
Continuous Group Key Agreement with Flexible
Authorization and Its Applications

Kaisei Kajita1, Keita Emura2, Kazuto Ogawa2, Ryo Nojima2, and Go Ohtake1

1 Japan Broadcasting Corporation. Setagaya-ku, Tokyo, Japan.
2 National Institute of Information and Communications Technology (NICT).

Koganei, Tokyo, Japan.

Abstract. Secure messaging (SM) protocols allow users to communicate
securely over an untrusted infrastructure. The IETF currently works on
the standardization of secure group messaging (SGM), which is SM done
by a group of two or more people. Alwen et al. formally defined the
key agreement protocol used in SGM as continuous group key agreement
(CGKA) at CRYPTO 2020. In their CGKA protocol, all of the group
members have the same rights and a trusted third party is needed. On the
other hand, some SGM applications may have a user in the group who
has the role of an administrator. When the administrator as the group
manager (GM) is distinguished from other group members, i.e., in a one-
to-many setting, it would be better for the GM and the other group
members to have different authorities. We achieve this flexible autho-
rization by incorporating a ratcheting digital signature scheme (Cremers
et al. at USENIX Security 2021) into the existing CGKA protocol and
demonstrate that such a simple modification allows us to provide flexible
authorization. This one-to-many setting may be reminiscent of a multi-
cast key agreement protocol proposed by Bienstock et al. at CT-RSA
2022, where GM has the role of adding and removing group members.
Although the role of the GM is fixed in advance in the Bienstock et al.
protocol, the GM can flexibly set the role depending on the application
in our protocol. On the other hand, in Alwen et al.’s CGKA protocol, an
external public key infrastructure (PKI) functionality as a trusted third
party manages the confidential information of users, and the PKI can
read all messages until all users update their own keys. In contrast, the
GM in our protocol has the same role as the PKI functionality in the
group, so no third party outside the group handles confidential informa-
tion of users and thus no one except group members can read messages
regardless of key updates. Our proposed protocol is useful in the creation
of new applications such as broadcasting services.

Keywords: Continuous Group Key Agreement · Secure Group Messag-
ing · Ratcheting Digital Signatures.

2 K. Kajita et al.

1 Introduction

1.1 Background

Secure messaging (SM) is a technology that ensures secure communication be-
tween user terminals even in an untrusted communication infrastructure. SM has
several characteristics that differ from general secure communication protocols
such as TLS and SSH. First, SM is designed for message exchange in an off-
line state where the user is cut off from communication, and also for long-term
communication sessions (e.g., from the time a user buys a smartphone to the
time he or she throws it away). Therefore, it is necessary to consider stronger
security against the leakage of the user’s confidential information than general
secure communication protocols. For this reason, forward secrecy (FS) and post-
compromised security (PCS) should be satisfied as the security requirements of
SM. FS means that when a user’s key is compromised, messages past that point
are kept secret, and PCS means that when a user’s key is compromised, the
security is revived by continuing the protocol.

Two-party secure messaging. The double ratchet protocol recently proposed
by Marlinspike and Perrin [23] has led to the comprehensive study of designs and
analysis of two-party SM protocols. The double ratchet protocol is an encryption
method utilized in many messenger applications such as Signal Protocol [23]. It
is designed for two parties, so in a group with more than two users, the protocol
must be executed on every pair of users. It means the computational complexity
for updating the key information increases in proportion to n2, where n is the
group size. It’s known that double ratcheting is thus inefficient and difficult to
implement in environments with a large number of users [3].

Secure group messaging. SM, when there are more than n users (n ≥ 2),
is called secure group messaging (SGM). Currently, the Internet Engineering
Task Force (IETF) has established the Messaging Layer Security (MLS) working
group to standardize SGM as the MLS standard of the same name of the work-
ing group. The core technology of the MLS standard is the Continuous Group
Key Agreement (CGKA) protocol, called TreeKEM [3], which is used to share
keys for secure messaging among multiple users. In the MLS standard, the SGM
consists of the CGKA protocol, a pseudo-random function and pseudo-random
number generator (PRF-PRNG), an n-party forward-secure group authenticated
encryption with associated data (FS-GAEAD), and a digital signature. In this
paper, we focus on the CGKA protocol, which is crucial for the security and
efficiency of MLS and, through its variants, may lead to a wide range of ap-
plications. In the CGKA protocol, a group key is asynchronously generated by
dynamic group members in a processing unit called an epoch. The new group
key is used to encrypt higher-layer application messages (e.g., chat text). While
there are many secure messaging applications, including those with a group set-
ting function, they are typically based on two parties, and group keys need to be
created all over again every time a user is added to or removed from the group,
thus limiting the group size. The CGKA protocol, in contrast, can update group

CGKA with Flexible Authorization and Its Applications 3

keys efficiently and is expected to be particularly effective when the group size
is large, such as in broadcasting services.

1.2 Our contribution

We discuss the following two issues of the Alwen et al’s CGKA protocol. First,
the CGKA protocol allows anyone to add or remove other users, and members of
the group all have the same privileges, making it difficult to configure a system
with flexible authorization. Thus, the CGKA protocol would be better to have a
flexible authorization, where one of the group members is appointed as a group
manager (GM) and the others are divided into other users by adding an authen-
tication function. If a single user is permitted to have more powerful privileges,
we can construct a CGKA protocol with a one-to-many group structure, which is
suitable for broadcasting services. In this paper, we focus on the CGKA protocol
developed by Alwen et al. [3] for SGM applications and propose CGKA with flex-
ible authorization (CGKA-FA). We instantiate CGKA-FA as a concrete protocol
TreeKEM∗

Σ (Fig. 3) based on the RTreeKEM proposed by Alwen et al. [3]. We
achieve this by incorporating a ratcheting digital signature scheme [15] into the
CGKA protocol and demonstrate that such a simple modification allows us to
provide flexible authorization depending on which algorithm is given a ratcheting
digital signature that controls the authority of group members. The ratcheting
signature scheme proposed by Cremers et al. [15] is generically constructed from
a signature scheme providing existential unforgeability against chosen message
attack (EUF-CMA). The ratcheting signature scheme can update a pair of a se-
cret key and a public key with an update message. The reason for applying the
ratcheting signature scheme, besides giving each group member the option of au-
thentication, is to improve on the security requirements of SGM, FS, and PCS. If
a user is compromised, the CGKA protocol guarantees FS and PCS by updating
the shared key, but the authentication is still compromised. That is, it is still
possible to impersonate a compromised user. Impersonation is a crucial issue in
the context of SGM since an adversary can easily obtain a new shared key by
adding a new user. We formalize the security as FS with authentication update
(FSAU) and PCS with authentication update (PCSAU). Cremers et al. devised
the ratcheting signature scheme to account for cross-group security in multiple
groups, but the idea of applying ratchet signatures to recover authentication in
a single group may be an independent contribution.

Second, the CGKA protocol discussed in the MLS working group assumes the
public key infrastructure (PKI) is a trusted third party to generate the primary
keys used by group members. It is noted that the role of the PKI used by CGKA
and our CGKA-FA is different from the usual one, such as issuing certifications.
In this paper, we refer to the role of PKI as the PKI functionality that issues
initial keys and stores private keys of all users, as required by the CGKA. The
secret keys of all users are recorded in the PKI until all users update their
secret keys. Therefore, if any confidential information in the PKI is leaked, the
messages of all users can be decrypted. Although this vulnerability is unlikely
to be a threat in actual operation and has not been considered in the MLS

4 K. Kajita et al.

Table 1. Comparison of CGKA-FA, the original CGKA, BE, and MKE. Let FSAU
be FS with authentication update, and PCSAU be PCS with authentication update.
add is an algorithm to add a new user to a group, and rem is an algorithm to remove
a user from a group. Note that the PKI here is a trusted third party (TTP) with PKI
functionality that manages initial and private key, and does not manage certifications.

BE[18] MKA[10] CGKA[3] CGKA-FA

PKI functionality GM GM TTP GM
FS/PCS or

FSAU/PCSAU
– FS/PCS FS/PCS FSAU/PCSAU

Initial sk
distributed
by GM

distributed
by GM

inquire with
PKI

inquire with
PKI

Updater of sk GM
each user

(including GM)
each user

each user
(including GM)

Executor of add GM GM each user GM or each user
Executor of rem GM GM each user GM or each user

working group since the secret keys recorded in the PKI are updated soon after
the group is generated, it is desirable not only for system security but also for
the E2E security concepts of SGM to assume the nonexistence of a trusted third
party who can decrypt users’ messages. We let the GM manage the keys of group
members, which were previously managed by the PKI, and each group member
asks the GM for the key instead of the PKI. Assuming that the GM will not
be compromised in the setup phase and follows the protocol, we can construct
the SGM without assuming the existence of the trusted third party outside the
group who has the PKI functionality by having the GM take over it. The fact
that there is no entity ”outside the group” that can decrypt the message is a
significant advantage in the system security of SGM. Since CGKA-FA consists
of such simple modifications from CGKA, we can directly use the current IETF
MLS implementation.

1.3 Related works

Our proposed CGKA-FA protocol is similar to broadcast encryption (BE) [18]
in that it has a GM, but unlike them, each user can update the group key,
thus satisfying the FS and PCS security requirements for SGM. Moreover, our
proposed CGKA-FA protocol does not need a trusted third party that has the
PKI functionality. In conventional CGKA, PKI is used to generate the primary
key used by the group members until group members execute an update opera-
tion. In the (symmetric key) BE proposed by Fiat and Naor [18], unlike SGM, a
trusted group manager (GM) distributes not only the message contents but also
all the secret keys. Moreover, the GM can add or revoke users at will, so users
do not need to update their private keys themselves. In the public-key based
BE introduced by Dodis and Fazio [16], anyone can distribute content, but the
group management of users is done by a trusted third party. Except for some

CGKA with Flexible Authorization and Its Applications 5

schemes (e.g. [25]), BE does not consider the security requirements of FS and
PCS.

Since Marlinspike and Perrin [23] proposed Double ratcheting in 2016, based
on the idea of the off-the-record (OTR) protocol [12], a lot of research has been
done on secure messaging [2–4, 19, 27, 28, 13, 1]. Some formal analyses of the Dou-
ble ratcheting protocol were provided [14, 2, 11]. Alwen et al. [2] formally defined
the continuous key agreement (CKA) as the modular design of the double-ratchet
algorithm and two-party key sharing for secure messaging, which had been am-
biguous in the past. Alwen et al. introduced the CGKA protocol as a stand-
alone primitive [3] and its modular design for SGM [4]. The authors analyzed
TreeKEM, a core component in the scalable end-to-end secure group messaging
(SGM) discussed in the Messaging Layer Security (MLS) working group of the
Internet Engineering Task Force (IETF) [26]. The MLS protocol is currently
under development by the eponymous working group of IETF [26]. Alwen et al.
pointed out the forward secrecy vulnerability of TreeKEM in IETF MLS and in-
troduced RTreeKEM using updatable public-key encryption (UPKE) as a means
to address it. Recently,

There have been many studies in recent years on the composition and effi-
ciency of SGM [1, 15, 28]. Weidner [28] proposed Casual TreeKEM, which is a
general-purpose group key sharing protocol constructed by modifying ordinary
TreeKEM for applications other than secure messaging. The motivation for the
research by Weidner is similar to ours, but the major difference is that we con-
sider a one-to-many construction. Alwen et al. proposed a server-aided CGKA
that allows for concurrent updates [1]. As for the server-aided CGKA, Hashimoto
et al. [20] and Alwen et al. [5] considered a more general (untrusted) delivery
service and improved bandwidth. Klein et al. formalized and analyzed a variant
of TreeKEM called Tainted TreeKEM [22]. Regarding security aspects, Cremers
et al. [15] pointed out the problem of PCS in multi-party networks. Recently,
Emura et al. [17] presented CGKA with membership privacy, and Alwen et al.
[6] studied the insider security of CGKA.

As a group key sharing protocol for SGM with a one-to-many configuration,
Bienstock et al. proposed a multicast key agreements (MKA) protocol [10], which
is similar to our CGKA-FA in terms of research motivation and problem setting.
In their group key agreement protocol, there is a GM in the group as in ours,
and they achieved to speed up their key agreement protocol by constructing it
based on symmetric keys, instead of CGKA based on public keys. However, they
do not mention the security of GM impersonation. We guarantee the security
against GM impersonation by defining a new impersonation resistance captured
by PCSAU and FSAU. In addition, in Bienstock et al.’s protocol, the GM has
full authority to add and remove group members, whereas in our protocol, the
GM can flexibly set the authority depending on the application. In terms of
implementation, our CGKA-FA has the advantage that it can be implemented
simply by adding ratchet signatures to the MLS protocol, which is currently in
the process of being standardized.

6 K. Kajita et al.

David Balvás focused on group management of secure group messaging [7].
He proposed an extension of CGKA called Administrated CGKA (A-CGKA),
which, like our CGKA-FA, uses a digital signature scheme for group managers
to distinguish between managers and non-managers in the group. They consider
two digital signature schemes: one in which each manager has a signature key
pair and the other in which all managers have the same signature key pair.
The critical difference from our CGKA-FA is that A-CGKA uses general digital
signatures in both cases, while we use ratchet signatures. Since digital signatures
are an independent scheme from CGKA, an authentication update is required for
post-compromised security and forward secrecy. A comparison among CGKA-
FA, the original CGKA, BE, and MKA is provided in Table 1.

2 Applications

Our protocol can be applied to various applications such as online conferencing,
enterprise chats, broadcasting services because it allows flexible authorization
settings in accordance with requirements. For a small group, an extension of
the widely used two-party secure messaging protocol is sufficient, but it becomes
inefficient when the number of group members becomes large. Therefore, our pro-
tocol is particularly effective for services that have a one-to-many structure and
a large number of users. For example, in a large-scale online conference, the GM
is the conference organizer and the other users are the conference participants.
This can be achieved by setting permissions so that only the organizer can gen-
erate groups and add or remove group members. In the example of a corporate
chat with many employees, this can be achieved by appointing the GM as the
administrator in the company, such as the information system department, and
the users as the employees, and setting the permissions so that all users have the
authority to create groups and add and remove group members. Our proposed
CGKA-FA protocol can realize such applications with flexible authorization set-
tings that are not envisioned by BE, CGKA, or MKA. If the authority setting
is the same as that in the conventional CGKA protocol, there is an advantage
that there is no third party with the PKI functionality.

Applications to the broadcasting field. We describe the application in more
detail using a broadcasting service. In broadcasting services, there is a large-
scale one-to-many relationship between the broadcaster and the viewers, and
the broadcaster is required to manage the viewers, so there is a high affinity
between our proposed protocol and the broadcasting field. Now consider remote
TV program production such as music and sports programs where viewers or
performers participate online in the production of the program and receive the
video of the program recorded in real-time.

When considering the above application, Table 2 shows an example of the au-
thorization settings. The authorities required by the viewer and the broadcaster
are different: the broadcaster needs to be able to manage the group structure
and remove unauthorized viewers, while the viewer needs to be able to invite
(add) other viewers or leave the group. Here our CGKA-FA protocol TreeKEM∗

Σ

CGKA with Flexible Authorization and Its Applications 7

Table 2. Example of application to the broadcasting field

Operation Scheme All users GM

Initialization TreeKEM∗ ✓ –
Group creation TreeKEMΣ – ✓
Add TreeKEM∗ ✓ –
Remove TreeKEMΣ - ✓
Update TreeKEM∗ ✓ –
Process TreeKEM∗, TreeKEMΣ ✓ ✓

is constructed by two protocol TreeKEM∗ and TreeKEMΣ . For operations that
can be performed by all users, TreeKEM∗ is used when it does not require a
signature, and TreeKEMΣ is used for operations that can only be performed by
the GM. Therefore, TreeKEM∗ is utilized by all users for Initialization, Add, and
Update operations, and TreeKEMΣ is utilized for Group creation and Remove.
Process is used for both, as it corresponds to the control messages generated by
each operation.

MLS support. The latest MLS (as of the time of submission) is version 16 [9],
but in this paper, our proposed CGKA-FA protocol TreeKEM∗

Σ is based on
version 7 [24]. All versions of MLS from 8 [8] onward utilize the propose-and-
commit method. Considering the possibility that TreeKEM will be modified in
IETF MLS in the future, and for the reasons of simplicity, we chose to focus
on TreeKEM and RTreeKEM up to version 7, which has a simple form. We
have confirmed that CGKA-FA can be easily constructed in version 11 MLS
protocol, and here we briefly present the syntax of our idea applied to TreeKEM
using the propose-and-commit method in version 11. As in CGKA-FA, all parties
are divided into GM and other users, and each has its own dedicated syntax.
The GM’s syntax does not assume the existence of a third party that manages
certifications, so it takes over the PKI functionality and adds signatures to the
control messages it generates. Other users do not use signatures but interact
with the GM instead of the PKI. In the CGKA syntax used in version 11 of
the MLS protocol, initialization has been eliminated and interaction with PKI
has been newly added. Therefore, it should be changed to interact with the
GM instead of the PKI. As for group creation, it is the same as the CGKA-FA
syntax, and only the syntax used by the GM incorporates signatures. Next, Add,
Remove, and Update are improved to Issue proposals and Commit creation by
the proposal-and-commit method, but each of them can be easily reconfigured by
incorporating signatures only when the GM executes them as in CGKA-FA. As
for Process, it has been changed to Processing commits and Joining, but it can
be reconfigured by incorporating the signature verification function as in CGKA-
FA. Since we have not yet confirmed the security and concrete construction of
CGKA-FA in version 12 or later, we leave this to future work.

8 K. Kajita et al.

3 Preliminaries

Notation. For a positive integer a ∈ N we write [a] := {1, 2, . . . a}, and for a, b ∈
N with a ≤ b we write [a, b] := {a, a+1, . . . , b}. The concatenation for vectors x =
(x1, . . . , xa) and y = (y1, . . . , yb) is denoted by x||y := (x1, . . . , xa, y1, . . . , yb),
and for a single element z we write x||z := (x1, . . . , xa, z). We use A[i] ← x
and y ← A[i] to denote assignment and retrieval between an arbitrary index
space and element space, respectively. We denote the security parameter by λ.
All our algorithms implicitly take as an argument 1λ. For an algorithm A, we
write A(·; r) to denote that A is run with explicit randomness r.

3.1 Binary trees

In rooted binary trees, where every branch has two nodes, the nodes without
child nodes are called leaf nodes, and the other nodes are called intermediate
nodes. The height of a binary tree is the maximum path length from the root
vertex to a leaf node. A binary tree is said to be complete if it has a height h
and 2h leaf nodes. Note that a binary tree with height h = 0 consists only of
roots. If h ≥ 0, we say that FTh is a complete binary tree with height h. For
some leaf nodes ℓ, ℓ′, let LCA(ℓ, ℓ′) be the nearest common ancestor of ℓ, ℓ′, i.e.,
the node where the paths from each leaf node to the root intersect.

Left-balanced binary tree. A left-balanced binary tree (LBBT) with n ∈ N
nodes LBBTn is a binary tree satisfying the following properties. (1) LBBT1

consists of a single node (root). (2) If x = mp2(n), wheremp2(x) = max(x : 2x|n)
is the maximum power of 2 among the factors of n, then the roots of LBBTn have
FTx as the left child node and LBBTn−x as the right child node. For LBBTn = τ ,
let τ be the node whose ID ID is labeled with τ.ID. Let v be a node of τ , and let
v.pk be the pk labeled to v.

It will be useful to consider the following types of paths:

– the direct path dPath(τ, ID), which is the path from the leaf node labeled by
ID to the root, and

– the co-path coPath(τ, ID), which is the sequence of siblings of nodes on the
direct path dPath(τ, ID).

3.2 Ratchet trees

We introduce some basic concepts pertaining to TreeKEM’s ratchet tree (RT).
Note that LBBTn has exactly n leaves and that every internal node has two
children. In an RT, nodes are labeled as follows.

– Root: The root is labeled by an update secret I.
– Internal: Internal nodes are labeled by a key pair (pk, sk) for the Updatable

PKE (UPKE) scheme Π [3].
– Leaf nodes: Leaf nodes are labeled like internal nodes, except that they

additionally have an owner ID.

CGKA with Flexible Authorization and Its Applications 9

Labels are referred to using dot-notation (e.g., v.pk is v’s public key). As a
shorthand, τ.ID is the leaf node with label ID. Any subset of a node’s labels may
be undefined, which is indicated by the special symbol ⊥. Furthermore, a node
in a freshly initialized RT is blank, and blanks can also result from adding and
removing users to and from a group.

Resolutions and representatives. Crucial notions in ratchet trees are resolutions
and representatives. Intuitively, the resolution of a node v is the smallest set of
non-blank nodes that covers all leaves in v’s subtrees. Each leaf ℓ′ in the subtree
τ ′ of some node v′ has a representative in τ ′.

Definition (Resolution). Let τ be a tree with a node set V . The resolution
Res(v) ∈ V of a node v ∈ V is defined recursively as follows.

– If v is a leaf and is not blank, then Res(v) = {v}.
– If v is a blank leaf, then Res(v) = ∅.
– Otherwise, Res(v) :=

⋃
v′∈C(v) Res(v

′), where C(v) are the children of v.

Definition (Representative). Consider a tree τ and two leaf nodes ℓ and ℓ′.

1. Assume ℓ′ is non-blank and in the subtree rooted at v′. The representative
Rep(v′, ℓ′) of ℓ′ in the subtree of v′ is the first filled node on the path from
v′ down to ℓ.

2. Consider the least common ancestor w = LCA(ℓ, ℓ′) of ℓ and ℓ′. Let v be
the child of w on the direct path of ℓ, and v′ that on the direct path of ℓ′.
The representative Rep(ℓ, ℓ′) of ℓ′ w.r.t. ℓ is defined to be the representative
Rep(v′, ℓ′) of ℓ′ in the subtree of v′.

3.3 Cryptographic tools

Ratcheting Digital signatures [15]. A ratcheting digital signature scheme
Σ is proposed by [15] and given by five algorithms; KGenΣ , UpdateΣ , RcvUpdΣ ,
SignΣ , and VrfyΣ . The key-generation algorithm KGenΣ takes as input security
parameter λ and outputs a pair of signing and verification keys, sksig, vksig.
The update algorithm UpdateΣ takes as input a secret and public key pair
(sksig, vksig) and returns a new secret and public key pair (sk′sig, vk

′
sig) and an

update message mu. The RcvUpdΣ is a deterministic algorithm which takes as
input a public key vksig and an update message mu, and returns the updated
public key vk′sig. The signing algorithm SignΣ takes as input (sksig, vksig) and a
message m ∈Mλ and produces a signature σ. The verification algorithm VrfyΣ
takes as input vksig, m, σ, and outputs a verification result bit. For correctness,
we require that

– For any sequence i, if
(
(sk

(i)
sig, vk

(i)
sig,mu

)
← UpdateΣ(sk

(i−1)
sig , vk

(i−1)
sig) and

vk′sig ← RcvUpdΣ(vk
(i−1)
sig ,mu), then vk

(i)
sig = vk′sig.

– VrfyΣ(vksig,m,SignΣ(sksig,m)) = 1 for any (sksig, vksig) pair and for any
m ∈Mλ.

10 K. Kajita et al.

Let the advantage be Advcma(A) that an adversary A wins the existentially
unforgeable game against chosen message attack (EUF-CMA). Briefly, an ad-
versary is allowed to access the signing oracle for any massage as in the usual
EUF-CMA definition. In addition, the adversary calls the update oracle that
updates the current key (precisely outputs an update message), and calls the
corrupt oracle that returns the current signing key. The adversary outputting a
pair of message and signature wins if they are valid under the current verification
key, the signature is not an output of the signing oracle with the message, and
the adversary has at least once used an update message returned by the update
oracle after every compromise. For time t and the adversary’s advantage ϵ, we
say the Σ is (t, ϵ)-cma-secure, where Advcma(A) ≤ ϵ.

Pseudorandom generator. A pseudorandom generator prg : W → W × K
is a function that satisfies indistinguishability between prg(U) and U ′ for some
uniformly random U ∈ W and U ′ ∈ W ×K.

Updatable public-key encryption [3]. An updatable public-key encryption
(UPKE) scheme UPKE is given by a triple (UKGen, UEnc, UDec) of PPT Tur-
ing machines. The key-generation algorithm (pk0, sk0) ← UKGen(n) takes as
input security parameter n and outputs the initial public key pk0 and the
initial secret key sk0. The encryption algorithm (c, pk′) ← UEnc(pk,m) en-
crypts the message m by pk and outputs ciphertext c. At the same time, it
updates the pk and outputs the updated public key pk′. The decryption algo-
rithm (m, sk′) ← UDec(sk, c) decrypts c by sk and outputs the original m. At
the same time, it updates the sk and outputs the updated secret key sk′.

4 Continuous Group Key Agreement

This section describes the structure and security of the continuous group key
agreement (CGKA) protocol introduced by Alwen et al. [3]. They first provided
a formal definition and security model of TreeKEM, the core technology of the
MLS protocol, as CGKA. Then, they developed RTreeKEM by improving the
vulnerability of TreeKEM through a UPKE using the normal public key encryp-
tion. In this paper, we utilize RTreeKEM with UPKE applied as a CGKA proto-
col. A CGKA protocol aims at providing a steady stream of shared (symmetric)
secret keys for a dynamically evolving set of parties. This aspect is tied together
by epochs, where each epoch provides a timestamp role in asynchronous process-
ing. CGKA schemes are non-interactive; that is, a party creates a new epoch by
broadcasting a single message, which can then be processed by the other mem-
bers to move along. Rather than relying on an actual broadcast scheme, CGKA
schemes merely assume the existence of an untrusted (or partially trusted) deliv-
ery service. As multiple parties might try to initiate a new epoch simultaneously,
the delivery service’s main job is to determine the first one by picking an order.
As a consequence, a party cannot immediately initiate a new epoch by itself.
The MLS working group has improved on such stagnation and now considers
the propose-and-commit method [8]. In this section, however, we present Alwen

CGKA with Flexible Authorization and Its Applications 11

et al.’s (without propose-and-commit) CGKA protocol for simplicity. The basic
structure of both schemes is the same, and we apply our ideas to Alwen et al.’s
protocol from here onward. By applying our ideas to the propose-and-commit
scheme, we can immediately construct CGKA-FA (as discussed in Section 5).

4.1 PKI functionality

The CGKA protocol requires the PKI functionality that issues initial keys and
stores keys required to configure the Ratchet tree as follows.

– When any user ID may request a fresh (encryption) public key pertaining to
some other user ID′, the PKI functionality generates a fresh key pair (pk, sk)
and returns pk to ID. Note that every public key is only used once.

– When any user ID′ may request secret keys corresponding to public keys
associated with them, if a triple (pk, sk, ID′) is recorded, the PKI functionality
returns sk to ID′.

Note that the PKI functionality defined above is different from a normal PKI
that issues the certifications of public keys.

4.2 CGKA syntax

The continuous group key agreement protocol CGKA (Initiation, Group cre-
ation, Add, Remove, Update, Process) [3] consists of the following algo-
rithms.

– Initiation: γ ← TK-init(ID). TK-init takes a user’s ID ID and outputs an
initial state γ．

– Group creation: (γ′,W)← TK-create(γ,G). TK-create takes a state γ and
a list of IDs G = (ID1, . . . , IDn) and outputs a new state γ′ and a welcome
message W．

– Add: (γ′, (W,T)) ← TK-add(γ, ID′). TK-add takes a state γ and an ID
ID′ and outputs a new state γ′ as well as welcome message W and control
messages T .

– Remove: (γ′, T) ← TK-rem(γ, ID′). TK-rem takes a γ and an ID ID′ and
outputs a new state γ′ and a control message T .

– Update: (γ′, T) ← TK-upd(γ). TK-upd takes a state γ and outputs a new
state γ′ and a control message T .

– Process: (γ′, I)← TK-proc(γ, T,W). TK-proc takes a state γ and a control
message T (and a welcome message W if one exists) and outputs a new state
γ′ and an update secret I.

A state γ stores LBBT generated by each algorithm. The basic usage of a
CGKA protocol is as follows. First, each user is initiated using TK-init before
they join a group. Once a group is established using TK-create(γ,G), any group
member, referred to as the sender, may utilize the algorithms to add or remove
members or to perform updates. Each time, such a call results in a new epoch.

12 K. Kajita et al.

This is implicitly the task of a server connecting the parties, so the server then
relays the resulting control messages to all current group members (including the
sender). Note that there are two types of messages: a welcome message W , which
is sent to parties joining a group, and a control message T , which is intended
for parties already in the group. Whenever the server delivers a control message
to a group member, they process it using proc. The algorithm proc outputs an
update secret I, where the intention is that I ̸=⊥ if and only if the control
message corresponds to an update.

4.3 CGKA security

Here we first explain the security requirements and the security game of SGM
and then define the CGKA security.

Security requirements. Any CGKA protocol must satisfy the following basic
properties [3].

– Correctness: All group members obtain the same update secret I at each
epoch.

– Privacy: The updated secret information I generated when a control mes-
sage is received is indistinguishable from uniform randomness.

– Forward secrecy: When the state of a group member is compromised, the
previously updated secret information is kept secret from the third party.

– Post-compromise security: When the state of a group member is com-
promised, the updated secret information is again kept secret when all the
group members whose states were compromised update their states.

CGKA security game. The above properties are defined by a security game
consisting of 10 oracles. This section gives a brief overview of the security game
and describes some oracles (corrupt, chall, no-del,) which are necessary for the se-
curity definition. The other oracles are basically initialization oracles to prepare
variables and oracles to execute each CGKA algorithm, so they are not described
here. In the CGKA security game, the adversary is given access to various oracles
to drive the execution of a CGKA protocol. The main oracles to drive the execu-
tion are the oracles to create groups, add users, remove users, and deliver control
messages, i.e., create-group, add-user, remove-user, send-update, and deliver. The
first four oracles allow the adversary to instruct parties to initiate new epochs,
whereas the deliver oracle makes parties actually proceed to the next epoch. The
game forces the adversary to initially, i.e., in epoch 1, create a group. Thereafter,
any group member may add new parties, remove current group members, or per-
form an update. The adversary may also corrupt any party at any point (thereby
learning that party’s secret state) and challenge the update secret in any epoch
where an update operation was performed. These oracles are denoted as corrupt
and chall, respectively. Furthermore, the adversary can instruct parties to stop
deleting old secrets, whose oracle is denoted as no-del. There will be restrictions
checked at the end of the execution of the game to ensure that the adversary’s
challenge/corruption/no-deletion behavior does not lead to trivial attacks.

CGKA with Flexible Authorization and Its Applications 13

– corrupt. The corrupt oracle corrupt takes user ID ID as an input and returns
the dictionary of ID’s state γ[ID], where the dictionary γ keeps track of the
users’ states.

– chall. The challenge oracle chall takes an epoch t as an input. The oracle
first checks that t corresponds to an update epoch. Two challenges I0 and I1
are made from the dictionary of update secret (i.e., shared secret key) of the
epoch t and random space, respectively. Then the oracle returns Ib, where b
is a random bit b← {0, 1}.

– no-del. The no-deletion oracle no-del takes a party ID as inputs and stop
deleting old values of ID. The dictionary D keeps track of which parties
delete their old values and which do not.

In order to ensure that the adversary does not win the CGKA security
game with trivial attacks (e.g., challenging an epoch t’s updated secret and
leaking some party’s state in epoch t), at the end of the game, the predicate
safe (shown in Fig. 1) is run on the queries q1, . . . , qq in order to determine
whether the execution was devoid of such attacks. The predicate uses the func-
tion q2e, which returns the epoch corresponding to query q. Specifically, for
q ∈ {corrupt(ID), no-del(ID)}, if ID is a member of the group when q is made, q2e
is the value of ep[ID], otherwise, q2e returns ⊥.

� �
safe (q1, . . . , qq)

for (i, j) s.t. qi = corrupt(ID) and qj = chall(t∗)
if q2e(qi) ≤ t∗ and ∄k s.t. 0 < q2e(qi) ≤ q2e(qk) ≤ t∗

and qk ∈ {send-update(ID), remove-user(∗, ID)}
| return 0
if q2e(qi) > t∗ and ∃k s.t. q2e(qk) ≤ t∗

and qk = no-del(ID)
| return 0� �

Fig. 1. Safety predicate: safe. The safety predicate determines whether a sequence of
oracle calls (q1, . . . , qq) allows the adversary to trivially win the CGKA security game
for some ID ID and epoch t∗.

For the CGKA protocol, we introduce the following two lemmas 1 and 2 from
[3]; Lemma 1 describes the relation of predicates pcs, fsu, and tkm, where pcs
and fsu are predicates that define PCS and FS with update (FSU), respectively,
snf tkm describes the security game of TreeKEM, and lemma 2 shows that
single-challenge (non-adaptive) security implies multi-challenge security.

Lemma 1 ([3]). For any sequence of queries Q, if pcs(Q) = 1 or fsu(Q) = 1,
then tkm(Q) = 1, where pcs and fsu are predicates that define PCS and FS
with update (FSU), respectively.

14 K. Kajita et al.

Advantage. In the following, a (t, c, n)-adversary is an adversary A that runs in
time at most t, makes at most c challenge queries, and never produces a group
with more than n members. The adversary wins the CGKA security game if
it correctly guesses the random bit b at the end, and the safety predicate P
evaluates true on the queries made by the adversary. The advantage of A with
safety predicate P against a CGKA protocol CGKA is defined by

AdvCGKA,Pcgka−na(A) :=
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Lemma 2 ([3]). Let P ∈ {tkm, pcsau, fsau} and assume that a CGKA pro-
tocol CGKA is (t̃, 1, n,P, ε̃)-secure. Then, CGKAis also (t̃′, c, n,P, ε̃′)-secure for
t̃′ ≈ t̃ and ε̃′ = cε̃.

Definition 1 (Non-adaptive CGKA security). A continuous group key-
agreement protocol CGKA is non-adaptively (t, c, n,P, ε)-secure if, for all (t, c, n)-
attackers,

AdvCGKA,Pcgka−na(A) ≤ ε.

5 CGKA with Flexible Authorization

With Alwen et al.’s CGKA protocol RTreeKEM as a basis, we propose a contin-
uous group key agreement with flexible authorization (CGKA-FA) by applying
a ratcheting digital signature to authenticate users. We appoint one user in the
group as the group manager (GM) and the others as other users. This allows us
to achieve a one-to-many broadcast-type CGKA protocol that securely provides
other users with the authority to perform specific operations only. In addition,
while TreeKEM uses the PKI to generate the keys for RT configuration, as the
PKI functionality, our CGKA-FA has a one-to-many configuration with GMs,
which means we can modify the protocol so that GMs manage the keys that PKI
used to manage, and each group member queries GMs for the keys. In actual
operation, the CGKA-FA protocol is incorporated into the SGM protocol, as
well as CGKA, along with PRF-PRNG, FS-GAEAD, and digital signatures. In
general, since authentication for key distribution is required to use digital signa-
tures, a trusted third party is necessary after all, but this requires a normal PKI
that does not issue initial keys or store private keys, and our concept of PKI in
CGKA-FA has security advantages.

5.1 CGKA-FA Syntax

We introduce the syntax of the CGKA-FA protocol CGKA-FA as the same com-
ponents of CGKA. CGKA-FA consists of two protocols: one that replaces CGKA’s
queries to the PKI with GM, and another that adds ratchet signatures. The basic
structure is the same as that of CGKA. Therefore, we can add the FA functional-
ity to CGKA easily. In the following syntax, we provide the ratcheting signature

CGKA with Flexible Authorization and Its Applications 15

to Add, Remove, and Update algorithms. We remark that which algorithm will
contain the signature is flexibly decided to depend on the application. The syntax
of CGKA-FA is shown below.

– Initiation: γ ← TK-init∗/TK-init-sig (ID). TK-init∗ and TK-init-sig take a
user’s ID ID and outputs an initial state γ. Additionally, TK-init-sig generates
a key pair for a ratcheting signature.

– Group creation: (γ′,W, σ)←TK-create∗/TK-create-sig (γ, G). TK-create∗

and TK-create -sig take a state γ and a list of IDs G = (ID1, . . . , IDn) and
outputs a new state γ′ and a welcome messageW . Additionally, TK-create-sig
generates a ratcheting signature σ.

– Add: (γ′, (W,T), σ)←TK-add∗/TK-add-sig(γ , ID′). TK-add∗ and TK-add-sig
take a state γ and an ID ID′, and output a new state γ′ as well as welcome
messages W and control messages T . Additionally, TK-add-sig generates a
ratcheting signature σ.

– Remove: (γ′, T, σ) ← TK-rem∗/TK-rem-sig(γ, ID′). TK-rem∗ and TK-rem
-sig take a γ and an ID ID′ and outputs a new state γ′ and a control message
T . Additionally, TK-rem-sig generates a ratcheting signature σ.

– Update: (γ′, T, σ)← TK-upd∗/TK-upd-sig. TK-upd∗ and TK-upd-sig update
the state and outputs a new state γ′ and a control message T . Additionally,
TK-upd-sig generates a ratcheting signature σ.

– Process: (γ′, I)← TK-proc∗/TK-proc-sig(γ, T,W, σ). TK- proc∗ and TK-proc
-sig take a state γ, a control message T , and a welcome message W if it ex-
ists. A signature σ is an input only as needed for TK-proc-sig and verified.
It then outputs a new state γ′ and an update secret I.

5.2 CGKA-FA security

In this section, we describe the security of CGKA-FA. We consider the case that
Add, Remove, and Update algorithms contain ratcheting signatures. The only
difference in security between CGKA and CGKA-FA is the presence or absence
of a digital signature. The difference in security between CGKA and CGKA-FA
is the presence or absence of ratchet signatures. Since the GM takes over the PKI
functionality in CGKA-FA, it is necessary to clarify some conditions for the GM.
First, since the GM creates initial keys for group members, the GM is assumed
to be uncompromised until the first update is performed by each group member.
Then, after each group member performs an update, the GM can perform an
update at any time. This means that we do not assume an adversary who will not
even allow an update to be performed. These conditions are implicitly assumed
for all group members in CGKA. The CGKA-FA security game can be played in
much the same way as the CGKA security oracle. However, since CGKA-FA uses
ratcheting signatures, we define here the oracle vrfy that verifies the signatures.
vrfy does not have to be an Oracle but is defined here as a new security oracle
because it simplifies the game by defining it according to a security game such
as [3].

16 K. Kajita et al.

– vrfy. For a user ID ID, the verification oracle vrfy takes the ratcheting sig-
nature σID, verification key vksig, and the update massage mu as an inputs.
Then the oracle runs vk′sig ← RcvUpdΣ(vksig,mu) and returns the result of

VrfyΣ(vk
′
sig, σID) according to the verification of the ratcheting signature.

The safety predicate used is the same as safe in Fig. 1.

Security requirements. CGKA-FA satisfies the properties of correctness and
privacy as discussed in section 4.3. We consider not only FS and PCS but also
the GM impersonation resistance because we manage a one-to-many structure
where a GM has the PKI functionality. Alwen et al. defined FS with updates
considering vulnerabilities in ”key” updates. We define FS with authentication
update (FSAU) and PCS with authentication update (PCSAU) to consider vul-
nerabilities in ”authentication”, respectively, and GM impersonation resistance.

– Forward secrecy with authentication update (FSAU): When the
state of a group member is compromised, the previously updated secret
information and the key pair of signatures are kept secret from the third
party.

– Post-compromise security with authentication update (PCSAU):
When the state of a group member is compromised, the updated secret
information and the key pair of signatures are again kept secret.

Advantage. In the following, a (t, c, n)-adversary is an adversary A that runs in
time at most t, makes at most c challenge queries, and never produces a group
with more than n members. The adversary wins the CGKA-FA security game
if it correctly guesses the random bit b at the end and the safety predicate P
evaluates to true on the queries made by the adversary. The advantage of A with
safety predicate P against a CGKA-FA protocol CGKA-FA is defined by

AdvCGKA-FA,Pcgka−fa−na(A) :=
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Definition (Non-adaptive CGKA-FA security). A continuous group key-
agreement protocol with flexible authorization CGKA-FA is non-adaptively (t, c, n,
P, ε)-secure if, for all (t, c, n)-attackers,

AdvCGKA-FA,Pcgka−fa−na(A) ≤ ε.

6 TreeKEM∗
Σ

In this section, we describe all the algorithms involved in the protocol and ex-
plain the concrete TreeKEM∗

Σ protocol in detail. We instantiate the CGKA-FA
as TreeKEM∗

Σ , as shown in Fig. 2 and 3. Our proposed protocol TreeKEM∗
Σ

differs from Alwen et al.’s CGKA protocol RTreeKEM [3, 4] in two ways. First,
by combining the ratcheting signature scheme Σ with RTreeKEM, we add a

CGKA with Flexible Authorization and Its Applications 17

function to generate the ratcheting signature σ for each control message output
by each algorithm, and the processing proc verifies the signature first. In this
way, the group members can be sure that the GM has executed the algorithm by
adding the signature only to the GM’s control message. Second, in Alwen et al.’s
algorithms of group creation and adding a group member, the pk generated by
the PKI is queried, but in our version, the pk generated by the GM is queried,
and in the same way in proc, the sk is queried and obtained from the GM. In
this way, the system can be configured without trusted third-party entities.

6.1 Sub-algorithms

We introduce the sub-algorithms of our TreeKEM∗
Σ ; INIT, ADDID, BLANK, PUB,

REMID, UPGEN, UPPRO:
INIT(G, pk, j, skj):

Given lists of users G = (ID0, ID1, . . . , IDn) and public keys pk = (pk0,
pk1, . . . , pkn) as well as an integer j and a secret key skj , a new RT is initial-
ized as the left-balanced binary tree LBBTn+1, where

– all the internal nodes as well as the root are blanked,
– the label of every leaf i is set to (IDi, pki,⊥), and
– the secret key at leaf j is additionally set to skj .

ADDID(τ, ID, pk):

Given an RT τ , set the labels of the first blank leaf of τ to (ID, pk,⊥) and then
output the resulting tree, τ ′. If there is no blank leaf in the tree τ = LBBTn,
method ADDLEAF(τ) is called.

ADDLEAF(τ):

Add a leaf z to the RT τ = LBBTn, resulting in a new tree τ ′ =ADDLEAF(τ):

– If n is a power of 2, create a new node r′ for τ ′. Attach the root of τ as
its left child and z as its right child.

– Otherwise, let r be the root of τ , and let τL and τR be r’s left and right
subtrees, respectively. Recursively insert z into τR to obtain a new tree
τ ′R, and let τ ′ be the tree with r as a root, τL as its left subtree, and τ ′R
as its right subtree.

BLANK(τ, ID):

Given an ID ID and an RT τ , the function τ ′ ←BLANK(τ, ID) blanks all nodes
on dPath(τ, ID).

PUB(τ):

Given an RT τ , τ ′ ←PUB(τ) creates a public copy, τ ′, of the RT by setting
all secret-key labels to ⊥.

18 K. Kajita et al.

REMID(τ, ID):

Given an RT τ , ID, the procedure τ ′ ←REMID(τ, ID) blanks the leaf labeled
with ID and truncates the tree such that the rightmost non-blank leaf is the
last node of the tree. The following recursive procedure TRUNC(v) is called,
resulting in a new tree τ ′ ←TRUNC(v).

TRUNC(τ):

The recursive procedure TRUNC(v) is called on the rightmost leaf v of τ and
outputs the following τ ′.

– If v is blank and not the root, remove v as well as its parent and place
its sibling v′ where the parent was. Then, execute TRUNC(v′).

– If v is non-blank and the root, execute TRUNC(v′′) on the rightmost leaf
node in the tree.

– Otherwise, do nothing.

UPGEN(τ, ID):

Having computed the new keys on its direct path, a user ID proceeds as
follows.

– Encrypt path secrets: Let v′0, . . . , v
′
d−1 be the nodes on the co-path of

v (i.e., v′i is the sibling of vi). For every value si and every node vj ∈
Res(v′i−1), ID computes cij ← UEnc(vj .pk, si).

– Output: All ciphertexts cij are concatenated to an overall ciphertext c.
Let U ← (PK, c), where PK=(pk0, . . . , pkd−1) is the update information
for the remaining group members.

The control message for this operation simply consists of ME and U .

PROPUP(τ, v, s0):

A user ID performs an update by choosing new key pairs on their direct path
as follows.

– Compute path secrets: Let v0 = v, v1, . . . , vd be the nodes on the direct
path of ID’s leaf node v. First, ID chooses a uniformly random s0. Then,
it computes

ski||si+1 ← prg(si) for i = 0, . . . , d− 1.

– Update RT labels: For i = 0, . . . , d − 1, ID computes pki ← UKGen(ski)
and updates the PKE label of vi to (pki, ski).

– Root node: For the root node, ID sets I := sd.

UPPRO(τ, ID, ID′, U):

Given control message T = (up, ID, U), a user ID′ at some leaf ℓ′ receiving
U = (pk,c), issued by the user with id ID at leaf v, recovers the update
information as follows.

CGKA with Flexible Authorization and Its Applications 19

– Let w = Rep(v, ℓ′).
– The user with ID′ uses w.sk to decrypt cij and obtain si.
– Update the ratchet tree by overriding the public-key labels on the v-root

path by the keys in PK and then producing a new tree τ ′ ← PROPUP(τ ,
LCA(v,ℓ′),si).

TreeKEM∗

TK-init∗(ID)

ME← ID
τ ←⊥
ctr← 0
τ ′[·], conf[·]←⊥

TK-create∗(G)

ctr ++
ID0 ← ME
(sk0, pk0)← UKGen
for i = 1, . . . , |G|∣∣ pki←GMget-pk(|G|.i)
G′ ← (ID0, G)
pk′ ← (pk0, pk)
τ ′[ctr]←INIT(G′, pk′, 0, sk0)
W←(create, G′, pk′)
conf[ctr]←W
return W

TK-add∗(ID′)

ctr++
pk′ ← GMget-pk(ID′)
τ ′[ctr]←ADDID(τ, ID′, pk′)
τ ′[ctr]←BLANK(τ ′[ctr], ID′)
W←(wel,PUB(τ ′[ctr]))
T ← (add,ME, ID′, pk′)
conf[ctr]← T
return (W,T)

TK-rem∗(ID′)

ctr++
τ ′[ctr]←BLANK(τ, ID′)
τ ′[ctr]←REMID(τ ′[ctr], ID′)
T ← (rem,ME, ID′)
conf[ctr]← T
return T

TK-upd∗

ctr++
(τ ′[ctr], U)←UPGEN(τ,ME)
T ← (up,ME, U)
conf[ctr]← T
return T

TK-proc∗(T,W)

if ∃j : T = conf[j]∣∣ τ ← τ ′[j]
else∣∣ proc∗(T,W)
ctr← 0
τ ′[·], conf[·]←⊥
return (τ.I)

proc∗(W=(create, G, pk))

let j s.t.G.IDj = ME
skj←GMget-sk(pk.j)
τ ←INIT(G, pk, j, skj)

proc∗(T=(add, ID, ID′, pk′))

τ ←ADDID(τ, ID′, pk′)
τ ←BLANK(τ, ID′)

proc∗(W = (wel, τ ′))

τ ← τ ′
τ.ME.sk←GMget-sk(τ.ME.pk)

proc∗(T = (rem, ID, ID′))

τ ←BLANK(τ, ID′)
τ ←REMID(τ, ID′)

proc∗(T = (up, ID, U))

τ ←UPPRO(τ, ID,ME, U)

Fig. 2. TreeKEM∗. Once any ID ID calls GMget-pk(ID′), (pk, sk) is generated by
GM and returns pk to ID and GM records (pk, sk, ID′). ID′ can inquire to GM
by GMget-sk(pk). After they are recorded, it returns sk. The only difference be-
tween TreeKEM∗ and RTreeKEM is to use GMget-sk(pk.j) to get skj from GM and
GMget-pk(ID′) to get pk′ corresponding to ID′ from GM instead of get-sk and get-pk in
RTreeKEM.

20 K. Kajita et al.

TreeKEMΣ

TK-init-sig(ID)

TK-init∗(ID)
ctr′ ← 0

conf ′[·]←⊥
(sksig, vksig)←KGenΣ
return vksig

TK-upd-sig

TK-upd∗

ctr′ ++

σ ← Sign(T, sksig)
((sk′sig, vk

′
sig),mu)

←UpdateΣ(sksig, vksig)
conf ′[ctr′]← mu

return (T, σ,mu)

TK-rem-sig(ID′, sksig)

TK-rem∗(ID′)
σ ← Sign(T, sksig)

return (T, σ)

TK-create-sig(G,sksig)

TK-create∗(G)
σ←SignΣ(W, sksig)

return (W,σ)

TK-add-sig(ID′,sksig)

TK-add∗(ID′)
σ←Sign((W,T), sksig)
return ((W,T), σ)

TK-proc-sig(T,W, σ, vksig,mu)

if ∃j mu=conf ′[j]

1/0 ←VrfyΣ(σ, vksig)
else

vk′sig←RcvUpdΣ(vksig,mu)

1/0←VrfyΣ(σ, vk
′
sig)

TK-proc∗(T,W)

Fig. 3. TreeKEMΣ . TreeKEM∗
Σ combines TreeKEMΣ and TreeKEM∗. The differ-

ences between TreeKEMΣ and RTreeKEM are to use a digital signature scheme and
GMget-pk and GMget-sk, as mentioned.

6.2 TreeKEM∗
Σ protocol

We explain the TreeKEM∗
Σ protocol in Fig. 2 and 3 in this section. First, in

TreeKEM∗
Σ , group members are divided into GMs and other users, each running

a different algorithm. Thus, TreeKEM∗
Σ is composed of TreeKEM∗ in Fig. 2

and TreeKEMΣ in Fig. 3. TreeKEM∗ replaces the role of PKI in RTreeKEM
with GM. Specifically, get-pk and get-sk are algorithms that query the PKI for
public and private keys in RTreeKEM, respectively, but they are replaced by
GMget-pk and GMget-sk in TreeKEM∗. On the other hand, TreeKEMΣ is a
protocol that incorporates the processes of signature generation, verification,
and update of signature keys into TreeKEM∗. Note that neither TreeKEM∗ nor
TreeKEMΣ fully corresponds to GM and other users. Both GMs and other users
use TreeKEM∗ and TreeKEMΣ . TreeKEM∗

Σ is a combination of TreeKEM∗ and
TreeKEMΣ , with the application deciding which algorithms to run for GM and
other users. The application-specific details were explained in section 2. Since
TreeKEM∗ operates in the same way as RTreeKEM except that the query to the
PKI is changed to a query to GM, we omit the explanation of TreeKEM∗ here
and describe the operation of TreeKEMΣ as follows.

Initialization. The initialization procedure TK-init∗ and TK-init-sig expect as
input an ID ID and initialize several state variables: Variable ME remembers
the ID of the party running the protocol and τ will keep track of the RT used.

CGKA with Flexible Authorization and Its Applications 21

The other variables are used to keep track of all the operations (creates, adds,
removes, and updates) initiated with ME. Specifically, each time a party per-
forms a new operation, it increases ctr and stores the potential next state in
τ ′[ctr]. Moreover, conf[ctr] will store the control message as confirmation that
the operation was accepted. These variables are reset each time proc processes
a control message (which can either be one of the messages in conf or a message
sent by another party). Finally, in the case of TK-init-sig of TreeKEMΣ , the key
pair (sksig, pksig) of signature scheme Σ is additionally generated by KGenΣ .

Group creation. Given lists of users G = (ID1, . . . , IDn), The group creation
procedure TK-create∗ and TK-create-sig generate a new UPKE key pair (pk0, sk0)
and (pki, ski) corresponding to the IDs inG by calling GMget-pk(|G|.i) for i ∈ [n].
Then they initialize a new ratchet tree by calling INIT with G′ = (ID0, G) and
pk′ = (pk0, pk) as well as 0 and sk0. The welcome message W simply consists of
G′ and pk′. Finally, in the case of TK-create-sig of TreeKEMΣ , the ratcheting
signature σ is additionally output with W .

Adding a group member. To add a new group member ID′, TK-add∗ and
TK-add-sig first obtain a corresponding public key pk′ from the GM (itself if GM
performs) by calling GMget-pk(ID′) and then updates the RT by calling ADDID
followed by BLANK, which removes all keys from the new party’s leaf up to the
root. This ensures that the new user does not know any secret keys used by
the other group members before he or she has joined. The welcome message for
the new user simply consists of a public copy of the current RT (specifically,
PUB sets the sender’s secret-key label to ⊥), and the control message for the
remaining group members of the IDs of the sender and the new user as well as
the latter’s public key. Finally, in the case of TK-add-sig, the ratcheting signature
σ is additionally output with control and welcome messages.

Removing a group member. TK-rem∗ and TK-rem-sig call BLANK and remove
a group member ID′ removed by blanking all the keys from the leaf node of ID′

to the root. This prevents parties from using keys in the future. User ID′ is
subsequently removed from the tree by calling REMID. The control message for
the remaining group members consists of the IDs of the sender and the removed
user. Finally, in the case of TK-rem-sig, the ratcheting signature σ is additionally
output with control message T .

Performing an update. TK-upd∗ and TK-upd-sig perform an update of a user
ID by choosing new key pairs on their direct path by calling UPGEN. The control
message T for this operation consists of ME and U . The ratcheting signature σ
is additionally output in the case of TK-upd-sig.

Processing control messages. When processing control messages T andW , in
the case of TK-proc-sig of TreeKEMΣ a user first verifies the received ratcheting
signature σ. If it is not verified, the process aborts. Then both of TK-proc∗ and
TK-proc-sig check whether the control messages correspond to the operation they
initiated. If so, they simply adopt the corresponding RT in τ ′[·]. Depending on
the type of control message, proc∗ operates as follows.

22 K. Kajita et al.� �
tkm (q1, . . . , qq)

(V,E)← KG(q1, . . . , qq)
for (i, j) s.t. qi = corrupt(ID), t = q2e(qi), qj = chall(t∗)
if I[t∗] ∈ Kt

ID

return 0

return 1� �
Fig. 4. Safety predicate: tkm for some ID ID and epoch t∗.

– T = (create, G, pk) : Determine the position j of ID in the G list, retrieve the
appropriate secret key skj from the GM, and initialize the RT via INIT.

– W = (wel, τ ′) : Adopt τ ′ as the current RT τ and set the secret key at ID’s
node to the key GMget-sk retrieved from the GM.

– T = (add, ID, ID′, pk′) : Add the new user ID′ to the RT and blank all nodes
in the direct path of the new user.

– T = (rem, ID, ID′) : Blank all nodes on the direct path of user ID′ and remove
ID′ from the RT.

– T = (up, ID, U) : A user ID′ at some leaf ℓ′ receiving U = (PK, c), issued by
the user with ID ID at leaf v recovers the update information via UPPRO.

After processing, the variables pertaining to keeping track of ID’s unconfirmed
operations are reset.

6.3 Security of TreeKEM∗
Σ

This section presents the security of the TreeKEM∗
Σ protocol. As with CGKA,

the CGKA-FA protocol satisfies the safety predicate safe. Furthermore, the
security is defined by tkm, fsau, and pcsau. We first illustrate the security
predicate tkm of the RTreeKEM protocol in Fig. 4. Let (V,E) be the key graph
KG defined by executing a sequence of operations of the RTreeKEM protocol.
For a user with ID ID and an epoch t, Kt

ID consists of the following elements:

1 the private keys in the state of ID in epoch t, and
2 the private keys in V that are reachable from the above keys in the key graph
(V,E).

Having defined the key graph, adversaries are now captured via the predicate
tkm in Fig. 4. This predicate essentially makes sure that the adversary does not
learn any keys from which a challenged update secret is reachable.

The predicates pcsau and fsau in Fig. 5 capture PCSAU and FSAU, re-
spectively. PCSAU is achieved by excluding corruptions after any challenge in
the predicate pcsau. The notion of FSAU captured when the state of a party
ID is leaked, all keys before the most recent update by ID remain secret in the
predicate fsau.

CGKA with Flexible Authorization and Its Applications 23� �
pcsau (q1, . . . , qq)

if (i, j) s.t. qi = corrupt(ID), qj = chall(t∗), t∗ < q2e(qi)

return 0

if t∗ > q2e(qi)
and ∄k s.t. qk=send-update(ID) s.t. q2e(qi) ≤ qk < t∗

and qℓ = vrfy(σID) ̸= 1

return 0

return safe(q1, . . . , qq)

fsau (q1, . . . , qq)

for (i,j) s.t. qi=corrupt(ID), qj=chall(t∗)
if t∗<q2e(qi)
and ∄ s.t. qk=send-update(ID) s.t. t∗<q2e(qk)≤q2e(qi)
and qℓ = vrfy(σID) ̸= 1

return 0

return safe(q1, . . . , qq)� �
Fig. 5. Safety predicate: pcs and fsu for some ID ID and epoch t∗.

Moreover, TreeKEM∗
Σ satisfies PCSAU and FSAU when a ratcheting digital

signature scheme Σ is (tcma, ϵcma)-secure. Concretely, the following theorem
holds.

Theorem 1. Assume that

– prg is a (tprg, εprg)-secure pseudo-random generator,
– Π is a (tcpa, εcpa)-CPA-secure updatable public-key encryption scheme, and
– Σ is a (tcma, ϵcma)-CMA-secure ratcheting digital signature scheme.

TreeKEM∗
Σ is then (t, c, n,P, ϵ)-adaptive secure CGKA-FA for P ∈ {tkm, pcsau,

fsau}. Note that ϵ = 2cn(ϵprg+ ϵcpa)+(c−1)ϵcma, t ≈ tprg ≈ tcpa ≈ tcma are held.

Proof of Theorem. To prove the above theorem, we introduce the helpful lem-
mas. The following lemma deals with the relationships among the tkm, pcsau,
and fsau predicates.

Lemma 3. When Lemma 1 holds for any sequence of queries Q, if pcsau(Q) =
1 or fsau(Q) = 1, then tkm(Q) = 1.

Proof of Lemma 3. The only differences between pcs and pcsau is to verify the
ratcheting signature. Therefore, there are no corruptions in epochs after t∗ for
both pcs and pcsau. If pcsau(Q) = 1, then pcsau(Q) = pcs(Q) = safe(Q) =

24 K. Kajita et al.

1. For the FSAU predicate, the authentication (i.e., the ratcheting keys) update
are performed at the same time of send-update. Therefore, If fsu(Q) = 1 then
tkm(Q) = 1 holds, then immediately fsau(Q) = 1 then tkm(Q) = 1 holds.

⊓⊔
For the CGKA-FA protocol, single-challenge (non-adaptive) security implies

multi-challenge security, as shown by the following lemma.

Lemma 4. Let P ∈ {tkm, pcsau, fsau} and assume that a CGKA-FA protocol
CGKA-FA is (t, 1, n,P, ε)-secure. Then, CGKA-FA is also (t′, c, n,P ,ε′)-secure for
t′ ≈ t and ε′ = (c− 1)ε.

Proof of Lemma 4. We assume that the advantage of the adversary Ã′ of CGKA
with single challenge be ε̃ and the advantage of the adversary Ã of CGKA with
multi challenges be ε̃′. According to the result of Lemma 2,

ε̃′ = cε̃ (1)

holds. Now we assume that the advantage of the adversary A′ of CGKA-FA with
single challenge be ε and the advantage of the adversary A of CGKA-FA with
multi challenges be ε′. The difference between advantages of CGKA and CGKA-FA
is to verify the ratcheting signature or not. Therefore,

εcma + ε = ε̃′, (2)

ε̃ = ε′ + εcma (3)

hold. From equations (1), (2), (3), we get

εcma + ε = c(ε′ + εcma)

∴ ε = cε′ + (c− 1)εcma

⊓⊔
Now, we resume the proof of the Theorem 1. We assume that the adversary

A above lemma 4 will compromise the GM after they all perform update process
because the GM has the initial keys of all other users. In addition, A can not stop
updating for GM. This condition allows us to consider a security game similar
to a regular game of CGKA.

The theorem is proved w.r.t. tkm and by considering an adversary A that
makes only a single challenge query. The final result is obtained by applying
Lemma 3 and 4.

Recall that an update operation by a node at depth d produces, for a uni-
formly random s0, the values

s0
prg−−→ (sk0, s1)

prg−−→ (sk1, s2)
prg−−→ · · · prg−−→ (skd−1, sd)

where I = sd is the update secret. Moreover, the update operation encrypts each
si under the corresponding keys on the resolution of the co-path nodes by using
the CPA-secure UPKE,

s∗1
UEnc−−−→ s1, s

∗
2

UEnc−−−→ s2, · · · , s∗d−1
UEnc−−−→ sd−1.

CGKA with Flexible Authorization and Its Applications 25

CGKA-FA then generates at most one ratcheting signature for each control mes-
sage that is generated for each operation performed. Consider a hybrid argument
where pseudorandom number generation, updatable encryption, and ratcheting
signature generation are all replaced by a random string. Let the advantage of
original game be ε̃0 = ε̃ and let ε̃d the advantage which all hybrids are applied
for RT of depth d. Since the CPA-secure UPKE is used for all nodes of RT from
layer 1 to d− 1, the total cpa hybrids is

Σd−1
i=0 2

i · εcpa = (2d − 1)εcpa = (n− 1)εcpa ≥ nεcpa. (4)

Since the pseudorandom generator is used for all nodes of RT from layer 2 to d,
the total prg hybrids is

Σd
i=12

i · εprg = (2d+1 − 1)εprg = (2n− 2)εprg ≥ 2nεprg. (5)

The CMA-secure ratcheting signature is used once, the cma hybrid is εcma. From
equations (4) and (5) and cma hybirid, we get

ε̃d ≤ ε̃0 + nεcpa + 2nεprg + εcma

≤ 1

2
+ 2n(εcpa + εprg) + εcma.

Therefore,

ε :=

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = ∣∣∣∣ε̃d − 1

2

∣∣∣∣ ≤ 2n(εcpa + εprg) + εcma.

Now from Lemmas 3 and 4, we get

ϵ = 2cn(ϵprg + ϵcpa) + (c− 1)ϵcma.

⊓⊔

7 Evaluation

In this section, we show how much overhead is incurred for our proposed pro-
tocol against existing RTreeKEM and explain how many specific cryptographic
operations are required in Table 3. One of the advantages of our protocol is that
it brings significant advantages over RTreeKEM, a scheme currently being stan-
dardized in the IETF MLS, with a minimal change: the adoption of ratcheting
digital signatures which can be generically constructed from a signature scheme.
Here, we employ ECDSA[21] as the underlying signature scheme for construct-
ing the ratcheting signature scheme. kP denotes multiple of points of elliptic
curve. ℓ denotes modular inverse. The main costs incurred in the cryptographic
operations of ECDSA are as follows: Key generation of ECDSA requires one
multiple of points of elliptic curve kP. Signature generation of ECDSA require
one multiple of points of elliptic curve and one modular inverse (kP + ℓ). Ver-
ification of ECDSA requires two multiples of points of elliptic curve and one

26 K. Kajita et al.

modular inverse (2kP+ ℓ). In our protocol, we also let GM generate UPKE keys
for the members in the group to answer queries of GMget-pk, which is a cost that
GM has the PKI functionality. We estimate this cost by employing the UPKE
scheme based on Computational Diffie-Hellman (CDH) under the random oracle
model [3]. The key generation of the CDH-based UPKE scheme requires kP as
the computational cryptographic operation cost.

Our CGKA-FA scheme TreeKEM∗
Σ consists of two components, TreeKEM∗

and TreeKEMΣ, each of which can be used with or without a signature on
the output. It is important to note that no overhead is incurred in TreeKEM∗

compared to the original RTreeKEM. We then describe the additional costs
involved in TreeKEMΣ.

First, during setup, there is an overhead of one ratchet signature and (n− 1)
UPKE key generation, where n denotes the number of group member. The total
estimated computational cost during setup is kP + (n − 1)kP = nkP. This
overhead will not be a bottleneck because the cost of PKI functionality is only
necessary for the first time and can be prepared offline in advance.

The sender side computational cost is for one ratchet signature and one up-
date of the ratchet signature key. The update of the ratchet signing key actually
consists of key generation and its signature, so the total overhead is two ratchet
signatures and one key generation. Thus, the computational cost with ECDSA
is 2(kP + ℓ) + kP = 3kP + 2ℓ.

Next, the computational cost on the receiver side is one verification of the
ratchet signature and one RcvUpdΣ of the ratchet signature key. Since the
RcvUpdΣ algorithm runs the verification algorithm internally, the computational
cost using ECDSA is 2(2kP + ℓ) = 4kP + 2ℓ.

Finally, regarding the communication cost, there is one ratchet signature for
each control message and one update message mu related to the update of the
ratchet signature as overhead. Since mu actually consists of a new public key
and its signature, there is a total additional costs of 2|σ|+ |vksig| involved in the
communication. From the above, our proposed protocol can be implemented at
a very low additional cost, both in terms of computation and communication.

Table 3. Additional costs of our protocol against existing RTreeKEM per single op-
eration. We employ ECDSA as an underlying signature scheme of a ratcheting digital
signature and the CDH-based UPKE scheme as a UPKE scheme.

Setup cost Comp. cost (Sender) Comp. cost (Receiver) Comm. cost

TreeKEM∗ 0 0 0 0
TreeKEMΣ nkp 3kp+ 2ℓ 4kp+ 2ℓ 2|σ|+ |vksig|

CGKA with Flexible Authorization and Its Applications 27

8 Conclusion

We achieve the CGKA-FA protocol by incorporating a ratcheting digital sig-
nature scheme into the existing CGKA protocol. In addition, we analyze the
security of CGKA-FA, where the secret information is not managed by a third
party. In our CGKA-FA protocol, it is possible to set the privileges of users in
a group, which is highly compatible with the field of broadcasting and may lead
to the development of new broadcasting services.

References

1. Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzyzstof Pietrzak, and Michael Walter. CoCoA: Concurrent Con-
tinuous Group Key Agreement. In EUROCRYPT. 2022. Springer, pp. 815–844.

2. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double Ratchet: Security
Notions, Proofs, and Modularization for the Signal Protocol. In EUROCRYPT.
2019. Springer, pp. 129–158.

3. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security
Analysis and Improvements for the IETF MLS Standard for Group Messaging. In
CRYPTO. 2020. Springer, pp. 248–277.

4. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular
design of secure group messaging protocols and the security of mls. In ACM CCS.
2021. ACM, pp. 1463–1483.

5. Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided
continuous group key agreement. Cryptology ePrint Archive, Report 2021/1456
(2021).

6. Joël Alwen, Daniel Jost, and Marta Mularczyk. On the Insider Security of MLS.
In CRYPTO. 2022. Springer, pp. 34–68.

7. David Balbás, Collins Daniel, and Serge Vaudenay. 2022. Cryptographic Adminis-
tration for Secure Group Messaging. Cryptology ePrint Archive, Report 2022/1411
(2022).

8. Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Proto-
col. Internet-Draft draft-ietf-mls-protocol-8. 2019. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-8.

9. Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS)
Protocol. Internet-Draft draft-ietf-mls-protocol-16. 2022. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/

16. Work in Progress.
10. Alexander Bienstock, Yevgeniy Dodis, and Yi Tang. Multicast Key Agreement,

Revisited. In Cryptographers’ Track at the RSA Conference. 2022. Springer, pp.
1–25

11. Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srini-
vasan Raghuraman. A More Complete Analysis of the Signal Double Ratchet Al-
gorithm. In CRYPTO. 2022. Springer, pp. 782–811.

12. Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communica- tion,
or, why not to use PGP. In Proceedings of the 2004 ACM workshop on Privacy in
the electronic society. 2004. ACM, pp. 77–84.

28 K. Kajita et al.

13. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal Private Group
System and Anonymous Credentials Supporting Efficient Verifiable En- cryption.
In ACM CCS. 2020. ACM, pp. 1445–1459.

14. Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. A Formal Security Analysis of the Signal Messaging Protocol. In IEEE
EuroS&P. 2017. IEEE, pp. 451–466.

15. Cas Cremers, Britta Hale, and Konrad Kohbrok. The Complexities of Healing in
Secure Group Messaging: Why Cross-Group Effects Matter. In USENIX Security.
2021. USENIX, pp. 1847–1864.

16. Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless
receivers. In ACM Workshop on Digital Rights Management. 2002. Springer, pp.
61–80.

17. Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, and Go Ohtake. Member-
ship privacy for asynchronous group messaging. In WISA 2022 to appear. Available
at Cryptology ePrint Archive 2022/046.

18. Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO. 1993. Springer,
pp. 480–491.

19. Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.
An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-
Quantum, State Leakage Secure, and Deniable. In PKC. 2021. Springer, pp.
410–440.

20. Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,
and Bas Westerbaan. A concrete treatment of efficient continuous group key agree-
ment via multi-recipient PKEs. In ACM CCS. 2001. ACM, pp. 1441–1462.

21. Don Johnson, Menezes Alfred, and Vanstone Scott. The elliptic curve digital signa-
ture algorithm (ECDSA). International journal of information security 1.1. 2001.
pp. 36–63.

22. Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Mar-
garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and
Krzysztof Pietrzak. Keep the dirt: Tainted treekem, adaptively and actively se-
cure continuous group key agreement. In IEEE S&P. 2021. IEEE, pp. 268–284.

23. T. Perrin M. Marlinspike. 2016. The Signal Protocol. Technical Report.
Working Draft, Technical Report, November 2016. https://signal.org/docs/

specifications.

24. J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The Messaging
Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-7. 2019.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/

draft-ietf-mls-protocol-7.
25. Kazuto Ogawa, Goichiro Hanaoka, and Hideki Imai. Traitor tracing scheme se-

cure against adaptive key exposure and its application to anywhere TV service.
IEICE transactions on fundamentals of electronics, communications and computer
sciences 90, 5 (2007), pp. 1000–1011.

26. Nick Sullivan and Sean Turner. Message layer security (mls) working group. https:
//datatracker.ietf.org/wg/mls/about/.

27. Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On
the Cryptographic Deniability of the Signal Protocol. In ACNS. 2020. Springer,
pp. 188–209.

28. Matthew Weidner. Group messaging for secure asynchronous collaboration. Master
thesis, University of Cambridge, 2019.

