Towards Secure Evaluation of Online Functionalities
(Corrected and Extended Version)

Andreas Klinger
RWTH Aachen University
Aachen, Germany
klinger@itsec.rwth-aachen.de

ABSTRACT

To date, ideal functionalities securely realized with secure multi-
party computation (SMPC) mainly considers functions of the pri-
vate inputs of a fixed number of a priori known parties. In this
paper, we generalize these definitions such that protocols imple-
menting online algorithms in a distributed fashion can be proven to
be privacy-preserving. Online algorithms compute online function-
alities that allow parties to arrive and leave over time, to provide
multiple inputs and to obtain multiple outputs. In particular, the set
of parties participating changes over time, i. e., at different points in
time different sets of parties evaluate a function over their private
inputs. To this end, we propose the notion of an online trusted third
party that allows to prove the security of SMPC protocols imple-
menting online functionalities or online algorithms, respectively.
We show that any online functionality can be implemented per-
fectly secure in the presence of a semi-honest adversary, if strictly
less than 1/2 of the parties participating are corrupted. We show
that the same result holds in the presence of a malicious adversary
if it corrupts strictly less than 1/3 of the parties and always allows
the corrupted parties to arrive and provide input.

Note, this is the corrected and extended version of the work
presented in [24].

CCS CONCEPTS

« Security and privacy — Formal methods and theory of
security; Privacy-preserving protocols.

KEYWORDS
SMPC, dynamic, online algorithm, trusted third party, privacy

1 INTRODUCTION

Secure multi-party computation (SMPC) allows parties to evaluate
a function over their private inputs in a distributed fashion such
that each party only learns its prescribed output and anything it can
deduce from combining its prescribed output with its own private
input. An SMPC protocol describes the individual communication
and computation steps each party follows during the distributed
evaluation of the function it implements. Informally speaking, such
a protocol is said to securely evaluate the function if it correctly
computes the prescribed output of the function and if during the
evaluation, the parties do not learn anything that goes beyond what
they would learn if the function was evaluated centrally by a trusted
third party (TTP) - even in the presence of an adversary.

Secure function evaluation (SFE), a special case of SMPC, con-
siders functions that could - if they were evaluated by a TTP - be

Ulrike Meyer
RWTH Aachen University
Aachen, Germany
meyer@itsec.rwth-aachen.de

evaluated by a single run of an (offline) algorithm that takes the
inputs of a fixed number of parties and computes the desired out-
put for each party. SFE can also be extended to reactive SMPC to
cover reactive algorithms [19] which allow an a priori known fixed
number of parties to provide input over multiple rounds and obtain
output in each round. In addition, the output can depend on a state,
which itself depends on all previous inputs and outputs.

However, the prominent set of functions or problems that can
be solved with the help of online algorithms [17] have not yet
been considered in SMPC: Online algorithms receive events one
after another and for each event they have to decide immediately
how to deal with it. An example is the online matching problem
with general arrival, where in each event a party with their pref-
erences arrives. The online algorithm then has to decide how to
match the party, e. g., match the party now or save it for later. The
overall goal is typically to maximize the reward while minimizing
the cost, e. g., achieve a high matching quality with short waiting
times. The online algorithm has no knowledge regarding future
events, i.e., the parties arriving are not known in advance, and
previous decisions can affect future decisions. Therefore, the online
algorithm has to store information in a state, e. g., all unmatched
parties already revealed. The main difference between reactive and
online algorithms is that whereas the participating parties are fixed
for reactive algorithms, parties can dynamically arrive and leave
in online algorithms. In addition, reactive algorithms assume that
in each round all participating parties provide input and obtain
output. However, online algorithms also allow that only subsets
of currently participating parties provide input and obtain output,
i.e., only a subset of the parties is aware that an event happened.

SMPC protocols for offline matching is an important research
area [1, 6, 21, 25, 28]. However, online matching algorithms have
the advantage of not requiring to restart the complete computation
as soon as a new party arrives and thus the benefit of reducing
waiting times. Such online matching problems arise for example
when open job positions are to be filled by applicants, or students
apply for internship offers and need to be told immediately whether
or not they are accepted, or for providing possible dating recom-
mendations, or finding other people for ride-sharing on the fly.
All these examples require private information, which should be
protected.

If parties want to securely compute an online matching algorithm
over their private inputs, then they have to securely evaluate the
online algorithm: When a new party arrives and provides their
input, the online algorithm checks immediately whether the new
party can be matched with any previously unmatched party. If
there is no match, then the party and their input is stored in the
state. If the party is matched, then the matched parties leave the

© 2022 Andreas Klinger and Ulrike Meyer. This is the author’s corrected and extended version of the work presented in [24]. It is posted
here for your personal use. Not for redistribution. The original version was published in the 16th International Conference on Availability,
Reliability and Security (ARES 2021), August 17-20, 2021, Vienna, Austria, https://doi.org/10.1145/3465481.3469203.

https://doi.org/10.1145/3465481.3469203

computation and are removed from the state. We want to stress
that the participating parties are not known in advance and can
change over time. In addition, parties may provide input multiple
times.

If we want to model the online matching example with standard
techniques, then we have two main possibilities: The first is to use
reactive SMPC and assume that all parties participate at all times,
and some just don’t provide input. The second is to use a special set
of compute parties [2] separated from the parties that want to be
matched. The compute parties will receive the inputs of the parties
that want to be matched, perform the computation and distribute
the output, all done in a privacy preserving manner. Both techniques
allow to securely evaluate the desired functionality, and allow to
store a state containing the parties and their inputs in a distributed
fashion, either between all parties in the first case or only between
the compute parties in the second case. However, the first technique
is impractical as all parties are always participating and need to be
present. The second technique requires an unsatisfying assumption,
namely that there are a few compute parties and all parties have
to trust at least a subset of them. This strong assumption seems
hard to achieve in the online settings, as the set of trusted compute
parties needs to be determined a priori for an a priori unknown
set of participating parties. The more parties participate, the more
likely it is that at least some do not trust the compute parties.

So in this paper, we want to answer the question: Can we do
better, i. e., let only those participate in the computation that are
actually relevant in the current evaluation, but yet hide as much
information as possible? Ideally evaluating an online functionality
such as online matching in a privacy-preserving way does not only
entail protecting the inputs and outputs of all parties involved,
and securely keeping a state over a changing set of parties, but
also hiding the arrival and departure of parties from the other
participating parties. This includes hiding the point in time when a
party provides input and whether a party participates at all.

We therefore propose a new model for online TTPs (OTTPs) that
can evaluate online functionalities, i. e., the mapping of inputs and
outputs of online algorithms. In particular, we first introduce an
ideal OTTP where even the arrival of the parties is private. Then,
we relax the requirement, and broadcast the party that arrives
and provides input (referred to as OTTP with broadcast of input
parties (OTTPI)). We restrict the OTTP and OTTPI model to parties
providing their input one after another.!

A protocol’s security is expressed in terms of its ability to sim-
ulate the evaluation by one of the OTTPs. We show that for any
online functionality there exists a perfectly secure protocol in the
OTTPI setting if there are always at least three parties present and
assuming an honest majority of parties present. The result holds
even in the presence of an arrival respecting malicious adversary, if
there are always at least four parties present and assuming strictly
less than 1/3 of the parties present are corrupted.? We also show
that the OTTPI setting is imperfect in the sense that public arrival
can leak partial inputs which shows that the ideal OTTP setting is

'In Appendix C we will remove this restriction to allow the evaluation of any online
algorithm modeled as OTTP with event broadcast (OTTPE) and OTTP with public
participation (OTTPP).

2We show the same feasibility results for the OTTPE and OTTPP setting in Appendix C.

stronger than the OTTPI setting.> In Appendix B we discuss why
the arrival can in general not easily be hidden in online settings, i. e.,
why a secure protocol in the ideal OTTP model is hard to achieve.

The rest of the paper is organized as follows: We discuss previous
results w. r. t. offline and reactive TTPs in Section 2. We cover the
notations used throughout the paper and preliminary definitions in
Section 3. In Section 4 we model the OTTP and OTTPI, and define
security. Our feasibility results are presented in Section 5. We then
show in Section 6 that the ideal OTTP is more powerful than the
OTTPI. The paper concludes with a summary and an overview
of potential future work. We discuss the setting with a dishonest
majority, and why the arrival time can in general not easily be hid-
den in Appendices A and B. Finally, we extend the setting to allow
the evaluation of more general online functionalities, introduce
the OTTPE and OTTPP, and shortly present the corresponding
feasibility results in Appendix C.

Note, this is the corrected and extended version of the work
presented in [24]. Major corrections and extensions are marked and
explained throughout the paper with footnotes.*

2 RELATED WORK

SFE and SMPC in general has first been studied by Yao in [29]
in the two party setting, and by Goldreich et al. in [20] for the
multi-party setting. They showed how to securely evaluate any
function based on garbled circuits and one-way functions, respec-
tively. Shortly afterwards, other constructions have been proposed,
e.g., Chaum et al. [11] simulated boolean operations and used
zero-knowledge proofs for error correction, Ben-Or et al. [5] used
Shamir’s secret sharing scheme [27] to simulate arithmetic cir-
cuits, or Rabin et al. [26] used a verifiable secret sharing scheme
and broadcast channels. Loosely speaking, the security of these
approaches is based on showing that a party cannot learn anything
new from participating in the protocol, compared to what it could
learn from its input and output only. Beaver [4] was the first to use
an explicit trusted third party to define security, i. e., he defined a
protocol to be secure if it doesn’t reveal more than what is revealed
by an incorruptible party that receives all inputs, computes the
function and then distributes the outputs. In addition, he showed
that protocols can be combined sequentially. This was generalized
by Canetti [8, 9] in his universal composability (UC) framework,
which allows composing complex functionalities essentially arbi-
trarily from sub-protocols. If the sub-protocols are secure in the UC
framework, then so is the composed protocol. General SMPC based
on threshold homomorphic encryption was introduced by Cramer
et al. in [13]. Universal composability for SMPC based on threshold
homomorphic encryption was proven by Damgard et al. in [14]. Re-
active SMPC [19] allows parties to execute a protocol over multiple
rounds, i. e, in each round all parties provide input and obtain a

3The OTTPI setting is a special case of the OTTPE and OTTPP setting, and thus the
OTTPE and OTTPP setting are similar imperfect .

“In the original version [24] we modeled the arrival of parties too abstract, and thus
with this corrected version we provide clarification, and model the arrival (and input
providing) of parties more explicitly. The main change is that “receiving events” (which
consists of a party with its input) is now split into an “arrival” and a separate “input
providing” phase. We also corrected some other minor oversights, e. g., definition of
broadcast, definition of perfect emulation, use of empty output L, definition of privacy
with public arrival, and incorrect examples. Furthermore, we included additional
explanations and details throughout this version.

corresponding output (possibly depending on a state). All of these
results rely on the fact that the protocols are executed by a fixed
and a priori known set of parties. However, online functionalities
require that the set of parties can change over time, i. e., over time
different sets of parties execute the protocol with different inputs.
This includes that there is no fixed set of parties, nor are the parties
participating known in advance. Such an “online” behavior cannot
be modeled in the previous definitions. In contrast to its previous
versions, the most recent version of Canetti’s UC framework [10]
allows adding parties or protocols dynamically, e. g., as required in
distributed peer-to-peer system. The UC framework [10] could be
used to model and prove the security of (certain) protocols imple-
menting online functionalities. However, it does not allow to model
our ideal OTTP that hides even the participation of any party.
Another model used to implement SMPC protocols, especially
w. 1. t. databases, is to use three sets of parties (not necessarily dis-
joint) [2]: One set of parties provide inputs and one set of parties
obtain outputs, e. g., based on queries. The third set of parties is
a fixed and always present set of compute parties that receives
the query, performs the actual computation and distributes the
output. A state is stored in a database in a secure fashion. E. g.,
Sharemind [7] uses three compute parties that perform the com-
putations and additively share the database entries. Even though
defined with a fixed set of parties providing input and obtaining
outputs, it is rather straightforward to implement a TTP in such a
model, including one for online algorithms. However, these models
require that the compute parties are trusted, e. g., for Sharemind
two of the three compute parties need to be trusted. This shifts
the trust from a single TTP to a set of trusted peers. W.r. t. online
functionalities, finding such a set of parties that will be trusted by
an a prior unknown set of parties seems hard to achieve in general,
as the more parties participate, the more likely it is that at least
some do not trust the compute parties. Thus, we want to avoid that
assumption. In addition, it does not allow to model our ideal OTTP.
Baron et al. [3] proposed a dynamic proactive secret sharing
scheme, i. e., it is secure against mobile adversaries and parties can
join and leave. They also mention that their scheme could be used to
construct an SMPC protocol with a changing set of parties. However,
they did not provide an actual construction, and it is limited to
providing input only once at the beginning. Choudhuri et al. [12]
recently introduced the notion of fluid SMPC, where parties can
dynamically join and leave the computation. Their model consists
of input, output and compute parties. However, only the compute
parties can dynamically change during the computation, and no
additional inputs can be provided during the computation. Thus,
both schemes are effectively a realization of SFE as input and output
is provided only once. Eldefrawy et al. [16] introduced basic building
blocks for proactive secure SMPC protocls based on proactive secret
sharing, i. e., share and reconstruct a secret, refresh it (create new
shares for the same secret), recover it (re-generate a lost/deleted
share), and add and multiply shares. Additionally, they show how
to redistribute a share to a new set of parties, i. e., parties can join
and leave. However, they assume the new set of parties is specified
by a TTP (as they consider a cloud server setting). In addition, they
do not provide a construction or model how to actually implement
an online functionality, nor do they allow to model our ideal OTTP.

It is interesting to note that to the best of our knowledge all
implementations of secure protocols for offline or reactive func-
tionalities assume that the participating parties know which other
parties participate, even though an ideal TTP could easily hide this
information.’ As parties arrive and leave over time in the online
setting, it is also desirable to hide the arrival and departure of par-
ties from the other participating parties. This seems generally hard
to achieve as we will discuss in Appendix B.

3 PRELIMINARIES

We first introduce some basic notations and preliminary definitions.

3.1 Notation

We define the set of natural numbers with and without zero as
Np:={0,1,2,...} and N := {1,2,.. .}, respectively. The cardinality
of a set B is denoted by |B|, and the power set of B is denoted as
2B. We will use [-] to denote the ceiling function. We will use L
as special symbol to indicate no input or no output, and therefore
assume for every input space X and every output space Y that L
is not included, i.e., L ¢ X and L ¢ V.6

3.2 Perfect Indistinguishability

Let X = {X(z,k)};¢{0,1)* ken be a probability ensemble, i.e., an
infinite sequence of probability distributions indexed by z € {0, 1}*
and k € N [10].

DEFINITION 1 (PERFECT INDISTINGUISHABILITY, BASED ON [10]).
Two probability ensembles X and Y are perfectly indistinguishable,

denoted X £ Y, if for all z € {0,1}* and k € N the probability
distributions X (z, k) and Y(z, k) are identical.

3.3 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme [27] is a (t,n) threshold secret
sharing scheme that shares a secret s among n parties such that
any t parties can reconstruct the secret. A secret s is shared among
n parties p1, ..., pp with threshold ¢ as follows: Let g be a prime
such that s < q. Select coefficients ay,...,a;-1 € {0,...,q — 1}
uniformly at random, and construct the polynomial g(x) = s +
Zf:_ll a;jx* mod q. Party p; obtains as share g(i) for i € {1,...,n}.
Reconstruction can easily be done with any ¢ shares, e.g., with
Lagrange interpolation.

3.4 Online Algorithms

Online algorithms try to solve online problems where events occur
one after another [17]. The decision how to deal with an event has
to be made immediately on occurrence, and typically without any

SHiding the number of parties can increase privacy, e. g., assume the functionality
defines as output the sum of all inputs. If only two parties participate, the input of the
other party is immediately learned. However, if the number of parties is unknown, the
input is not learned.

®Correction: In the original version [24] we defined L to be part of every input and
output space. However, this led to some confusion, as we used L implicitly in two
different meanings. We resolve this here by excluding L from the input and output
space, and use it only as a special symbol to indicate no input or no output. If a
functionality requires “empty input/output” as actual input or output, then this can
be encoded as special strings in the input and output space itself, e. g., “empty input”
or “empty output”. Note, this change is only relevant for the extensions discussed in
Appendix C where parties can provide input multiple times.

knowledge about future events. The goal is to minimize costs or
maximize the reward for a given sequence of events. In addition,
online algorithms require to support that the set of participating
parties can change over time, and that it is unknown in advance.
In contrast, offline algorithms are executed only once, i. e., all the
information required is present from the very beginning, and only
one final decision has to be made. Reactive algorithms are some-
where between offline and online algorithms, as they allow multiple
inputs, but assume that the participating parties do not change.

An example for an online problem is online matching with general
arrival [18], which we will use as a running example throughout
the paper. Parties arrive one after another, and each party has a
private input. Whenever a party arrives, the online algorithm has
to decide which parties to match, e. g., based on some function over
the inputs. Unmatched parties are saved in a state together with
their inputs. If a party is matched, it is removed from the state or if
it just newly arrived, never added to the state. Typically, the goal
is to maximize the overall matching quality, while minimizing the
costs, e. g., the waiting time of all parties.

Note, the set of parties that actually participate or the order in
which they arrive is assumed to be unknown in advance. There is
also no prior knowledge w.r. t. their inputs.

4 MODEL

Next, we will introduce online functionalities, and define the cor-
responding ideal OTTP and OTTPI. Then, we present our security
definition and adversary model.

4.1 Online Functionalities

Assume a number of parties want to evaluate a function over their
private inputs in a secure fashion. Informally speaking, secure
means that each party shall only learn its prescribed output and
anything it can deduce from combining its prescribed output with
its own private input, and that the output they receive is correct [19].
This has to hold even in the presence of an adversary controlling a
subset of the parties which we will refer to as corrupted parties. An
adversary tries to deduce more information, e. g., private inputs of
other parties, or alter the outputs [19].

In an ideal world, a function can be securely evaluated with a
trusted third party (TTP) [19], i. e., a special entity that cannot be
corrupted. The TTP will receive the private inputs of the parties,
evaluate the function correctly and distribute the prescribed outputs.
A TTP hides as much information as possible from the participating
parties, e. g., inputs and participation. However, in the real world
such a TTP may not exist. Therefore, the parties execute an SMPC
protocol that simulates the TTP [19]. Such a protocol evaluates
the desired functionality in a distributed fashion, i. e., the parties
themselves perform the computation and exchange messages.

In secure function evaluation (SFE) [19], a fixed and a priori known
set of parties P := {p1,..., pn} want to evaluate an offline func-
tionality f : X" — Y" where X is an input space and Y an
output space. Given the inputs x1, . .., x, of the corresponding par-
ties, the offline functionality f is evaluated, i.e., (y1,...,yn) =
f(x1,...,xn), and party p; obtains output y, for £ € {1,...,n}. An-
other set of functions considered are reactive functionalities [19],
which iteratively compute a reactive function]_‘ OX X - Ox Y™,

ie, (¢iYit, ... Yin) = f(gzﬁi_l, Xi1s-- .,xi,n) for i € N where
¢o € Ois the initial state and @ is a state space. The reactive function
]_” is evaluated in multiple rounds by a fixed and a priori known set
of parties P := {p1, ..., pn}. In each round all parties provide input
and obtain output. The output may depend on a state that itself
depends on all previous inputs and outputs. Complete definitions
of offline and reactive functionalities are given in Appendices D.1
and D.2.

Here, we newly introduce online functionalities that define the
output of an online algorithm given a sequence of events: The core
component is the decision functionality which computes a decision
and updates the state, based on an event and the current state. An
event will consist of a party and their input. A decision will consist
of a set of parties and their corresponding outputs.

DEFINITION 2 (ONLINE FUNCTIONALITY). Let & be an event space,
let D be a decision space, and let ® be a state space. An online func-
tionality maps an ordered sequence of events o1,02,... € & to an
ordered sequence of decisions y1,y2, ... € D by iteratively computing

(o)

a decision function f : ® x & — ® X D with initial state ¢o € .
The decision function f is defined as (¢i, yi) = f(¢i-1, 0i).

The online functionality is an abstract representation of an online
algorithm, i. e., the logic without any implementation choices that
do not influence the outcome. An example is to greedily match two
parties with the same input based on the order they arrived, i.e., it
is specified that one has to “greedily” match the parties, and parties
are matched based on the order in which they arrive.’

Note, that the fact that an online functionality is an abstract
representation of an online algorithm implies the following im-
portant difference between offline and online functionalities: For
offline problems typically an optimal solution exists, but for on-
line problems typically not. E. g., consider maximum matching, i. e.,
maximize the number of matches. If all parties are already present
(offline setting), then one can compute all optimal (maximal) so-
lutions and select one uniformly at random. Hence, the offline
functionality can be defined as something like “select uniformly
at random one of the optimal solutions”. It is not important how
the optimal solutions are obtained. However, in the online setting,
an optimal solution for the underlying online problem is typically
not achievable.® Therefore, in general it is not useful to define an
online functionality as “selecting the optimal solution”, as one could
never specify a protocol computing that solution at all. Defining an
online functionality as only “selecting an approximate solution” is
not useful either. Any online algorithm has to decide immediately
for each party how to match it, i. e., it has to follow a certain (match-
ing) strategy, e. g., match greedily. Consider maximum matching
with a matching strategy where newly arriving parties are just
greedily matched if possible, and otherwise they are kept for later.
The problem is that there are multiple strategies to match a party
newly arriving with one of the parties which are already present,
e.g., by selecting a match based on the order they arrived, or al-
ternatively in reverse order. No matter which strategy is used, in

7Correction: In the original version [24] the provided example was wrong, as it actually
influenced the outcome.

8In general, an optimal solution can only be computed after all parties have arrived.
However, then it is no longer an online problem.

the end it is just one strategy, which can be different from what is
defined in the online functionality. Hence, the online functionality
cannot be realized if it is not defined precisely enough. Therefore,
any online functionality solving an online problem has to specify
such a strategy, too, i. e., it has to define the online algorithm that
computes a certain solution.’

Another main difference between online and offline functionali-
ties is that offline functionalities represent computations where a
fixed set of parties meet once, provide input once and receive output
once. Online functionalities are similar to reactive functionalities
in that they allow providing multiple inputs and receiving multiple
outputs dependent on some state that can be updated. However,
parties do not have to participate from the very beginning, but can
arrive at a later point in time. A party can also leave, e. g., when
it is matched, while other parties will continue the evaluation of
the online functionality. Thus, the set of parties participating can
change over time. In addition, in each round a reactive functionality
requires input of each party and delivers output to each party. This
implies that all parties know exactly when a new round starts. In
contrast, online functionalities also allow that only a subset of the
participating parties provide input and a possibly different subset
of participating parties obtains output, i. e., it is not necessarily
known when and if an event happens.

If parties want to evaluate an online functionality, then they
provide their inputs one after another. After each input they com-
pute the decision, distribute the outputs and update the state. An
event o; represents a party p}* and their corresponding input x;. A
decision y; represent the set of parties that receive outputs Pl.OUT
and their corresponding outputs. An ordered sequence of parties
arriving and providing inputs defines an ordered sequence of events
01,02, ... € E. As parties arrive one after another, they do not par-
ticipate in the evaluation from the very beginning. A party can
also leave and thus discontinue the evaluation.!? After a party has
left, it will no longer receive any output. How and when a party
leaves is defined by the online functionality, e. g., after the party is
matched or based on some special input. A party that has arrived
and not left after a decision is present and needs to be stored in
the state. Any party that arrives or is already present participates
in future computations until it leaves. If a party leaves, then it is
no longer present, nor will it participate in future computations.
Note, we restrict the parties here to provide input exactly once. We
will extend that later in Appendix C. As the decision depends only
on the event and the current state, but any participating party can
receive output, the state has to store the set of parties present.

DEFINITION 3 (ARRIVAL OF PARTIES). Let P be a countable set of
parties, let & be an event space and let ® be a state space. We define
P; C P as the set of parties present in ¢; € ® fori € Ny, i.e., the
set of all parties stored in state ¢; after a decision is computed. A
party pl € P arrives in event o; € & if party p}" occurs in o; and
party pY is not already present in ¢i—1 (p}’ ¢ Pi—1). A partyp € P
participates during event o; € & if party p arrives in o; or party p
is already present in ¢p;i_1 (p € Pi—1). A party p € P leaves in event
Extension: We added this paragraph to describe why an online functionality needs to
be an abstract representation of an online algorithm.
19Note that in reactive evaluations the parties are always present and always participate

in the evaluation. If a set of computation parties is assumed, then at least this set is
always present.

oi € & if party p participates in o; and party p is not present in ¢;
¢ Pi)

Note that we use p1, p2, . .. as symbols for parties, and a party is
identified by pj (e. g., an ID or IP address) and not its index j. The
index j will be used to indicate relations between parties and their
inputs/outputs. In addition, the index j does not have to correlate
to the time when a party provides input. For an event ¢; and a
decision y; we use p}* and p7;" as symbols for parties. The first
index i indicates the event, and the second index ¢ is used for
enumeration. As a party can provide input and obtain output at
different times it may, e. g., hold that p3' = pg')" = p7.

The evaluation of an online functionality with the private inputs
of parties is defined as follows:

DEFINITION 4 (EVALUATION OF AN ONLINE FUNCTIONALITY“).
Let X be an input space and let Y be an output space. Let P :=
{p1, p2. ...} be a countable set of parties. Let & := P x X be an event

space. Let the decision space be D := {{(p;.’lUT, Yj)r--os (p;.’;”, yj,)} €

2P%¥Y | ¢ € Ny and allp;?lw, . .,p;’”’ are pairwise different }. We

t

define PiOUT ={pj{" ... ,pz‘f;i} as the set of parties obtaining output
at decision y;. Let ® be a state space and ¢y € ® be an initial state.
Let o1, 09,... € & be an ordered sequence of events, where each party
in P occurs at most once.

For each event o; := (p}¥, x;), where x; is the private input of party
(e8]
p¥ € P, the decision function f : ® x & — ® x D is evaluated

(o)
as (¢i.vi) = f($i-1,0i). For each decision y; := {(p{{". yi1), .- .,
(P, Yim;)} party pglg € PiOUT obtains output y; ;. with k €
{1,...,m;} and m; € Ny.

The set of all parties consists of all parties that could even-
tually participate, e. g., all students from a certain university or
banks from a country. Note that this is different from reactive func-
tionalities: In reactive functionalities all parties in $ participate in
the evaluation, e. g., we know exactly which students participate.
Online functionalities also allow that only a subset #’ C P partici-
pates, i. e., we only know that students can participate, but we do
not know which students actually will participate.

Note that Definition 4 explicitly allows that not all parties obtain
an output and also no party at all, e. g., if y; = 0, then PiOUT =0
and nobody receives any output. In addition, the party in event o;
can but does not have to be part of the corresponding decision y;.

4.2 Online Trusted Third Party

A trusted third party (TTP)is an ideal entity that cannot be corrupted
and behaves exactly as specified by the (offline, reactive or online)
functionality to be evaluated. Given the input of parties, it returns
the output only to those specified by the functionality. Ideally, it
hides as much information as possible.

An offline TTP receives the inputs of the parties, evaluates the
offline functionality, and distributes to each participating party its
prescribed output. After this process, the evaluation is finished. In

Correction: In the original version [24] a party p?}{r € PiOUT occurring in the
decision y; obtained output if and only if y; x # L. Hdwever, as here now L ¢ X and
1 ¢ Y, this condition is now removed. Note, that here this condition was actually
never required, as a party not included in the decision did already never obtain any

output.

contrast, a reactive TTP evaluates a reactive functionality by receiv-
ing inputs and providing outputs in multiple rounds, while storing
the state. In classical SMPC the concepts of offline and reactive TTPs
have already been introduced. However, in Appendices D.3 and D.4
we redefine them to be easier comparable with our definition of an
online TTP (OTTP) later in Definition 5.

Note, in classical SMPC it is assumed that the participating par-
ties know which other parties participate, even though an ideal
TTP could hide them (as it is ideal). We use this convention for
offline and reactive TTPs, but we break with this convention for our
novel ideal OTTP, i. e., no party knows which or when other parties
participate or provide input. We therefore refer to such an OTTP
explicitly as ideal OTTP, and we use OTTP to refer to online TTPs
in general. An OTTP continuously receives inputs and provides
outputs, while the participating parties change over time.

Note, in Definition 3 parties can simply “arrive in an event” by
just “occurring in that event”. However, w. r. t. an OTTP and real
parties, this needs to be modeled more explicitly: A party will
arrive by only connecting to the OTTP, i. e., establishing a private
channel without sending any input. Then, in a second step (after
the party has already arrived/connected) the party can now send
its actual input to the OTTP. The corresponding event is then
implicitly created by the OTTP itself. In other words, a party first
connects to the OTTP (it arrives), then the (already) arrived party
sends its input (not part of the arrival itself) to the OTTP, and then
finally the OTTP creates the corresponding event, and evaluates
the decision functionality. After a decision is computed, the outputs
are distributed, and a new party can arrive.!?

DEFINITION 5 (IDEAL ONLINE TTP'3). Let p1,p2,... € P be an
ordered sequence of parties arriving. An ideal online TTP (OTTP)
(o)

evaluates an online functionality with decision function f : ®xX & —
D X D as follows: The ideal OTTP stores the initial state .

(1) The i-th party p}" arrives by connecting to the OTTP, i.e,
establishing a (private) communication channel only.

(2) Party p}¥ sends its input x; to the OTTP.

(3) The ideal OTTP sets the i-th event as o := (p}, xi).

(4) The ideal OTTP computes (Pi, yi) = f(Pi-1,0i), wherey; :=
{(i1 via)s - (P, Yim)} € D and m; € No.

(5) The ideal OTTP sends output y; i to party pzllf € PiOUT cP
fork e {1,...,m;}.

(6) The ideal OTTP stores the new state ¢; and deletes the old state

di-1.

We want to stress again that we assume that the sequence of
parties arriving is unknown to all parties. This implies that parties
participating do not know which other parties participate. Note,
this differs from other models where the participating parties are

2Correction: In the original version [24] the arrival of parties w.r.t. an OTTP was
modeled as just “receiving an event”, instead of a party arriving and then sending
its input. However, this was to abstract and thus we modeled it here more explicitly.
Note, we always modeled it that way w.r. t. the online SMPC protocol (cf. Protocol 2
in Section 5).

BCorrection: In the original version [24] the OTTP received an event containing a
party with its input. This was too abstract, and thus here we split it into a party first
only arriving, and then in a second step just sending its input. In addition, previously
a party pg}i—r € ?’iOUT occurring in the decision y; obtained output if and only if
Yikx # L. However, as here now L ¢ X and L ¢ Y, this condition is now removed.

assumed to be known. In addition, a party does not know for which
event o; it provides input. If a party does not provide or receive
any input or output, then the party does not learn that an event
occurred, i. e., a party arrived or provided input. This is different to
areactive TTP, where all participating parties know when the func-
tion is evaluated. We also want to stress the fact that w.r.t. online
functionalities there is a difference between a party receiving noth-
ing, and a party receiving a string with content “empty output”, as
the latter one is actually an output and additional information com-
pared to the first one, e. g., when receiving “empty output” the party
learns that an event happened, which is not learned if nothing is
received at all. This differs from offline and reactive functionalities:
Offline functionalities are computed once and receiving nothing
implies “empty output”. Similarly, for reactive functionalities, as all
parties provide input in each round, receiving nothing in a single
round implies “empty output”.

The overall goals of an ideal OTTP are to hide which and when
parties arrive or leave, the input and output of each party, and the
state. The states ¢; are only known to the ideal OTTP, except ¢y.

An example execution for an online matching problem with
general arrival is given in Example 1.

ExAMPLE 1 (ONLINE MATCHING WITH GENERAL ARRIVAL'4). The
set of parties is infinite and defined as P := {p1, p2,...}. The input
space is X = {1,...,10}. For simplicity we assume two parties are
matched if their inputs are equal. The state will store the unmatched
parties and their input values. The initial state is ¢o := 0.

Assume the first party that arrives is ps, and it uses 9 as its input.
The corresponding first event is then o1 = (ps,9). As it is the first
party that arrives, no match is possible. The decision is y; := 0, and
the new state is ¢1 := {(p5,9)}. The next party that arrives is pa,
and it uses 3 as input. The corresponding event is then o2 = (pa, 3).
As no match is possible, the decision is ys := (0, and the new state is
¢2 = {(p2,3), (ps,9)}. The third party that arrives is p1, and it uses
3 as input. The corresponding event is then o3 := (p1,3). Now, p1 is
matched with py. The decision is then y3 := {(p1, p2), (p2, p1)} where
the output of each party is the ID of the party it is matched with. The
new state is then ¢3 = {(ps,9)}.

The ideal OTTP hides even the participation of parties perfectly.
However, hiding the participation in the real world is hard (cf.
Appendix B). We therefore introduce an additional flavor of an
OTTP, where arriving, input providing, and leaving parties are
broadcast, i. e., whenever a party arrives or provides input the party
that arrives or provides input, the parties that are present, and
the parties which are leaving are known, but the actual inputs are
still private. Broadcasting some information means sending that
information to all parties, and to the adversary.'® In Appendix C we
will introduce additional flavors for more general arrivals (including
providing input multiple times).

4 Correction: In the original version [24] we used only events in the example. Now, it
is modeled as parties arriving and providing inputs.

5Correction: In the original version [24] we did not explicitly mention that the adver-
sary also receives broadcast messages, which is a standard assumption in any SMPC.
The broadcast messages need to be received by the adversary as well, as otherwise the
simulator could obviously never simulate the messages on the bulletin board (intro-
duced later), as it would not know which parties are present if no malicious party has
arrived.

DEFINITION 6 (OTTP WITH BROADCAST OF INPUT PARTIES'®).

An OTTP with broadcast of input parties (OTTPI) is an ideal OTTP
that additionally behaves as follows:

o Whenever a party pi" arrives, the OTTPI broadcasts the arrival
of party p¥ before p¥ can provide input.

o Whenever a party p}¥ provides input, the OTTPI broadcasts
that party p;¥ provides input.

o After each decision y; (and possible output distribution), the
OTTPI broadcasts the set of parties present P;.

4.3 Security Model

In the following we will define what it means for a protocol to
securely realize an OTTP. Note, our definitions are heavily inspired
by Goldreich [19] and Canetti [10]. However, their definitions do
not allow to model an ideal OTTP where the participation itself is
perfectly hidden.

The ideal OTTP does not leak which parties participate or when
they provide input and thus, an adversary cannot decide which
parties to corrupt. This problem is avoided by outsourcing the
corruption of parties. We therefore introduce the creator as a new
entity, which will create new parties and define their behavior.
In addition, it will also decide when and which parties will be
corrupted by the adversary.!” The adversary then takes control
over corrupted parties and learns their complete internal state, i. e.,
its input and all messages received or sent so far. We want to stress
that the adversary cannot choose which parties to corrupt. We will
then require a protocol to be able to deal with all valid corruption
strategies of the creator, and thus essentially check every valid
corruption strategy any classical adversary could have chosen.

DEFINITION 7 (CREATOR). A creator is an almighty entity. It is
computationally unbound, non-corruptable and behaves deterministic
w. r. t. its input (i. e., the content of its random tape). A creator C with
input z € {0, 1}* is denoted as C(z). A creator creates parties p € P
(including their inputs and behavior) and defines when they arrive. In
addition, a creator can decide to corrupt (or un-corrupt) a party, i. e.,
the adversary can control that party (or loses control).'® The creator
can always see all internal states of every entity, including any TTP.

Instead of defining security by comparing a TTP with a protocol
directly, we use the idea of Canetti [10] and compare the execution
of protocols only. Interacting with an OTTP is then executing a
protocol that instructs the parties to send their inputs to the OTTP.
This also allows the use of specialized TTPs within any protocol,
e.g., an ideal TTP that implements a bulletin board. We use this
approach, as it also allows comparing different OTTPs.

The view of an adversary A in protocol & consists of the com-
plete internal state of all corrupted parties and of all their mes-
sages sent or received. We then define the joint output of an ad-
versary A and all honest participating parties for a protocol 7 as

16Correction: In the original version [24] for each event the party that provides input
and set of parties present was broadcast. However, as events are now split into an
“arrival” and “input providing” phase, we changed this to broadcasting the party that
arrives, and broadcasting when a party provides input. In addition, we modeled the
behavior more explicitly.

7The creator is somewhat similar to the environment in the UC-framework [10] as it
creates parties and their inputs. However, here the creator will not act as a distinguisher.
18Note the un-corruption of a party is only important for mobile corruption strategies
(cf. Section 4.4) which will not be considered here.

the output of the adversary and the output of all (honest) par-
ties.!” For a creator C with input z and security parameter k we de-
note this joint output as EXEC, 4 (C(z), k). We define EXEC, 4 ¢ =
{EXEC”’A (C(z),k) }26{0,1}*,k€N as the corresponding probability
ensemble. Informally, a protocol & perfectly emulates a protocol ®
if the joint output of A for x is perfectly indistinguishable from the
joint output of a corresponding simulator S for :

DEFINITION 8 (PERFECT EMULATION?). Let C be a creator. A
protocol perfectly emulates a protocol @ if for any adversary A,
there exists an adversary (simulator) S (polynomial in the complexity
of A) such that

p
EXECq A,C = EXECpS,C-

Statistical or computational secure emulation can be defined by
requiring that the probability ensembles are only statistically or
computationally indistinguishable. W.r. t. the computational power
of the adversary we follow the standard assumption of classical
SMPC: For perfect and statistical emulation the adversary A is
computationally unbound.?! And computational secure emulation
requires the adversary to be probabilistic polynomial time.

We assume honest parties do not share their input with other
parties. In addition, we assume the existence of a broadcast channel
and private channels between all parties.

4.4 Adversary and Creator

In classical SMPC two main adversary types are considered, namely
a semi-honest and a malicious adversary [19]. The semi-honest
adversary follows the protocol definitions, but it stores all sent
and received messages in order to deduce more information. A
malicious adversary can additionally arbitrarily deviate from the
protocol, e. g., send wrong messages or stop sending messages at
all. The overall goal of the adversary is to either deduce more
information, e. g., w.r. t. private inputs or outputs of other parties,
or alter the outcome of the protocol run, i. e., the execution produces
incorrect results. The semi-honest or malicious adversary can also
have different “corruption powers”. W.r. t. offline or reactive SMPC
these are mainly static, adaptive, and mobile adversaries [19]: The
static adversary can corrupt up to m parties chosen before the
protocol execution. An adaptive adversary can corrupt up to m
parties chosen during the protocol execution. Mobile adversaries
can also corrupt up to m parties during the protocol execution, but
additionally can decide to corrupt a new party with the cost of
losing control over an already corrupted party. In other words, the
adversary can choose multiple times during the execution to corrupt
up to m parties chosen freely among all participating parties.
These notions of corruption can be transferred to the online
setting. However, here the set of parties participating is not fixed
and the adversary together with the creator determines the actual

9The adversary learns everything a corrupted party learns, and thus it is not necessary
to include the output of corrupted parties separately.

2 Correction: In the original version [24] we required that the protocols 77 and ® are
both probabilistic polynomial time. We removed this requirement for both protocols,
as otherwise only probabilistic polynomial time algorithms can be evaluated, and thus
not “any” online algorithm.

ZCorrection: In the original version [24] we did not explicitly mention that the ad-
versary is computationally unbound, which is of course a standard assumption w.r.t.
perfect emulation.

corruption. We will transfer them as follows: The number of cor-
rupted parties and the corruption strategy (e. g., static, adaptive or
mobile) is determined by defining the creator accordingly. Semi-
honest or malicious behavior of corrupted parties is determined by
the adversary.

For simplicity, first consider an offline setting with m semi-honest
(corrupted) parties of a total of n parties: The creator first creates
n parties and (randomly) selects m parties to corrupt. The adver-
sary controls the corrupted parties and is then defined to behave
according to the protocol specification (semi-honest).

In the online setting we will assume an “honest majority” which
will allow us to reuse feasibility results for offline functionalities
when showing how to perfectly emulate an OTTPI in Section 5.
Therefore, we will essentially consider a limit of corrupted parties
that participate at every point in time, i. e., an honest majority of
participating parties at all times. This means that the creator has to
carefully select which parties can be corrupted at which point in
time.

A corrupted minority creator C_ 1 ensures that at each point in
time the number of corrupted parties present or participating is
strictly less than the number of honest parties present or participat-
ing, respectively. Similarly, we define a second creator C_ 1 where

strictly less than 1/3 of the parties present or participating are cor-
rupted.??> We assume that corrupted parties are always corrupted
from the very beginning, i. e., when they are created (and before
they arrive).?3 In addition, a corrupted party will always be cor-
rupted and it cannot be un-corrupted.?* In other words, the creator
essentially creates corrupted or honest parties directly, which are
then either always corrupted or always honest.

For each corrupted party, the semi-honest adversary Agy, learns
their internal state and all their messages sent or received. The ar-
rival respecting malicious adversary Aam learns the same as the semi-
honest adversary, but additionally controls the corrupted party, i. e.,
when to send which messages. However, Ay, will always let the
corrupted party arrive as determined by the creator, and Ay, will
let the corrupted party provide its (adversary controlled) input.?
Enforcing the arrival ensures that the creator C(z) determines the
number of corrupted parties and not the adversary by delaying the
arrival. Note that this is not an actual restriction, as there always
exists an input z” such that creator C(z’) lets that particular party
arrive at a later point in time.

4.5 Perfectly Emulating Offline Functionalities

The standard definitions of security for offline and reactive func-
tionalities with static corruption (e.g., see Goldreich [19]) are a
special case of Definition 8: The creator creates the honest and
corrupted parties at the very beginning and then stops generating
new parties. This restricts the setting to a fixed set of parties.

«

22 Correction: In the original version [24] we used a wrong english term here (“at
most”) instead of the correct one (“strictly less”) to denote < %

ZCorrection: In the original version [24] we did not explicitly mention that we assume
that corrupted parties are always corrupted from the very beginning.

24This corresponds to a static adversary in classical SMPC.

% Correction: In the original version [24] the arrival respecting malicious adversary
let parties arrive in the corresponding event, and thus implicitly they always provide
input, too. As events are now split in arriving and providing input, we now need to
explicitly enforce that all parties provide input, too.

THEOREM 1 (OFFLINE FEASIBILITY RESULTS). For every offline
functionality there exists a (SMPC) protocol perfectly emulating the
corresponding offline TTP with known set of participating parties in
the presence of an adversary Agy, and a creator C<%, or in the presence

of an adversary Aqm and a creator C<%.

The feasibility result of Theorem 1 was proven by Ben-Or et al. [5].
Note, they did not prove security w.r. t. Definition 8 directly, but
in the offline setting Definition 8 and the security definition of
Ben-Or et al. [5] are essentially identical. Ben-Or et al. [5] used
Shamir’s secret sharing scheme [27] to share the private inputs.
They showed how to securely evaluate arithmetic circuits (addition
and multiplication of shared secrets), if the threshold is chosen as
|-%n.| in the presence of a semi-honest adversary and as [%n] in the
presence of a malicious adversary, where n is the total number of
parties participating.

4.6 Ideal Bulletin Board

In the ideal OTTP setting parties can arrive by connecting to the
OTTP. However, if we replace the OTTP with a (distributed) pro-
tocol, then the parties need to know with whom to exchange mes-
sages. Therefore, we assume the existence of an ideal bulletin board
BB that is append-only with certified publishing [22]:%° Parties can
write/store messages on B88. All messages on B8 are readable by
everyone, and can neither be altered nor deleted (append-only).
Every message (m), has an identifiable author p (certified publish-
ing).

Here, a party p that arrives writes (arrive), on 88. For ease
of notation we assume 88 to be majority consistent: Only together,
a majority of parties participating during an event can write a
new set of parties present £; on B8, i.e., if pi.N arrives in event o
and P;_1 is the set of parties already present, then a majority of
them can write together (present, pi)?’iflu{p‘i“'}' Note, the same
functionality can be achieved by every party individually writing
the set of parties present on 88. Then, a new arriving party checks
the complete history in order to find out which parties are actually
present (based on the majority of messages).

5 FEASIBILITY RESULT

In order to evaluate arbitrary online functionalities with secure
SMPC protocols, the current state of the OTTPI needs to be stored
among the parties. This requires that there are always parties
present that can store the current state, without being able to learn
it. This can be done by secret sharing the state among the parties
that are present.?’ In order to allow that at any point in time at
least one corrupted party can be present, we need to restrict the
minimal number of parties: For an adversary Ay, with creator C <1

we require that there are always at least n > 4 parties present, and

n > 3 for Ag, with C_;1. A larger n tolerates more corrupted parties,
2

26 Correction: In the original version [24] we mentioned a possible candidate [22], but
it requires additional assumptions (which we did not mention). For the sake of clarity,
we therefore now just assume the existence of an ideal bulletin board 88 (similar to
assuming the existence of private channels).

%"Note that there are online functionalities that cannot be implemented securely,
e. g., any online functionality where at some point only one party is present, as it is
impossible to store the state securely within one party.

but requires that there are always n parties present. The final choice
of n depends on the actual application.

An OTTPI is then emulated by first “sharing” the initial state
¢o among the first n parties that have arrived. A special ramp-up
phase is used to evaluate the decision functionality for the first n
events (that would have happened). Note, that the ramp-up phase
differs from the ideal model, as now every party of the first n parties
already knows every other party of the first n parties that arrive
(will provide input), before any party provided input, e. g., the first
party learns who is the second party that will arrive/provide input
before the first party itself hast to provide any input. After the ramp-
up phase, whenever a new party arrives, the decision function is
then evaluated with an SFE protocol that receives the input and
the shares of the state, and computes and distributes the output.
Afterwards the set of parties present is published on B8 so that
new parties arriving know with whom to communicate. A single
evaluation of the decision function is described in Protocol 1 and
the protocol emulating an OTTPI is described in Protocol 2:

ProTOCOL 1 (EVALUATING THE DECISION FUNCTION FOR A SINGLE
EVENT). Let the set of parties present be Pi_1 as defined by BB.

Evaluate the decision functionality f for o; := (p]Y, xi) as follows:

(1) The parties in Pi—1 and p} evaluate m;, where protocol r;
perfectly emulates the following offline functionality f;:
(a) Party p}¥ uses x; as input. The parties in P;i_1 use their
shares of $i—1 as input.
(b) Reconstruct the state ¢;—1 from the shares, create the event

oi = (p}, xi), and compute (¢i,yi) = f(¢i-1,0%).

(c) Send the outputs to each party according to y;. Parties not
contained in y; obtain the empty output L.

(d) Output the set P; of parties present in the new state ¢; to
each party.

(e) If|Pi| < n the execution halts. Otherwise, share the state ¢;
among the parties P; using Shamir’s secret sharing scheme
with threshold t; := H IPiI].

(2) The parties in Pi—1 U {p]'} write (present, Pi)Pi_IU{pl{N} on
B8.

ProTocoL 2 (EMULATING AN OTTPI). An online functionality

(o)
with decision function f and initial state ¢q is evaluated as follows:

(1) The firstn parties p', .. ., py that arrive write (arrive)pgN for
i€{1,...,n} on BB. All parties in Py := {p, ...
(present,Po)p, on BB.

(2) The parties in Py share the initial state ¢g as follows:

(a) Setty := H |7)0|-| and g(x) = ¢o + Z;‘]:_ll x/ mod q, where
q is a sufficiently large prime.
(b) Party p;¥ withi € {1,...,n} uses g(i) as its share of ¢o.

PR’} write

(3) Evaluate the decision functionality f fori e {1,...,n}:
() Execute Protocol 1 for event o; := (p}", x;) with the following
modifications:
(i) Instead of Step 1e): If |P;| # i, the execution halts. Other-
wise share ¢; among Poy with t; := ty.
(ii) Instead of Step 2: The parties write (present, Po)p, on
BB, i.e,P;:=PyonBSB.
(b) If Protocol 1 has halted early, then the execution stops.

(4) Seti:=n+1.
5) Wait until a party p™™ with input x; arrives, i. e., p™ has written
party p; p p;
(arrive)pz_N on BB.

(e8]
(6) Evaluate the decision functionality f with Protocol 1.
(7) If Protocol 1 has halted early (|P;| < n), then the execution
stops. Otherwise, seti := i + 1 and got to Step 5.

Note, the initial state ¢ in Protocol 2 is modeled as a single value
instead of a vector for clarity of notation. However, in an actual
application (possibly) the initial state, but especially any consec-
utive states (cf. Protocol 1) are likely to be vectors.?® Therefore,
the sharing of any state has to be understood as the sharing of the
individual entries of a state-vector, instead of a single state-value.
The same holds for the input and output of parties.?’

In Protocol 1, parties not included in the decision obtain L as
output. As by definition L does not occur in the output space, i. e.,
1 ¢ Y, this needs to be considered when actually implementing a
corresponding SMPC protocol. One possible approach is to output
an additional bit, which indicates whether the output is actually
L: For simplicity assume the output is a single value. If a party
should receive an actual output (it occurred in the decision), then
the additional bit is set to 1, and the output value is set to the actual
output. If a party should not receive any output (it should receive L),
then the additional bit is set to 0 and the output value itself is also
set to 0. This approach does not only encode L, but also allows to
distinguish between the output 0 and _L. In addition, this approach
prevents a (malicious) party from providing L as input: If one would
only use a single value 0 to represent L, then a (malicious) party
could use that also as input, as typically the input and output space
of offline SMPC protocols are the same, e. g., as in the approach by
Ben-Or et al. [5]. However, by having the additional bit not being a
part of the input phase itself, a party cannot provide L as input.3°

THEOREM 2. Protocol 2 perfectly emulates an OTTPI for any online

functionality with decision functionality f in the presence of an
adversary Agm and a creator C_1 with T := 3, or in the presence of

3
an adversary Agy, and a creator C_1 with t := 2. This holds only if

n € N andn > 7, and initially at lezlst n parties arrive first without
providing input (while their arrival is broadcast by the OTTPI), and
then those n parties provide their inputs, and then at least n parties
are always present.3!

Note, the underlying (offline) SMPC protocol requires that at
least n parties initially arrive before any computation can be per-
formed, e. g., protocols based on Shamir’s secret scheme typically
require at least 3 parties to perform computations while having
at least one corrupted party [5]. Therefore, initially n parties have

28Note, the initial state can always be a fixed value, e. g., ¢ := 0, as the initial state

o
can be encoded directly in the decision functionality f itself. In addition, we think
that for many application the initial state is even empty, as no party has arrived or
provided input yet, e. g., for online matching with general arrival.

2 Correction: In the original version [24] we did not clarify that the state and input
should be seen as vectors.

30Correction: In the original version [24] L was part of the input an output space.
However, here it is removed, and thus we additionally describe an approach how to
encode L.

31Correction: In the original version [24] we just stated that “initially at least n parties
arrive”, but the intended meaning was unclear. This is now corrected by specifying
this more precisely.

to arrive (by writing “arrive” on 88) first without providing any
input (not yet possible), and then after n parties arrived, they can
provide their input. Hence, in the ideal model initially n parties
have to arrive first without providing input, too. And then after
n parties arrived, they can also provide their input. This is, e. g.,
required if a malicious adversary is present and n > 5, as then a
malicious party arriving as the fourth party can choose its input
based on knowing who the fifth party is.>?

Proor. First, observe that the threshold ¢; used to share the state
¢; is chosen such that at any point in time no set of corrupted parties
can reconstruct the state, alter the state, or prevent reconstruction
for C_1: The honest parties have always enough shares (honest

majoritry), and the corrupted parties always lack at least one share
(choice of the threshold).

Second, according to Theorem 1 there exists a protocol 7; that
perfectly emulates the offline functionality f; in Protocol 1 for Aam
and C <1 or Ay and C <1 respectively. Thus, there exists a corre-

sponding simulator S; for f;. This includes that simulator S/ can
extract the inputs of corrupted parties in order to send them to
the OTTPL In addition, the set of parties present is broadcast after
every decision (and possible output distribution) by the OTTPL
Therefore, the simulator S; knows when a decision was computed
and when (possibly) corresponding outputs were distributed. Thus,
if corrupted parties do not obtain output from the OTTP]I, then the
simulator S] can ensure that they obtain L. As the set of parties
present is broadcast after each decision, the simulator S} can also
ensure that 7; outputs the same set of parties present. The consis-
tency of the shares provided by the parties in £;_; is (implicitly)
checked by f; when it reconstructs the state ¢;_1. This also covers
the evaluation of the first n events, especially of 1. Note, the shares
of the initial state is shared with a fixed polynomial, and the shares
of consecutive states are generated by f;. Therefore the shares of
honest parties will always be correct (similar as if a TTP would
share a secret).

Finally, the main simulator S has to simulate the messages on
B8 and call the corresponding simulator S] multiple times: The
messages on BB are trivial to simulate by the simulator S as when-
ever a party arrives or provides inputs, the OTTPI broadcasts the
party which arrives or provides input. In addition, after each deci-
sion the OTTPI broadcasts the set of parties present, too. Especially
the initially arriving n parties are broadcast before they provide
any input. In particular, initially n parties arrive, and their arrival is
broadcast by the OTTPI. Note, no party can provide input, unless
all n parties have arrived. The simulator S writes the corresponding
arrive messages on 88 as soon as they are broadcast. After n arrive
messages are written on 88 (and thus corresponding broadcasts),
the simulator S writes the set of parties present £y on 88. Next,
the initially arriving n parties provide their input one after another,
where each sending of input is broadcast by the OTTPI. Each broad-
cast of a party providing input, and each broadcast of the set of
parties present after a decision (and possible output distribution),

[s¢]

corresponds to the evaluation of f and corresponding output dis-
tribution. By definition, the offline functionality f; computes the

32Extension: We added this paragraph to describe why we require that initially n
parties have to arrive first without providing input.

(]

decision functionality f correctly. Therefore, the simulator S can
simply call the corresponding simulator S;. In addition, for the first
n decisions the simulator S will always write (present, $y) on 85.

After the ramp-up phase, the “normal” executions starts. A new
party that arrives is broadcast by the OTTPL and thus the simu-
lator writes the corresponding arrive message on 88. When the
newly arrived party provides input, which again is broadcast, the
simulator S calls again the corresponding simulator S; to simulate
the corresponding evaluation of the decision functionality. As the
set of parties present is broadcast after each decision, the simulator
S can write the corresponding set of parties present on 88. If at
some point the number of parties present is below n, or during
the ramp-up phase |P;| # i, the complete execution halts. As the
simulation of S; is perfect, then so is the combined simulation done
by §.33 O

REMARK 1 (REQUIREMENT OF MEMORY). Recall that the state has
to store the set of parties in order to compute the decision function.
However, if we assume an OTTPI, then the parties present are known
and can be hard coded in a modified protocol . Therefore, a state
needs to be stored only if some values need to be available in multiple
events. Hence, some online functionalities can be realized without the
need to share a state. Recall online matching with general arrival
(cf. Example 1), and assume an OTTPI with a semi-honest adversary.
Whenever a new party arrives with their input, the previously un-
matched parties will use their original input as input for m; so that no
state needs to be shared in this case. This does not work with malicious
adversaries, as they could easily alter their input, so the state needs to
be shared in this case.

REMARK 2 (MALICIOUS PARTIES ABORTING). The OTTPI and Pro-
tocol 2 can deal with malicious parties that abort as long as they have
provided their input. We do not exclude malicious parties once they
are detected: A rational malicious party will not behave maliciously
during the computation, as it otherwise would be detected. In the worst
case, it will only change its input, which cannot be detected. However,
if one wants to blame a malicious party p’, then a majority can eas-
ily write (malicious,p’)Piilu{pﬁN} on BB and then p’ is implicitly
excluded in any further communication.

REMARK 3 (COMPUTATIONAL SECURITY). Cramer et al. [13] showed
that for every offline functionality there exists a corresponding com-
putationally secure SMPC protocol. In their constructions they use a
homomorphic threshold cryptosystem. This allows tolerating A gm with
C<%, or Ay, withC<1 (at least one honest party). Protocols 1 and 2 and
the corresponding proof can be easily adapted to use Cramer et al. [13]
scheme by storing the state as ciphertext.

REMARK 4 (MOBILE ADVERSARIES). In order to keep our model and
construction simple, we did not consider mobile adversaries (proactive
security). However, our construction in Protocols 1 and 2 could be
adapted roughly as follows: First, use the proactive secure building
blocks introduced by Eldefrawy et al. [16] (instead of Shamir’s secret
sharing scheme). Second, incorporate the refreshing of shares at suit-
able steps, e. g., multiple times when parties wait for new parties to

33Extension: We added more details to the proof, especially w.r.t. the simulator’s
behavior.

arrive, and during the execution of Protocol 1. Third, old shares have
to be deleted as soon as they are no longer required.

REMARK 5 (RaMP-UP PHASE?®). The ramp-up phase as presented
in Protocol 2 evaluates the decision functionality for each possible
event separately. As we require at least n parties to be always present,
we abort if a decision would remove a party from the set of parties
present (during the ramp-up phase). From a practical point of view, it
might be more efficient if the first n parties arrive and provide input at
the same time, and then a single corresponding decision is computed.
The computation can internally either simulate the corresponding
events, or treat this as a special case/event with multiple inputs at
once. The former is closer to our proposal, whereas the later alters the
underlying online problem slightly, which can be beneficial. Note, this
behaviour is not covered by our model presented so far. However, they
are a special case of the extensions discussed in Appendix C.

6 LIMITS OF THE OTTPI

The ideal OTTP is essentially the holy grail w.r.t. privacy and se-
curity, as no party knows which or when other parties participate
or provide input. Not even the number of participating parties is
known.?® In classical SMPC parties are assumed to know which
other parties participate. It is therefore important to see the results
in this section not as a contradiction to our feasibility result in
Section 5, but as a motivation that more research is required w. r. t.
hiding participating parties in general. This is also desirable for
classical SMPC: Assume a simple offline function computing the
average M of the parties (positive) inputs.’® Knowing that n par-
ties participate leaks that the input of each party is at most M - n.
However, this is not leaked if we do not know how many parties
participated.

An OTTPI leaks whether a party participates, and the order in
which parties arrive and leave. An ideal OTTP hides both informa-
tion. However, knowing the order in which parties arrive can leak
additional private information. In order to capture that leakage, we
compare an OTTPI and an ideal OTTP where in both settings the
parties that have participated are known after the execution, but
only in the OTTPI setting the order in which the parties arrive and
leave is known. Intuitively, an online functionality provides privacy
with public arrival if one cannot deduce additional information
from knowing the order in which certain parties arrived or left:

DEFINITION 9 (PRIVACY WITH PUBLIC ARRIVALY). An online func-

tionality guarantees privacy with public arrival if for any finite set
P :=A{p1,...,pm} of parties arriving uniformly at random, the cor-
responding OTTPI perfectly emulates the corresponding ideal OTTP
if after the last decision yp, is distributed, the unordered set P of all
parties that participated is published.

Note, that Definition 9 implicitly allows the simulator (interact-
ing with the ideal OTTP) to insert into its view (after # is published)

34Extension: We added a remark on how the ramp-up phase could be implemented
alternatively.

35 An imperfect comparison is to assume that blind and deaf parties participate.

3 Correction: In the original version [24] we did not explicitly mention that the leaked
information can only be obtained if we assume that all inputs are positive.
37Correction: In the original version [24] the definition was based on events. We
changed it here to parties arriving and decisions, as events are now split into “arriving”
and “providing input”. In addition, we now explicitly mention that the parties arrive
uniformly at random.

a (random) order of how the parties might have arrived: The simula-
tor does not learn the order in which parties have actually arrived (if
the functionality does not leak that explicitly), and thus only learns
which parties have arrived, i. e., the simulator learns the unordered
set . However, the adversary (interacting with the OTTPI) learns
the order in which parties arrive, and thus will include it in its view.
Security (cf. Definition 8) is defined by comparing the joint outputs
of the adversary and simulator (both including the output of honest
parties to guarantee correctness). Therefore, the simulator has to
select and insert (in retrospect) into its view an order of how the
parties could have arrived such that the corresponding probability
ensembles are indistinguishable, i. e., they have the same distribu-
tion. If during the execution nothing can be learned from the order
in which parties arrived, then a (uniformly at) random selected
order of parties arriving by the simulator (respecting the order of
corrupted parties arriving and inserted in retrospect into its view)
is perfectly indistinguishable from the parties actually arriving uni-
formly at random, as in both settings the order of parties arriving
is uniformly at random, and thus the corresponding probability
ensembles have the same distribution. However, if during the exe-
cution additional information can be learned from the actual order
in which the parties arrived, this “trick” will no longer work, and
thus the views will be distinguishable.8

In the following we will show that there are multiple commonly
used online (matching) algorithms that do not guarantee privacy
with public arrival.

PROPOSITION 1. The GREEDY algorithm® for online matching
with general arrival does not guarantee privacy with public arrival.

ProoF. Recall, a party leaves only if it is matched. As soon as
two honest parties leave in the OTTPI model, we learn that these
two parties are matched. However, the simulator can only guess
with probability 1/2 whether an honest party is matched or not. O

Another example is online maximum weighted bipartite match-
ing [23]: The problem consists of n servers present from the very
beginning and n requests arriving one after another. The n servers
are publicly known, and never leave the computation. Each request
contains an ordered list of the servers reflecting the preference
for each server, where the first entry has the highest preference
value of n and the last entry has the lowest preference value of
1. Whenever a request arrives, the online algorithm has to decide
immediately with which server the request will be matched. If a
server is matched once, it cannot be matched again. In addition,
any decision made cannot be changed later. The goal is to match all
requests such that the sum of the preference values of all matches
is maximized. The optimal solution is to greedily match the request
with its highest preference server that is still unmatched [23].

ProPOSITION 2. The GREEDY algorithm for online maximum
weighted bipartite matching does not guarantee privacy with public
arrival.

PROOF. Assume a (corrupted) server is matched with the first
request. In the OTTPI model the server knows that it is matched
with the first request, and thus learns that the request has given it

38Extension: We added this paragraph as additional explanation of Definition 9.
39 As soon as two parties can be matched they will be matched.

the highest priority. In the ideal OT TP model the server does not
know whether it is matched with the first, the i-th or even the last
request, and thus does not know whether it is matched due to being
preferred to others, or because it is the last unmatched server. O

Even stronger results hold for online bipartite matching, where
similar to online maximum weighted bipartite matching requests
provide preferences for servers. However, their preferences are
binary for each server indicating whether they are willing to be
matched with that server or not. A request is not matched if there
is no server available that the request is willing to be matched with.

PRroPOSITION 3. No online bipartite matching algorithm in which
a request is always matched if there is a suitable server available, i. e.,
the server is unmatched and the request is willing to be matched with
that server, guarantees privacy with public arrival.

Proor. Assume the first request R is matched with server Sj.
Now assume (corrupted) request Ry arrives and Ry is willing to
be matched only with S;. As S; is already matched R, cannot be
matched. In the OTTPI model, Ry knows that it is the second request.
As it is unmatched, it can immediately deduce that R; is matched
with S1. In the ideal OTTP model, Ry does not know that it is the
i-th request, and thus learns only that Sj is already matched. O

Another simple online matching algorithm is RANDOM, i. e., for
online bipartite matching, whenever a request arrives, it is randomly
matched with any available server disregarding the preferences of
the request. It seems like RANDOM could guarantee privacy with
public arrival, but even RANDOM does not:

PROPOSITION 4. The RANDOM algorithm does not guarantee pri-
vacy with public arrival.

Proor. Each match is completely random, and the requests do
not provide any input. Hence, nothing can be learned about their
inputs. The first n request will be matched with the n servers. All re-
quests that arrive later cannot be matched anymore, and they learn
that all n servers are already matched. In the OT TPI model, an adver-
sary obviously learns that the first n requests are “matched”, and the
output for all later requests is exactly “not matched”. However, in
the OTTP model, a participating request learns either it is matched,
or if is unmatched and at least n other requests are matched. It does
not learn which requests are matched or unmatched. O

However, if we restrict the amount of possible events, then RAN-
DOM can guarantee privacy with public arrival:

PROPOSITION 5. The RANDOM algorithm guarantees privacy with
public arrival if the execution is stopped immediately after all servers
are matched.

Proor. W.lo.g. assume a total of n servers. The execution is
halted after exactly n requests have arrived and are matched. Now
assume that after decision y; with i € {1,..., n} the set of all par-
ticipating parties is published. The view w.r.t. corrupted parties is
trivial to simulate as they are identically in both settings: The party
connects to the simulator, the simulator connects as corresponding
party to the ideal OTTP, and returns the corresponding outputs

of the ideal OTTP.%® All other requests are matched by definition,
and thus trivial to simulate. The order of the request in which they
arrive can be chosen uniformly at random respecting the order of
matched corrupted requests. As there is no prior knowledge on
when requests arrive, except that they arrive uniformly at random,
this is perfectly indistinguishable. O

Another positive example is bipartite matching where every
request is always matched (ALWAYS) with the best fitting server,
i.e., a server can be matched multiple times with different requests.

ProposITION 6. The ALWAYS algorithm guarantees privacy with
public arrival with an adversary Ay, but not with an adversary Agm.

Proor. Note, each match depends solely on the initial input of
the server and the input of a request. As no server can get occupied,
arequest will always be matched with the same server independent
of when it arrives, as long as the input is the same. Again, corrupted
parties are trivial to simulate as their inputs and outputs in both
settings are identical. The order of the other requests arriving can
be chosen uniformly at random respecting the order of matched
corrupted requests. This is perfectly indistinguishable for a semi-
honest adversary, but not for a malicious adversary. A malicious
adversary can store some information about previous requests by
enforcing a certain matching, e. g., two servers sy, sy are corrupted
and at least one request r. By letting request r be matched with
either s; or s, we can store information about whether exactly one
(s1) or more requests arrived (s3). As the simulator can only guess
how many requests already arrived (and how many will arrive in
total), it is likely that the simulator guesses wrong. Thus, the joint
outputs are distinguishable. O

7 ADDITIONAL RESULTS

We briefly discuss the setting with a dishonest majority in Ap-
pendix A, and argue in Appendix B why the arrival time can in
general not easily be hidden. In Appendix C we will allow parties
to arrive, leave and provide input arbitrarily, and therefore intro-
duce the OTTPE and OTTPP, and briefly present the corresponding
feasibility results.

8 CONCLUSION

In this paper we proposed several new models for TTPs that can
evaluate online functionalities. We described two main types: The
ideal OTTP where the arrival of the parties is private, and the
OTTPI where it is broadcast. We also extended the model to allow
parties to arrive, leave and provide input arbitrarily, and introduced
additional models, namely the OTTPE and OTTPP in Appendix C.
We showed that for any online functionality there exists a protocol
in the OTTPI (and OTTPE/OTTPP) setting that perfectly emulates
the online functionality as long as there are always at least three
parties present. As the arrival of parties cannot be easily hidden
with reasonable assumptions (cf. Appendix B), only the OTTPI (and
OTTPE/OTTPP) model seem to be real world applicable.

40Correction: In the original version [24] the simulator forwarded inputs, but there
are no inputs. Therefore, we removed that, and included instead the simulation of the
connection establishment.

In the future, we plan to investigate further how to provide better
privacy than what can be achieved by an OTTPI, while being easier
to realize than a protocol secure in the ideal OTTP model.

ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — 2236/1.

REFERENCES

[1] Balamurugan Anandan and Chris Clifton. 2017. Secure minimum weighted
bipartite matching. In Conference on Dependable and Secure Computing. 60-67.
David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,
Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright. 2018. From Keys to
Databases—Real-World Applications of Secure Multi-Party Computation. Comput.
7. (2018), 1749-1771.

[3] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.
Communication-Optimal Proactive Secret Sharing for Dynamic Groups. In Ap-
plied Cryptography and Network Security. Springer, 23-41.

[4] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology - CRYPTO. Springer, 420-432.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness
Theorems For Non-Cryptographic Fault-Tolerant Distributed Computation. In
Symposium on Theory of Computing. ACM, 1-10.

[6] Marina Blanton and Siddharth Saraph. 2014. Secure and Oblivious Maximum
Bipartite Matching Size Algorithm with Applications to Secure Fingerprint Iden-
tification.

[7] DanBogdanov. 2013. Sharemind: programmable secure computations with practical
applications. Ph.D. Dissertation. University of Tartu, Estonia.

[8] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-
cols. Journal of Cryptology 13 (2000), 143-202.

[9] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In International Conference on Cluster Computing. 136—145.

[10] Ran Canetti. 2020. Universally Composable Security. J. ACM 67 (2020), 28:1—
28:94.

[11] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-

tionally secure protocols. In Symposium on Theory of Computing. ACM, 11-19.

Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. 2020. Fluid MPC: Secure Multiparty Computation with Dynamic

Participants. Cryptology ePrint Archive, Report 2020/754.

[13] Ronald Cramer, Ivan Damgérd, and Jesper Buus Nielsen. 2000. Multiparty Com-

putation from Threshold Homomorphic Encryption. Cryptology ePrint Archive,

Report 2000/055.

Ivan Damgard and Jesper Buus Nielsen. 2003. Universally Composable Efficient

Multiparty Computation from Threshold Homomorphic Encryption. In Advances

in Cryptology - CRYPTO. Springer, 247-264.

Yvo Desmedt and Sushil Jajodia. 1994. Redistributing secret shares to new access

structures and its applications. Technical Report ISSE TR-97-01. George Mason

University.

[16] Karim Eldefrawy, Seoyeon Hwang, Rafail Ostrovsky, and Moti Yung. 2020.
Communication-Efficient (Proactive) Secure Computation for Dynamic Gen-
eral Adversary Structures and Dynamic Groups. In Security and Cryptography
for Networks. Springer, 108-129.

[17] Amos Fiat and Gerhard Woeginger (Eds.). 1998. Online Algorithms: The State of

the Art. Springer.

Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and

David Wajc. 2019. Online Matching with General Arrivals. In 2019 IEEE 60th

Annual Symposium on Foundations of Computer Science (FOCS). 26-37.

Oded Goldreich. 2004. Foundations of Cryptography: Basic Applications. Cam-

bridge University Press.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play ANY mental

game. In Symposium on Theory of Computing. ACM, 218-229.

Philippe Golle. 2006. A Private Stable Matching Algorithm. In International

Conference on Financial Cryptography and Data Security. Springer, 65-80.

[22] James Heather and David Lundin. 2009. The Append-Only Web Bulletin Board.

In Formal Aspects in Security and Trust. Springer, 242-256.

Bala Kalyanasundaram and Kirk Pruhs. 1993. Online Weighted Matching. Journal

of Algorithms 14 (1993), 478-488.

[24] Andreas Klinger and Ulrike Meyer. 2021. Towards Secure Evaluation of Online
Functionalities. In The 16th International Conference on Availability, Reliability
and Security (ARES 2021). Association for Computing Machinery.

[25] Ming Li, Ning Cao, Shucheng Yu, and Wenjing Lou. 2011. FindU: Privacy-
preserving personal profile matching in mobile social networks. In International
Conference on Computer Communications. 2435-2443.

[2

=
&

[14

[15

[18

[19

[21

~
&

[26] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority. In Symposium on Theory of Computing. ACM,
73-85.

[27] Adi Shamir. 19799. How to Share a Secret. Commun. ACM 22 (19799), 612-613.

[28] Stefan Wiiller, Michael Vu, Ulrike Meyer, and Susanne Wetzel. 2017. Using Secure
Graph Algorithms for the Privacy-Preserving Identification of Optimal Bartering
Opportunities. In Workshop on Privacy in the Electronic Society. ACM, 123-132.

[29] Andrew C. C. Yao. 1986. How to generate and exchange secrets. In Symposium
on Foundations of Computer Science. 162-167.

A DISHONEST MAJORITY

In Section 5 we assumed to always have a majority of honest non-
corrupted parties. Another common assumption in classical SMPC
is to assume a dishonest majority [19], both with semi-honest and
malicious adversaries, i. e., in the worst case only one party is honest.
Any offline functionality can be realized computationally secure
if an early abort is allowed [19]. In the online setting assuming
a dishonest majority requires dealing with situations where at
some point only corrupted parties are present, i.e., C<1: An honest
party arriving has to assume that after it arrived all other parties
are dishonest. Therefore, the parties that were present before the
honest party arrived and the parties that are present after the honest
parties leaves are all corrupted.

PROPOSITION 7. There are online functionalities that cannot be
emulated even computationally secure without the help of an OTTP
(or OTTPI) in the presence of an adversary Agy, and a creator C<;.

Proor. Consider matching where each input is allowed to be
matched at most four times. Obviously the state has to contain
some information w.r. t. the inputs, e. g., a counter for each possible
input. Assuming no TTP, then only the parties themselves perform
the computation and store the state somehow (shared). How this
is done exactly is not important, but in order to use the state, the
parties present need to be able to recover the current state.

Now assume that currently n corrupted parties are present. Then,
a new (honest) party arrives, provides its input, is immediately
matched, and leaves again. This means that before and after the
honest party is present, the adversary learns the state and thus the
input of the honest party. O

A consequence of Proposition 7 is that every newly arriving
party has to assume that the previous state is either known to
the adversary or even altered. This essentially implies that online
functionalities that require a state cannot be emulated securely by
any protocol without the help of a TTP. However, if we restrict the
type of online functionalities that can be evaluated such that inputs
of parties can only be considered during their presence, then we
can allow a dishonest majority.

THEOREM 3. An OTTPI for an online functionality can be emulated
computationally secure by an SMPC protocol in the presence of an
adversary Ay, and a creator C<1 if each state §; € O depends solely
on the inputs and outputs of the parties present in P;.

Proor. Note, we will present only the main idea, without the
technical details and restrictions that have already been introduced
by others in classical SMPC and are required for offline or reactive
SMPC with dishonest majority.

The idea is to ensure that the contribution of the inputs and
outputs of a single party to the current state lasts only as long as it

is present. This way each party itself can prevent reconstruction of
their own input.

W.lo.g. assume that all inputs and outputs of all parties present
in P; are stored in ¢;. The state ¢; is organized as a database,
where each entry d; corresponds to the inputs and outputs of party
pj- Each entry is shared among all parties present such that all
parties need to cooperate in order to reconstruct the state, i.e.,
ti == |P;i|. If a new party arrives, the threshold is increased ac-
cordingly.*! If a party p; leaves, then the threshold of all database
entries dy,...,dj—1,dj+1, .. .,d|pi‘ is decreased. The threshold of
entry d; is not touched, and thus becomes non-recoverable as soon
as p;j has deleted its share. O

Note, online matching with general arrival (cf. Example 1) is still
possible with this approach.

The above approach only works with malicious adversaries if
we allow them to modify the current state: As soon as no honest
party is present, the malicious adversaries can change the state (not
possible with an OTTPI). Hence, a new party arriving must assume
that the state is completely controlled by the malicious parties and
thus effectively require that no state is used, i. e., just use inputs of
parties, and no state at all.

However, assuming a dishonest majority where the corrupted
parties are split between two non-colluding adversaries, allows
again to securely evaluate any online functionality: Essentially the
idea is to choose the threshold for sharing the state maximal and
evaluate the decision functionality with protocols secure against
classical dishonest majority. As the adversaries do not collude, the
state can never be reconstructed or changed by a single adversary.

B HIDING THE ARRIVAL OF PARTIES

Section 6 shows that it is highly desirable to hide the arrival of the
parties, i. e., hide that a party is the i-th party to arrive. If we can
hide the arrival of parties, then we are able to securely simulate
the ideal OTTP. However, realizing this in the real world poses
multiple problems.

First, the ideal OTTP effectively hides even the presence of chan-
nels, i.e., an adversary checking all outgoing connections of all
possible parties cannot observe whether a party sends messages
to the ideal OTTP or not. We do not know whether this is pos-
sible to achieve (perfectly) in the real world. However, one can
image an adversary with limited powers that cannot observe the
existence of channels, and can only control corrupted parties. E.g.
an internet service provider can check if messages are sent, but
a “normal” hacker might be only able to corrupt certain parties
without observing the channels of all possible parties.

In order to hide the arrival itself, the participating parties have
to be at least anonymous, as otherwise it is trivially observable
which party arrives. If we assume only semi-honest adversaries,
then anonymous participation is achievable: All parties perform
the computation anonymously and follow the protocol. However,
if an adversary can be completely anonymous, the intent of being
“semi-honest” seems unrealistic, as the adversary does not have

“INote, that the threshold of Shamir’s secret sharing scheme can be increased and
decreased without secret reconstruction as shown by Desmedt and Jajodia in [15]:
Each party shares their current share with all other parties. Then, the parties can
compute locally a new share from the received shares.

to fear any consequences if he is blamed for cheating. If we allow
malicious adversaries, they can easily add new parties and break
the security. Therefore, parties need to be restricted such that they
can arrive at most once. How to actually realize such a check in a
privacy preserving manner is beyond the scope of this paper. For
now, we just assume that this is possible, which leaves the problem
of hiding how many parties are currently participating.

One at first glance reasonable approach (that will fail in the
end) to hide the arrival of the parties is to introduce fake parties.
A real party is an actual party in # participating, i. e., a party that
participates also in the OTTP model. A fake party is only present
in an actual protocol execution and acts like a real party, i.e., it
arrives, provides input and maybe leaves. However, a fake party is
not allowed to change the outcome of an evaluation, e. g., a fake
party can never be matched with a real party, as then the real party
would be unavailable.

Note, here we ignore the fact that fake parties introduced by real
parties are somewhat contradicting to a party arriving at most once
at the same time. However, we only want to show that even intro-
ducing fake parties does not solve the problem, and we therefore
simply assume that the decision function will somehow distinguish
between real and fake parties: First, introducing fake parties will
never be able to perfectly hide the arrival of parties. The fake par-
ties need to be introduced by the participating parties themselves
following some strategy. Such a strategy is in the most general form
the introduction of 0 to M fake parties at certain points in time. We
can safely assume an upper limit if we want to guarantee at least
some efficiency. It is possible that all participating parties decide
not to introduce any fake party at all and the arrival of parties is no
longer masked. Note that requiring each party to always introduce
a minimal amount m of fake parties leads to the same result, e. g.,
in online maximum weighted bipartite matching the first matched
server can learn that it is matched with the first party if it is matched
with the ((n+1)m + 1)-th party, i. e., all parties decide to introduce
only m fake parties, where n is the number of servers.

Second, even if we only try to achieve computational security (cf.
Remark 3) with a semi-honest adversary, then the computational
overhead would become computationally infeasible: Reconsider the
first argument when all parties decide to introduce 0 fake parties.
In order to make the probability for such an event negligible, we
have to introduce exponentially many fake parties.*?

As for now it seems impossible to hide the arrival of the parties
in general.

C EXTENSIONS

In the previous sections we restricted each party to provide input
only once, namely when they first arrive. In addition, in a single
event only a single party could provide input.

42Correction: In the original version [24] we used as additionally third argument an
online functionality that we thought supports that hiding of parties is sometimes
even impossible. As example we used an auction, where a higher bid is immediately
broadcast after a party has overbid the previous highest bid. However, at that time we
did not notice that the example is essentially integrating the behavior of an OTTPI in
the online function itself. Therefore, the broadcast happens in the ideal model, too.
Hence, the provided example was wrong, and is now removed.

In this section, we remove these restrictions and thus allow to
evaluate any online functionality. First, we will allow multiple par-
ties to provide input at the same time. Second, we will additionally
allow each party to provide input in multiple events.

Note, we will discuss and proof these extensions in the following
only briefly, as they are rather straightforward. We include them
only for completeness and omitted them in the main part of the
paper for sake of clarity in the notations.

C.1 Multiple Parties per Event

A classical extension to online algorithms where parties arrive one
at a time, is to allow batch processing [17], i. e., multiple parties
arrive and provide their input at the same time.

All of our results can easily be transferred to this setting with
some minor modifications: The event space will be defined as & :=
PxX
{{(p‘}j,le),...,(p‘j“;,xj[)} €2 | £ € Nand allp‘j“ll,...,p‘j“; are
pairwise different}. The events used for evaluating the online func-
tionality are then o; := {(P;-Ijl:xi,l)’ . (p;"ni,x,-,ni)} € &, where
xj,j is the input of party p‘;jj € SD}N C P and n; € N. We therefore

define PgN C P as the set of all parties that arrive at the same time
(for event o;).

The modification of the OTTPs and Protocols 1 and 2 is straight-
forward: The main change is that now a set of parties P}N arrives
and provides input, instead of just a single party pIiN,43 Note, that
again the parties in SDEN arrive first without input, and then in a
second step, after all parties in PiIN arrived, they then provide their
input. And the OTTPI broadcasts every arriving party before any
party can provide input. In order to allow parties to arrive “at the
same time” one needs to introduce some time window in which
parties can arrive, e. g., all parties that arrived during one hour are
considered for PiIN. The exact time window depends heavily on
the actual application. The parties that arrived during this time
window can then provide their inputs. The event is again implicitly
created, and the decision function can be evaluated. Theorem 2 still
holds, and the new proof is analogous (and thus not repeated). Note,
the ramp-up phase has to consider also the corresponding time
windows in order to evaluate the correct corresponding events
(which parties arrived for which event). However, if in the first
event already n parties arrive, then the ramp-up phase can be very
short. Note, the results discussed in Section 6 still apply, as they are
a strict subset of the new setting.**

C.2 Provide Input in multiple Events

Next, we allow each party to provide input multiple times, i.e., a
party can provide input not only when it arrives. In other words,
we remove the restriction that each party occurs at most in one
event. This includes that the set of parties participating can stay
unchanged over multiple events, i. e., an event happens without a
new party arriving. This can be modeled with two time windows: In
the first time window parties can still only arrive, and no party can
provide any input. However, in the following second time window
any party that arrived during the first time window, and any party

43Extension: We further clarified the main change.

44 Correction: In the original version [24] parties just arrived in an event. However, as
“arriving” and “providing input” is now separated, we included a clarification of how
multiple parties can arrive at the same time.

that is already present can provide input, but no party can arrive.
If no party arrived and no input was provided, then no event will
be created, and the decision function will not be evaluated. If at
least one party arrived, or at least one party provided input, then an
event will be created, and the decision function will be evaluated.*
The OTTPI would leak which party sends multiple inputs, thus
we introduce a new OTTP version that partially hides which party
provides input.

DEFINITION 10 (OTTP wiTH EVENT BROADCAST*®). An OTTP
with event broadcast (OTTPE) is an ideal OTTP that additionally
behaves as follows:

o Whenever one or multiple parties arrive, the OTTPE broadcasts
the parties that arrive before any party can provide input.

o Whenever at least one party provided input (i. e., when an event
would happen), the OTTPE broadcasts that an event happens.

o After each decision y; (and possible output distribution), the
OTTPE broadcasts the set of parties present P;.

In other words, for every event, all parties participating know
which parties participate, and which parties arrived or left (im-
plicitly). However, it is private who provides input, except newly
arrived parties, as those always have to provide input.

Protocol 3 shows how parties can determine that an event hap-
pens without a party broadcasting that it wants to provide input.

ProTocOL 3 (EMULATING AN OTTPEY). The overall protocol is
similar to Protocol 2, and we only describe the main differences: The
idea is to use a special offline functionality h; (and corresponding
protocol @;) that will determine whether an event happens, i. e., at
least one party wants to provide input. Each party currently present
provides its actual input if it wants to provide input, and otherwise
they send L. The special offline functionality h; outputs “1” if the
input of at least one party is not L, and otherwise “0”.

The evaluation of the decision functionality is now as follows: All
parties jointly execute the special offline protocol @;. If the output
is “0”, then compute ®; again. If the output is “1”, then the parties
continue executing m; (as done in Protocol 1) with the inputs used in
®;. Note, the “inputs” L are ignored for the evaluation of ;. After
the outputs are distributed, the parties can essentially continue with
executing @; again.

If at least one party arrives, then they execute @}, which is a slightly
modified version of @;: Protocol @} essentially behaves like o;, but it
additionally does not accept L as input from parties that just arrived,
i. e, it enforces that a party that just arrived will always have to
provide actual input, e. g., assuming the approach that L is encoded
with an additional bit (cf. Section 5), then this bit is just not part
of the input for parties that just arrived. Therefore, @} will always
evaluate to 1 and thus cause the evaluation of 7. This is required as
a party that arrives will provide input (in the ideal model), and thus

45Correction: In the original version [24] parties just arrived in an event. However, as
“arriving” and “providing input” is now separated, we included an approach of how
multiple parties can arrive at the same time and how multiple parties can provide
input.

46 Correction: In the original version [24] the OTTPE broadcasts the parties for each
event. However, as this is now split in having parties first “arrive” and then “provide
input”, the OTTPE also needs to first broadcast the parties that arrived. In addition,
we modeled the behavior more explicitly.

47Extension: We added more details of the protocol, especially w.r.t. the ramp-up
phase.

the OTTPE will evaluate the decision function, i. e., arriving parties
cause an event to happen. If ®; would be executed unchanged, and
a new (malicious) party provides L as input to ®;, then this would
prevent the evaluation of the decision functionality, and thus differ
from the OTTPE.

Regarding the initial ramp-up phase, we must ensure that only the
input of parties that arrived or are present in an event o; are allowed to
actually provide input to ;. Note, the events are implicitly defined by
the parties arriving in certain time windows. However, this can easily
be achieved by essentially using o} again, but now @/ additionally
accepts only inputs from the corresponding parties that are already
present or just arrived for the corresponding events (time windows).

Finally, note that as multiple parties can arrive in the same event,
events can happen only at certain points in time, e. g., each 5 minutes,
in order to allow parties to arrive (parties cannot arrive at the exact
same time). This implies, that at certain points in time an event could
have occurred. Therefore, whenever such a point in time is passed, then
@; (or @}) needs to be executed. After the ramp-up phase, if between
two “possible” events, the number of parties present does not change,
then this is already covered by repeatedly executing @; as described
above. Then, if @; outputs “1” an event has happened, and if it outputs
“0” then no event happened. For the ramp-up phase this has to be done,
too: Events where parties arrive, are already covered above. And for
“possible” events that could have occurred without parties arriving we
have to execute @ accordingly, in order to evaluate the corresponding
events in retrospect.

THEOREM 4. Protocol 3 perfectly emulates an OTTPE for any online

functionality with decision functionality f in the presence of an
adversary Agm and a creator C_ 1 with T := 3, or in the presence of

an adversary Ay, and a creatorC 1 with t := 2. This holds only if

n € N andn > 7, and initially at least n parties arrive first without
providing input (while their arrival is broadcast by the OTTPE), and
then those n parties provide their inputs, and then at least n parties
are always present.4®

Proor. The proof is similar to the one of Theorem 2. According
to Theorem 1 there exists a protocol @; that perfectly emulates h;
(just repeatedly simulate the execution of h; until a party wants
to actually provide input). The same holds for @} and the ramp-
up phase. Note, if the OTTPI broadcasts that an event happens,
then the simulator needs to ensure that @; evaluates to “1”, which
however the simulator can easily do. Hence, also the combined
execution of @; (or @}) and 7; perfectly emulates the combined
execution of h; and f;. The existence of a simulator S then follows
directly, and S behaves similar as in the proof of Theorem 2. O

If each party is allowed to provide input in multiple events, then
parties can arrive early without providing actual input, e. g., a party
can arrive and participate in the evaluation by first only sending
a “hello”, and later its actual input. Similar, a party can leave early,
e. g., sending a “bye” without being matched at all. In addition, a
party can leave late, if the removal from the state is triggered by
the party itself, e. g., disregarding whether a party is matched or

48 Correction: In the original version [24] we just stated that “initially at least n parties
arrive”, but the intended meaning was unclear. This is now corrected by specifying
this more precisely.

not, the party is only removed from the state if the party sends a
“bye”.

However, allowing such functionalities makes it desirable to
hide when an event happens: Consider the RANDOM matching
algorithm with n servers (cf. Section 6). Assume that at least m >
n parties arrived and no party left. After at most m + n events
(“hello” and actual input) we know that at least n of the m parties
are matched. If m = n then we know which parties are matched.
However, if we cannot count the events w.r.t. providing actual
input, then we cannot deduce that. Therefore, we introduce again
a new OTTP version that partially hides when an event happens.

DEFINITION 11 (OTTP wiTH PuBLIC PARTICIPATION®). AnOTTP
with public participation (OTTPP) is an ideal OTTP that additionally
behaves as follows:

o Whenever one or multiple parties arrive, the OTTPP broadcasts
the parties that arrive before any party can provide input.

o Whenever after a decision y; (and possible output distribution)
the set of parties present changed (P; # Pi—1), the OTTPP
broadcasts the set of parties present P;. The index i is not
known to any party.

ProToCOL 4 (EMULATING AN OTTPP?). The overall protocol is
similar to Protocol 3, and we only describe the main differences: Instead
of using a special offline functionality h; (protocol @;) to determine
that an event happens, we will combine h; and f; into f; (combine
®; and 7; into 7}) and repeatedly evaluate f/, i. e, &} will not output
“1” or “0” depending on whether an actual input was provided or not:
Parties that want to provide input use their actual input and their
share of the state ¢; as input for rr]. Parties without actual input use
L and their share of the state ¢; as input for z]. If all parties send

(o)
Yave / .
L, then rr] (i.e., f]) computes a dummy evaluation of f and outputs
(¢i,0). If at least one party sends an actual input, then] (i.e., f)

oo

will evaluate f with the actual inputs and state, and distribute the
outputs as done before by r; (i e., f;). After the outputs are distributed,
the parties can essentially continue with executing 7] again.

Similar as in Protocol 3, the evaluation of the decision functionality
has to be done whenever new parties arrive, also the ramp-up phase
has to consider which parties are actually present in each event, and
“possible” events (caused by the time-window for each event) have to be
considered accordingly. This includes especially events in the ramp-up
phase where parties provide input multiple times, without new parties
arriving in between. These situations can be handled analogously as
already described in Protocol 3, and are thus not repeated.

THEOREM 5. Protocol 4 perfectly emulates an OTTPP for any online
(&8

functionality with decision functionality f in the presence of an
adversary Agm and a creator C_ 1 with T := 3, or in the presence of

an adversary Ag, and a creatorC 1 with t := 2. This holds only if

n € N andn > 1, and initially at least n parties arrive first without
providing input (while their arrival is broadcast by the OTTPP), and

49Correction: In the original version [24] the OTTPP broadcasts the set of parties
only when it changes. We here make it more explicit that arriving parties are always
broadcast, before any party can provide input, too. In addition, we modeled the behavior
more explicitly.

S0Extension: We added some additional information for clarification.

then those n parties provide their inputs, and then at least n parties
are always present.>!

Proor. The proof is similar to the ones of Theorems 2 and 4.
According to Theorem 1 there exists a protocol 7; that perfectly
emulates the offline functionality f. The existence of a simulator
S then follows directly, and S behaves similar as in the proof of
Theorem 2. O

REMARK 6 (PARTIAL PRIVACY WITH PUBLIC ARRIVAL). The greedy
algorithm for online matching with general arrival can guarantee
partial privacy with public arrival if we allow parties to stay although
they are already matched and allow them to leave although they are
not yet matched. If no party arrives or leaves, then no event happens.
If at least one party arrives, and no party leaves, then either no party
is matched, or at least one party is matched and decided to stay. If at
least one party arrives, and at least one party leaves, then either no
party is matched and at least one party decided to leave unmatched,
or at least one party is matched and left. If no party arrives, and at
least one party leaves, then the party leaving is either matched and
waited till now, or left unmatched. In all cases, nothing can be learned.
However, it is not perfect: Assume that initially five parties p1, ..., ps
arrive, where p4 and ps are controlled by a semi-honest adversary.
Assume the matches are (p2, ps) and (ps, ps), but no party leaves.
Now, assume p1 and ps leave (preserve honest majority), and the
evaluation continues with other parties arriving. If p1 never arrives
again, then the adversary learns that py leaves unmatched.>

W.r.t. the amount of information leaked, it holds that OTTPI
> OTTPE > OTTPP > ideal OTTP (equality holds only for certain
functionalities): The ideal OT TP leaks nothing which is not spec-
ified by the online functionality. If a party arrives or leaves, the
OTTPI, the OTTPE and the OTTPP leak that an event happens.
Events where no parties arrive or leave stay hidden in the OTTPP
model, but are known by every participating party in the OTTPE
and the OTTPI model. Note, parties providing input or obtaining
output will always learn that an event happened. Only the OTTPI
leaks always (for every event) which parties provide input.

C.3 A Note on Efficiency and Practicality

Protocols 2, 3 and 4 emulating the OTTPI, OTTPE and OTTPP
imply very different impacts on computational efficiency. They
indicate that the amount of information we want to hide correlates
with the computation overhead. Protocol 4 emulating an OTTPP is
by far the most inefficient, as the actual computation has to be done
continuously. Protocol 3 emulating an OTTPE is more efficient, as
the special offline protocol @; (or @}) is rather simple and can easily
be called frequently. Protocol 2 emulating an OTTPI is obviously
the most efficient one, as computations are only performed when
actually required.

As discussed in Appendix B, the arrival of parties seems rather
hard to hide in a purely distributed online setting. Thus, for now the

51 Correction: In the original version [24] we just stated that “initially at least n parties
arrive”, but the intended meaning was unclear. This is now corrected by specifying
this more precisely.

52Correction: In the original version [24] p; and p, where corrupted, which is strictly
speaking not possible assuming the creator ensures an honest majority at all times.
Therefore, we changed the corrupted parties to be p4 and ps to be consistent.

OTTPL, OTTPE and OTTPP model seem to be the only reasonable
(and possibly feasible) models to study.

D CLASSICAL SMPC

We use the description of Goldreich [19] of SFE and reactive SMPC
as basis for Definitions 12 to 15 and the corresponding TTPs in
Definitions 16 and 17. However, we adapt it such that it is consistent
and easier comparable with our definition of online functionalities
in Section 4.>3

D.1 Offline Functionalities

An offline functionality is a function mapping inputs to outputs.

DEFINITION 12 (OFFLINE FUNCTIONALITY). Let X be an input
space and let Y be an output space. An offline functionality f :
X" — Y" is defined as (y1,...,yn) = flx1,...,xn) withxp € X
andyr € Y fort € {1,...,n}.

A simple offline functionality is the function f(x1,x2) := (x1 +
X9, X1 + x2) which computes the sum of two inputs.

The evaluation of an offline functionality with the private inputs
of parties is defined as follows:

DEFINITION 13 (EVALUATION OF AN OFFLINE FUNCTIONALITY).
Let P := {p1,...,pn} be a set of parties and let x1,...,x, € X be
their corresponding private inputs.

An offline functionality f : X" — Y" is evaluated by computing
(Y1, > yn) = f(x1,...,xn). Party pp € P will obtain outputy, € Y
forte{1,...,n}.

D.2 Reactive Functionalities

A reactive functionality maps iteratively inputs to outputs given a
state. In one iteration the reactive function computes the outputs
and updates the state.

DEFINITION 14 (REACTIVE FUNCTIONALITY). Let X be an input
space, let Y be an output space and let @ be a state space. A reactive
functionality maps an ordered sequence of inputs (x1,1,...,X1,n),
(x21,..-,X2,n), ... € X" to an ordered sequence of outputs (y1 1, ...,
y1,n), (Y21, .- - Y2.n), ... € Y™ by iteratively computing a reactive
function f : ® X X" — @ x Y". The reactive function is defined

as ($i.Yits---»Yin) = f(Pi-1,%i1, ..., Xin) where §o € @ is the
initial state.

A simple reactive functionality is the function]_‘(qﬁi_l, Xi1, Xi2) =
(Pi—1+xi1+xi2, pi—1, pi—1) With ¢o := 0 which computes the sum
of all previous inputs over time.

The evaluation of a reactive functionality with the private inputs
of parties is defined as follows:

DEFINITION 15 (EVALUATION OF A REACTIVE FUNCTIONALITY).
Let P :={p1,....pn} be a set of parties and let (x;1,...,%xin) € X"
be their corresponding i-th private inputs. Let ¢g € @ be the initial
state. _

For each input (x;,1, ..., Xin) the reactive function f : & x X" —

n ; — Flh: . .
® x Y" is evaluated as (¢, Uil Yin) = f(¢z—ls Xiyls - -s xz,n)-
33 Correction: In the original version [24] parties obtained output only if it was not
1. However, as here now L ¢ X and L ¢ Y, this condition is now removed in the
corresponding definitions here in Appendix D, too.

After each evaluation, party pe € P will obtain output y;p € Y for
te{l,...,n}.

D.3 Offline Trusted Third Party

Next we define an offline TTP that allows parties to securely evalu-
ate an offline functionality. An offline TTP receives the inputs of
the participating parties, evaluates the functionality, and finally
distributes to each participating party is prescribed output. After
this process, the evaluation is finished.

DEFINITION 16 (OFFLINE TTP). An offline TTP evaluates an of-

fline functionality f for a set of parties P := {p1,...,pn} as follows:

(1) All parties send their private inputs x1, ..., xp to the offline
TTP.

(2) The offline TTP computes (y1, ..., Yn) == f(X1,...,Xn).

(3) Theoffline TTP sends the outputy; topartyp;j forj € {1,...,n}.

An offline TTP cannot evaluate an online functionality, as it
neither allows the parties to provide input over time nor is capable
of storing a state.

D.4 Reactive Trusted Third Party

In contrast to an offline TTP that is finished after providing outputs,
a reactive TTP continuously receives inputs and provides outputs.

DEFINITION 17 (REACTIVE TTP). Let the partiesP = {p1,...,pn}
provide their inputs (x1,1,...,X1,n), (X2,1, ..., X2,n), ... in an ordered
sequence. An reactive TTP evaluates a reactive functionality with
reactive function f : ® X X" — ® x Y™ as follows: The reactive TTP
stores the initial state ¢.

(1) The reactive TTP receives all i-th private inputs x;i 1, ..., Xin.
(2) The reactive TTP computes

($isYits -+ Yin) = F(Pim1, Xi1 -+ Xin).-

(3) The reactive TTP sends the i-th output y; j to party p; for
jed{1,...,n}.

(4) The reactive TTP stores the new state ¢; and deletes the old
state 1.

A reactive TTP cannot evaluate an online functionality, as it
requires a fixed set of parties that is known a priori, and it does not
allow to change the number of parties participating over time.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Perfect Indistinguishability
	3.3 Shamir's Secret Sharing Scheme
	3.4 Online Algorithms

	4 Model
	4.1 Online Functionalities
	4.2 Online Trusted Third Party
	4.3 Security Model
	4.4 Adversary and Creator
	4.5 Perfectly Emulating Offline Functionalities
	4.6 Ideal Bulletin Board

	5 Feasibility Result
	6 Limits of the OTTPI
	7 Additional Results
	8 Conclusion
	Acknowledgments
	References
	A Dishonest Majority
	B Hiding the Arrival of Parties
	C Extensions
	C.1 Multiple Parties per Event
	C.2 Provide Input in multiple Events
	C.3 A Note on Efficiency and Practicality

	D Classical SMPC
	D.1 Offline Functionalities
	D.2 Reactive Functionalities
	D.3 Offline Trusted Third Party
	D.4 Reactive Trusted Third Party

