input length n(x) and output length m(x). For a distribution family D¢ = {Dc,, }ren over C and a relation
R over C, a (D¢, R)-structural watermarking scheme with a message space M = { M }ren consists of two PPT
algorithms (Mark, Verify) as follows:

e Mark(1%,C,m): Mark is a randomized algorithm that takes as input a circuit C' € C,, a message (or
mark) m € M,, and outputs a (marked) circuit C.

* Verify(1%, 6’) Verify is a randomized algorithm that takes as input a (purportedly marked) circuit c
and outputs a pair (C’,m’), where C’ is a circuit or L, and m' € M, U {L}.
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The scheme is secure if there exists a negligible function v s.t. the following properties hold:

¢ Correctness. For any circuit C € C,, and message m € M, it holds that

[C"#£C v m' #m] <v(k).

(C’,m/)<+Verify (1% ,Mark(1",C,m))

* (D¢, R)-Unremovability. For every non-uniform PPT adversary A, for all sufficiently large ,

Pr[Exp 4 p.,r(k) = 1] < v(k)
where the experiment Exp 4 p. z(%) is defined as follows:

1. A(1%) sends a message m € M, to a challenger. The challenger samples a circuit C' +- D¢, and
responds with C' <— Mark(1"%, C,m).

2. Aoutputs a circuit C*. Let (C*,m*) « Verify(1%, C*). Then, the experiment outputs 1 iff C*+# 1,
m* # m, and

— either 3C" € C,, s.t. C' = C* and R.(C',C) =1,

— or there is no circuit in C,; that is functionally equivalent to C*.

We note that, while the underlying family C of circuits may be naturally thought of representing the
support of the distribution D, it can also be thought of as significantly larger than the support of D. This
interpretation lends to situations where multiple instances of the watermarking scheme co-exist, using the
same broad family C, with different distributions, and different marks. It also means that for a specification
D, R) to be realizable, the relation R has to respect D, in the sense that it only accepts programs that are in
the support of D.

Our definition is incomparable with recent related definitions, specifically those of Cohen et al. [9]
Aaronson et al. [1], where the latter proposes a unified definition to capture most prior works. Specifi-
cally, we require that a watermarking scheme has a verification algorithm that is executed before running
the watermarked programs. In our definition, the adversary is considered to have removed the watermark
only if it produces a circuit that verifies, and for which the corresponding circuit in the circuit family is
related to the original circuit.

Our definition also strengthens the definitions from prior works (including [21] and [1]) in some crucial
ways:

* Our definition eliminates the need for any key generation algorithm/public parameters.

® Our definition incorporates a guarantee that a circuit passing the verification indeed belongs to the
circuit class.

In addition, our definition has a flavor of traitor-tracing security that is similar to the recent works of [15].
In particular, we say that an adversary wins the watermarking game if it removes/modifies the watermark
and outputs a circuit that is related to the original circuit — where related refers to satisfying one of a large
class of relations.

On the other hand, our definition is relaxed in that it only considers programs that are executed in a
given execution environment (specifically, an environment where programs are derived via running an
underlying verification algorithm). This is somewhat reminiscent of the relaxed notion in the recent work
of Kitagawa et. al. [21] to capture publicly markable and extractable watermarking schemes without setup.

Construction. We construct a (D¢, R)-unremovable keyless verifiable watermarking scheme, when cir-
cuits drawn from D are unlearnable from oracle access, but the relation R is such that a circuit becomes
learnable given a related circuit (as made precise in Theorem 7.1). We first describe our construction before
stating its security guarantee.
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Construction 7.1. Let C = {Cy } e be a circuit class s.t. C,; consists of circuits that take inputs of length n(x) and
produce outputs of length m(x), and M = { M, }.en be a space of polynomially long messages. For any x € N, let
C.={Cpn|CeC,;,me M,}, where

C(z) = {m|C(O) ifr =0

C(x) otherwise.

Let circuit class C' = {C/.}en be the marked circuit class and ¢’ be its membership predicate, i.e. ¢'(C) = 1 iff
C € CJ, (¢' will internally use ¢¢, the membership predicate of C).

Let cO = (cO.0bf, cO.Ver) be COA-secure obfuscation for C', w.r.t. predicate ¢' (according to Definition 3.3).
Instantiate the watermarking scheme for C w.r.t. message space M = { M.} .cn and relation R as follows:

e Mark(1%,C,m): Return cO.0Obf(1%, Cy,, @), where C,, is defined using C as above.

o Verify(1%, (j‘): Let Cyari < cO.Ver(1*, C, ¢'). Parse Cpnari,(0) as m||y, wherem € M, and y € {0, l}m("“).
(If Conark = L, or the parsing above fails, return (L, 1)). Construct a circuit C such that

Cl) = {y~ S

Cnark(x)  otherwise.

Return (C,m).
We provide the following theorem which captures the security of the above construction.

Theorem 7.1. Let C = {Cy}ren, Do = {Dc, }ren and R = {Ry}xen be ensembles of polynomial (in ) sized
circuits, distributions over those circuits and relations over those circuits, as follows:

e C, is a poly(k)-time recognizable set of circuits taking n(x)-bit inputs. Each circuit in C,, has a unique h(r)-bit
encoding that is polynomial-time computable and invertible. Further, no two circuits in C,, are functionally
equivalent.

e (Unlearnability) For any circuit family A = {A,}cen where A, is of size poly(2"(®)),

Pr [C" = C] < negl(2™),
C+De¢,,,C" +—ACO)

* (Reconstruction property) There is a family of polynomial (in ) sized circuits Rec = {Recy }wen Such that,

Pr |30 € Cp, Ra(C,C") = 1 ARecCO(C") £ c] < negl(k).
C(—Dcﬁ

Then the watermarking scheme in construction 7.1 is a (D¢, R)-unremovable keyless verifiable watermarking scheme,
(according to Definition 7.1) for circuit class C and message space M.

Proof. Let E, be a polynomial-sized circuit implementing a function E,. : {0, 1}"*) x {0,1}"*") — {0,1}™*,
such that each circuit in C' € C, is equivalent to E,(f,-) for a unique (and efficiently computable) f &
{0, l}h(“). (Concretely, we may consider the circuit E,; such that E,(f, ) first decodes f into a circuit C' and
then evaluates C'(z) using a universal circuit.)

To prove the theorem, we prove the given construction satisfies the two properties of Definition 7.1.

¢ Correctness: By perfect correctness of cO (Definition 3.3), we have

Pr [C"'=CAm =m]=1.
(C’,m/)<+Verify (1% ,Mark(1",C,m))
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¢ Unremovability: Suppose for the sake of contradiction there exists a non-uniform PPT adversary A
and a polynomial p, s.t. for infinitely many #, Pr[Exp 4 p. r(#x) = 1] > 1/p(x). We show a contradiction
by using A to break the COA-security of cO.

Consider the following algorithms:
— Samp(1%):
+ (m, o) « A(1%), where m € M,, is the message sent by A and o is the residual state of .A.
+ Sample C° C' « D¢_ and compute their encodings f°, f! € {0,1}"), so that Ct(.) =
E.(f*,-) forb=0,1. Sample s < {0,1}"*) and set z = (m, o, s, (s, f°)).
+ Let CO, Cl be defined as follows: for b € {0,1},

Ct () = {m||C’b(0) ifz =0

Ct(z) otherwise.

+ Output (C2,CL, 2).
- DO(1%,C, 2):
+ Parse z as (m, 0, s, ). Initialize A with state o and send C to A. Receive C* from A.

+ Query Oon C* toget C% . If C* . # |, then parse C7,_ . (0) as m*||y* (where m* € M,
and y* € {0,1}™), and let C* be defined as:

() = y* ifx=0
* ark(®)  otherwise.

+ Run 5,%:;@,0”-9 +— cONer(17,C,¢"). If 5,,3”;@,0”-9 # L, then parse émark,orig(o) as (Morig, Yorig)
and let C,,;4 be defined using yorig and Crark,orig as follows:

_ Yorig ifz=0
Corig(T) = {5
o zg( ) {Cmark:,o’r‘ig(m) otherwise.

+ Run Copig Recf"ri-q(')(O*). Parse circuit Cyrig as Ex(forig, -) and check if (s, forig) = c. If
so, output 1. In all the other cases, return a uniform bit € {0, 1}.

Claim 7.1. Samp is a ¢'-satisfying admissible sampler (according to Definition 3.2), where ¢’ is the member-
ship checking predicate for C' (defined using C in construction 7.1).

Proof. On running Samp, we get (C9,,CL  2). Since both C%,C! € C. and ¢’ is the membership
checking predicate for C’ we have that Samp is ¢’-satisfying (according to Definition 3.1).

We next show that Samp is an admissible sampler (according to Definition 2.4). For b € {0,1}, let

Samp,b,x ,__ Ccb o Samp,x .__ | Samp,0,x Samp,1,x
Pi = Pr(cyon7c7ln”z)<;samp(1m) |:B "L(Z) = 1| and let AdVB = |Pn — Pg .

Consider the following sequence of experiments:

Hybridy: Run (C9,, CL , z) + Samp(1%), where z = (m, 0, s, (s, f°)), and output B (z).
Hybrid,: Same as above, but after obtaining (C?,, C}., z) < Samp(1¥), where z = (m, 0, 5, (s, f°)),
sample a uniform bit ¢ + {0,1} and set 2z’ = (m, g, s, ¢). Output B ().

Hybrid,: Same as above, but output B ().
Hybrids: Same as above, but without replacing z by 2/, i.e. run (CY,,C},,2) < Samp(1*), and
output BOn ().
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We have Pr[Hybrid, = 1] = p™ " and Pr[Hybrid, = 1] = pp2™"".

We show the following sub-claims:

SubClaim 7.1. | Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| < negl(2"(*))

Proof. Suppose for sake of contradiction, there exists some circuit family B of size poly(x) and a poly-
nomial p; s.t. for infinitely many &, | Pr[Hybrid, = 1] — Pr[Hybrid; = 1]| > 1/pa(27(*)).

Note that between Hybrid, and Hybrid,, B distinguishes (s, f°) from a uniform bit. We first build a
corresponding guesser algorithm which predicts (s, f°) using B and then use the Goldreich-Levin
decoder algorithm?® to predict f° using just oracle access to the guesser algorithm, and which breaks
the unlearnability property of C, hence giving a contradiction.

W.Lo.g. assume that for a particular #, Pr[Hybrid, = 1] > Pr[Hybrid; = 1] + 1/p2(2"(*)) (the other case
is handled similarly). Consider the guesser algorithm corresponding to B, G°(m, 0, s) (where O is a
placeholder for any oracle G has access to), and which works as follows:

— Choose uniform b + {0,1}.
- If B9(m, 0, s,b) = 1, then output b, else output b & 1.

We then have the following sub-sub-claim that shows that G succeeds in predicting (s, f) with good
probability:

SubSubClaim 7.1.

(Cp,, Oy 2) <= Samp(1¥)
Pr b = <37fo> . Parse z = (m,o,s,¢) | >
bl — gC?,, (m7 g, 5)

1

R —
p2(2n(’i))

1
2

Proof. Opening up the working of G and conditioning on the bit chosen uniformly by it, the required
probability above is equal to:

) (CO,CL %) + Samp(1%)
:§Pr [bﬁl : Z:(m,0,3,<8,f0>),b%{071} b<57.f0>]
b« BCgr(m,a,s,b)
1 (€8, C )  Samp(1%)
+ 3 Pr [b” =0: z2=(m,0,5(s, f9), b+ {0,1} |b= (s, fO) @ 1]
'« B (m,o,s,b)

0 1 K
- %Pr[HybridO 1]+ %Pr [b” =0: (Cry; Oy 2) € Samp(1") }

v B (m, 05, (5, /%) © 1)
1 1
=3 Pr[Hybrid, = 1] + 5P
(CY,CL . 2) + Samp(1%)
V" B (m, o5, (s, [°) @ 1)
chosen uniformly in Hybrid,, we get,

where p = Pr [b” =0: ] Now note that conditioning on the bit

1 1
Pr[Hybrid, = 1] = 3 Pr[Hybrid, = 1] + 5(1 —p)

= p = Pr[Hybrid; = 1] + 1 — 2 Pr[Hybrid; = 1]

8Recall that the Goldreich-Levin algorithm decodes z € {0,1}", given access to any oracle O such that Pr.[O(r) = (z,7)] >
% + &(n). This is done with success probability polynomial in §(n) and with poly(n, log(§(n)~1)) queries [23].
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Plugging the above back in, we get,

1
Required probability = 1Pr Hybrid, = 1] + = (Pr[Hybridy = 1] + 1 — 2 Pr[Hybrid, =1
q p y B 0 B 0 1

+ (Pr[Hybrid, = 1] — Pr[Hybrid, = 1])
1

> -
- p2(2n(f€))

1
2
-
2

O

Now, given algorithms - G (the guesser algorithm corresponding to the distinguisher B between
Hybrid, and Hybrid,), and A (the original algorithm breaking the unremovability game), consider the

following algorithm Af(') (1%), which breaks the unlearnability property of C < D¢, as follows:
- (m,0o) < A(1").

— A, reads the complete circuit C using oracle calls and locally defines O(s) as the algorithm which
oninput s € {0, 1}h(“), runs G (m, o, s), where C,), is the oracle defined as follows:

Con(x) = {mIIC(O) ifz =0

C(x) otherwise

- Output Decgg) (12"”), where Decgy, is the Goldreich-Levin decoder algorithm.

We prove that A, is of size poly(2"(*)) and that there is a polynomial pj s.t.

r [C" € C A Va,C'(z) = C(x)] > 1/ps(27)
C«+De,, ,C' AL (1%)

and hence breaking the unlearnability property. Note that the probability above involves the prob-
ability of sampling (m, o) < A(1%),C < D¢,.. To use the Goldreich Levin decoder, we need that
O(-) = G (m,0,-) works only over the randomness of sampling its input s « {0, l}h(”). We thus
first define a set Good,, which is the set of those (m, o, C') for which only over the probability of sam-
pling s, O(s) succeeds in finding (s, f) (where C(-) = E.(f,-)) with good probability. We then show
(similarly to what’s done in [23]) that over the randomness of sampling (m, o) and C the set (m, g, C)
lies in the set Good,, with sufficiently larger than 1/2 probability. Consider the following sub-sub-
claims:

SubSubClaim 7.2. Let

Good,, = {(maﬁ, o) ‘ (m, o) € Supp(A(1%)),C € Supp(De,.), C(-) = E.(f,") }

(.
Pro oy [77(m,0,8) = (5, /)] 2 5 + gy
Then,

1
P ,0,C) € Good,, ] > ———————
(m,a)<—A<1£>,c<—Dc,;[(ma ) € Good ] 2pa(2n(%))
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Proof. Opening the experiment for successful guessing of G, we get using Subsubclaim 7.1,

(m, o) « A(1%),C « De, , s « {0,1}"*) ) .
Pr |b=(s,f)| Define C,, using (m, C),C(:) = E.(f,") | = 5+ —
b+ G (m,o0,s) 2 p(2)

= Pr [b = (s, f) ‘ (m,o,C) € Goodn} [(m,o0,C) € Goody |

Pr
(m,o)<«+A(1"7)

s h(r)
bezé?’z'l(in,o,s) C+Dec,
1 1
+ Pr [b: S, ‘ m,o,C Goodn} Pr m,o0,C) ¢ Good, | > = + ————
5{0,1}"(%) (. 1| ( )¢ (m,a)<—A(1")[( )¢ ) 2 po(2n()
b<—gc"7'(m,a,s) C+Dc,,

1 1 1 1
—1x (ml,jal,‘ [(m,cr,C) EGOOdﬁ]) + <2+2])2(2M> X 12 §+m

1
= P >
m,aI,‘C[(m’U7 C) € Good,; | > 392 (27

where in the second last implication we used that for (m, o, C) ¢ Good,, by definition of Good,,, we
have Pr s-{0,1}1(%) [b={(s, )] < %—Fm O

bGC™ (m,0,s)

We then have the following;:

SubSubClaim 7.3. A; is a poly(2"(*)) size algorithm and there is a polynomial ps s.t.

Pr [C" € Cp AV, C'(z) = C(x)] > 1/p3(27)
C+De,,,C' AT (1%)

Proof. From the definition of the set Good,,, conditioned on any (m,o,C) € Good,, we know that

Pr,[O(s) = (s, f)] > 4 + W Conditioned on the same, using the Goldreich-Levin decoder

again (for strings of length 2"("”“)), we therefore have that there exists a polynomial p4 s.t. Decgy, is of
size poly(2™(*)) and

1
Pr =0l > ———.
f'eDecgg)(ﬂ”(“))[f ~ pa(2n)
Therefore, the probability in the given sub-sub-claim is:
> Pr {Vm,EK(f’,x) = f(z) | (m,0,C) € Good,, | -

O(-)=GCm (m,a,~),f’<—Decgg)(12n(H>)

Pr [(m,o0,C) € Good, ]

m,o,C

1 1 1
> X <
" pa(2) 7 2pa(200) 7 py(2000)

for some polynomial ps.
Finally, the size of A; is bounded by the sum of (1) 27(%) to read all values of f using oracle calls and (2)

the size of Decgg) (12"(@ ). Recall that Dece;, makes poly(27(%)) calls to O(-), and each call to O involves
running G (m, o, -) of size poly(x). Hence, overall the size of A; is bounded by poly(2™(%)). O

O

SubClaim 7.2. Pr[Hybrid; = 1] = Pr[Hybrid, = 1]
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Proof. The only difference between the two hybrids is that in Hybrid,, B gets oracle access to C9,, while
in Hybrid,, it gets oracle access to C},. Note that the input of B - 2/, is independent of either of C?, or
C},. Inaddition, C%,, C}, was defined identically using f°, f! respectively, and both f°, f! were in fact
sampled identically from D¢, . Therefore, the two hybrids are the same experiment and the subclaim
follows. O

SubClaim 7.3. | Pr[Hybrid, = 1] — Pr[Hybrid; = 1]| < negl(2"(*))
Proof. This follows in the same way as the proof of SubClaim 7.1. O

Combining all the subclaims, we get
| Pr[Hybrid, = 1] — Pr[Hybrid,; = 1]| < negl(2"")) < negl(x)/2"*)

This combined with the differing set X = {0, 13, implies that Samp is a ¢’-satisfying admissible
sampler. ]

Continuing the proof, we now show that D together with Samp break the COA-security of cO (ac-
cording to Definition 3.3). From the definition of COA security,

Samp,b,x
cO,% = Pr
(Cm7 m,z)<—Samp(1“)

CcO.0bf(1%,C% ,¢")

DO(K,") 0 cO.Ver(1%,,¢') o Filt 5 (6, 2) = 1} .

Claim 7.2. gogp"" > § + 158l

Proof. Recall from how D is defined, D on input C passes Cto Ato get C*. Note that the view of A
is identical to Exp 4 p. r(%), and recall that by assumption for 1r1f1n1tely many &, Pr[Exp 4 De, r(k) =

1] > 1/p(k). Suppose Exp 4 p. r(k) = 1. This means A on input C outputs C* st if (C*,m*) «
Verify (1%, 6’*), then C* # L, m* # m, and,

— either 3C* € C, s.t. C* = C* and R, (C*,C1) =1,
— or there is no circuit in C,; that is functionally equivalent to C*.

We first show that indeed there exists C* € C,, s.t. C* = C*. Opening up (CN'*, m*) < Verify(1%, 6’*)
we have the following;:

- CN'fnark + cO.Ver(1%, é*’ ). If 5;1(1% = 1, then output (L, ).

m(k)

(0) as m*||y*, where m* € M, and y* € {0,1}""). Construct circuit C* as

follows and return (C*, m*):

— Else parse Cx

mark

*

C*(z) = yj ifx=0
* op(®)  otherwise.

Now since C* # L, this means C’ma, » 7 L. Hence, by verifiability property of cO (definition 3.3),

Pr 3Chari € Ch: Cruarsc = > 1 - negl(k).

~ ~ mark — mark
C* «—cO.Ver(1#,C*,¢")

mark
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By virtue of how Cj; is defined, any C}, .. € C.. can be parsed as follows to get C* € C, : parse
Cx . (0) = m*||y*, where m* € M., y* € {0,1}™"), and let C* be defined as:

mark
* ifr =
C*(z) = {y fxr=0

Ck orn(x)  otherwise.

Since C* is defined identically using C* . and with overwhelming
probability, C7, ... = CN';‘WT,k, we have that with overwhelming probability there exists C* € C, s.t.
Ccr = C~. Suppose such a C* € C,; does exist. Then, by the condition mentioned at the beginning
of this proof, R,(C*,C') = 1. Using the reconstruction property of C mentioned in the theorem
statement, we have,

. as C* is defined using C7,

Pr [30’ €Cp i Ro(C,CY) = 1 ARec O(C") £ C] < negl(r).

(71<—DcK

Hence with probability (1—negl(r)) over the sampling of C1,since R, (C*,C') = 1, wehave }N{eccl Oy =
C'. Relating back to D, if Crark,orig < cONer(1%,C, ¢'), by using perfect correctness of cO, Cprark,orig =
C, and therefore, Rec® ()(C*) = C is equivalent to Reca*"“”“"”g(')(C’*) =CL
Therefore, in this case, the check by D passes and it outputs 1. In all other cases it outputs a uniform
bit, which implies the given claim.

O

Claim 7.3. qu)mgo’” =1

Proof. This follows in a similar way as above, except that we get Recé’"”kv”i-‘?(')(C*) = CY and the
check (s, f%) = c passes with probability 1/2, hence, making D always output a uniform bit. Note
that the above holds because (s, f°) = c is equivalent to (s, f°) = (s, f!), which happens with only

probability 1/2 since s € {0, l}h(“) was sampled uniformly. O

Therefore, combining all our claims, Samp is a ¢'-satisfying admissible sampler, while COAAdvi’?g”?g"‘ =

qu?g’o’” - qu?g’l’”’ > 1}2;% g”) , implying a contradiction to the COA-security of cO, and hence, the

unremovability claim follows.
O

Next, we provide the following corollary which captures PRF watermarking as special case of the above
theorem.

Corollary 7.1. Let F' = {Fy(-)}rek, nen be a PRF family with key-space K = {Ky}ren, and seed, input, and
output lengths as polynomials h(k), n(x) and m(k) respectively, such that n(k) < k° for some ¢ < 1. In addition,
suppose the key distribution ensemble Dy and relation ensemble R are as follows:

e F is a sub-exponentially secure PRF under key distribution Dx. That is, for any adversary of size poly(2"(%)),
the following holds: (where F(n, m) = set of all functions with input length n and output length m)

Pr b=1] - Pr b=1] ’ < negl(2"())
k«Di, b ATR() (1) H+F(n,m), b— A (1%)

o There exists an algorithm Rec s.t.

Pr [ak’ €K, Ro(k' k) = 1 ARecPO (k') £ k] = negl(k).
k<Dx
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Then the watermarking scheme for F' in construction 7.1 is a (Dx, R)-unremovable keyless verifiable watermarking
scheme.

As a concrete instantiation of the above corollary, we consider the following relation over PRF keys:
R (k, k") = 1iff Fy(-) agrees with F/(-) on at least one input. We will use a sub-exponentially secure PRF
family F', which satisfies the following key injectivity property:

Pr [ €K, R.(k, k) = 1Ak # k] = negl(k).

k<—Dl€~

where Dy, denotes the key distribution for which the PRF security holds. Such PRFs can be constructed as
in [9] under sub-exponential DDH and LWE assumptions. For such a PRF, R(k, k') = 1 iff k = k/ (for most
k). Then, letting Rec be the identity function satisfies the condition on the relation R in the above corollary.
Thus, instantiating Corollary 7.1 with Fj(-), Dk, R as defined above, we get a (D, R)-keyless verifiable
watermarking scheme for F.

8 Constructing Verifiability Fortifiers

This section demonstrates that the construction from Section ?? continues to provide meaningful security
even when instantiated with non-robust primitives (which may be more efficient or obtainable from weaker
assumptions). Specifically, that construction provides plain verifiability fortification as long as the NIDI is
secure and the underlying commitment is statistically binding:

Theorem 8.1. Assuming the existence of NIDI arguments satisfying e(x)-gap distributional indistinguishability
according to Definition 2.2, there exists an €(k)-gap verifiability fortification for obfuscation satisfying Definition 3.4.

Construction 8.1. Define L, = {d{ - 3(C,7) such that C, = O(Cy;7) and ¢(C,) = 1} o
KE

1. vO.0bf: The obfuscate algorithm vO.Obf(1%, C') does the following:
e Define distribution D (r) = O(C;r) for uniformly sampled r.
* Output m = NIDI.P(1%) for the language L4 computed using uniform randomness re.

2. vO.Verify: The obfuscate algorithm vO .Verify(1%, m, L) does the following:

* Sample randomness rg.
e Obtain y < NIDLV(1*, m;rg) for the language L.
e OQutput y.

Proof of Security. In short, completeness, verifiability, and e-gap indistinguishability of obfuscated cir-
cuits according to Definition 3.4 follows from the corresponding properties of NIDI (Definition 2.2) and
correctness of underlying obfuscation scheme. Below we provide a more formal treatment.

Completeness. Let y = vO.Verify(vO.0bf(1%,C)) = NIDLV(1*,NIDL.P(1%,D¢); rr). By completeness of
NID], it immediately follows that y € Supp(D¢), i.e. there exists some 7’ such that y = O(C;r’). By perfect
correctness of O, it follows that y and C are functionally equivalent; thus completeness holds.

Verifiability. Since vO.Verify(1%, ) = NIDI.V(1", 7; r& ) for uniform rz, and since, by soundness of NIDI,
for every ensemble of polynomial-length strings {I, } ., there exists a negligible function x such that

<
xeNIDI.VI?fﬁ,Hmz:qb) (x# L)A (2 & Ly)] < p(r),

Thus, the verifiability of vO follows immediately.
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e-Gap Indistinguishability of Obfuscated Circuits. Let 7" be a transformation on distinguishers guar-
anteed to exist by e-gap distributional indistinguishability of the NIDI scheme. We claim that this 7" also
satisfies the requirement of e-gap indistinguishability of obfuscated circuits. Indeed, for any PPT distin-
guisher D,

A8 p = | PHID(P(1%,Dy)) = 1] = Pr[D(P(1", 1)) = 1]

L pgysme

< o | D) = 1) = PHED)) = ]| = AT,

and therefore

Samp Samp
AV p(py 2 €(k) - AdV, 5 0pf p-
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