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Abstract. A nonce-respecting tweakable blockcipher is the building-
block for the OCB authenticated encryption mode. An XEX-based TBC
is used to process each block in OCB. However, XEX can provide at most
birthday bound privacy security, whereas in Asiacrypt 2017, beyond-
birthday-bound (BBB) forging security of OCB3 was shown in [15]. In
this paper we study how at a small cost we can construct a nonce-
respecting BBB-secure tweakable blockcipher. We propose the OTBC-3
construction, which maintains a cache that can be easily updated when
used in an OCB-like mode. We show how this can be used in a BBB-secure
variant of OCB with some additional keys and a few extra blockcipher
calls but roughly the same amortised rate.
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1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic function for
providing a combined guarantee of privacy (or confidentiality) and authenticity
(or integrity) of plaintexts. Beginning with the formalisation by Katz and Yung
[37] and Bellare and Namprempre [12,11], and the constructions by Jutla [35,36],
the practical significance of AE has been accepted in the community, and over
the last decade or so the design and analysis of AE modes has been a very active
area of research in symmetric-key cryptography.

Associated data (AD) is the data that is not confidential but contributes
to the authentication of the message, and AE with associated data (AEAD),
formalised by Rogaway [46], takes both a plaintext and some AD as input. AEAD
ensures confidentiality of plaintexts and authenticity of both plaintexts and AD.
The most popular form of AEAD is based on a nonce, and is called nonce-based
AEAD (NAEAD). A nonce is a non-repeating value for each encryption, and can
be realised for instance with a counter. NAEAD is commonly built as a mode
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of operation of a blockcipher. However, there is often an inherent limitation
on the security caused by the birthday paradox on the input or output of a
blockcipher, which ensures only (n/2)-bit security of NAEAD if a blockcipher
with n-bit blocks is used. The (n/2)-bit security is commonly referred to as
birthday-bound (BB) security. Possible solutions to break this barrier exist, i.e.,
NAEAD with beyond-birthday-bound (BBB) security. However, they come with
an extra computational cost.

One way to get around this obstacle is to use a tweakable blockcipher (TBC)
as the underlying primitive instead of classical blockciphers. A TBC was for-
malised by Liskov, Rivest and Wagner [40,41], and it has an extra t-bit tweak
input to provide variability, i.e., it provides a family of 2t independent block-
ciphers indexed by the tweak. Starting from the early Hasty Pudding Cipher
[51], many TBC designs have been proposed, including Threefish (in Skein [22]),
Deoxys-BC [34], Joltik-BC [33], and KIASU-BC from the TWEAKEY framework
[32], and Scream [24], where the last four schemes were submitted to CAE-
SAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) [1]. We also see other examples including SKINNY [8,9], QARMA
[6], CRAFT [10], the TBCs in the proposals for the NIST Lightweight Cryptog-
raphy project [3], OPP [23] for permutation-based instantiations of OCB3 that
uses a (tweakable) Even-Mansour construction, and a construction by Naito [43].

One of the most popular TBC-based NAEAD schemes is OCB. There are
three main variants of OCB. The first, now called OCB1 (2001) [49], was mo-
tivated by Charanjit Jutla’s IAPM [35,36]. A second version, now called OCB2
(2004) [2,47], added support for associated data (AD) and redeveloped the mode
using the idea of a tweakable blockcipher. Later OCB2 was found to have a dis-
astrous bug [28,29]. The final version of OCB, called OCB3 (2011) [39], corrected
some missteps taken with OCB2 and achieved the best performance yet. OCB3 is
simple, parallelisable, efficient, provably secure with BB security, and its security
is well analysed [4,5,48]. It is specified in RFC 7253 [38] and was selected for the
CAESAR final portfolio.

In recent times, OCB has been analysed in much detail from various perspec-
tives. A blockcipher-based NAEAD scheme OTR and its TBC-based counterpart
OTR were designed by Minematsu [42] which improve OCB by removing the ne-
cessity of the decryption routine of the underlying blockcipher or TBC (this prop-
erty is often called as the inverse-freeness). Bhaumik and Nandi [15] showed that
when the number of encryption query blocks is not more than birthday-bound
(an assumption without which the privacy guarantee of OCB3 disappears), even
an adversary making forging attempts with the number of blocks in the order
of 2n/ℓMAX (n being the block-size and ℓMAX being the length of the longest
block) may fail to break the integrity of OCB3. Zhang et al. [53,54] described
a new notion, called plaintext or ciphertext checksum (PCC), which is a gener-
alisation of plaintext checksum (used to generate the tag of OCB), and proved
that all authenticated encryption schemes with PCC are insecure in the INT-
RUP security model. Then they fixed the weakness of PCC, and described a new
approach called intermediate (parity) checksum (I(P)C for short). Based on the

2



I(P)C approach, they provided two modified schemes OCB-IC and OCB-IPC to
settle the INT-RUP of OCB in the nonce-misuse setting. They proved that OCB-
IC and OCB-IPC are INT-RUP up to the birthday bound in the nonce-misuse
setting if the underlying tweakable blockcipher is a secure mixed tweakable pseu-
dorandom permutation (MTPRP). The security bound of OCB-IPC is proved to
be tighter than OCB-IC. To improve their speed, they utilised a “prove-then-
prune” approach: prove security and instantiate with a scaled-down primitive
(e.g., reducing rounds for the underlying primitive invocations). Bao et al. [7]
introduced a scheme called XTX∗, based on previous tweak extension schemes for
TBCs, and defined ZOCB and ZOTR for nonce-based authenticated encryption
with associated data. While ΘCB and OTR have an independent part to process
AD, their schemes integrated this process into the encryption part of a plaintext
by using the tweak input of the TBC, and thus achieved full absorption and full
parallelisability simultaneously.

OCB has also found its place in other domains of cryptology like lightweight
cryptology and quantum cryptology. Chakraborti et al. [16] proposed a light-
weight authenticated encryption (AE) scheme, called Light-OCB, which can be
viewed as a lighter variant of OCB as well as a faster variant of LOCUS-AEAD
[17] which has been a Round 2 candidate of the NIST Lightweight Cryptogra-
phy project. Bhaumik et al. [14] proposed a new rate-one parallelisable mode
named QCB inspired by TAE and OCB and prove its security against quantum
superposition queries.

There are two limitations on OCB that we would like to emphasise. The first
is that OCB’s security crucially depends on the encrypting party not repeating a
nonce. The mode should never be used in situations where that can’t be assured;
one should instead employ a misuse-resistant AE scheme [50]. These include
AES-GCM-SIV [25,26], COLM, and Deoxys-II. A second limitation of OCB is its
birthday-bound degradation in provable security. This limitation implies that,
given OCB’s 128-bit block-size, one must avoid operating on anything near 264

blocks of data. The RFC on OCB [38] asserts that a given key should be used to
encrypt at most 248 blocks (4 petabytes), including the associated data. Practical
AE modes that avoid the birthday-bound degradation in security are now known
[1,26,30,31,45].

1.1 Our Contributions

In this paper we explore ways of designing an offset-based tweakable block-
cipher that can be used to obtain an OCB-like authenticated encryption mode
with better security guarantees. First we show that when using an n-bit nonce
(where n is the width of the block-cipher) it is difficult to go beyond the birthday-
bound if we use the same offset to mask the input and the output (OTBC-0).
Next we show that if we take fully independent offsets for masking inputs and
outputs for each message, we get full security in the nonce-respecting scenario
(OTBC-1); however, this does not fit well in the OCB-like mode, because new
additional random-function calls are needed to process each message block.
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We proceed to introduce the notion of updatable offsets, and explain why
TBCs with updatable offsets are well-suited to build an OCB-like mode. Then we
build a simple TBC with updatable offsets (OTBC-2), and give a birthday-attack
on it that demonstrates that such a construction is not sufficient to get beyond-
birthday security for the OCB. Finally, we introduce the notion of offsets that
are not updatable by themselves, but are efficiently computable from updatable
caches. As the most important technical contribution of the paper, we instantiate
a TBC with this property (OTBC-3) and show that it achieves a beyond-birthday
TPRP security in the number of nonces queried, as long as the maximum length
of each message (i.e., the maximum number of times each block is used) is not
very high. Additionally, we also show that OTBC-3 achieves at least security
up to the birthday-bound even when nonce is misused and inverse queries are
allowed.

Finally, we use OTBC-3 to design an authenticated encryption mode called
OCB+, which is beyond-birthday secure in both privacy and authenticity. We
argue how the privacy bound follows from our security proof of OTBC-3, while
the authenticity can be proved in the exact same way as in [15]. OCB+ uses nine
random function calls for processing each nonce, so its rate is approximately
σ/(σ + 9q), where σ is the total number of blocks including messages and as-
sociated data, and q is the number of distinct nonces. When the messages are
sufficiently long, this rate comes close to 1, making this as efficient as OCB3, but
with a BBB security guarantee.

2 Preliminaries

Throughout the paper N will mean 2n. For any positive integer m, [m] will
denote the set {1, . . . ,m}. Matrices will be denoted with boldface letters, and
for a matrix H, |H| will denote its determinant. We’ll use the Pochhammer
falling factorial power notation

(a)b := a(a− 1) . . . (a− b+ 1).

For ease of notation we write + to denote field addition (bitwise XOR) when used
between two or more field elements. Field multiplication in GF(2n) is denoted
with a bold dot (•).

2.1 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A which tries to distinguish between
O0 and O1 is called a distinguishing adversary. A plays an interactive game with
Ob where b is unknown to A, and then outputs a guess for b; A wins when the
guessed bit matches b. The distinguishing advantage of A is defined as

AdvO1,O0(A) :=
∣∣∣Pr
O0

[A ⇒ 1]− Pr
O1

[A ⇒ 1]
∣∣∣,

where the subscript of Pr denotes the oracle with which A is playing.
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O0 conventionally represents an ideal primitive, while O1 represents either
an actual construction or a mode of operation built using some other ideal prim-
itives. We use the standard terms real oracle and ideal oracle for O1 and O0

respectively. Typically the goal of the function F represented by O1 is to emulate
the ideal primitive F ∗ represented by O0. A security game is a distinguishing
game with an optional set of additional restrictions, chosen to reflect the de-
sired security goal. When we talk of distinguishing advantage between F and
F ∗ with a specific security game G in mind, we include G in the subscript, e.g.,

AdvF,F∗

G (A). (We note that this notation is general enough to capture games
where each oracle implements multiple functions, e.g., F can handle both encryp-
tion and decryption queries by accepting an extra bit to indicate the direction of
queries.) Also we sometimes drop the ideal primitive and simply write AdvF

G (A)
when the ideal primitive is clear from the context.

2.2 TPRP, TPRP* and TSPRP Security Notions

Given a tweak-space W, let Perm(W, n) be the set of all functions π̃ : W × {0,
1}n → {0, 1}n such that for any tweak W ∈ W, π̃(W, ·) is a permutation over
{0, 1}n. Then a π̃∗ distributed uniformly at random over Perm(W, n) will be
called a tweakable random permutation (TRP).

Let K denote a key-space. Then Ẽ : K × W × {0, 1}n → {0, 1}n will be
called a tweakable pseudorandom permutation (TPRP) if for a key K distributed
uniformly at random over K and for any adversary A trying to distinguish ẼK :=

Ẽ(K, ·, ·) from π̃∗, AdvẼK ,π̃∗
(A) is small. We call this game the TPRP game

and denote the advantage of A as AdvẼ
TPRP(A) in short.

We will be more interested in a modified version of the TPRP game, where
A is under the added restriction that no two queries can be made with the same
tweak. We call this the tweak respecting pseudorandom permutation (TPRP*)

game, and denote the corresponding advantage of A as AdvẼ
TPRP*(A).

Finally, the tweakable strong pseudorandom permutation (TSPRP) game al-
lows A to make both encryption and decryption queries to the oracle. The ad-

vantage term of A in a TSPRP game will be denoted AdvẼ
TSPRP(A).

2.3 Authenticated Encryption and Its Security Notion

A nonce-based Authenticated Encryption with associated data (NAEAD) involves
a key-space K, a nonce-space N , an associated-data-space AD, a message space
M and a tag space T along with two functions Enc : K×N ×AD×M → M×T
(called the Encryption Function) and Dec : K×N ×AD×M×T → M∪{⊥}
(called the Decryption Function) with the correctness condition that for any
K ∈ K, N ∈ N , A ∈ AD and M ∈ M, it holds that

Dec(K,N,A,Enc(K,N,A,M)) =M .

The NAEAD security game is played between the (Enc,Dec) scheme de-
scribed above and an ideal oracle (Enc∗,Dec∗) where Enc∗ : K×N ×AD×M →
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M×T is an ideal random function and Dec∗ : K×N ×AD×M×T → {⊥} is a
constant function. The adversary A can make encryption or decryption queries
to the oracle. In addition we assume the following restrictions:

1. A should be once-respecting, i.e., should not repeat a nonce in more than
one encryption queries; and

2. A should not make pointless queries, i.e., should not repeat the same query
multiple times or should not make the decryption query (N,A,C, T ) if it has
already made an encryption query (N,A,M) and received (C, T ) in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted
by AdvE

NAEAD(A). The following two security notions are captured in this ad-
vantage.

1. Privacy or Confidentiality, i.e., A should not be able to distinguish the real
oracle from the ideal oracle.

2. Authenticity or Integrity, i.e., A should not be able to forge the real oracle.
In other words, A should not be able to make a decryption query to the real
oracle to which the response isn’t ⊥.

2.4 Coefficients H Technique

The H-coefficient technique is a proof method by Patarin [44] that was modern-
ized by Chen and Steinberger [18,52]. A distinguisher A interacts with oracles
O (The oracle O could be a sequence of multiple oracles.) and obtains outputs
from a real world O1 or an ideal world O0. The results of its interaction are
collected in a transcript τ . The oracles can sample random coins before the ex-
periment (often a key or an ideal primitive that is sampled beforehand) and are
then deterministic. A transcript τ is attainable if A can observe τ with non-zero
probability in the ideal world.

The Fundamental Theorem of the H-coefficients technique, whose proof can
be found, e.g., in [18,44,52], states the following:

Theorem 1 ([44]). Assume, there exist ϵ1, ϵ2 ≥ 0 such that

Pr
O0

[bad] ≤ ϵ1,

and for any attainable transcript τ obtained without encountering bad,

PrO1
[τ ]

PrO0
[τ ]

≥ 1− ϵ2.

Then, for all adversaries A, it holds that AdvO0,O1(A) ≤ ϵ1 + ϵ2.

The technique has been generalized by Hoang and Tessaro [27] in their ex-
pectation method, which allowed them to derive the Fundamental Theorem as
a corollary. Since we only consider bad events in the ideal world, we will write
PrO0

[bad] simply as Pr[bad] when there is no scope for confusion; the same no-
tation is used when the event bad is broken down into further sub-events.
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2.5 Mirror Theory

Consider a sequence of n-bit variables W1, . . . ,Wt, subject to r bi-variate equa-
tions of the form

Wi +Wj = δij .

Consider the graph with W1, . . . ,Wt as vertices and the bi-variate equations as
weighted edges with δij the weight between Wi and Wj . Suppose we can show
that the graph is cycle-free, and that each path has a non-zero sum of weights.
Let ξmax be the size of the largest component of this graph. Then Mirror Theory
tells us that as long as ξ2max ≤

√
N/ log2N and t ≤ N/12ξ2max, the number of

solutions to the system of equations such that Wi’s are all distinct is at least
(N)t/N

r. [19,21]

3 Finding a Suitable Tweakable Block-cipher

We set out to find an offset-based Tweakable Block-cipher that could give us a
beyond-birthday security bound for OCB+. The general structure of this is as
follows:

C = π(M + T ) + T̂ ,

where the offsets T and T̂ are functions of the nonce N and the block-number i.

3.1 Attempt with Same Offset

The first question we asked is whether it is possible to achieve this by having
T = T̂ , i.e., adding the same offset before and after the blockcipher call, like in
OCB. The most powerful version of this is to have

T = T̂ = f(N , i)

for some 2n-bit-to-n-bit random function f . This we call OTBC-0, defined as

OTBC-0(N , i,M) := π(M + f(N , i)) + f(N , i).

This construction is shown in Fig. 1.

π
S Ŝ

M C

f

X

N

i

Fig. 1: OTBC-0: Same offset.
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Birthday Attack on OTBC-0. Unfortunately, OTBC-0 fails to give us beyond
birthday-bound security. This is because for two queries with the same message,
there is a collision in the ciphertext whenever there is a collision in the output of
f ; in addition the ciphertext-collision can also happen if the sum of the outputs
of π and f collide. This shows that the collision probability at C is roughly
double the collision probability in an ideal tweakable block-cipher, which can be
detected in the birthday-bound. A more formal description of the attack is given
in Appendix A.

3.2 Independent Offsets

We deduce from the preceding subsection that using the same offset above and
below can never give us beyond-birthday TPRP∗ security for the tweakable
block-cipher. We next examine the most powerful version of this possible, where
the two offsets on either side of π come from two completely independent 2n-
bit-to-n-bit random functions f1 and f2. This we call OTBC-1, defined as

OTBC-1(N , i,M) := π(M + f1(N , i)) + f2(N , i).

This construction is shown in Fig. 2.

π
S Ŝ

M C

f1 f2

X Y

N

i

Fig. 2: OTBC-1: Different random offsets.

Security of OTBC-1. As it turns out, OTBC-1 trivially achieves full TPRP∗

security. This is because in a tweak-respecting game, the offsets are always ran-
dom and independent of all other offsets in the game, making it impossible to
glean any information from the oracle responses. We formally state this as the
following theorem, the proof of which is given in Appendix B.

Theorem 2. For any TPRP* adversary A making q queries, we have

AdvOTBC-1
TPRP*(A) = 0.
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3.3 Updatable Offsets

While OTBC-1 is a fully secure tweakable blockcipher, it’s not very interesting
to us in the context of OCB+. This is because when the same nonce is used with
different block-numbers (as we need for OCB+), new calls to f1 and f2 are needed
for each new block-number. Thus we need three primitive calls to process every
block of message, which robs us of the main advantage of an OCB-like design.

This points us to the next desirable feature we need in the offsets: they should
be efficiently updatable when we keep the nonce same and increment the block-
number. We call a 2n-bit-to-n-bit function h efficiently updatable on the second
input if there is an efficiently computable function g (called the update function)
such that for each i we have

h(N , i+ 1) = g(i, h(N , i)).

In other words, given h(N , i) has already been computed, h(N , i + 1) can be
computed through the update function g while bypassing a fresh call to h. (For
this to make sense, of course, h should be computationally heavy and g should
be much faster than h.) Note that the update function may or may not use i as
an additional argument; while in this work we’ll only consider update functions
that are stationary (i.e., ignore the block-number i, and apply the same function
at each block to get the offset for the next block), it is possible to have an update
function that varies with i but still satisfies the above-discussed criteria.

The simplest updatable design. The simplest way to design an updatable
function is to call a random function f on the nonce N once, and then use a
stationary update function to obtain the offset for each successive block-number.
This can be formally defined as follows:

h(N , 1) = g(f(N )),

h(N , i) = g(h(N , i− 1)) = gi(f(N )), i ≥ 2.

Using these updatable offsets with two independent random functions f1 and f2
for input-masking and output-masking respectively, we can define a tweakable
block-cipher OTBC-g as

OTBC-g(N , i,M) = π
(
M + gi(f1(N ))

)
+ gi(f2(N )).

Instantiating OTBC-g. In commonly used finite fields, there generally exist
primitive elements that allow very fast multiplication. As an instantiation of g,
we use multiplication with one such fixed primitive α. Concretely, we define the
update function as

g(f(N )) = α • f(N ).

Thus, we use as the updatable offsets

T = αi • f1(N ), T̂ = αi • f2(N ).
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This gives us the construction OTBC-2, defined as

OTBC-2(N , i,M) = π
(
M + αi • f1(N )

)
+ αi • f2(N ).

This construction is shown in Fig. 3.

π
S Ŝ

M C

T T̂

αi

f1 f2

X Y

N

Fig. 3: OTBC-2: Updatable offsets with two independent random-function calls.

Attack on OTBC-2. Unfortunately, this simple updatable function is not suffi-
cient to give us beyond-birthday-bound security. This is because since the update
function is linear and publicly known, we can make queries such that successive
message blocks under the same nonce follow the update relation, which forces
the successive S blocks to also conform to the update relation. Thus, one colli-
sion on S between two different nonces ensures that successive blocks also see
an S-collision, which can be exploited in a distinguishing attack. This we state
as the following theorem, the proof of which is given in Appendix C.

Theorem 3. There exists a distinguisher A querying with q nonces and L blocks
under each nonce with L ≥ 12 in a TPRP* game against OTBC-2 such that

AdvOTBC-2
TPRP*(A) ≥ Ω

(
q2L2

N

)
.

3.4 Offsets with Updatable Caches

To get around this problem, we observe that in order to use an offset-based
tweakable block-cipher in OCB+, we don’t really need it to be updatable; it is
enough for it to maintain a small and updatable hidden state or cache, such
that the offsets are efficiently computable from the cache. Letting ψ denote
the caching function, g the update function as before, h the offset-generating
function, and φ the cache-to-offset function, we have

ψ(N , i+ 1) = g(i, ψ(N , i)), h(N , i) = φ(ψ(N , i)).

Again, for this to make sense, g and ψ should be computationally heavy when
computed from scratch, while g and φ should be much faster.
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Updatable Caches, Non-updatable Offsets. To avoid the kind of attack
that we found on OTBC-2, we want to design a tweakable block-cipher with
offsets which are not themselves updatable, but are efficiently computable from
updatable caches. This makes the offsets more independent, while still giving us
a means of updating them efficiently at a small additional cost.

One simple way to achieve this is to use two independent random functions
f1 and f2 on the nonce, put the outputs in the cache as two different branches,
and use two different update functions g and g′ on the two branches; the offset
can then be generated as the sum of the two branches. This can be formally
defined as follows:

ψ(N , 1) = (g(f1(N )), g′(f2(N ))),

ψ(N , i) = [g, g′](ψ(N , i− 1)) = (gi(f1(N )), g′i(f2(N ))), i ≥ 2,

φ(x, y) = x+ y,

h(N , i) = gi(f1(N )) + g′i(f2(N )) = φ(ψ(N , i)),

where [g, g′] denotes the two-input function that applies g to the first input and
g′ to the second input. Note that h(N , i) is not efficiently computable from h(N ,
i−1) without accessing the cache ψ(N , i−1), which makes the offsets themselves
non-updatable in the absence of the cache. Using these offsets we can define a
tweakable block-cipher OTBC-gg’ as

OTBC-gg’(N , i,M) = π
(
M + gi(f1(N )) + g′i(f2(N ))

)
+ f3(N ) + gi(π(0n)).

where f3 is a third independent random-function. Note that we do not bother to
use the non-updatable updates for masking the output, because A can make only
encryption queries, and thus cannot exploit the same weakness in the output-
masking.

Instantiating OTBC-gg’. As the main contribution of this section, we propose
a concrete instantiation of OTBC-gg’ and analyse its security. As before we keep
the field-multiplication by α as g, and for g′ we use field-multiplication by α2.
The resulting tweakable block-cipher, called OTBC-3, is defined as

OTBC-3(N , i,M) = π
(
M + αi • f1(N ) + α2i • f2(N )

)
+ f3(N ) + αi • π(0n).

This construction is shown in Fig. 4.

3.5 TPRP* Security Analysis of OTBC-3

Consider a distinguisher A making σ encryption queries to OTBC-3 with q dis-
tinct nonces and ℓ(j) ≤ L block-numbers 1, . . . , ℓ(j) for the j-th nonce for each
j ∈ [q]. Then we have the following result.

Theorem 4. As long as σ ≤ N/n2L2, we have

AdvOTBC-3
TPRP*(A) ≤ nσL

N
.
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π
S Ŝ

M C

T T̂

f1

X

f2

Y

f3

Z

π

L

αi α2i αi

0nN

Fig. 4: OTBC-3: Offsets with updatable caches using three independent random-
function calls.

Algorithm 1 OTBC-3f1,f2,f3,π(N , i,M)

1: T ← αif1(N )⊕ α2if2(N )

2: T̂ ← f3(N )⊕ αiπ(0n)
3: S ←M ⊕ T
4: Ŝ ← π(S)

5: C ← Ŝ ⊕ T̂
6: return C

Proof. In this proof, we’ll use the following lemma, the proof of which is deferred
to Appendix D.

Lemma 1. For some r ≥ 2 and 2r numbers i1, i
′
1, . . . , ir, i

′
r < N such that

ij ̸= i′j for each j ∈ [r], define

Br =



αi1 α2i1 αi′2 α2i′2 0 0 0 0 · · · 0 0 0 0

0 0 αi2 α2i2 αi′3 α2i′3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′4 α2i′4 · · · 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′r α2i′r

αi′1 α2i′1 0 0 0 0 0 0 · · · 0 0 αir α2ir


.

Then Br is at least of rank r.

Label the q nonces N (1), . . . ,N (q). For the j-th nonce, there are ℓ(j) queries

(N (j), 1,M
(j)
1 ), . . . , (N (j), ℓ(j),M

(j)

ℓ(j)
), with outputs (C

(j)
1 , . . . C

(j)

ℓ(j)
) respectively.

For the internal transcript, we have L, the encryption of 0 with π, and for
the j-th nonce, we have the three random-function outputs X(j), Y (j), Z(j); fi-

nally, we have the (input, output) pairs (S
(j)
1 , Ŝ

(j)
1 ), . . . , (S

(j)

ℓ(j)
, Ŝ

(j)

ℓ(j)
) to π, and

the (input-offset, output-offset) pairs (T
(j)
1 , T̂

(j)
1 ), . . . , (T

(j)

ℓ(j)
, T̂

(j)

ℓ(j)
). Then this ex-

tended transcript satisfies the following equations for each j ∈ [q] and each

12



i ∈ [ℓ(j)]:

S
(j)
i =M

(j)
i + T

(j)
i , Ŝ

(j)
i = C

(j)
i + T̂

(j)
i ,

T
(j)
i = αi • X(j) + α2i • Y (j), T̂

(j)
i = Z(j) + αi • L.

Internal Sampling. Following the query phase of the game, in the ideal world
we sample the internal transcript as follows (subject to certain bad events to be
defined subsequently):

– Sample X(j), Y (j) uniformly at random for each j ∈ [q];
– Check for bad1, bad2, bad3, bad4;
– Sample L uniformly at random;
– Check for bad5, bad6;

– Let S1, . . . , St be a labeling of the unique values in {S(j)
i | j ∈ [q], i ∈ [ℓ(j)]};

– Sample {Ŝk | k ∈ [t]} directly from good set, subject to the equations Ŝ
(j)
i +

Ŝ
(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′) • L for each j ∈ [q] and each i, i′ ∈ [ℓ(j)].

Before describing the bad events bad1, . . . , bad6, we define two graphs on the
extended transcript.

Transcript Graph. For distinct j1, j2 ∈ [q], there is an edge (j1, j2) in G if we

have some i1 ∈ [ℓ(j1)] and some i2 ∈ [ℓ(j2)] such that S
(j1)
i1

= S
(j2)
i2

.
We will refer to paths of length 2 in G as links. A link (j1, j2, j3) formed with

the collisions S
(j1)
i1

= S
(j2)
i2

and S
(j2)
i′2

= S
(j3)
i3

for some i1 ∈ [ℓ(j1)], i2, i
′
2 ∈ [ℓ(j2)]

and i3 ∈ [ℓ(j3)] is called degenerate if i2 = i′2 and non-degenerate otherwise. We

observe that the above link being degenerate implies S
(j1)
i1

= S
(j3)
i3

, so (j1, j3) is
also an edge in G. By short-circuiting a degenerate link (j1, j2, j3) we will refer
to the operation of replacing it with the edge (j1, j3).

A path of length ≥ 3 is called non-degenerate if at least one of its sublinks
is non-degenerate. When a non-degenerate path contains a degenerate sublink,
we can short-circuit it to obtain a shorter non-degenerate path. We can repeat
this operation as long as the path contains degenerate sublinks to end up with a
minimal non-degenerate path. When the initial path is a cycle, we end up with
either a minimal non-degenerate cycle or a double-collision edge, i.e., an edge
(j1, j2) in G such that for distinct i1, i

′
1 ∈ [ℓ(j1)] and distinct i2, i

′
2 ∈ [ℓ(j2)] we

have S
(j1)
i1

= S
(j2)
i2

, and S
(j1)
i′1

= S
(j2)
i′2

.

Dual Graph (for Mirror Theory). We also define a second graph H on the
transcript, which is something of a dual of the first. This is the graph we need
to check for the conditions necessary to apply mirror theory. First consider the
graph H ′ such that the vertices of H ′ are the distinct values S1, . . . , St, and there
is an edge between Si and Si′ in H if they appear in the same nonce, i.e., if there

13



is some j ∈ [q], i, i′ ∈ [ℓ(j)] such that Ŝ
(j)
i + Ŝ

(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′) • L;

further, the weight of this edge is then C
(j)
i + C

(j)
i′ + (αi + αi′) • L.

From H ′ we get H by dropping all redundant edges—for each j ∈ [ℓ(j)], out

of the fully connected subgraph of G with
(
ℓ(j)

2

)
edges, we only keep a spanning

tree of ℓ(j) − 1 edges, and drop the rest. For instance, one way of choosing H

could be to just keep the edge between Ŝ
(j)
i and Ŝ

(j)
i+1 for each i ∈ [ℓ(j) − 1].

(Note that we assume here that all Ŝ
(j)
i are distinct within any j, because that

is the only use-case we’ll need; the notions however easily generalise to graphs
with intra-nonce collisions.)

We observe that H is cycle-free as long as G is cycle-free, and that the size
ξmax of the largest component of H is at most LM when M is the size of the
largest component of G.

Bad Events. Based on the graphs G and H defined above, we can describe our
bad events.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that S
(j)
i = S

(j)
i′ .

bad2: There is a double-collision edge in G.
bad3: There is a minimal non-degenerate cycle in G.
bad4: G has a component of size > n.

bad5: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that C
(j)
i +C

(j)
i′ = (αi+αi′) ·L.

bad6: We have a path in H on which the edge-weights sum to 0.

Next we give an upper bound on the probability of at least one bad event hap-
pening in the ideal world. Define

bad :=

6⋃
p=1

bad[p].

Then we have the following lemma.

Lemma 2. In the ideal world,

Pr[bad] ≤ nσL

N
.

Proof (of Lemma 1). We bound the probability of each of the six bad events one
by one below.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that S
(j)
i = S

(j)
i′ .

For a fixed choice of indices j, i and i′, the probability of the event comes

out to be 1/N due to the randomness of T
(j)
i or T

(j)
i′ . From union bound

over all possible choices of indices, we obtain

Pr[bad1] ≤ 1

N

q∑
j=1

ℓ(j)2 ≤ L

N

q∑
j=1

ℓ(j) ≤ σL

N
.

14



bad2: There is a double-collision edge in G.

This implies that we have distinct j1, j2 ∈ [q], distinct i1, i
′
1 ∈ [ℓ(j1)], and

distinct i2, i
′
2 ∈ [ℓ(j2)] such that S

(j1)
i1

= S
(j2)
i2

, and S
(j1)
i′1

= S
(j2)
i′2

. This can be

written as B2v = c, where

B2 =

[
αi1 α2i1 αi2 α2i2

αi′1 α2i′1 αi′2 α2i′2

]
,v =


X(j1)

Y (j1)

X(j2)

Y (j2)

 , c =

[
M

(j1)
i1

+M
(j2)
i2

M
(j1)
i′1

+M
(j2)
i′2

]
.

B2 is of rank 2 by Lemma 1. Thus, when we fix j1, j2, i1, i
′
1, i2, i

′
2, we have

Pr[B2v = c] ≤ 1

N2
.

Thus,

Pr[bad2] ≤ 1

N2

q∑
j1=1

q∑
j2=1

ℓ(j1)2ℓ(j2)2 ≤ L2

N2

q∑
j1=1

q∑
j2=1

ℓ(j1)ℓ(j2) ≤ σ2L2

N2
.

bad3: There is a minimal non-degenerate cycle in the transcript graph.

First, suppose there is a minimal non-degenerate cycle of length 3. Thus, we
have distinct j1, j2, j3 ∈ [q], distinct i1, i

′
1 ∈ [ℓ(j1)], distinct i2, i

′
2 ∈ [ℓ(j2)],

and distinct i3, i
′
3 ∈ [ℓ(j3)] such that S

(j1)
i1

= S
(j2)
i′2

, S
(j2)
i2

= S
(j3)
i′3

, and S
(j3)
i3

=

S
(j1)
i′1

. (We name the indices like this for symmetry.) As before, this can be

written as B3v = c, where

B3 =

αi1 α2i1 αi′2 α2i′2 0 0

0 0 αi2 α2i2 αi′3 α2i′3

αi′1 α2i′1 0 0 αi3 α2i3

 ,v =



X(j1)

Y (j1)

X(j2)

Y (j2)

X(j3)

Y (j3)

 , c =


M

(j1)
i1

+M
(j2)
i′2

M
(j2)
i2

+M
(j3)
i′3

M
(j3)
i3

+M
(j1)
i′1

 .

B3 is of rank 3 by Lemma 1. Thus, when we fix j1, j2, j3, i1, i
′
1, i2, i

′
2, i3, i

′
3,

we have

Pr[B3v = c] ≤ 1

N3
.

Next, suppose there is a minimal non-degenerate cycle of length r ≥ 4.
Thus we have distinct j1, . . . , jr ∈ [q]; for u ∈ [r− 1] we have iu ∈ [ℓ(ju)] and

i′u+1 ∈ [ℓ(ju+1)] such that S
(ju)
iu

= S
(ju+1)
i′u+1

; and finally, we have ir ∈ [ℓ(jr)] and

i′1 ∈ [ℓ(j1)] such that S
(jr)
ir

= S
(j1)
i′1

; the cycle being minimal non-degenerate
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implies that for each u ∈ [r], iu ̸= i′u. This can be written as Brv = c, where

Br =



αi1 α2i1 αi′2 α2i′2 0 0 0 0 · · · 0 0 0 0

0 0 αi2 α2i2 αi′3 α2i′3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′4 α2i′4 · · · 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′r α2i′r

αi′1 α2i′1 0 0 0 0 0 0 · · · 0 0 αir α2ir


,

v =



X(j1)

Y (j1)

X(j2)

Y (j2)

...
X(jr)

Y (jr)


, c =



M
(j1)
i1

+M
(j2)
i′2

M
(j2)
i2

+M
(j3)
i′3

M
(j3)
i3

+M
(j4)
i′4

...

M
(jr−1)
ir−1

+M
(jr)
i′r

M
(jr)
ir

+M
(j1)
i′1


.

Br is of rank r by Lemma 1. Thus, for each r ≥ 3, when we fix j1, . . . , jr, i1,
i′1, . . . , ir, i

′
r, we have

Pr[Brv = c] ≤ 1

Nr
.

Assuming 2σL ≤ N , we have

Pr[bad3] ≤
q∑

r=3

∏r
u=1 ℓ

(ju)2

Nr

≤
q∑

r=3

((
L

N

)r r∏
u=1

ℓ(ju)

)
≤

q∑
r=3

(
σL

N

)r

≤ 2σ3L3

N3
.

bad4: G has a component of size > n.

For a component of size M , the minimum number of nonces in that compo-
nent should be p+1 where p = ⌈M/L⌉−1 with p collisions among themselves.
In other words, ∃ distinct j1, j2, · · · , jp+1 ∈ [q] and i1 ∈ ℓ(j1), i2, i

′
2 ∈ ℓ(j2),

i3, i
′
3 ∈ ℓ(j3), · · · , ip, i′p ∈ ℓ(jp), ip+1 ∈ ℓ(jp+1) such that

S
(j1)
i1

= S
(j2)
i2

, S
(j2)
i′2

= S
(j3)
i3

, . . . , S
(jp)
i′p

= S
(jp+1)
ip+1

.

For a fixed choice of indices, the probability of the event comes out to be
1/Np. The independence assumption comes from the fact that every equation
from the system of equations mentioned above introduces a fresh nonce. From
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union bound over all the possible choices of indices, we obtain

Pr[bad4] ≤ 1

Np

q∑
j1=1

q∑
j2=1

· · ·
q∑

jp+1=1

ℓ(j1)2ℓ(j2)2 · · · ℓ(jp+1)2

≤ Lp+1

Np

q∑
j1=1

q∑
j2=1

· · ·
q∑

jp+1=1

ℓ(j1)ℓ(j2) · · · ℓ(jp+1)

≤ σp+1Lp+1

Np
=
σL

N

(
σpLp

Np−1

)
.

Assuming σL ≤ N/2 and p = n, we get

Pr[bad4] ≤ σL

N
.

bad5: We have j ∈ [q] and distinct i, i′ ∈ [ℓj ] such that C
(j)
i +C

(j)
i′ = (αi +αi′) • L.

For a fixed choice of indices j, i and i′, the probability of the event comes out
to be 1/N due to the randomness of L. From union bound over all possible
choices of indices, we obtain

Pr[bad5] ≤ 1

N

q∑
j=1

ℓ(j)2 ≤ L

N

q∑
j=1

ℓ(j) ≤ σL

N
.

bad6: Suppose the first and last vertices on a path inside some component are Ŝ
(j)
i

and Ŝ
(j′)
i′ . Also suppose that the path goes through x1, x2, · · · , xy vertices of

position i1, i2, · · · , iy respectively. Then this bad event implies

C
(j)
i + C

(j′)
i′ + (αi + x1α

i1 + · · ·+ xyα
iy + αi′) • L = 0 .

For a fixed choice of the vertex pair (Ŝ
(j)
i , Ŝ

(j′)
i′ ), the probability of the event

comes out to be 1/N due to the randomness of L. Applying union bound
over all possible vertex pairs, and summing over all components C of G, we
get

Pr[bad6] ≤
∑
C

1

2N
·

∑
j∈C

ℓ(j)

2

≤
∑
C

1

2N
· ξmax ·

∑
j∈C

ℓ(j) =
ξmaxσ

2N
≤ nσL

2N
.

Thus, by union-bound, we have

Pr[bad] ≤ 4σL

N
+
σ2L2

N2
+

2σ3L3

N3
+
nσL

2N
≤ nσL

N
,

which completes the proof of the lemma. ⊓⊔
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Bounding the Ratio of Good Probabilities. Let τ be a good transcript. In
the real world, there are q distinct inputs to f1, q distinct inputs to f2, and t
distinct inputs to π. Thus,

Pr
O1

[τ ] =
1

N2q(N)t
.

In the ideal world, in the online stage, there are σ outputs that are sampled
uniformly at random. In the offline stage, q more values are sampled uniformly,
and finally t variables are sampled from the good set subject to r non-redundant
equations (we calculate r later). Since σ < N/n2L2, and none of the bad events
has happened, the conditions for applying mirror theory are fulfilled. Thus, using
mirror theory,

Pr
O0

[τ ] ≤ 1

Nσ+q
· Nr

(N)t
≤ 1

Nσ+q−r(N)t
.

To calculate r, we note that every repeated use of a nonce adds a non-redundant
equation to the system. Thus, r = σ − q, giving us

Pr
O0

[τ ] ≤ 1

N2q(N)t
.

Thus, we have
PrO1

[τ ]

PrO0
[τ ]

≥ 1,

Applying the H-Coefficient Technique with ϵ1 = nσL/N and ϵ2 = 0 completes
the proof. ⊓⊔

Appendix E gives a birthday-bound TSPRP proof for OTBC-3.

4 An Application of OTBC-3

Using the tweakable block-cipher OTBC-3, we define an authenticated encryption
scheme OCB+ that is about as efficient as OCB3 while providing a higher degree
of privacy guarantee without affecting the authenticity guarantee of OCB3. This
is shown in Fig. 5.

4.1 Nonce Handling

OCB+ uses a nonce N of n− 2 bits, with the final two bits reserved for domain
separation. N∥00 is used for processing the message blocks, N∥01 is used for
processing the tag, and N∥10 is used for handling the associated data.

4.2 Handling Incomplete Blocks

Incomplete blocks can be handled in the same way as in OCB3, modifying the
masking constants for the incomplete blocks. This does not affect the privacy
bound significantly, and since the focus of this work is to improve the privacy
guarantee of OCB3, we skip giving specific details on how to handle incomplete
blocks in OCB+.
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Ctag
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Fig. 5: The OCB+ construction. α is a primitive field-element that allows efficient
multiplication.

4.3 Security Claims

We claim that as long as the maximum length L permitted for each message
(i.e., the maximum number of blocks encrypted using the same nonce) is small,
OCB+ provides both beyond-birthday privacy and beyond-birthday authenticity.
Formally we claim the following.

Theorem 5. Consider a distinguisher A of OCB+ which can make q encryp-
tion queries with distinct nonces with σ blocks and q′ decryption queries to its
challenger. Suppose the length of the i-th message and the i-th associated data
are ℓi and ki respectively, where ℓi, ki ≤ L∀i ∈ [qe]. As long as σ ≤ N/n2L2, we
have

AdvOCB+
NAEAD(A) ≤ nσL

N
+O

(
q′L

N

)
.
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Algorithm 2 OCB+f1,f2,f3,π(N , A,M)

1: Mtag ← 0n

2: auth← 0n

3: for i← 1 to ℓ do
4: Mtag ←Mtag ⊕Mi

5: Ci ← OTBC-3f1,f2,f3,π(N∥00, i,Mi)
6: end for
7: C ← C1∥ · · · ∥Cℓ

8: Ctag ← OTBC-3f1,f2,f3,π(N∥01, 0,Mtag)
9: for i← 1 to k do
10: Bi ← OTBC-3f1,f2,f3,π(N∥10, i, Ai)
11: auth← auth⊕Bi

12: end for
13: tag← Ctag ⊕ auth
14: T ← chopτ (tag)
15: return (C, T )

Proof. Suppose there is a distinguisher B of OTBC-3 which can make σ + q
queries to its challenger and which works in the following way. It runs A to start
the game. Whenever A makes the i-th encryption query (N i, Ai,M i), B does
the following.

– For the j-th message blockM i
j , it makes the encryption query(N i∥00, j,M i

j)

to its challenger. Suppose it receives Ci
j as the response.

– Suppose the length ofM i is ℓi blocks. It makes and encryption query (N i∥01,
0,M i

1 + · · ·+M i
ℓi
) to its challenger. Suppose it receives Ci

tag as response.

– For the j-th associated data block Ai
j , it makes the encryption query (N i∥10,

j, Ai
j) to its challenger. Suppose it receives Bi

j as response.

– Suppose the length of Ai is ki blocks. It calculates auth
i = Bi

1 + · · ·+Bi
ki
.

– Finally it returns (Ci
1∥ · · · ∥Ci

ℓi
, chopτ (C

i
tag + authi)) to A.

Once A submits its decision bit, B carries it forward to its challenger as its
own decision bit as well. Then we obtain the following privacy advantage of A:

AdvOCB+
priv (A) = AdvOTBC-3

TPRP*(B).

Combining this result with Theorem 4, we obtain

AdvOCB+
priv (A) ≤ nσL

N
. (1)

From the security analysis in Section 4 of [15], we obtain the following au-
thenticity advantage of A.

AdvOCB+
auth (A) ≤ O

(
q′L

N

)
. (2)

The result of Theorem 5 follows directly from (1) and (2). ⊓⊔
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Appendix

A Attack on OTBC-0

Let the i-th nonce be Ni, and the corresponding offset and ciphertext for the
message Mi be Xi and Ci respectively. We get

π(Mi +Xi) +Xi = Ci.

For two distinct queries (say i-th and j-th query with i ̸= j), we get

π(Mi +Xi) + π(Mj +Xj) +Xi +Xj = Ci + Cj .

So, whenever Mi + Xi = Mj + Xj , we have Mi + Ci = Mj + Cj . We call this
event E and consider it as a distinguishing event. We define an event E1 in which
Mi +Xi =Mj +Xj for some i ̸= j. From the above discussion we see that

E1 ⇒ E.
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Let cp(q,N) denote the probability of finding a collision-pair in a uniform ran-
dom sample of size q from a population of size N . Thus,

Pr
O1

[E1] = cp(q,N).

We also have

Pr
O1

[E] = cp(q,N) + Pr
O1

[E | ¬E1] · (1− cp(q,N)).

Now, when E1 does not happen, all inputs of π must be distinct. Let us denote
the inputs and output of π for the ith query by Si and Ŝi respectively. Then
the event E is equivalent to finding a collision-pair among the Si + Ŝi values.
Given that E1 does not happen both Si’s and Ŝi’s are sampled as uniformly
without replacement and (Si)i∈[q] is independent from (Ŝi)i∈[q]. By using well
known result [13,20], we know that the sum of independent without-replacement
samples is almost the identically distributed as a uniform random sample and
hence

Pr
O1

[E | ¬E1] ≈ cp(q,N).

Thus, we have

Pr
O1

[E] ≈ cp(q,N) + (1− cp(q,N)) · cp(q,N).

On the other hand in the ideal world,

Pr
O0

(E) = cp(q,N),

as for every distinct nonce the responses should be uniformly and independently
distributed. Hence, the distinguishing advantage is around cp(q,N)(1 − cp(q,
N)). Now we know that cp(q,N) = 1/2 is attained for a q = O(

√
N) and hence

for that choice of q, the distinguishing advantage is at least 1/4.

B Proof of Theorem 2

Theorem 3. Consider an adversary A, playing a q-query distinguishing game
between OTBC-1 and an ideal tweakable permutation OTBC-id. As long as the
pair (nonce, block-number) is never repeated, we have

AdvOTBC-1,OTBC-id
TPRP (A) = 0.

Proof. Let’s call (N , i) as T . We’ll use Coefficients H Technique to bound the
advantage of the adversary.

Transcript Notation. The adversary makes q encryption queries (T 1,M1), · · · ,
(T q,mq) to the oracle, and receives C1, · · ·Cq as the corresponding responses.
So the query-response transcript of the adversary initially looks like {(T 1,M1,
C1), · · · , (T q,Mq, Cq)}.
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Sampling in the Ideal World. For each encryption query, the ideal oracle sam-
ples the output with replacement from {0, 1}n uniformly at random. Once the
adversary is done with all its queries, the oracle releases the some additional
information to the adversary. The ideal oracle samples them in the following
way:

– For all j ∈ [q], the ideal oracle samples Xj with replacement from {0, 1}n
uniformly at random.

– For all j ∈ [q], the ideal oracle samples Ŝj without replacement from {0, 1}n
uniformly at random.

The real oracle releases the corresponding true values in this additional re-
lease phase. After the additional release, the extended transcript looks like {(T 1,

M1, C1, X1, Ŝ1), · · · , (T q,Mq, Cq, Xq, Ŝq)}.

Advantage of the Adversary. For any attainable transcript τ , we get the real
interpolation probability as

Pr
O1

[τ ] =
1

Nq
· 1

Nq
· 1

(N)q
.

The first, second and third term in the denominator on the right hand side
represents the number of choices for X, Y and Ŝ respectively. We also get the
ideal interpolation probability as

Pr
O0

[τ ] =
1

Nq
· 1

Nq
· 1

(N)q
.

The first, second and third term in the denominator on the right hand side
represents the number of choices for C, X and Ŝ respectively. Thus we finally
we get

PrO1
[τ ]

PrO0
[τ ]

= 1 .

Applying H-Coefficient Technique with ϵ1 = ϵ2 = 0 completes the proof. ⊓⊔

C Proof of Theorem 3

Theorem 4. There exists a distinguisher A querying with q nonces and L blocks
under each nonce with L ≥ 12 in a TPRP game against OTBC-2 such that

AdvOTBC-2,TBC-id
TPRP ≥ Ω

(
q2L2

N

)
.

Proof. A picks q distinct nonces N (1), . . . ,N (q), and q distinct starting messages

M
(1)
1 , . . . ,M

(q)
1 . For each j ∈ [q] it makes L queries (N (j), 1,M

(j)
1 ), . . . , (N (j), L,

M
(j)
L ), such that for each i ∈ [L] we have

M
(j)
i := αi−1 • M

(j)
1 .
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This ensures that we have

S
(j)
i :=M

(j)
i + αi • X(j)

= αi−1 • M
(j)
1 + αi • X(j)

= αi−1 •

(
M

(j)
1 + α • X(j)

)
= αi−1 • S

(j)
1 ,

where X(j) := f1(N (j)) and S
(j)
i is the input of π on the query (N (j), i,M

(j)
i ).

Input Collision. Suppose we have distinct j, j′ ∈ [q] and some i, i′ ∈ [L− 1] (not

necessarily distinct), such that S
(j)
i = S

(j′)
i′ . Then we have

S
(j)
i+1 = αi • S

(j)
1 = α •

(
αi−1 • S

(j)
1

)
= α • S

(j)
i

= α • S
(j′)
i′

= α •

(
αi−1 • S

(j′)
1

)
= αi • S

(j′)
1 = S

(j′)
i′+1.

In other words, a collision on two input blocks in two different nonces forces a
collision on the next block as well (and, in fact, this dominoes into all successive
blocks till one of the block-numbers reach L). A can use this property to mount
the distinguishing attack.

Distinguishing Event. A searches for a pair of distinct j, j′ ∈ [q] and i, i′ ∈ [L−2]
(not necessarily distinct) such that

C
(j)
i+2 + C

(j′)
i′+2 = α •

(
C

(j)
i+1 + C

(j′)
i′+1

)
= α2 •

(
C

(j)
i + C

(j′)
i′

)
.

If such j, j′, i, i′ exist, A outputs 1, else it outputs 0.

We note that in the real world, whenever S
(j)
i = S

(j′)
i′ , we have Ŝ

(j)
i = Ŝ

(j′)
i′ ,

which implies that

C
(j)
i + C

(j′)
i′ = αi • Y (j) + αi′ • Y (j′).

From the above discussion, we know that S
(j)
i = S

(j′)
i′ forces the collisions S

(j)
i+1 =

S
(j′)
i′+1 and S

(j)
i+2 = S

(j′)
i′+2. The first of these implies that

C
(j)
i+1 + C

(j′)
i′+1 = αi+1 • Y (j) + αi′+1 • Y (j′)

= α •

(
αi • Y (j) + αi′ • Y (j′)

)
= α •

(
C

(j)
i + C

(j′)
i′

)
,

and similarly the second implies that

C
(j)
i+2 + C

(j′)
i′+2 = α •

(
C

(j)
i+1 + C

(j′)
i′+1

)
= α2 •

(
C

(j)
i + C

(j′)
i′

)
.
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Thus, the collision S
(j)
i = S

(j′)
i′ for distinct j, j′ ∈ [q] and i, i′ ∈ [L− 2] is enough

to trigger the distinguishing event.

In the ideal world, this event require two collisions, each with probability
1/N . Since there are q(q − 1)/2 choices for j, j′ and (L− 2)2 choices for i, i′, we
have

Pr
O0

[A outputs 1] ≈
(
q

2

)
· (L− 2)2

N2
.

But in the real world, this only requires one collision, as the other is automatically
enforced. Thus,

Pr
O1

[A outputs 1] ≈
(
q

2

)
· (L− 2)2

N
.

This completes the proof of the claimed lower bound on the advantage of A. ⊓⊔

D The Proof of Lemma 1

Lemma 1. For some r ≥ 2 and 2r numbers i1, i
′
1, . . . , ir, i

′
r < N such that

ij ̸= i′j for each j ∈ [r], define

Br =



αi1 α2i1 αi′2 α2i′2 0 0 0 0 · · · 0 0 0 0

0 0 αi2 α2i2 αi′3 α2i′3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′4 α2i′4 · · · 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′r α2i′r

αi′1 α2i′1 0 0 0 0 0 0 · · · 0 0 αir α2ir


.

Then Br is at least of rank r.

Proof. First we observe thatB2 is of rank 2 since, for the leftmost 2×2 submatrix
of B2, we have∣∣∣∣αi1 α2i1

αi′1 α2i′1

∣∣∣∣ = αi1+2i′1 + α2i1+i′1 = αi1+i′1(αi1 + αi′1) ̸= 0.

(This also holds for the rightmost 2× 2 submatrix.) Next we observe that B3 is
of rank 3 since, for the leftmost 3× 3 submatrix of B3, we have∣∣∣∣∣∣

αi1 α2i1 αi′2

0 0 αi2

αi′1 α2i′1 0

∣∣∣∣∣∣ = αi2

∣∣∣∣αi1 α2i1

αi′1 α2i′1

∣∣∣∣ = αi1+i′1+i2(αi1 + αi′1) ̸= 0.

(This also holds for any of the three other contiguous 3 × 3 submatrices of B.)
This leaves the case r ≥ 4. We consider two cases, based on whether r is even
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or odd. First, suppose r = 2m. Then we look at the 2m × 2m submatrix H of
Br consisting of the columns 4p− 1 and 4p for each p ∈ [m]. Thus,

H =



αi′2 α2i′2 0 0 · · · 0 0
αi2 α2i2 0 0 · · · 0 0

0 0 αi′4 α2i′4 · · · 0 0
0 0 αi4 α2i4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · αi′2m α2i′2m

0 0 0 0 · · · αi2m α2i2m


.

We observe that H is a block-diagonal matrix of the form

H =


H1 02×2 · · · 02×2

02×2 H2 · · · 02×2

...
...

. . .
...

02×2 02×2 · · · Hm

 ,
where for each p ∈ [m],

Hp =

[
αi′2p α2i′2p

αi2p α2i2p

]
.

Thus, |Hp| = αi2p+i′2p(αi2p + αi′2p) ̸= 0 for each p ∈ [m], and

|H| = |H1| · |H2| · . . . · |Hm| ≠ 0,

which shows that H (and thus Br) is of rank 2m. Next suppose r = 2m+1. We
consider the (m+ 1)× (m+ 1) submatrix H of Br consisting of columns 4p− 1
and 4p for each p ∈ [m], as well as column 4m+ 1. Thus,

H =



αi′2 α2i′2 0 0 · · · 0 0 0
αi2 α2i2 0 0 · · · 0 0 0

0 0 αi′4 α2i′4 · · · 0 0 0
0 0 αi4 α2i4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · αi′2m α2i′2m 0

0 0 0 0 · · · αi2m α2i2m αi′2m+1

0 0 0 0 · · · 0 0 αi2m+1


.

Again, we observe that H is a block-diagonal matrix of the form

H =


H1 02×2 · · · 02×3

02×2 H2 · · · 02×3

...
...

. . .
...

03×2 03×2 · · · Hm

 ,
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where for each p ∈ [m− 1],

Hp =

[
αi′2p α2i′2p

αi2p α2i2p

]
,

and

Hm =

αi′2m α2i′2m 0

αi2m α2i2m αi′2m+1

0 0 αi2m+1

 .
We’ve already seen that |Hp| ≠ 0 for each p ∈ [m − 1]. Further, we see that

|Hm| = αi2m+i′2m+i2m+1(αi2m + αi′2m) ̸= 0. Thus,

|H| = |H1| · |H2| · . . . · |Hm| ≠ 0,

which shows that H (and thus Br) is of rank 2m+ 1.

E TSPRP Security Analysis of OTBC-3

Let’s call (N , i) as T . We’ll use Coefficients H Technique to bound the advantage
of the adversary.

Transcript Notation. The adversary makes encryption queries (T (j),M (j)) to
the oracle to receive C(j) and decryption queries (T (j′), C(j′)) to the oracle to
receive K(j′) with j, j′ ∈ [σ] and j ̸= j′. So the query-response transcript of the
adversary initially looks like {(T (1),M (1), C(1)), · · · , (T (σ),M (σ), C(σ))}.

Sampling in the Ideal World. For each encryption query (T (j),M (j)), the ideal
oracle samples C(j) with replacement from {0, 1}n uniformly at random. Sim-
ilarly, for each decryption query (T (j′), C(j′)), the ideal oracle samples M (j′)

with replacement from {0, 1}n uniformly at random. Once the adversary is done
with all its queries, the oracle releases the some additional information to the
adversary. The ideal oracle samples them in the following way:

– The ideal oracle samples L from {0, 1}n uniformly at random.
– For all j ∈ [σ], the ideal oracle samples X(j), Y (j) and Z(j) with replacement

from {0, 1}n uniformly at random.

The real oracle releases the corresponding true values in this additional re-
lease phase. After the additional release, the extended transcript looks like {L,
(T (1),M (1), C(1), X(1), Y (1), Z(1)), · · · , (T (q),M (q), C(q), X(q), Y (q), Z(q))}.

Bad Events and Their Probabilities. We identify the following events as bad.

bad1: ∃j, j′ ∈ [σ] with j ̸= j′ such that S(j) = S(j′). The probability of this event
can be bounded by (σ2/N) due to the randomness of X or Y .
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bad2: ∃j, j′ ∈ [σ] with j ̸= j′ such that Ŝ(j) = Ŝ(j′). The probability of this event
can also be bounded by (σ2/N) due to the randomness of X or Y .

bad3: ∃j ∈ [σ] such that S(j) = 0n. The probability of this event can be bounded
by (σ/N) due to the randomness of X or Y .

bad4: ∃j ∈ [σ] such that Ŝ(j) = L. The probability of this event can also be
bounded by (σ/N) due to the randomness of X or Y .

Good Interpolation Probabilities and Their Ratio. For any good transcript τ , we
get the real interpolation probability as

Pr
O1

[τ ] =
1

Nσ
· 1

Nσ
· 1

Nσ
· 1

(N)σ+1
.

The first, second and third term in the denominator on the right hand side
represents the number of choices for X, Y and Z respectively, and the fourth
term represents the number of choices for distinct permutation calls. We also get
the ideal interpolation probability as

Pr
O0

[τ ] =
1

Nσ
· 1

Nσ
· 1

Nσ
· 1

Nσ+1
.

The first, second and third term in the denominator on the right hand side
represents the number of choices for X, Y and Z respectively, and the fourth
term represents the number of choices for distinct permutation calls. Thus we
finally we get

PrO1 [τ ]

PrO0
[τ ]

≥ 1 .

Advantage of the Adversary. Applying H-Coefficient Technique, we get that the
TSPRP advantage of the adversary is bounded above by

ϵ1 =
2σ2

N
+

2σ

N
.

⊓⊔
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