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ABSTRACT
Secure cryptographic storage is one of the most important issues

that both businesses and end-users take into account before moving

their data to either centralized clouds or blockchain-based decen-

tralized storage marketplace. Recent work [4] formalizes the notion

of Proof of Storage-Time (PoSt) which enables storage servers to

demonstrate non-interactive continuous availability of outsourced

data in a publicly verifiable way. The work also proposes a stateful

compact PoSt construction, while leaving the stateless and transpar-

ent PoSt with support for proof of replication as an open problem.

In this paper, we consider this problem by constructing a proof

system that enables a server to simultaneously demonstrate con-
tinuous availability and dedication of unique storage resources for
encoded replicas of a data file in a stateless and publicly verifi-

able way. We first formalize Proof of Replication-Time (PoRt) by

extending PoSt formal definition and security model to provide

support for replications. Then, we provide a concrete instantia-

tion of PoRt by designing a lightweight replica encoding algorithm

where replicas’ failures are efficiently located through an efficient

comparison-based verification process, after the data deposit period

ends. PoRt’s proofs are aggregatable: the prover can take several

sequentially generated proofs and efficiently aggregate them into

a single, succinct proof. The protocol is also stateless in the sense

that the client can efficiently extend the deposit period by incre-

mentally updating the tags and without requiring to download the

outsourced file replicas. We also demonstrate feasible extensions

of PoRt to support dynamic data updates, and be transparent to

enable its direct use in decentralized storage networks, a property

not supported in previous proposals. Finally, PoRt’s verification

cost is independent of both outsourced file size and deposit length.
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1 INTRODUCTION
Storage-as-a-Service, including cloud storage services and more re-

cent Decentralized Storage Networks (DSNs) [17, 25], has attracted

extensive interest and caused big data migration from local storage

systems to the storage servers as it offers efficient and scalable

services at a lower cost. However, the data owner has no physical

control over the data after outsourcing. Hence data availability

throughout deposit time is an important trait that highly reliable

storage providers [8] should guarantee to protect users against

downtime, whatever its cause, and ensure that data owners can

retrieve their data files at any time. Continuous data availability

is becoming increasingly critical as it provides global ceaseless ac-

cess to online business data and business-to-business applications.

The existing notion of Proof of Storage (PoS) [3, 14] ensures data

integrity and availability only at a specific time point (i.e. the time

the challenge is issued).

To achieve continuous availability guarantee of outsourced data,

Ateniese et al. [4] formalized the notion of Proof of Storage-time

(PoSt), which provides tools for storage servers to convince a ver-

ifier that the server has dedicated storage space over a specified

time interval. A naive PoSt scheme using PoS with frequent checks

over time, however requires the clients to be online when sending

sequential challenges over time to the server. Moreover, in DSNs

such as Filecoin [17], where proofs are verified by the blockchain

network, this method causes communication complexities and, po-

tentially, leads to network bottlenecks. The authors in [4] propose

a compact PoSt construction based on Trapdoor Delay Functions

(TDF). The idea is that client executes a pre-processing phase to

generate a tag, where he performs the same work as the prover, but

with faster TDF evaluations due to his knowledge of the trapdoor.

The data file together with an initial challenge are uploaded to a

server at the beginning of the deposit period and the client is no

longer required to be online. During the deposit period, the server

generates chained challenge-proof pairs, where each challenge is

the TDF output of the previous proof, and hashes all the challenge-
proof pairs to generate a compact proof. In the verification phase,

only the equality of this hash is checked with the pre-processed tag.

Although the idea of hashing all the challenge-proof pairs makes the

scheme compact and fast to verify, but it also leads to being stateful
(the number of audit interactions between the prover and verifier

is bounded) and static (data cannot be updated after outsourcing).

Besides, when the number of audits reaches the a priori bound (de-

posit period ends), the client to extend the deposit period requires

to download the entire data to generate new tags. Furthermore, the

soundness of the scheme assumes the holder of the trapdoor is

honest. This signifies that contrary to what is stated by the authors,

the construction cannot be directly used in the DSNs as is the case

with Filecoin. The authors have pointed several aspects that remain

unresolved such as: (i) support for data replication, (ii) statelessness

and support for dynamic data updates, (iii) transparent (without

trapdoor) PoSt constructions, and (iv) setup cost reduction.

Data replication is typically mentioned as a guarantee for con-

tinuous data availability in Service Level Agreements (SLAs) [1]. It

is formally captured by the notion of Proof-of-Replication (PoRep),

which guarantees that a file is fully replicated onto different servers–

thus ensuring data availability in case of failures, power outages,



or even attacks on the servers. Similar to PoS, existing PoRep pro-

posals [7, 13] are interactive, requiring the client’s involvement to

repeatedly send fresh challenges over time in the auditing process.

In light of these issues we ask the following question: Is it possible
to construct an efficient, non-interactive, yet stateless mechanism
for continuous availability monitoring of replicated data at storage
providers?

1.1 Contributions
This work makes significant progress in answering the above ques-

tion. In particular, we construct a proof system that enables service

providers to simultaneously demonstrate continuous availability
and dedication of unique storage resources for encoded replicas of a

data file over a deposit period, in a stateless and publicly verifiable

manner. Our contributions can be summarized as follows:

C1. Proof of Replication-Time Formalization: We introduce

the notion of Proof of Replication-Time (PoRt). Our frame-

work tackles continuous availability proof of replicated stor-

age. To the best of our knowledge, no prior proposal for

Proof of Replication-Time exists.

C2. PoRt Construction: We design a candidate construction

of PoRt with properties of public verifiability, compactness,

statelessness, and usefulness. The idea is to replicate the

content via proposed linear encoding algorithm. The client

then pre-processes encoded replicas to generate verification

tags, with the dominant computation executed only once for

all encoded replicas. As a result, the proposed construction

is scalable with regards to replication factor as oppose to the

naive approach which is using a distinct PoSt execution per

individual file replica.

C3. PoRt Features: The proofs/tags in the proposed construc-

tion are aggregatable: the prover/client can respectively take

several sequentially generated proofs/tags and efficiently

aggregate them into a single, succinct proof/tag. This aggre-

gatable feature also makes tags and proofs much more conve-

nient to update, making the protocol incremental: prover/client

can keep up the proof/tag sequence from the last state to

aggregate further proofs/tags. The protocol is also stateless
in the sense that the client can efficiently extend the de-

posit period by incrementally updating the tags and without

requiring to download the outsourced file replicas. After de-

posit period ends, replica failures are detected in an efficient

verification algorithm by using the idea of comparing proofs

on distinct encoded replicas, instead of verifying all storage

proofs one-by-one. The scheme is also proven secure under

the proposed definition. We further show the feasibility of

enhancing the proposed construction to be dynamic and

transparent by discussing ideas at the end of the paper.

C4. Efficiency: From the performance point of view, PoRt’s
computations are independent of the file size, which in turn

result in its scalability with regards to large files. The ver-

ification cost is also independent of both the file size and

deposit length. Furthermore, PoRt’s succinct proofs enable
automatic public verification via on-chain smart contracts.
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Figure 1: Designed construction of PoRt.

1.2 Technical Overview
Consider a client wishing to replicate and disperse its data to the

storage provider(s) and verify continuous availability of all repli-

cas at once with a single protocol run and without remaining on-

line during the whole storage period. Such a goal can be achieved

with the use of PoRt. It proceeds as follows: The client performs

Store = (rEncode, TagGen) algorithm to (i) generate 𝑙 encoded file

replicas in an efficient lightweight rEncode algorithm and (ii) gener-

ate replica tags as necessary information for the prover and public

verifier in TagGen algorithm. Each storage provider, participating

in the PoRt protocol, stores some of the file replicas for a specific

deposit period. To prove “Replication-time” i.e. continuous avail-

ability of the specified replica over the specified deposit time, the

storage provider frequently generates storage proofs for each file

replica during the entire storage period in Prove algorithm. To com-

pel a specific amount of delay between successive storage proofs

generated by the prover, the protocol leverages RSA Time-Lock

Puzzle (TLP). We note that this chain of TLPs is generated only

once for all file replicas at both server and client sides, which makes

the protocol easy to scale for any replication factor. All sequential

proofs generated on each encoded replica over deposit period are

aggregated to generate a succinct proof.

After deposit period ends, the public verifier runs the Verify
algorithm to locate replica failures. Here, we introduce an elegant

technique: to audit continuous availability, instead of verifying each

and every one of storage proofs generated during deposit period

which incurs huge cost on the public verifier, we use the replicated

nature of the data in the protocol and the homomorphic property
of rEncode algorithm to first unmask the replica coefficients from

the proofs and then compare the unmasked proofs to audit file

replicas and locate the corrupted ones. The only assumption we

make here is that majority of replicas are intact and available during

the deposit period so that the corrupted ones are detected in this

comparison process. Figure 1 depicts a schematic overview of our

designed PoRt construction.
The above construction, seems to provide the following desirable

features: (i) Public verifiability, (ii) Compactness: The verification
cost is independent of the file size and deposit length. (iii) Stateless-
ness and unbounded use: For example, consider the case where the

client initially stores his files for three months, and then decides

to extend the contract for another month. PoRt enables the client
to easily extend the deposit period without requiring to download
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the outsourced file replicas. This is possible due to the incremental
nature of the protocol: Both the client and the provers can respec-

tively keep up the tag and proof sequence from the last state to

aggregate further tags/proofs. Since the TagGen procedure only

depends on the replication coefficients and not the data file, this ex-

tending process does not require the client to download outsourced

data file from the servers. The client, in order to update the tags

for extended deposit period, only needs to efficiently re-compute

replication coefficients as in rEncode algorithm and continues the

TagGen procedure from the last state to generate updated tags for

an extended deposit period. Moreover, since the verification cost is

independent of the deposit length, this deposit time extension does
not affect the cost of verification algorithm. In Appendix A, we will

discuss this statelessness feature of the protocol and will provide

some ideas on how PoRt can be extended to also support dynamic
data operations, and be transparent.

2 RELATEDWORK
Proofs of Storage (PoS) schemes enable clients to outsource file to

a server, and later in an interactive audit phase, verify the integrity

of the stored data. A verifier, repeatedly challenges the server and

checks the returned proof which shows that the server is still in-

tactly storing the client’s file. The term verifier refers to the client

who originally outsourced the file (privately verifiable PoS), or any

third party (publicly verifiable PoS). These protocols are also known

as Provable Data Possession (PDP) [5]. Proofs of Retrievability (PoR)

schemes [14] have similar concept to PDP, but they also guarantee

data retrievability, which is achieved by an extractor that recon-

structs the client’s file from the proofs returned by the prover. An

extensive research exists on PDP/PoR schemes covering various

features including dynamic data updates [10, 18, 19], and shared

data files [20, 21].

Proofs of Replication (PoRep) schemes are a type of PoS pro-

tocols where instead of proving file possession, the storage server

should prove it possesses multiple replicas of the same file. There-

fore, PoRep enables the prover to ensure the verifier that each

independent replica of some file has been dedicated an independent

physical storage. Different categories of proofs of replication such

as private/public replication and private/public verification exist.

Private replication occurs in the instances where the client gen-

erates the encoded replicas on his own in a pre-processing phase,

while public replication refers to the case where the complete repli-

cation process is outsourced to a server. All these categories are

explored in the literature – e.g. private replication-private veri-

fication [2, 11], private replication-public verification [12], and

public replication-public verification [17, 23]. Public replication is

achieved by using no secrets in file replication (transparent prop-

erty, as defined by [17]). However, to resist the generation attack,
i.e. preventing the server from generating a file replica on-the-fly at

the time of generating a proof, Lerner [23] used time-asymmetric

encodings to slow down the replication process. Filecoin [17] in-

troduced Seal, slowable pseudo random permutations constructed

by using a block cipher in cipher block chaining mode made pub-

licly verifiable using SNARKs [6]. The slow property of replication

makes it almost impossible for an adversary to generate replicas

just-in-time when responding to a challenge.

Proofs of Space-Time (PoSt) The notion of PoSt proposed by

Moran and Orlov [16], is in a sense PoS over time, i.e. it proves a

dedication of space resources over a period of time. However, [16]

only guarantees dedication of space resources, not retrievability

of the data stored in that disk-space. In other words, the server

only stores a randomly-generated string with no external utility

to guarantee space dedication. A PoSt scheme in which the server

stores real data that can be used outside of the protocol, was intro-

duced in the Filecoin project [17]. This was an important shift as it

enabled the replacement of the resource-wasting PoWwith a useful

storage service. In [17], the prover executes sequential auditings

where each challenge is deterministically derived from the proof

at previous iteration. The prover chains the sequential challenges

and proofs and compresses this chain using SNARKs [6] together

with a proof of the elapsed time, to be inspected all at once by the

verifier. However, SNARK is a very heavy cryptographic machinery

which incur expensive computational/memory costs at the prover

side, economically disincentivizing storage providers in renting

storage to clients. In a recent work, Ateniese et al. [4] constructed a
compact PoSt scheme based on the idea of sequential proofs chain,

which employs a trapdoor delay function (TDF) to obviate the need

for SNARKs. Instead of verifying chained challenge-proof pairs,

the verifier pre-computes same chained TDFs as the prover in pre-

processing phase, but without delay due to his knowledge of the

trapdoor. Later in the verification phase, only the equality of the

pre-processed hashed chain is checked with the final compact proof.

Notwithstanding the progress, several aspects including support

for data replication and being stateless are left as open problem.

3 PRELIMINARIES
3.1 Proof of Replication
Proof of Replication enables a prover to ensure the verifier that

each independent replica of some file is dedicated an independent

physical storage. A Proof of Replication scheme consists tuple of

algorithms PoRep = (Setup, rEncode, Prove,Verify):
- Setup(1𝜆) → (𝑝𝑎𝑟𝑎𝑚, sk): Takes as input a security param-

eter 𝜆 and outputs the public parameters 𝑝𝑎𝑟𝑎𝑚 and a secret

key sk.
- rEncode(𝐹, 𝑙, sk) → ({𝐹𝑖 }1≤𝑖≤𝑙 , 𝑡𝑔): Takes as input an origi-

nal data file 𝐹 , the replication factor 𝑙 , and secret key sk, and
generates 𝑙 distinct encoded replicas {𝐹𝑖 }1≤𝑖≤𝑙 . It also out-
puts a tag 𝑡𝑔 as necessary information to run PoRep.Prove
and PoRep.Verify algorithms.

- Prove(𝑝𝑎𝑟𝑎𝑚, 𝑐ℎ𝑎𝑙, 𝑡𝑔, {𝐹𝑖 }1≤𝑖≤𝑙 ) → 𝜋 : Takes as input repli-

cas {𝐹𝑖 }1≤𝑖≤𝑙 for a file 𝐹 , tag 𝑡𝑔, the public parameters 𝑝𝑎𝑟𝑎𝑚,

a random challenge 𝑐ℎ𝑎𝑙 issued by a verifier and outputs 𝜋 –

a storage proof for replica 𝐹𝑖 .

- Verify(𝑝𝑎𝑟𝑎𝑚, 𝑡𝑔, 𝑐ℎ𝑎𝑙, 𝜋) → {0, 1}: Takes as input the public
parameters 𝑝𝑎𝑟𝑎𝑚, tag 𝑡𝑔, the challenge 𝑐ℎ𝑎𝑙 and a proof 𝜋 .

It outputs a bit 𝑏 – 𝑏 = 1 if the verifier accepts the proof,

𝑏 = 0 otherwise.

3.2 RSA Trapdoor Time-Lock Puzzle
This construction proposed by Rivest et al. [22] is an inherently

sequential repeated exponentiation in a group of unknown order

based on the hardness of RSA factoring. The TLP(𝑥, 𝑡) for an RSA
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modulus 𝑁 = 𝑝 · 𝑞 is slowly evaluated as 𝑦 = 𝑥2
𝑡 ∈ Z𝑁 by perform-

ing 2
𝑡
iterated squarings. There is no parallel algorithm that can

perform 𝑡 squarings modulo 𝑁 significantly faster than just per-

forming 𝑡 squarings sequentially. However, the verifying party who

knows Euler trapdoor function 𝜙 (𝑁 ), can reduce the exponent to

𝑡 ′ = 2
𝑡

mod 𝜙 (𝑁 ), and thus efficiently compute 𝑦 = 𝑥𝑡
′
mod 𝑁 .

More precisely, the protocol is defined by algorithms Gen, TLP, and
trapdoorTLP as described below.

- Gen(1𝜆) → 𝑁 : Samples two safe primes 𝑝 = 2𝑝 ′ + 1 and

𝑞 = 2𝑞′ + 1, where 𝑝 ′ and 𝑞′ are also primes and output

𝑁 = 𝑝 · 𝑞.
- TLP(1𝜆, 𝑁 , 𝑥) → 𝑦: Takes as input 𝑥 ∈ Z𝑁 , and evaluates

𝑦 = 𝑥2
𝑡 ∈ Z𝑁 by performing 2

𝑡
iterated squarings.

- trapdoorTLP(1𝜆, 𝑁 , 𝑥, 𝜙 (𝑁 )) → 𝑦: Takes as input 𝑥 ∈ Z𝑁
and Euler trapdoor function𝜙 (𝑁 ), and computes 𝑡 ′ = 2

𝑡
mod 𝜙 (𝑁 ),

and 𝑦 = 𝑥𝑡
′
mod 𝑁 .

The RSA time-lock puzzle is also called the RSW problem after

Rivest, Shamir and Wagner who first proposed it. The following

definition of RSW problem is adapted from [15].

Definition 3.1 (t-RSW problem). Let Gen be the generation algo-

rithm of the RSA time-lock puzzle. The 𝑡-RSW problem is (𝑡𝑝 , 𝑡𝑜 , 𝜖)-
hard if for every polynomial-time adversary A = (A1,A2) where
A1 runs in time 𝑡𝑝 andA2 runs in time 𝑡𝑜 such that 𝑡𝑜 < 𝑡 , it holds

that:

Pr

[
𝑦 = 𝑥2

𝑡

���� (𝑁, 𝑝, 𝑞) ←$ Gen(1𝜆), state←$A1 (1𝜆, 𝑁 ),
𝑥 ←$ {2, . . . , 𝑁 − 1}, 𝑦←$A2 (1𝜆, 𝑥, state)

]
≤ 𝜖 (𝜆) .

4 FORMALIZING PROOF OF
REPLICATION-TIME

PoRt helps the servers to convince the verifier that each encoded

replica of same data file is available throughout a period of time at

the server side. More specifically, PoRt involves three main entities:

client, servers and verifier. The client is the data owner who wishes

to replicate and outsource its data to storage service providers. It

only involves in the setup stage for generating encoded replicas,

public parameters and the an challenge for the servers. The public

parameters need to be available among the entities while the en-

coded replicas and the initial challenge will be distributed to the

servers via authenticated channels. After that, the client does not

need to be online since no further interaction is required between

it and the other entities. The servers are contracted with storing

the individual replicas and generating the corresponding proofs.

The verifier is tasked with the verification of the proofs generated

by the servers with the use of the public parameters regarding the

data storage task. The verifier does not necessarily need to be the

client itself if the scheme allows for public verification.

Here, we follow similar style with [4] to consider time param-

eters in defining PoRt syntax. Consider 𝑇 as the time period a

specific data file is supposed to be deposited in the server. 𝑇 is

divided into time slots of length 𝑡 , where 𝑡 is the audit frequency

parameter. This helps approximating continuous data availabil-

ity throughout time range 𝑇 with discretized frequent auditing,

where smaller 𝑡 provides a superior availability guarantee. The

measure of time here is the number of unit steps of the Turing

machine. We now formalize PoRt which consists of a tuple of four

algorithms PoRt = (Setup, Store, Prove,Verify), based on sequen-

tial use of PoReps introduced in subsection 3.1:

– Setup(1𝜆, 𝑡,𝑇 ) → (𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘): Inputs security parameter 1
𝜆
,

audit frequency parameter 𝑡 , and deposit time𝑇 and outputs

the public parameters 𝑝𝑎𝑟𝑎𝑚 and secret key 𝑠𝑘 .

– Store(𝐹, 𝑙, 𝑠𝑘, 𝑡,𝑇 ) → ({𝐹𝑖 }1≤𝑖≤𝑙 , 𝑡𝑔): Takes original data file
𝐹 , replication factor 𝑙 , secret key 𝑠𝑘 , audit frequency param-

eter 𝑡 , and deposit time 𝑇 and generates 𝑙 distinct file repli-

cas {𝐹𝑖 }1≤𝑖≤𝑙 by running PoRep.rEncode(𝐹, 𝑙, 𝑠𝑘). A global

𝑡𝑖𝑚𝑒𝑟 will be initialised to allow the verifier to check if the

proofs are received on time. It also outputs a tag 𝑡𝑔 as nec-

essary information to run PoRt.Prove and PoRt.Verify algo-

rithms.

– Prove(𝑝𝑎𝑟𝑎𝑚, 𝑐ℎ𝑎𝑙, 𝑡𝑔, {𝐹𝑖 }1≤𝑖≤𝑙 ) → 𝜋 : Inputs file replicas

{𝐹𝑖 }1≤𝑖≤𝑙 , tag 𝑡𝑔, public parameters 𝑝𝑎𝑟𝑎𝑚, and random chal-

lenge 𝑐ℎ𝑎𝑙 issued by a verifier, and outputs 𝜋 as the storage

proof for replica 𝐹𝑖 at least once in every time slot 𝑡 . These

proofs can be aggregated into a single compact proof which

is verified at the end of deposit period 𝑇 .

– Verify(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘, 𝑡𝑔, 𝑐ℎ𝑎𝑙, 𝜋, 𝑡𝑖𝑚𝑒𝑟 ) → {0, 1}: Inputs 𝑝𝑎𝑟𝑎𝑚,

secret key 𝑠𝑘 , tag 𝑡𝑔, challenge 𝑐ℎ𝑎𝑙 , proof 𝜋 , and 𝑡𝑖𝑚𝑒𝑟 to

check whether the final proof is received on time. It outputs a

bit 𝑏 = 1 if the verifier accepts the proof and 𝑏 = 0 otherwise.

The following, are desirable design features of a PoRt scheme.

Public Verifiability. To allow any third party to verify continuous

data availability without downloading data from the server. To this

end, the verification algorithm PoRt.Verify should not take secret

key 𝑠𝑘 as input.

Compactness. To enable low overhead verification with cost inde-

pendent of the file size and deposit length.

Usefulness. To provide storage system for storing real data rather

than storing a randomly-generated string with no external use.

Stateless. To support polynomial unbounded number of verifica-

tions without requiring the verifier to maintain protocol state.

Dynamic. To enable clients efficiently update outsourced data at

any time without the need to an entirely new setup.

Transparency. A PoRt scheme may import a one-time trusted

setup run by an honest client where the setup output is publicly

published to all entities. However, a PoRt scheme is transparent if its

setup does not involve any secret sk. This property is necessary in

DSNs where provers may also be clients and prevents any malicious

client-prover to generate a valid proof at the time a challenge is

issued by generating data on-the-fly to collect network rewards,

without really reserving storage.

In addition, a PoRt scheme must provide the following security

properties.

Completeness. For a client and servers who honestly follow the

protocol steps, the proof generated in PoRt.Prove algorithm during

deposit period𝑇 by the honest server hosting file replicas will be ac-

cepted in PoRt.Verify algorithm. More precisely, for all (param, sk)
values output by PoRt.Setup(1𝜆, 𝑡,𝑇 ), all files 𝐹 ∈ {0, 1}∗, and all

({𝐹𝑖 }1≤𝑖≤𝑙 , tg) output by PoRt.Store(𝐹, 𝑙, sk, 𝑡,𝑇 ), a proof 𝜋 gen-

erated by prover in PoRt.Prove(param, 𝑐ℎ𝑎𝑙, tg, {𝐹𝑖 }1≤𝑖≤𝑙 ) on the

challenge 𝑐ℎ𝑎𝑙 will make PoRt.Verify(param, sk, tg, 𝑐ℎ𝑎𝑙, 𝜋, 𝑡𝑖𝑚𝑒𝑟 )
always output 1.
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Soundness. The soundness property of a PoRt scheme guarantees

that a server is able to convince an honest verifier that it has stored

independent replicas of a file throughout the specified deposit time

only if it actually has.

To capture this security requirement, we adopt the security defi-

nition of soundness for PoSt schemes introduced in [4] and extend

it to support for replications. In general, we require that if a server

that act as the prover can pass the verification procedure that in-

volves an honest verifier with non-negligible probability, then there

exists an extractor that can extract the replicas during any period

specified by the audit frequency and also at the last moment when

the storage order is completed with overwhelming probability. Like-

wise, a prover here is modelled as an Interactive Turing Machine

(ITM) which facilitates data extraction during some specific time

range (measured in Turing Machine steps) and therefore allows for

verifying continuous data possession.

More specifically, we define soundness for PoRt schemes via

the following game between an adversary A and a challenger that

acts as an honest verifier. The challenger first runs PoRt.Setup to

generate the public parameter param and the secret key sk and

then hands param to the adversary. After that, A needs to specify

a challenge on some file 𝐹 by calling the Challenge oracle. On

receiving the query, it runs the PoRt.Store algorithm to generate

𝑙 encoded replicas {𝐹𝑖 }1≤𝑖≤𝑙 and a tag tg for future verification.

Challenge can only be called once and all further queries to it will

be ignored.

The adversary can start the verification procedure by querying

the Audit oracle with a tag tg′. If tg′ is generated by a previous

query to Challenge, Audit will then start the auditing procedure

with the adversary. For simplicity, in the case that the public param-

eter param and the secret key sk are clear in the context, we let the

verification algorithm only take the tag as input. At the end of the

auditing procedure,A will be provided a single bit 𝑏 indicating that

whether the verification successes or not. Even the adversary is

engaged in any auditing procedure, it can still call Audit to initiate

other instances of the auditing procedure with respect to different

tags at the meantime.

At some point during the game, A outputs a tag tg∗ with the

ITM description of a set of provers {P𝑖 }1≤𝑖≤𝑙 . We require that tg∗

is generated by the query to Challenge and the auditing proce-

dure between the honest verifier and the set of provers succeeds

with probability at least 𝜖 (in such case, we call the set of provers

𝜖-admissible). The auditing procedure is slightly different here: if

a timer has been initialised in a previous run of the PoRt.Store al-
gorithm which generates tg∗ then it will be reinitialised again. For

the set of provers provided by the adversary, if there exists an effi-

cient extractor Extr that can successfully extract the corresponding

replica, the experiment returns 1 and otherwise 0. The PoRt scheme

is considered to be sound if for any efficient adversary that attacks

against the scheme, the experiment returns 1 with overwhelming

probability.

We further require that the extractor Extr works as follows. It
takes as input the public parameter param, the secret key sk, a
tag tg and the ITM descriptions of the provers {P𝑖 }1≤𝑖≤𝑙 output
by the adversary. For simplicity, when the other parameters are

clear in the context, we just let the extractor take the ITMs as the

input. Extr first selects a random index 𝑗 from the range {1, ..., 𝑙}

and then runs instances of the provers. During the execution, Extr
records each configuration yields only by P𝑗 and also the elapsed

time when executing each step. On the completion of the auditing

procedure, Extr randomly selects 𝑡 consecutive configurations from

the record and then tries to extract the replica 𝐹 𝑗 from: (1) the tran-

sition function of the ITM; or (2) both the selected 𝑡 ′ configurations
and the configurations within the time interval [𝑇,𝑇 +𝛿] for some 𝛿

specified by the verification procedure. It captures the intuition that

the data should be available at any time period 𝑡 during the deposit

period𝑇 and also at the end of deposit time. Notice that valid proofs

submitted within the time interval [𝑇,𝑇 + 𝛿] will be accepted, the
replica should therefore be available at some point during this pe-

riod in order to guarantee continuous data retrivability throughout

the deposit time.

It is important to highlight three points here. First, our security

definition of soundness aims to guarantee continuous availability
(more exactly, retrieveability) of encoded replicas, but not requiring
the replicas are stored strictly in somewhat intact form (e.g. the

replicas cannot be compressed to some certain extent). Providing

such a guarantee is an interesting open future work and our work

can be considered as a step towards this goal. In other words, our

security definition allows that the replicas being stored can be

processed in arbitrary ways but it is ensured that all the individual

replicas are retrievable at every “check point” specified by the audit

frequency during the deposit time. Therefore, using a carefully

chosen small audit frequency will provide better guarantee on data

retrivability.

Second, we want to provide a general model for capturing sound-

ness of PoRt schemes and therefore there is no explicit restriction

on the form of the auditing procedure. It can be of the challenge-

response form with arbitrary many interactions, stateless or state-

ful, and with the use of some timers or not, etc. Thus, it allows for

capturing different features of PoRt schemes.

Third, the definition of soundness for PoSt schemes presented

in [4] cannot thwart the attack that a malicious server discards

the data after generating the last proof as required. Even though

both of their constructions can ensure data availability till the last

moment, their definition cannot provide such a guarantee. More

specifically, a PoSt scheme that allows the prover to generate the

last proof at some early point in the last time interval can be proven

to be secure according their security definition. To rule out this

attack, our security definition of soundness further requires that

the extractor should be able to retrieve the replicas from both the

randomly selected configurations and also from the configurations

at the end of data deposit period.

Definition 4.1 (Soundness). A PoRt scheme Π = (PoRt.Setup,
PoRt.Store, PoRt.Prove, PoRt.Verify) for audit frequency parameter

𝑡 , deposit time 𝑇 and replication parameter 𝑙 is said to be 𝜖-sound

if for any probabilistic polynomial-time 𝜖-admissible adversary A,

there exists an extractor Extr that works as described above such

that

Advsound-(t,T,l)
Π,A (𝜆) := 1 − Pr[Expsound-(t,T,l)

Π,A (𝜆) → 1] ≤ negl(𝜆),

where negl is a negligible function in 𝜆 and the experimentExpsound-(t,T,l)
Π,A

is defined as follows:

Experiment Expsound-(t,T,l)
Π,A (𝜆)
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chal ← ∅
(param, sk) ←$ PoRt.Setup(1𝜆, 𝑡,𝑇 )
(tg∗, {P𝑖 }1≤𝑖≤𝑙 ) ←$A(1𝜆, param : O)
If tg∗ ∈ chal ∧ 𝐹 𝑗 ←$ Extr({P𝑖 }1≤𝑖≤𝑙 ) then

Return 1

Else return 0

Challenge(𝐹 )
If chal ≠ ∅ then return ⊥
({𝐹𝑖 }1≤𝑖≤𝑙 , tg) ←$ PoRt.Store(𝐹, 𝑙, sk, 𝑡,𝑇 )
chal ← chal ∪ {tg }
Return ( {𝐹𝑖 }1≤𝑖≤𝑙 , tg)

Audit(tg′)
If tg′ ∉ chal then return ⊥
𝑏←$ <PoRt.Verify(tg′) ⇌ A>

Return 𝑏

Figure 2: The oraclesO thatA has access to in the experiment
Expsound-(t,T,l)

Π,A .

5 PORT: A COMPACT PROOF OF
REPLICATION-TIME CONSTRUCTION

In this section, we present our construction of PoRt that includes
the tuple of four algorithms PoRt = (Setup, Store, Prove,Verify) de-
scribed as follows:

– PoRt.Setup(1𝜆, 𝑡,𝑇 ). This is run by the client and takes as input

a security parameter 1
𝜆
, the audit frequency parameter 𝑡 , and the

deposit time 𝑇 . Let 𝑁 = 𝑝 · 𝑞 be a publicly known RSA modulus,

where 𝑝 = 2𝑝 ′ + 1 and 𝑞 = 2𝑞′ + 1 are two safe primes where 𝑝 ′ and
𝑞′ are also primes. All operations are performed in multiplicative

cyclic group Z∗
𝑁

of invertible integers modulo 𝑁 . The private order

of Z∗
𝑁
is the Euler trapdoor function 𝜙 (𝑁 ) = (𝑝−1) · (𝑞−1). The tu-

ple of algorithms SE = (KeyGen, Enc,Dec) denotes a semantically

secure symmetric encryption scheme. H , H ′, and G are secure

hash functions. The client selects a pseudo-random permutation

(PRP) 𝑓 : 𝑦 × {0, 1}log2 𝑛 → {0, 1}log2 𝑛 and two pseudo-random

functions (PRF) over domain 𝐷 , 𝜓 : 𝐷 × {0, 1}log2 𝑙 → 𝐷 and

𝜃 : 𝐷 × {0, 1}log2 𝑛+log2 𝑙 → 𝐷 , with secret keys 𝑘1, 𝑘2 ∈ 𝐷 , respec-
tively. Parameter 𝑙 is the data replication factor agreed in the SLA,

and 𝑆 is the number of squarings modulo 𝑁 per unit of time that

can be computed by the prover, determined based on a reasonable

estimation of hardware speed of individual servers as in compu-

tational timestamping [9]. A data file 𝐹 encoded with an erasure

code, is divided into 𝑛 blocks𝑚𝑖 ∈ 𝐷 denoted as 𝐹 = (𝑚1, . . . ,𝑚𝑛).
The public parameters are 𝑝𝑎𝑟𝑎𝑚 = (𝑁,H ,H ′,G, 𝑓 , 𝑙, 𝑆, 𝑡,𝑇 ), and
the secret key is 𝑠𝑘 = (𝜙 (𝑁 ),𝜓, 𝜃, 𝑘1, 𝑘2).
– PoRt.Store(𝐹, 𝑠𝑘, 𝑝𝑎𝑟𝑎𝑚). This is run by the client and has two

subroutines rEncode and TagGen. It takes as input a data file 𝐹 =

(𝑚1, . . . ,𝑚𝑛), the secret key 𝑠𝑘 , the public parameters 𝑝𝑎𝑟𝑎𝑚. It

constructs 𝑙 distinct replicas of file 𝐹 denoted as {𝐹𝑖 }1≤𝑖≤𝑙 using
replica encoding algorithm rEncode. It also runs the TagGen algo-

rithm to generate tag 𝑡𝑔. To this end, the client computes 𝑒 = 𝑡𝑆 ,

chooses a random initial challenge 𝑐 (0) , and creates 𝑠 = ⌈𝑇 /𝑡⌉ se-
quential puzzles with 𝑒 squarings each. Note that each puzzle inputs

the challenge outputted by previous puzzle. The client performs all

sequential puzzles without delay using the trapdoor, and aggregates

them into one tag 𝑡𝑔𝑖 used for verification of encoded replica 𝐹𝑖 . We

note that the dominant computation in TagGen algorithm which is

PoRt.Store

Input data file 𝐹 = (𝑚1, . . . ,𝑚𝑛 ) , the secret key 𝑠𝑘 , and public parameters 𝑝𝑎𝑟𝑎𝑚

rEncode

Compute 𝛼𝑖 = 𝜓𝑘
1
(𝑖)

For 𝑗 = 1 𝑡𝑜 𝑛
yoyo 𝛽𝑖 𝑗 ← 𝜃𝑘

2
(𝑖 ∥ 𝑗)

yoyo𝑚𝑖 𝑗 ← 𝛼𝑖𝑚 𝑗 + 𝛽𝑖 𝑗
𝐹𝑖 ← (𝑚𝑖1, . . . ,𝑚𝑖𝑛 )
Return 𝐹𝑖 //output 𝑖𝑡ℎ replica 𝐹𝑖

TagGen

Set 𝑒 ← 𝑡𝑆 , 𝑠 = ⌈𝑇 /𝑡 ⌉, and (𝑡𝑔1, . . . , 𝑡𝑔𝑙 ) ← (1, . . . , 1)
Sample 𝑐 (0) ←$ Z∗

𝑁
Compute 𝑒′ ← 2

𝑒
mod 𝜙 (𝑁 )

Run SE.KeyGen algorithm to generate symmetric encryption key k
For 𝑘 = 1 𝑡𝑜 𝑠

yoyo 𝑎 ← H(𝑐 (𝑘−1) )
yoyo 𝑐 (𝑘 ) ← 𝑎𝑒

′ ∈ Z𝑁 //sequentially solve puzzles without delay using
trapdoor 𝜙 (𝑁 )
yoyo 𝑟 ← H′ (𝑐 (𝑘 ) )
yoyo 𝐽 ← ∅
yoyo For 𝑗 ∈ [1, 𝑐 ] //use puzzle output 𝑐 (𝑘 ) to generate 𝐽 ⊂ [1, 𝑛] as a
𝑐-element subset of block indices to be challenged in auditing step 𝑘
yoyoyoyo 𝐽 ← 𝐽 ∪ 𝑓𝑟 ( 𝑗)
yoyoyoyo 𝑦

(𝑘 )
𝑗
← G(𝑐 (𝑘 ) , 𝑗)

yoyo For 𝑖 = 1 𝑡𝑜 𝑙 //generate aggregated tag 𝑡𝑔𝑖 for replica 𝐹𝑖

yoyoyoyo 𝛽
(𝑘 )
𝑖
← ∑

𝑗∈𝐽 𝑦
(𝑘 )
𝑗

𝛽𝑖 𝑗

yoyoyoyo 𝑡𝑔𝑖 ← 𝑡𝑔𝑖 ×
(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖 mod 𝑁

𝑎 ← H(𝑐 (𝑠 ) )
𝑐 (𝑠+1) ← 𝑎𝑒

′ ∈ Z𝑁
𝐾 ← k + 𝑐 (𝑠+1) mod 𝑁 //encrypt the key k using the time-release
encryption
𝛼 ← SE.Enck (𝛼1, . . . , 𝛼𝑙 ) //encrypt (𝛼1, . . . , 𝛼𝑙 ) with symmetric encryption
key k
𝑡𝑔← (𝐾,𝛼, 𝑡𝑔1, . . . , 𝑡𝑔𝑙 )
Return 𝑡𝑔

solving puzzles is similar for all encoded replicas and thus executed

only once. Finally, the client sends the encoded replicas {𝐹𝑖 }1≤𝑖≤𝑙
and the challenge seed 𝑐 (0) to the server and initiates global timer

𝑡𝑖𝑚𝑒𝑟 by resetting it to 0. The tag 𝑡𝑔 is also published publicly.

PoRt.Prove

Input replicas {𝐹𝑖 }1≤𝑖≤𝑙 , tag 𝑡𝑔, public parameters 𝑝𝑎𝑟𝑎𝑚, and challenge 𝑐 (0)

Set (𝜋1, . . . , 𝜋𝑙 ) ← (1, . . . , 1)
Parse 𝑡𝑔 as (𝐾,𝛼, 𝑡𝑔1, . . . , 𝑡𝑔𝑙 )
For 𝑘 = 1 𝑡𝑜 𝑠

yoyo 𝑎 ← H(𝑐 (𝑘−1) )
yoyo 𝑐 (𝑘 ) ← 𝑎2

𝑒 ∈ Z𝑁 //sequentially solve puzzles

yoyo 𝑟 ← H′ (𝑐 (𝑘 ) )
yoyo For 𝑗 ∈ [1, 𝑐 ] //use puzzle output 𝑐 (𝑘 ) to generate a fresh challenge
yoyoyoyo 𝐽 ← 𝐽 ∪ 𝑓𝑟 ( 𝑗)
yoyoyoyo 𝑦

(𝑘 )
𝑗
← G(𝑐 (𝑘 ) , 𝑗)

yoyo For 𝑖 = 1 𝑡𝑜 𝑙 //generate aggregated proof 𝜋𝑖 for replica 𝐹𝑖

yoyoyoyo 𝜇
(𝑘 )
𝑖
← ∑

𝑗∈𝐽 𝑦
(𝑘 )
𝑗
𝑚𝑖 𝑗

yoyoyoyo 𝜋𝑖 ← 𝜋𝑖 ×
(
𝑐 (𝑘 )

)𝜇 (𝑘 )
𝑖 mod 𝑁

𝜋 ← (𝜋1, . . . , 𝜋𝑙 )
Return 𝜋
𝑎 ← H(𝑐 (𝑠 ) )
𝑐 (𝑠+1) ← 𝑎2

𝑒 ∈ Z𝑁
k← 𝐾 − 𝑐 (𝑠+1) mod 𝑁 //retrieve key k using time-release decryption
(𝛼1, . . . , 𝛼𝑙 ) ← SE.Deck (𝛼) //decrypt (𝛼1, . . . , 𝛼𝑙 ) using the obtained key
k
Return (k, 𝛼1, . . . , 𝛼𝑙 )
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– PoRt.Prove({𝐹𝑖 }1≤𝑖≤𝑙 , 𝑡𝑔, 𝑝𝑎𝑟𝑎𝑚, 𝑐 (0) ). For simplicity, we present

this algorithm for a single server’s case, which means the server will

store all the replicas on its side and then aggregate the sequentially

generated proofs. For the case of multiple servers, the PoRt.Prove
algorithm for each server can be easily derived from the one pre-

sented here. Upon receiving replicas {𝐹𝑖 }1≤𝑖≤𝑙 together with tag

𝑡𝑔, the public parameters 𝑝𝑎𝑟𝑎𝑚, and challenge 𝑐 (0) the deposit

period officially starts. Therefore, the prover starts sequential proof

process to provide an on-time continuous availability guarantee

of replicated storage. To this end, the prover runs PoRt.Prove to
solve 𝑠 sequential time-lock puzzles throughout time 𝑇 , and aggre-

gates them into one final proof 𝜋𝑖 for each encoded replica 𝐹𝑖 . The

prover also outputs private vector (𝛼1, . . . , 𝛼𝑙 ) which can only be

discovered sequentially after proof expiration time, thanks to the

time-release encryption technique used in the scheme.

– PoRt.Verify(𝑝𝑎𝑟𝑎𝑚, 𝑡𝑔, 𝜋, 𝑡𝑖𝑚𝑒𝑟 ). Upon receiving proof 𝜋 and vec-

tor (𝛼1, . . . , 𝛼𝑙 ) from the prover, verifier first checks if the 𝑡𝑖𝑚𝑒𝑟

is in the interval [𝑇,𝑇 + 𝛿], where 𝛿 is a constant parameter de-

termined based on time-lock puzzle evaluation. It also checks if

(𝛼1, . . . , 𝛼𝑙 ) values are received at time interval [𝑇 + 𝑡,𝑇 + 𝛿 ′], with
some 𝛿 ′ ≥ 𝑡 + 𝛿 . If these time constraints pass, the verifier then

checks PoRt.Verify for a fast and efficient fault localization of cor-

rupted replicas. If PoRt.Verify outputs reject and the value 𝑍𝑖 is

not equal to other values, the corresponding replica is identified as

corrupted.

PoRt.Verify

Input proof 𝜋 , tag 𝑡𝑔 for a file 𝐹 , and vector (k, 𝛼1, . . . , 𝛼𝑙 )
Parse 𝜋 as (𝜋1, . . . , 𝜋𝑙 ) and 𝑡𝑔 as (𝐾,𝛼, 𝑡𝑔1, . . . , 𝑡𝑔𝑙 )
Check if SE.Deck (𝛼)

?

= (𝛼1, . . . , 𝛼𝑙 )
For 𝑖 = 1 𝑡𝑜 𝑙

yoyo 𝑍𝑖 ← (𝜋𝑖 .𝑡𝑔𝑖 )
1

𝛼𝑖 //unmask 𝜋𝑖 using tg𝑖 and 𝛼𝑖
If ∃𝑖 ∈ [1, 𝑙 ] : 𝑍𝑖 ≠𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑍 ) return 𝑟𝑒 𝑗𝑒𝑐𝑡 //compare each
unmasked value 𝑍𝑖 with the majority value in vector 𝑍 = (𝑍1, . . . , 𝑍𝑙 ) to
locate the corrupted replicas
Return 𝑎𝑐𝑐𝑒𝑝𝑡

6 SECURITY ANALYSIS
Having proposed the formal security definitions for PoRt schemes,

in this section we will examine the security properties of the con-

struction PoRt with respect to the security definitions we provided.

We first show that Completeness is preserved in our construction.

Theorem 6.1. If the client and server(s) are honest, PoRt preserves
Completeness.

Proof. Consider the value 𝑍𝑖 generated in PoRt.Verify:

𝑍𝑖 = (𝜋𝑖 .𝑡𝑔𝑖 )
1

𝛼𝑖 =
( 𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)𝜇 (𝑘 )
𝑖 .

𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖

) 1

𝛼𝑖

=
( 𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)∑
𝑗∈𝐽 𝑦

(𝑘 )
𝑗

𝑚𝑖 𝑗 .

𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖

) 1

𝛼𝑖

=
( 𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)∑
𝑗∈𝐽 𝑦

(𝑘 )
𝑗
(𝛼𝑖𝑚𝑗 +𝛽𝑖 𝑗 ) .

𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖

) 1

𝛼𝑖

=
( 𝑠∏
𝑘=1

(
(
𝑐 (𝑘 )

)𝛼𝑖 ∑𝑗∈𝐽 𝑦
(𝑘 )
𝑗

𝑚𝑗 +
∑
𝑗∈𝐽 𝑦

(𝑘 )
𝑗

𝛽𝑖 𝑗
.
(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖 )

) 1

𝛼𝑖

=
( 𝑠∏
𝑘=1

(
(
𝑐 (𝑘 )

)𝛼𝑖 ∑𝑗∈𝐽 𝑦
(𝑘 )
𝑗

𝑚𝑗 +𝛽
(𝑘 )
𝑖 .

(
𝑐 (𝑘 )

)−𝛽 (𝑘 )
𝑖 )

) 1

𝛼𝑖

=
( 𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)𝛼𝑖 ∑𝑗∈𝐽 𝑦
(𝑘 )
𝑗

𝑚𝑗 ) 1

𝛼𝑖 =

𝑠∏
𝑘=1

(
𝑐 (𝑘 )

)∑
𝑗∈𝐽 𝑦

(𝑘 )
𝑗

𝑚𝑗

Writing the same equalities for𝑍𝑖′, 𝑖
′ ≠ 𝑖 also yields

∏𝑠
𝑘=1

(
𝑐 (𝑘 )

)∑
𝑗∈𝐽 𝑦

(𝑘 )
𝑗

𝑚𝑗
,

where𝑚 𝑗 s are the original file blocks 𝐹 = (𝑚1, . . . ,𝑚𝑛). This shows
that if the proofs are generated based on intact encoded replicas,

then 𝑍𝑖 and 𝑍𝑖′ would be equal. Note that every single proof in

sequential proof-chain during time 𝑇 must be generated correctly;

if any proof fails to verify, the whole 𝑍𝑖 fails to verify. □

The theorem for soundness and its proof are an important step

towards achieving practical security for PoRt schemes. We leave as

future work to improve on aspects such as computation model that

deals with real-world time for defining security and more relaxed

assumption on the security proof.

Theorem 6.2. If𝜓 and 𝜃 are secure PRFs, 𝑓 is a secure PRP, SE is
IND-CPA secure and RSW problem is computationally hard, PoRt is
𝜖-sound in the random oracle model under the assumption that the
time cost of the computation other than solving the RSA time-lock
puzzles is negligible.

Proof Sketch.We prove the theorem by using a sequence of games

which we describe below.

Game 0: The initial game is the original experiment that defines

soundness of PoRt schemes in Definition 4.

Game 1: In this game, the experiment proceeds as the previous one

with the following changes. We replace every𝜓𝑘1 (𝑖) with a random

value chosen uniformly from the domain 𝐷 . The challenger who

is in charge of the game keeps a record of those selected random

values for further verification. If there exists a distinguisher which

can distinguish the success probability of the adversary between

the two games, it can be used to break security of the PRF𝜓 .

Game 2: This game proceeds the same as the one above, with the

exception that we replace every 𝜃𝑘2 (𝑖) with a random value chosen

uniformly from the domain 𝐷 . Still, the challenger maintains a list

to record the random values for further verification. Similarly, any

distinguisher who can distinguish the success probability of the

adversary between the two games can be used to break security of

the PRF 𝜃 .

Game 3: We now transform Game 2 into Game 3 by replacing

every invocation to the PRP 𝑓 in Challenge with a function 𝑓 ′

which is chosen uniformly at random from the set of permutation

mappings from log
2
𝑛-bits strings to log

2
𝑛-bit strings. If there is a

distinguisher which can tell the difference in the adversary’s success

probability between Game 2 and Game 3, it can be used to break

security of the pseudo-random permutation. Since in an execution

of the algorithm PoRt.Store will compute 𝑓 under 𝑠 different keys,

the reduction we obtain here will suffer a security loss by a factor

of 𝑠 .

Now we elaborate on the advantage that an adversary A can

gain in Game 3. To win the game, the instances of the ITMs thatA
provides should succeed in the auditing procedure with probability

at least 𝜖 . Therefore, we further distinguish between the following

two situations in which A can win the game: (1) The data blocks

stored by the server are not enough to generate valid proofs to pass

7



the verification, or (2) The server has stored enough data blocks to

generate valid proofs.

For the first case, we consider two possible situations based on

the fact whether the data blocks can be retrieved by the servers

when they are needed for computing the proofs. First, if the data

blocks can be retrieved when needed, it means that the transition

function has specified the method which allows the server to do

so. Since we only consider rational adversaries, in such case the

data blocks may be stored locally in various forms but the extractor

should be able to retrieve the data blocks for reconstructing the

replica by following the instructions specified by the transition

function. Second, if the data blocks cannot be retrievedwhen needed

for generating the proofs, the only possibility is that the adversary

can gain advantage from the symmetric encryption scheme and

therefore manage to forge proofs with 𝛼𝑖 values in order to pass the

verification check (i.e. by coming up with the proofs 𝜋𝑖 , 𝜋 𝑗 and the

values 𝛼𝑖 , 𝛼 𝑗 such that (𝜋𝑖 · 𝑡𝑔𝑖 )
1

𝛼𝑖 = (𝜋 𝑗 · 𝑡𝑔 𝑗 )
1

𝛼𝑗
holds for every

𝑖, 𝑗 ∈ {1, . . . , 𝑙}). Then we modify Game 3 and obtain the following

game.

Game 4: In this game, the challenger does not encrypt the content

(𝛼1, . . . , 𝛼𝑙 ) but a random string of the same length instead. The

rest of the game remains the same as the previous one. Let E denote

the event of situation (1) mentioned above. When E happens, the

adversary does not need to obtain the key 𝑘 via solving the last

time-lock puzzle. Because it is required that the proofs need to be

submitted before that then A needs to come up with the proofs

and the corresponding (𝛼1, . . . , 𝛼𝑙 ) values at some earlier point.

Therefore the difference in the success probability of the adversaries

in Game 3 and Game 4 is bounded by the probability of the event

E occurs. A distinguisher that aims to distinguish between the

two games can be used to break indistinguishability under chosen-

plaintext attack of the symmetric encryption scheme SE.
Finally, we discuss the success probability of the adversary in

Game 4. Since the encrypted content of (𝛼1, . . . , 𝛼𝑙 ) is replaced
by a random string, the adversary can win this game only under

the situation (2) mentioned above. Notice that in Game 4, 𝛼𝑖 and
𝛽𝑖 𝑗 are uniform random numbers, the encoded data block𝑚𝑖 𝑗 are

uniformly distributed and does not depend on any other data block.

Moreover, the set 𝐽 used in each round in the algorithms TagGen
and PoRt.Prove contains a random subset of elements in {1, . . . , 𝑛}
which cannot be determined in advance. The prover will also have

to call the random oracles in turns so that the generated proofs

can be consistent. So, if the server has stored enough data blocks

required for generating the proofs and everything is computed

correctly, an extractor can directly retrieve the data blocks from

any consecutive configurations in which the execution time sums

up to 𝑡 and also the configurations for computing the last proof

and then applies erasure code to reconstruct the replica. Therefore,

the only possibility that A can win the game is via gaining some

advantage from solving the RSA time-lock puzzles. In such case,

the adversary A is assumed to solve at least an instance of the

RSA time-lock puzzles by performing significantly less operations

than the number of operations required to solve the puzzle when

generating the proofs for the specified challenge. Therefore, given

such an adversary, we can construct another adversary for solving

𝑡𝑆-RSW problem that uses A as a subroutine by simulating to it

the Game 4 with the challenge carefully planted in it, where 𝑡 is

the audit frequency and 𝑆 is the number of modular squarings per

unite of time estimated based on the server’s hardware.

To sum up, assuming the PRFs, the PRP, the symmetric encryp-

tion scheme are secure and the RSW problem is computationally

hard, the adversary’s success probability in initial game which de-

fines soundness of the PoRt scheme is bounded by a negligible

function and therefore completes the proof of Theorem 6. □

7 PERFORMANCE EVALUATION
To evaluate the performance of PoRt, we ran experiments on a

laptop with configuration Intel I7-3470 3.20 GHz processor, 4 GB

memory and Windows 7 operating system using Crypto++ library

Version 8.2. We relied on SHA-256 for all hash implementations.

The RSA modulus used here was of 1024 bits size. We also set

number of challenged blocks in each auditing to be 𝑐 = 460, which

guarantees 0.99 probability of detecting corruption according to [3].

The results were averaged over 10 runs.

Client Overhead. PoRt computation for the client includes encoding

file replicas (rEncode) and generating tag (TagGen). For rEncode,
𝑙 · (𝑛 + 1) PRF instantiations are required, where 𝑙 and 𝑛 denotes

replication factor and total number of file blocks, respectively. Be-

sides, TagGen includes 𝑠 sequential trapdoor puzzle computations.

Figure 3 shows experimental results for various deposit time 𝑇 , fre-

quency parameter 𝑡 , replication factor 𝑙 , and file sizes, respectively.

As shown in Figure 3a, PoRt.Store algorithm for replication factor 2

, 30 days deposit period, and hourly checkup took 4.05 minutes. As

shown in Figure 3d, this time remains almost fixed for different file

sizes, due to the fact that rEncode cost is negligible compared to

TagGen overhead.

Prover Overhead. PoRt.Prove algorithm cost is dominated by com-

puting time-lock puzzles, which is an intrinsically sequential pro-

cess with total number of𝑇 · 𝑆 iterated squarings for deposit period

𝑇 and any replication factor 𝑙 .

Verifier Overhead. PoRt.Verify algorithm performs 𝑙 exponentiation

and multiplications modulo 𝑁 . E.g., for two replicas (𝑙 = 2), the

smart contract verifying the proof roughly costs 80000 gas (the gas

cost is 34.34 Gwei
1
), equivalent to 0.002605 ETH which is constant

for all file sizes, deposit periods, and checking frequencies.

Communication Overhead. In order to enable automatic public veri-

fication of proofs via smart contracts, the proofs should be succinct

to reduce the expensive on-chain smart contract interactions. In

PoRt, the proof size equals one RSA group element per each replica

and thus has total length of 1024 · 𝑙 bits for 𝑙 encoded replicas. E.g.,

for two replicas, the proof length is 256 bytes.

8 CONCLUSION
This work contributes towards building a compact proof system

that will, by design, guarantee continuous availability of replicated

storage, and eventually have a tangible impact on building highly

reliable storage services. As an interesting future work, we consider

making PoRt transparent to enable its direct use in Decentralized

Storage Networks.

1
The gas cost is the average gas price for October 21, 2022, as stated in https://ycharts.

com/indicators/ethereum_average_gas_price
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Figure 3: PoRt.Store algorithm time cost for entire data file with 𝑐 = 460
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high-level how PoRt can be extended to support dynamic data operations,

and be transparent. We hope that this section, apart from showing our

future direction, can give valuable insights to researchers who wish to

either enhance our work or focus on the design of similar and even better

PoRt systems.

Statelessness. PoRt can be invoked a polynomial unbounded number of

audits between the prover and verifier. When the number of verifications

reaches the a priori bound (deposit period ends), the client can easily ex-

tend the deposit period without requiring to download the outsourced file

replicas. This is possible due to the incremental nature of the protocol:

Both the client and the prover can respectively keep up the tag and proof

sequence from the last state to aggregate further tags/proofs at the agreed

frequency. The client, in order to update the tags for extended deposit pe-

riod, only needs to re-compute 𝛽𝑖 𝑗 = 𝜃𝑘2 (𝑖 ∥ 𝑗) values and continues the

TagGen procedure from the last state to generate 𝛽
(𝑘 )
𝑖

and update the tags

to (𝑡𝑔′
1
, . . . , 𝑡𝑔′

𝑙
) for an extended deposit period𝑇 ′. We note that since the

TagGen procedure does not depend on the data file, this updating process

does not require downloading outsourced data file from the servers.

However, one more challenge needs to be addressed here: Encrypting

the vector (𝛼1, . . . , 𝛼𝑙 ) with time-release encryption does not work in this

case, since the time extends by updating the tags. Not publishing vector

(𝛼1, . . . , 𝛼𝑙 ) results in private verification. One approach to address this

challenge is to send (𝑔𝛼
1
, . . . , 𝑔𝛼

𝑙
) publicly, and change the𝑍𝑖 s in PoRt.Verify

to𝑍𝑖 = 𝑒 (𝜋𝑖 .𝑡𝑔𝑖 , 𝑔
1

𝛼𝑖 ) , where 𝑒 is a bilinear pairing. This however, increases
the verification cost.

Dynamic Data Operations. In PoRt, the coefficients 𝛽𝑖 𝑗 = 𝜃𝑘2 (𝑖 ∥ 𝑗)
depend on the index 𝑗 of block𝑚𝑖 𝑗 . Therefore, when a user updates an

outsourced data file by inserting/deleting a block, all block indices and their

𝛽𝑖 𝑗 coefficients are affected. Therefore, the tag requires to be entirely re-

computated in the Setup algorithm. To enable clients to efficiently update

data stored in the server at any time without the need to run Setup each

time, one way is to employ the concept of virtual index introduced in

[26]. More precisely, the coefficients are modified to 𝛽𝑖 𝑗 = 𝜃𝑘2 (𝑖 ∥ 𝑖𝑑𝑖 𝑗 ) ,
where 𝑖𝑑𝑖 𝑗 = {𝑣𝑖 𝑗 , ℎ𝑖 𝑗 } is the identifier of block𝑚𝑖 𝑗 . Parameter 𝑣𝑖 𝑗 is the

virtual index of block𝑚𝑖 𝑗 and ℎ𝑖 𝑗 = 𝐻1 (𝑚𝑖 𝑗 ∥ 𝑣𝑖 𝑗 ) , where 𝐻1 is a secure

cryptographic hash function. Virtual index of block𝑚𝑖 𝑗 is initially set to

𝑣𝑖 𝑗 = 𝑗 .𝛿 , where 𝛿 is a system parameter. Virtual indices determine the

block orders, but as opposed to real index 𝑗 , change in virtual index of one

block does not affect the virtual indices of subsequent blocks. This makes

the setup re-computation for the updated file more efficient at the client

side.

Transparency. PoRt scheme proposed in this paper is based on the hon-

est client assumption since it involves a keyed trusted setup. This works

properly in a basic PoS scenario where a data owner wishes to outsource

files to a server, and later verify the integrity of stored data. However, this

assumption prevents direct application to a decentralized storage market-

place where malicious clients can collude with storage servers to collect

network rewards without really storing replicas – a procedure known as

generation attack. To provide security against this kind of malicious be-

havior, PoRt can be extended by removing the PoRt.TagGen procedure at

client side by using Wesolowski’s public-coin succinct argument [24]. This

approach also reduces the cost of the scheme at the client side. Techni-

cally, the client executes one-time PoRt.rEncode prior to outsourcing data

file. Next in the proof phase, the server executes an aggregated version

of Wesolowski’s scheme to generate a proof on correctness of time-lock

puzzle (TLP) along with PoRt proof. In verification phase, verifier checks

the correctness of TLP proof before verifying PoRt proof. Pseudo-codes on

the right column give a detailed overview on how Extended − PoRt.Prove
and Extended − PoRt.Verify algorithms work.

Extended − PoRt totally removes the client tag pre-processing at the cost

of longer proof size and increased verification cost which are only one-time

costs at the end of the deposit period. Besides, to remove the trust on a

single client in rEncode algorithm, multi-user encoding techniques can be

employed [12]. Finally, transparency is an important research direction

and we leave finding an optimal transparent PoRt scheme as an interesting

future work.

Extended − PoRt.Prove

Input challenge 𝑐 (0) , prime 𝜁 chosen from 𝑃𝑟𝑖𝑚𝑒𝑠 (𝜆) uniformly at random, and 𝑙

encoded replicas {𝐹𝑖 }1≤𝑖≤𝑙 :
Set (𝜋1, . . . , 𝜋𝑙 ) ← (1, . . . , 1) , 𝜋𝑇𝐿𝑃 ← 1

Compute 𝑞, 𝑟 ∈ Z𝑁 , such that 2
𝑒 = 𝑞𝜁 + 𝑟

For 𝑘 = 1 𝑡𝑜 𝑠 :

yoyo 𝑎 ← H(𝑐 (𝑘−1) )
yoyo 𝑐 (𝑘 ) ← 𝑎2

𝑒 ∈ Z𝑁
yoyo 𝜋𝑇𝐿𝑃 ← 𝜋𝑇𝐿𝑃 × 𝑎𝑞 ∈ Z𝑁

yoyo 𝑟 ← H′ (𝑐 (𝑘 ) )
yoyo For 𝑗 ∈ [1, 𝑐 ]
yoyoyoyo 𝐽 ← 𝑓𝑟 ( 𝑗)
yoyoyoyo 𝑦

(𝑘 )
𝑗
← G(𝑐 (𝑘 ) , 𝑗)

yoyo For 𝑖 = 1 𝑡𝑜 𝑙 :

yoyoyoyo 𝜇
(𝑘 )
𝑖
← ∑

𝑗∈𝐽 𝑦
(𝑘 )
𝑗
𝑚𝑖 𝑗

yoyoyoyo 𝜋𝑖 ← 𝜋𝑖 ×
(
𝑐 (𝑘 )

)𝜇 (𝑘 )
𝑖 mod 𝑁

𝜋 ← (𝜋1, . . . , 𝜋𝑙 )
Return 𝜋, 𝜋𝑇𝐿𝑃 , {𝑐 (𝑘 ) }1≤𝑘≤𝑠
Solve time-release encryption to retrieve 𝑘1, 𝑘2 and return them to the verifier.

Extended − PoRt.Verify

I. Verify 𝜋𝑇𝐿𝑃 correctness:

yoyoFor 𝑘 ∈ [1, 𝑠 ] compute 𝑎 (𝑘 ) ← H(𝑐 (𝑘−1) )
yoyoCompute𝐶 ←∏𝑠

𝑘=1
𝑐 (𝑘 ) ,𝐴←∏𝑠

𝑘=1
𝑎 (𝑘 )

yoyoCompute 𝑟 ← 2
𝑒

mod 𝜁

yoyoCheck𝐶 = 𝜋
𝜁

𝑇𝐿𝑃
×𝐴𝑟

II. Verify 𝜋 correctness for a file 𝐹 :

yoyoParse 𝜋 as (𝜋1, . . . , 𝜋𝑙 )
yoyoCompute {𝛼𝑖 }𝑖∈[1,𝑙 ] , {𝛽𝑖 𝑗 }𝑖∈[1,𝑙 ], 𝑗∈[1,𝑛] using 𝑘1, 𝑘2
yoyoGenerate 𝑡𝑔 = (𝑡𝑔1, . . . , 𝑡𝑔𝑙 ) using {𝑐 (𝑘 ) }1≤𝑘≤𝑠 , {𝛽𝑖 𝑗 }𝑖∈[1,𝑙 ], 𝑗∈[1,𝑛] .
yoyoFor 𝑖 = 1 𝑡𝑜 𝑙 :

yoyoyoyo 𝑍𝑖 ← (𝜋𝑖 .𝑡𝑔𝑖 )
1

𝛼𝑖

yoyo If ∃𝑖 ∈ [1, 𝑙 ] : 𝑍𝑖 ≠𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑍 ) return 𝑟𝑒 𝑗𝑒𝑐𝑡
yoyoReturn 𝑎𝑐𝑐𝑒𝑝𝑡
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