
DSKE: Digital Signatures with Key

Extraction

Zhipeng Wang1, Orestis Alpos2, Alireza Kavousi3, Sze Yiu Chau4,
Duc V. Le5, and Christian Cachin2

1Imperial College London
2University of Bern

3University College London
4The Chinese University of Hong Kong

5VISA Research

Abstract

This work introduces DSKE, digital signatures with key extrac-
tion. In a DSKE scheme, the private key can be extracted if more
than a threshold of signatures on different messages are ever created
while, within the threshold, each signature continues to authenticate
the signed message. We give a formal definition of DSKE, as well as two
provably secure constructions, one from hash-based digital signatures
and one from polynomial commitments.

We demonstrate that DSKE is useful for various applications, such
as spam prevention and deniability. First, we introduce the Group-
Forge signature scheme, leveraging DSKE constructions to achieve de-
niability in digital communication. GroupForge integrates DSKE with
a Merkle tree and timestamps to produce a “short-lived” signature
equipped with extractable sets, ensuring deniability under a fixed pub-
lic key. We illustrate that GroupForge can serve as a viable alternative
to Keyforge in the non-attributable email protocol of Specter, Park,
and Green (USENIX Sec ’21), thereby eliminating the need for con-
tinuous disclosure of outdated private keys. Second, we leverage the
inherent extraction property of DSKE to develop a Rate-Limiting Nul-
lifier (RLN) scheme. RLN efficiently identifies and expels spammers
once they exceed a predetermined action threshold, thereby jeopardiz-
ing their private keys.

Moreover, we implement both variants of the DSKE scheme to
demonstrate their performance and show it is comparable to existing
signature schemes. We also implement GroupForge from the polyno-
mial commitment-based DSKE and illustrate the practicality of our
proposed method.

1

1 Introduction

Digital signature schemes [GMR88] play an important role in protecting the
integrity of data transmitted over the Internet. In some jurisdictions [Bly05,
Mas16, Kar19], a digital signature applied to data can serve as evidence of
the sender’s authorship of the data. Moreover, the signature of a message
remains valid until either the underlying signature scheme is broken or the
private key is compromised. However, as pointed out by Borisov, Gold-
berg, and Brewer in their work on off-the-record (OTR) communication
work [BGB04], this “long-lived” property is unsuitable for certain types of
messages. For instance, if Alice wishes to communicate privately with Bob,
she can encrypt her messages using Bob’s public key (i.e., for confidentiality)
and sign them with her private key (i.e., for authenticity). However, if Eve
compromises Bob’s computer at some point in the future, Eve will be able
to read all of Bob’s previous messages from Alice, and use the signatures to
prove to Judy that the messages indeed originated from Alice.

To address this problem, OTR messaging requires an interactive key
agreement protocol between the sender and the recipient to agree on ses-
sion keys before exchanging messages. However, this pair-wise key agree-
ment required in OTR is not scalable for applications such as email pro-
tocols, in which there is often no prior end-to-end interaction among the
participating parties. Another way to achieve deniability is to simply re-
quire the sender to periodically rotate keys and publish their old private
keys [Gre]. This method enables anyone to forge signatures using the pub-
lished private keys and thus offers deniability to old transcripts. In fact, this
method is being suggested to offer deniability in domain keys identified mail
(DKIM) [ACD+07], where SMTP servers sign outgoing emails on behalf of
the whole domain using a single key, as a way to safeguard against email
spoofing.

A server sending an email cryptographically signs it, so that the recipient
can verify that it has originated from the reported server. A side effect of
this action is email attributability which stems from the fact that the digital
signature remains valid for a long time, potentially forever [Gre]. As a
result, a malicious actor, who at any time gains access to these emails, can
provably link them to their sender, which in turn incentivizes extortion and
retaliation, among others. In this paper, we focus on answering the following
question that arises naturally from the limitations of existing attempts:

Is it possible to design a signature scheme that allows the recipients to
verify the validity of the signature, while enabling the sender to gain plausible
deniability, without requiring the constant publication of old key materials
or any additional components?

It is worth noting that the question itself is, seemingly, a contradiction
due to the non-repudiation property of digital signature schemes. In this

2

work, we propose digital signatures with key extraction (DSKE) scheme to
circumvent the aforementioned question. We first propose a general frame-
work, showing that any one-time hash-based signature scheme, such as Lam-
port [Lam79] and Winternitz OTS [Mer89, BDE+11], can be turned into a
DSKE scheme, and present two concrete constructions. We then propose an-
other DSKE construction based on polynomial commitments [KZG10] that
offers properties like a flexible threshold and uniqueness. This type of sig-
nature scheme comes with an extractable set, a set of signatures from which
the private key can be extracted asynchronously.

Independently, the key extraction property of DKSE is particularly use-
ful when there is a need to disincentivize or penalize the creation of more
than a certain number of signatures. As concrete examples, one may con-
sider the issue of double-spending [RKS15] or double-signing on executable
code [DRS18]. Both could be mitigated by putting the user under the threat
of key leakage.1

Contributions. Our contributions can be summarized as follows:

• We formally define the notion of DSKE. DSKE comes with an extractable
set, a set (with a predefined set size) of signatures that can be used to
extract the private key.

• We introduce a one-time hash-based DSKE, denoted as DSKEhash. As
demonstrated, generating multiple signatures while reusing a private key
in one-time hash-based signatures results in a probabilistic extractable set
with an overwhelming probability. We provide two concrete DSKEhash con-
structions based on Lamport [Lam79] and Winternitz signatures [Mer89,
BDE+11].

• We propose a polynomial commitment-based DSKE, DSKEpoly. Compared
to DSKEhash, DSKEpoly offers shorter signature size with deterministic ex-
tractable set. Additionally, it empowers signers to customize the size
of the extractable set without compromising security. We further pro-
vide a concrete DSKEpoly construction based on the KZG commitment
scheme [KZG10].

• We use the DSKEpoly construction to propose two concrete applications.
First, we present GroupForge, a construction combining DSKE with a
Merkle tree and timestamps. It yields a short-lived signature with ex-
tractable sets for deniability under a fixed public key. GroupForge can
replace Keyforge in the non-attributable email protocol by Specter, Park,
and Green [SPG21], eliminating the need for continual disclosure of out-
dated private keys. Second, we harness the inherent extraction property

1We remark that DSKE in this sense resembles an existing primitive in the literature,
named double-authentication-preventing signatures (DAPS). However, there are crucial
differences between the two families of signatures, as elaborated in Section 8.

3

of DSKE to build a robust Rate-Limiting Nullifier (RLN) protocol, which
can identify and expel spammers once they exceed a certain threshold in
a certain action, placing their private keys in jeopardy.

• We implement and evaluate both DSKE constructions and the Group-
Forge construction, thereby highlighting their practicality.

Paper Organization The remainder of the paper is organized as follows.
Section 2 outlines the necessary background and building blocks for DSKE.
In Section 3, we present the formal definition of DSKE. Sections 4 and 5
provide concrete constructions of DSKE, namely DSKEhash, based on hash-
based signature schemes, and DSKEpoly, based on polynomial commitment
schemes, respectively. We show DSKE’s applications to RLN and Group-
Forge in Section 6. We evaluate the performance of our constructions and
discuss DSKE’s limitations and potential improvements in Section 7. Sec-
tion 8 discusses the related work and Section 9 concludes our work.

2 Preliminaries

2.1 Notation

We denote by 1λ the security parameter and by negl(λ) a negligible function
of λ. We express by (pk, sk) a pair of public and private keys. We let
[n] denote the set {1, . . . , n}. Moreover, we require that pk can always be
efficiently derived from sk, and we denote extractPK(sk) = pk to be the
deterministic function for doing so. We denote as Z≥a the set of integers
that are greater than or equal to a. For a field F, we denote F≤d(X) the set
of polynomials in F[X] with degree at most d. We denote byM the message
space and S the signature space. For a non-negative integer j, we let f (j)

be the j-th iterate of the function f , i.e., f (j)(x) = f(f(· · · f(x) · · ·)) where
f is repetitively calculated j times.

2.2 Hash Functions

Our constructions employ the following standard properties of cryptographic
hash functions. We use H : K ×M → {0, 1}λ to denote a family of hash
functions that is parameterized by a key k ∈ K and message m ∈ M and
outputs a binary string of length λ. For this work, we consider cryptographic
hash functions [RS04], satisfying preimage resistance and collision resistance
properties.

Definition 1 (Preimage Resistance). A family H of hash functions is preimage-
resistant, if for any PPT adversary A, the adversary’s advantage in finding

4

the preimage of a given hash value is:

Pr

[
k

$←− K, x $←−M, y ← H(k, x)

x′ ← A(k, y)
: H(k, x′) = y

]
≤ negl(λ)

Definition 2 (Collision Resistance). A family H of hash functions is collision-
resistant, if for any PPT adversary A, the adversary’s advantage in finding
collisions is:

Pr

[
k

$←− K
(x, x′)← A(k)

: (x ̸= x′) ∧ (H(k, x) = H(k, x′))

]
≤ negl(λ)

In practice, the key for standard hash functions is public; therefore, from
this point, we refer to the cryptographic hash function h sampled from a
family of hash functions as a fixed function h :M→ {0, 1}λ.

2.3 Polynomial Commitment Schemes

A polynomial commitment scheme (PCS) allows a prover to commit to a
polynomial f(X) ∈ F≤d(X) and later open f(X) at arbitrary points x,
revealing only the value f(x).

Definition 3 (Polynomial Commitment). A PCS consists of the following
algorithms.

• (ck, vk) ← Setup(1λ, d): The setup algorithm takes as input a security
parameter λ, a maximum degree d ∈ N, and outputs the public commit-
ment key ck, which allows committing to polynomials in F≤d(X), and the
public verification key vk.

• Cf ← Com(ck, f(X)): The commitment algorithm takes as input the com-
mitment key ck, a polynomial f(X) ∈ F≤d(X), and outputs a commitment
Cf ∈ G to the polynomial f(X).

• (π, y) ← Open(ck, Cf , x, f(X)): The algorithm takes as input a commit-
ment key ck, a commitment Cf , an evaluation point x, the polynomial
f(X), and outputs y = f(x) ∈ F and a proof π ∈ G.

• 0/1← Check(vk, Cf , x, y, π): The algorithm takes as input the verification
key vk, the commitment Cf , a point x, the claimed evaluation y, the
opening proof π, and outputs 1 iff y = f(x).

PCS can guarantee correctness, computational hiding, evaluation bind-
ing, and polynomial binding properties from the polynomial commitment
scheme.

5

Definition 4 (Correctness [KZG10]). Let (ck, vk)← Setup(1λ, k), f(X) ∈
F≤d(X), and Cf ← Com(ck, f(X)). Then for any (π, y) output by Open(ck, Cf , x, f(X)),
we have Check(vk, Cf , x, y, π) = 1.

Definition 5 (Computational Hiding [KZG10]). Given (ck, vk), the com-
mitment Cf , and d̂ valid openings (yi, πi) for points xi, where i ∈ {1, . . . , d̂}
and d̂ ≤ d, no PPT adversary can determine the value f(x′), for x′ ̸∈
{x1, . . . , xd̂}, except with a negligible probability.

Definition 6 (Evaluation Binding [KZG10]). Given (ck, vk), no PPT ad-
versary can compute commitment Cf , point x, and two openings (π1, y1),
(π2, y2) for x, such that Check(vk, C, x, y1, π1) = 1, Check(vk, C, x, y2, π2) =
1, and y1 ̸= y2.

Definition 7 (Polynomial Binding [KZG10]). Given (ck, vk), no PPT ad-
versary can compute polynomials f(X) and f ′(X), such that f(X) ̸= f ′(X)
and Com(ck, f(X)) = Com(ck, f ′(X)).

KZG Polynomial Commitment Scheme. We now revisit KZG scheme [KZG10]
as a concrete polynomial commitment construction. It works over a bilinear
pairing group G = ⟨e,G,Gt⟩, where G is a group of prime order p, e is a
symmetric pairing e : G×G→ Gt, and g and ĥ are generators of G.

• (G, ck, vk)← Setup(1λ, d): The algorithm outputs a representation of the

bilinear group G, commitment key ck = {g, gα, . . . , gαd}, and verification
key vk = ĥα, for an α ∈ Zp.

• Cf ← Com(ck, f(X)): The algorithm computes Cf = gf(α) using ck and
outputs Cf .

• (π, y) ← Open(ck, Cf , x, f(X)): The algorithm computes y = f(x) and

the quotient polynomial q(X) = f(X)−y
X−x , and outputs y and π = Cq =

Com(ck, q(X)).

• 0/1← Check(vk, Cf , x, y, π): The algorithm outputs 1 if e(Cf · g−y, ĥ) =

e(Cq, ĥ
α · ĥ−x), and 0 otherwise.

KZG scheme satisfies correctness, computational hiding, evaluation bind-
ing, and polynomial binding properties, provided the DL and d-SDH assump-
tions hold in G [KZG10].

3 Digital Signatures with Key Extraction (DSKE)

In this section, we formally define the notion of digital signatures with key
extraction (DSKE). We adopt the standard digital signature definition and
introduce a new algorithm to capture the capability of extracting the private
key from a set of signatures.

6

Definition 8 ((k, δ)-Digital Signature with Key Extraction). A signature
scheme Σ, with key extraction consists of five algorithms:

• par ← Setup(1λ): The setup algorithm takes a security parameter 1λ and
outputs a set of public parameters par. This algorithm runs once, and the
public parameters are implicitly input to all subsequent algorithms.

• (pk, sk) ← KeyGen(par): The key generation is a probabilistic algorithm
that outputs a pair (pk, sk) of public and private keys.

• σ ← Sign(sk,m): The signing algorithm is a probabilistic algorithm that
takes a private key sk and a message m ∈ M as input and outputs a
signature σ in the signature space S.

• b← Verify(pk,m, σ): The verification algorithm is a deterministic algo-
rithm that takes a public key pk, a message m, a signature σ as input,
and outputs the validity of the signature, b ∈ {0, 1}.

• sk ← Extract({(mi, σi)}i∈[k], pk): The extraction algorithm is a proba-
bilistic algorithm that takes as input a set of distinct message-signature
pairs (mi, σi)i∈[k], such that σi ← Sign(sk,mi), the public key pk, and
outputs the underlying private key sk with probability δ and ⊥ with prob-
ability 1− δ.

Apart from the straightforward correctness definition, we consider two
other properties of DSKE: existential unforgeability, and the existence of
an extractable set. The security of digital signatures is defined through the
following experiment.

d-times signature experiment SignExpdA,Σ(λ).

1. Setup(1λ) and KeyGen() are run to obtain keys (pk, sk).

2. A is given pk and can ask up to d queries to the signing oracle

Sign(sk, ·). Let Q
Sign(sk,·)
A = {mi}i∈[d] be the set of all messages for

which A queries Sign(sk, ·), where the ith query is a message mi ∈M.
Eventually, A outputs a pair (m∗, σ∗) ∈M× S.

3. The output of the experiment is defined to be 1 if and only if m∗ /∈
Q

Sign(sk,·)
A and Verify(pk,m∗, σ∗) = 1.

Definition 9 (Existential Unforgeability). A digital signature scheme Σ is
existentially unforgeable under a d-times adaptive chosen-message attack,
or d-times-secure, if for all PPT adversaries A the success probability in
the previous experiment is negligible:

Pr[SignExpdA,Σ(λ) = 1] ≤ negl(λ).

7

Definition 10 (Extractable Set). A digital signature scheme has a (k, δ)-
extractable set when the extraction algorithm Extract(·) on input k distinct
message-signature pairs {(mi, σi)}i∈[k] and the public key pk, such that each
σi is a valid signature on mi under pk, outputs the private key sk with
probability δ. That is:

Pr


mi ←M, s.t. mi ̸= mj , for i, j ∈ [k], i ̸= j

par ← Setup(), (pk, sk)← KeyGen()

σi ← Sign(sk,mi)

sk′ ← Extract
(
{(mi, σi)}i∈[k], pk

) : pk = extractPK(sk′)

 = δ

4 DSKE from Hash-Based Signature Schemes

Hash-based signature schemes (such as Lamport [Lam79] and Winternitz
OTS [Mer89, BDE+11]) leverage the security of one-way functions to con-
struct digital signatures. In hash-based signature schemes, the private key
is often a list that is derived from a succinct seed, and based on the message,
the signature usually reveals “partial” information about the private key. In
essence, having a sufficiently large number of signatures allows us to obtain
enough information for the reconstruction of the private key.

In this section, we provide DSKE constructions based on the hash-based
signature schemes, denoted as DSKEhash. We first give a generic definition to
capture the private key leakage of hash-based signature schemes and then
provide two DSKE constructions that are based on the Lamport signature
scheme and Winternitz OTS.

Definition 11 (Leakage of Hash-based Signature). A hash-based signature,
Σhash, consists of the four algorithms Setup, KeyGen, Sign, and Verify as
defined in Definition 8, as well as a leakage algorithm defined as follows:

• S ← Leak((m,σ), pk): This leakage algorithm is a deterministic algo-
rithm that takes as input a message-signature pairs (m,σ), such that
σ ← Sign(sk,m), the public key pk, such that pk = extractPK(sk), and
outputs a list S, containing a fraction of the private key.

We can then propose a hash signature-based DSKE:

Definition 12 (Hash-based DSKE). A hash-based DSKE scheme, DSKEhash,
consists of the four algorithms, Setup, KeyGen, Sign, and Verify which are
same as a hash-based signature, as well as an Extract algorithm defined as
follows:

• sk/⊥ ← Extract({(mi, σi)}i∈[k], pk): The extraction algorithm is a prob-
abilistic algorithm that receives a set of distinct message-signature pairs
{mi, σi}i∈[k], such that σi = Sign(sk,mi), and the public key pk as in-
puts. For each (mi, σi), this algorithm runs Si ← Leak((mi, σi), pk), and

8

computes sk′ =
⋃k

i=1(Si). The algorithm outputs the private key sk′ if
pk = extractPK(sk′); otherwise, it outputs ⊥.

We subsequently introduce a definition aimed at quantifying the proba-
bility that an element of the private key is not revealed even after receiving k
hash-based signatures. This definition serves as a tool to compute the prob-
ability of a successful output of the private key by running the Extract()
function.

Definition 13. Given k distinct messages {mi}i∈[k] which are randomly
sampled from M, a key pair (sk, pk) generated by KeyGen(), k signatures
{σi}i∈[k] such that each σi is a valid signature on mi under pk, and an
element skj which are sampled from the secret key sk, we define pleak as
the probability that skj is not leaked after running Leak() on all message-
signature pairs {(mi, σi)}i∈[k].

pleak = Pr



mi
$←−M, for i ∈ [k]

par ← Setup(), (pk, sk)← KeyGen()

σi ← Sign(sk,mi)

Si ← Leak((mi, σi), pk)

skj
$←− sk

: skj ̸∈
k⋃

i=1

Si


The following theorem shows that the lower bound of δ in any hash-based

DSKE scheme can be determined by pleak.

Theorem 1 (Extractable Set). Given a hash-based DSKE scheme with a
private key of size λ, if the underlying hash function is modeled as a random
oracle, then DSKEhash has a (k, δ)-extractable set, where:

δ ≥ 1− λ · pleak − negl(λ)

Proof. Given a private key of a hash function, which is a list of λ elements,
denoted as sk = (skj)j∈[λ]. We denote Bad0 to be the event that at least

one element of sk is not included in
⋃k

i=1 Leak((mi, σi), pk). We have:

Pr[Bad0] = Pr

[
∨λj=1

(
skj ̸∈

k⋃
i=1

Leak((mi, σi), pk)

)]

≤
λ∑

j=1

Pr

[
skj ̸∈

k⋃
i=1

Leak((mi, σi), pk)

]
= λ · pleak

Moreover, we denote Bad1 to be the event that there are two private key
elements that map to the same public key element. However, since the
underlying hash is modeled as a random oracle, this probability is negligible;
hence, Pr[Bad1] = negl(λ).

Therefore, the probability that the extraction algorithm Extract(·) out-
puts a private key sk′ that pk = extractPK(sk′) is δ ≥ 1−Pr[Bad0∨Bad1] ≥
1− λ · pleak − negl(λ).

9

In the following, we provide two DSKE constructions that are based
on the Lamport signature scheme and Winternitz OTS, respectively. We
will show that, for a Lamport signature scheme, pleak is determined by the
number of given signatures (i.e., k), pleak = 1

2k−1 (see Section 4.1); and for a

Winternitz OTS, pleak = wk

(w+1)k
, where w are a parameter for the Winternitz

OTS (see Section 4.2).

4.1 Lamport Signature-Based Construction

The Lamport signature scheme is parameterized by a preimage-resistant
hash function f and a collision-resistant hash function H. The private key
SK contains 2λ binary strings uniformly sampled from {0, 1}λ, where λ is
the security parameter. The public key PK consists of 2λ binary strings that
are evaluations of f on each element in the private key. To form a signature
σ on a message m, the signer reveals components of the private key SK,
according to the binary representation ofH(m) as the signature. Verification
is carried out naturally; the verifier uses the binary representation of the
digest, H(m), to validate if each element contained in the signature is the
actual preimage of the public key elements.

Extracting Private Key from Message-Signature Pairs. As shown
in Figure 1, the intuition behind the extracting function is that each signa-
ture σi is a subset of the private key SK. To extract the complete private key,
one needs to compute the union of k different signatures {σi}i∈[k]. Since the
underlying hash function is unpredictable, the probability of successfully ex-
tracting the private key depends on the number of distinct message-signature
pairs (i.e., k). Based on the above intuitions, we propose a hash-based con-
struction, DSKElamp, as follows.

Lamport-Based DSKE. A Lamport-based DSKE scheme, DSKElamp, con-
sists of:

• Setup(1λ): On input the security parameter λ, the algorithm outputs a
parameter, par, containing a hash function, f : {0, 1}λ → {0, 1}λ, chosen
from a family of preimage-resistant hash functions, and a hash function,
H :M→ {0, 1}λ, chosen from a family of collision-resistant hash function.
The public parameters are implicitly input to all subsequent algorithms.

• KeyGen(): For each i ∈ [λ], b ∈ {0, 1}, sample ski[b]
$←− {0, 1}λ; out-

put the private key, SK =(ski[b])i∈[λ],b∈{0,1}, and the public key, PK =
(pki[b])i∈[λ],b∈{0,1}, where pki[b] = f(ski[b]).

• Sign(SK,m): Parse SK = (ski[b])i∈[λ],b∈{0,1}, compute d = H(m) =
(di)i∈[λ], and output σ = (ski[di])i∈[λ].

• Verify(PK,m, σ) : Parse PK, σ, and compute d = H(m) = (di)i∈[λ].
For all i ∈ [λ], if f(σi) ̸= pki[di], return 0. Otherwise, return 1.

10

...

...

...

...
...

...

...

...

...

...

Figure 1: Example of the algorithm Extract for DSKElamp. The elements of
a signature σ are linked via red lines. In this example, the original private
key can be collectively reconstructed from {(mi, σi)}i∈[2].

• Extract({mj , σj}j∈[k], PK): For each message-signature pair (mj , σj),
compute dj = H(mj) = (dji)i∈[λ], and parse σj = (σji)i∈[λ]. For each
j ∈ [k], i ∈ [λ], b ∈ {0, 1}, if ∃dji = b, then let ski[b] = σji. Set
SK = (ski[b])i∈[λ],b∈{0,1} and parse PK = (pki[b])i∈[λ],b∈{0,1}. If for all
i ∈ [λ] and b ∈ {0, 1}, pki[b] = f(ski[b]), then output SK. Otherwise, the
algorithm outputs ⊥.

Leakage Function for Lamport Signatures. As illustrated in Figure 1,
within a Lamport signature scheme, each signature encapsulates half of the
information about the privacy key SK. The leakage function is employed
to extract the divulged information of the privacy key from the signature.

• Leak((m,σ), PK): Check if Verify(PK,m, σ) = 1; otherwise, output
⊥. Compute d = H(m) = (di)i∈[λ], and parse σ = (σi)i∈[λ]. For each
i ∈ [λ], b ∈ {0, 1}, if di = b, then let Si[b] = σi and Si[1− b] = ⊥. Output
S = (Si[b])i∈[λ],b∈{0,1}.

In the following, we prove that DSKElamp satisfies unforgeability and has
an extractable set depending on the number of distinct message-signature
pairs.

Theorem 2 (Existential Unforgeability). DSKElamp is existentially unforge-
able under a 1-time adaptive chosen-message attack, that is,

Pr[SignExp1A,DSKElamp
(λ) = 1] ≤ negl(λ)

Proof. The t-Repeated One-Way Problem. We first define the attack
game of t-repeated one-way problem. Let f be a one-way function over
(X ,Y). For a given positive integer t and a given adversary A1, the game
runs as follows:

11

• The challenger samples x1, . . . , xt
$←− X , computes y1 ← f(x1), . . . , yt ←

f(xt), and sends (y1, . . . , yt) to the adversary A1.

• The adversary A1 makes a sequence of reveal queries by sending indexes
from (1, . . . , t) to the challenger. Upon receiving an index j, the challenger
returns xj to A1.

• A1 outputs (j∗, x), where j∗ ∈ (1, . . . , t) and x ∈ X .

We say that the adversary A1 wins the game if index j∗ is not among
A1’s reveal queries, and f(x) = yj∗ . We denote rOWadv[A1, f, t] as the
probability that A1 wins the game.

According to Lemma 13.5 in [BS20], for every t-repeated one-way prob-
lem adversary A1, there exists an adversary A0 that can leverage A1 as a
subroutine to break the preimage resistance of the function f . Moreover,
let OWadv[A0, f] be the probability that A0 breaks the preimage resistance,
we have rOWadv[A, f, t] ≤ t · OWadv[A0, f].

We now consider the adversary A that wins the 1-time signature ex-
periment SignExp1A,Σ(λ), and show thatA can be used to solve the repeated
one-way problem for f .

We construct an adversary B that uses A to win the repeated one-way
game as follows:

• The repeated one-way challenger C gives B a list of λ elements y1, . . . , yλ ∈
{0, 1}λ. B aims to invert one of the elements.

• B sends (y1, . . . , yλ) as the public key pk to A. Note that pk is indistin-
guishable from a public key generated by KeyGen().

• Upon receiving the signing request of a message m from A, B requests
from C the preimages of all i that i ∈ H(m), and sends these preimages
as the signature to A.

• Eventually, A outputs a forgery σ∗ for a message m∗, which is not already
requested by A, i.e., m∗ ̸= m. Let bad1 be the event that H(m∗) ̸= H(m).
In this event, there exists some j ∈ (1, . . . , λ) which is not requested by B,
and if σ∗ is a valid signature on m∗ then σ∗ contains a preimage xj of yj .
B then outputs (j, xj) as its solution to the repeated one-way problem.

Therefore, we have

Pr[SignExp1A,DSKElamp
(λ) = 1]

≤ (1− Pr[bad1]) · rOWadv[A, f, t] + Pr[bad1]

≤ λ · OWadv[A0, f] + negl(λ)

≤ negl(λ)

12

Lemma 1. In a Lamport-based DSKE scheme, if H(·) is modeled as a
random oracle, the probability that an element of the private key will not be
leaked after receiving k signatures is pleak = 1

2k−1 .

Proof. We define di = H(mi). All di for i ∈ {1, . . . , k} forms a k×λ matrix:H(m1)
. . .

H(mk)

 =

d1
. . .
dk

 =

d1,1 . . . d1,λ

. . .
.

dk,1 . . . dk,λ


where di,j ∈ {0, 1}.

For j ∈ [λ], b ∈ {0, 1}, to extract the value of skj [b], there should be at
least one dij that satisfies dij = b, i.e., for j ∈ [λ], dij should not all be
1− b. Therefore, to be able to extract an element skj , we do not want any
columns in the matrix that contain all 0s or all 1s.

Since H(·) is modeled as a random oracle, pleak is the probability that
one single column consists of all 0s or all 1s:

pleak = Pr
[
x

$←− {0, 1}k : x = 0k ∨ x = 1k
]
=

1

2k−1

By combining Theorem 1 and Lemma 1, we can deduce the implications
outlined in Theorem 3.

Theorem 3 (DSKElamp Extractable Set). If H(·) is modeled as a random
oracle, then DSKElamp has a (k, δ)-extractable set, where:

δ ≥ 1− λ

2k−1
− negl(λ)

4.2 Winternitz OTS-Based Construction

In the following, we demonstrate how hash-based Winternitz can also be a
good candidate for DSKE construction.

Domination Free Function. A domination free function P :M→ Iλw de-
termines the existential unforgeability and extractable set of our Winternitz
Hash-based DSKEwots. We use the definition of the domination free function
construction from [BS20].

Given a message m ∈ M and a hash function H : M → {0, 1}ν , we
compute H(m) and convert it to an integer in [0, 2ν). Given the public
parameter w, let λ0 be the smallest number satisfying 2ν ≤ (w + 1)λ0 , set
λ1 = logw+1(w · λ0) + 1 and λ = λ0 + λ1. Given an input message m, the
function P (m) works as follows:

• Compute H(m), convert H(m) to a λ0-digit number in base (w + 1):
(s1, · · · , sλ0).

13

• Compute the checksum c = w · λ0 − (s1 + · · ·+ sλ0).

• Convert c to a λ1-digit number in base (w + 1): (c1, · · · , cλ1).

• Output (s1, · · · , sλ0 , c1, · · · , cλ1).

In this case, the function P is domination free [BS20] and can map the
message m to a vector P (m) = (s1, · · · , sλ0 , c1, · · · , cλ1) ∈ Iλw.

Winternitz-Based DSKE. The Winternitz signature scheme is another
hash-based signature scheme, that allows a trade-off between computation
and the size of the signature. Winternitz-based DSKE, DSKEwots, consists of
the following algorithms:

• Setup(1λ): On input the security parameter λ, the algorithm outputs the
public parameter, par, which contains: (1) a hash function, f : {0, 1}λ →
{0, 1}λ, chosen from a family of preimage-resistant hash functions, (2) a
hash function, H(M→ {0, 1}ν , chosen from a family of collision-resistant
hash function (3) a parameter integer w, and (4) a domination free func-
tion P parameterized by g and w, which maps a message m to a vector s⃗
of length λ, and each component of s is a number in {0, · · · , w}, namely
P : M → Iλw, where Iλw = ({0, . . . , w})λ. The public parameters are
implicitly input to all subsequent algorithms.

• KeyGen(): For each i ∈ [λ], sample ski
$←− {0, 1}λ; compute pki = f (w)(ski);

and output the private key, SK =(ski)i∈[λ], and the public key, PK =
(pki)i∈[λ].

• Sign(SK,m): Parse SK = (ski)i∈[λ]; compute s⃗ = P (m) = (s1, · · · , sλ) ∈
Iλw; and output σ = (f (s1)(sk1), · · · , f (sλ)(skλ)).

• Verify(PK,m, σ) : Parse PK = (pki)i∈[λ], σ = (σi)i∈[λ], and compute

s⃗ = P (m) = (s1, · · · , sλ) ∈ Iλw. For all i ∈ [λ], if f (w−si)(σi) ̸= pki, return
0. Otherwise, return 1.

• Extract({mj , σj}j∈[k], PK): For each message-signature pair (mj , σj),
compute s⃗j = P (mj) = (sji)i∈[λ], and parse σj = (σji)i∈[λ]. For each
j ∈ [k], i ∈ [λ], if ∃sji = 0, then let ski = σji. Set SK = (ski)i∈[λ] and

parse PK = (pki)i∈[λ]. If for all i ∈ [λ], pki = f (w)(ski), then output SK.
Otherwise, output ⊥.

Leakage Function for Winternitz Signatures. As illustrated in Fig-
ure 2, given a Winternitz signature σ = (σ1, · · · , σλ), the Leak() function
of Winternitz signature will output all the signature elements (σi)i that are
equal to the corresponding elements in the private key list, which satisfy
f (w)(σi) = pki.

14

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 2: Example of the algorithm Extract for DSKEwtos. The elements of
a signature σ are linked via red lines. In this example, the original private
key can be collectively reconstructed from {(mi, σi)}i∈[3].

• Leak((m,σ), PK): Check if Verify(PK,m, σ) = 1; otherwise, output ⊥.
Compute s⃗ = P (m) = (si)i∈[λ], and parse σ = (σi)i∈[λ]. For each i ∈ [λ],
if si = 0, then let Si = σi; otherwise, let Si = ⊥. Output S = (Si)i∈[λ].

The intuition of the domination free function is to ensure that if a forger
can obtain a valid signature for m′ from one signature for m, domination
property of P ensures that there exists one element s′i in P (m′) that is
smaller than si ∈ P (m). Therefore, it implies the fact that such a forger
can be used to invert the preimage-resistant hash function f .

Security Analysis. In this part, we prove that DSKEwots satisfies unforge-
ability and has an extractable set depending on the number of distinct
message-signature pairs.

Theorem 4 (Existential Unforgeability). DSKEwots is existentially unforge-
able under a 1-time adaptive chosen-message attack, that is,

Pr[SignExp1A,DSKEwots(λ) = 1] ≤ negl(λ)

Proof. We defer the proof of Theorem 4 to Theorem 14.4 in [BS20].

In the following analysis for the extractable set, we assume that the
checksum computed by P is independent and uniformly random. This is
not really the case, because there is a dependency between the checksum
elements and other elements in the vector s computed by P . However,
as mentioned in [GBH17], without such an assumption, the analysis will
become significantly more complex.

Lemma 2. In a Winternitz-based DSKE scheme, if H(·) is modeled as a
random oracle and the domination-free function P (·) outputs a uniformly

15

random vector in Iλw, then the probability that an element of the private key

will not be leaked after receiving k signatures is pleak = wk

(w+1)k
.

Proof. Following the existing work [GBH17], we assume that in a domination
free function P , the checksum c is independent of the digests (s1, · · · , sλ0).
Therefore, given a message m to the function P , we can denote its output
as (s1, · · · , sλ0 , sλ0+1, · · · , sλ) ∈ Iλw. We define si = P (mi). All si for
i ∈ {1, . . . , k} forms a k × λ matrix:P (m1)

. . .
P (mk)

 =

s1
. . .
sk

 =

s1,1 . . . s1,λ

. . .
.

sk,1 . . . sk,λ


where si,j is a number in {0, · · · , w}.
For j ∈ [λ], to extract the value of skj , there should be at least one

sij that satisfies sij = 0, i.e., for j ∈ [λ], sij should not all be non-zero.
Therefore, to be able to extract SK, we do not want any columns in the
matrix that contain all non-zero values.

We further assume that the output of the function P is uniformly ran-
dom, then pleak is the probability that one single column consists of all
non-zero values:

pleak = Pr
[
x

$←− {0, · · · , w}k : x ∈ {1, · · · , w}k
]
=

wk

(w + 1)k

By combining Theorem 1 and Lemma 2, we can deduce the implications
outlined in Theorem 5.

Theorem 5 (DSKEwots Extractable Set). If H(·) is modeled as a random
oracle and the domination free function P (·) outputs a uniformly random
vector in Iλw, then DSKEwots has an (k, δ)-extractable set, where:

δ ≥ 1− λ · wk

(w + 1)k
− negl(λ)

Generalization to Other Many-Time Signature Schemes. Our con-
structions of DSKE can be generalized to other many-time signature schemes.
The basic intuition behind DSKEhash is that each signature σj discloses partial
information of the private key SK. Therefore, besides Lamport signature
and Winternitz OTS, other signature schemes such as optimized Lamport’s
scheme and BiBa [Per01], which directly derive signatures from the private
key, can also be used to construct DSKE.

16

5 DSKE from Polynomial Commitment Schemes

Although the scheme DSKEhash proposed in Section 4 satisfies our definition
of a signature scheme with key extraction, it has two inherent weaknesses:
(1) The key and signature sizes are linear with the security parameter λ,
making it inefficient in practice, and (2) Extract is not deterministic, hence
the probability δ of extracting the private key depends on the size of the ex-
tractable set k 2. In this section, we construct a DSKE scheme DSKEpoly from
a polynomial commitment scheme Π without aforementioned drawbacks.

In the following, we assume a degree bound d ∈ Z and a polynomial
degree ℓ ∈ Z that satisfy 1 ≤ ℓ ≤ d. The idea is to use the polynomial f(X)
of degree ℓ as the private key. Then, the signature on a message m is the
evaluation of f(X) at point x = h(m), where h is a collision-resistant hash
function. For key extraction we employ polynomial interpolation: any set
of ℓ+ 1 valid message-signature pairs (mi, σi) can reconstruct f(X).

Definition 14 (Polynomial Commitment-based DSKE). A polynomial commitment-
based DSKE scheme, DSKEpoly, consists of:

• Setup(1λ, d): On input the security parameter λ and degree d ∈ N, it
runs Π.Setup(1λ, d) to obtain (ck, vk), which allows a signer to commit
to polynomials in F≤d(X). It samples a collision-resistant hash function
h :M→ F. The public parameters, par, contain ck, vk, d, and the speci-
fication of h.

• KeyGen(ℓ): On input 1 ≤ ℓ ≤ d, it samples f(X)
$←− Fℓ(X) as an ℓ-

degree polynomial and computes Π.Com(ck, f(X)) → Cf . Let sk = f(X),
pk = Cf .

• Sign(sk,m): It parses sk = f(X), computes x = h(m), and runs
Π.Open(ck, Cf , x, f(X))→ (π, y). It outputs the signature σ = (π, y).

• Verify(pk,m, σ): It parses pk = Cf and σ = (π, y), computes x = h(m),
and outputs Π.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): If k ≤ ℓ, or if mi are not all distinct, then
return ⊥. If Verify(pk,mi, σi) = 0 for some i ∈ [k], then return ⊥.
Otherwise, compute xi = h(mi) and parse σi = (πi, yi), for i ∈ [k]. At
least ℓ+ 1 pairs (xi, yi) interpolate the unique polynomial ϕ(X) ∈ Fℓ(X),
where λi(X) are the Lagrange coefficients. That is, ϕ(X) =

∑
i∈[k]

yiλi(X)

and λi(X) =
m̸=i∏
m∈[k]

X−xm
xi−xm

.

2This drawback can be circumvented by requiring signers to add an extra nonce to
k different messages so that the set of these signatures guarantees the existence of the
extractable set.

17

Remark on the degree of f(X). The extraction of the private key from
k ≥ ℓ+ 1 points requires the signer to commit to a polynomial of degree at
most ℓ. As the publicly available information in ck allows the signer to com-
mit to any polynomial in F≤d(X), stronger properties, such as strong correct-
ness [KZG10], bounded-polynomial extractability [MBKM19], and knowledge
soundness [BDFG21], have been formulated in the literature to enforce the
claimed degree on f(X). However, the signer in our scheme is allowed to
choose any ℓ ∈ [1, d] and has no incentive to commit to a polynomial of de-
gree larger than ℓ, as that would cost them the deniability, as we discuss in
the following sections. Hence, we can assume that f(X) is indeed of degree ℓ
and does not require Π to satisfy any stronger property.

Theorem 6 (Existential Unforgeability). Assuming the underlying poly-
nomial commitment scheme Π satisfies the computational hiding, evalua-
tion binding, and polynomial binding properties, and that h is a collision-
resistant hash function, the DSKE scheme DSKEpoly is existentially unforge-
able under an ℓ-times adaptive chosen-message attack. That is,

Pr[SignExpℓA,DSKEpoly
(λ) = 1] ≤ negl(λ)

Proof. Let A be a PPT adversary breaking the signature scheme DSKEpoly.
We construct a PPT algorithm B that runs A as a subroutine and attacks
the hiding property of the polynomial commitment scheme Π. Specifically,
B receives from its challenger up to ℓ openings

(
ij , f(ij), wij

)
, for ij ∈ F and

j ∈ [ℓ], and for f(X) not known to B. It outputs (i∗, y∗) for unqueried i∗

and wins if y∗ = f(i∗). Algorithm B also receives Cf , d, and ck, vk. B works
as follows:

• Initiate A with input pk = Cf , and create an empty set Squer.

• Whenever A requests a signature on message m, compute x = h(m) and
check whether x ∈ Squer. If this is the case, then B has already asked
his challenger for the opening of point x. Otherwise, add x to Squer and
obtain the opening (π, y) of point x from the challenger of B. Return
σ = (π, y) to A.

• If A fails to output a valid forgery on an unqueried message, then abort.
Otherwise A has output a message m∗ and a forgery σ∗ = (π∗, y∗) on
m∗. We assume w.l.o.g. A has made ℓ signature queries (if not, B
queries these values itself) and hence B has openings (πi, yi) for points
xi, with i ∈ [ℓ]. Calculate x∗ = h(m∗). If x∗ ∈ Squer, then set bad1 ← 1
and abort. Otherwise interpolate f ′(X) ∈ Fℓ(X) from the ℓ + 1 points
{(x1, y1), . . . , (xℓ, yℓ), (x∗, y∗)} and compute Cf ′ = Π.Com(ck, f ′(X)). If
Cf ′ ̸= Cf , then set bad2 ← 1 and abort. Otherwise, output (x∗, y∗).
Observe that, even though Cf ′ = Cf , it could still be the case that
f(X) ̸= f ′(X).

18

Denote Pr[HidExpℓB,Π(λ) = 1] the probability that B wins the game,
Output the event that B outputs some (x∗, y∗), and bad3 the event that
f(X) ̸= f ′(X). B wins if and only if Output happens and bad3 does not
happen. Moreover, Output happens if A forges a valid signature and bad1
and bad2 do not happen. Therefore,

Pr[HidExpℓB,Π(λ) = 1]

= Pr[Output ∧ bad3] ≥ Pr[Output]− Pr[bad3]

= Pr[SignExpℓA,DSKEpoly
(λ) = 1 ∧ bad1 ∧ bad2]− Pr[bad3]

≥ Pr[SignExpℓA,DSKEpoly
(λ) = 1]− Pr[bad1]− Pr[bad2]− Pr[bad3]

(1)

For the bad events, we have the following: The event bad1 implies that
A breaks the collision resistance property of A, which is assumed secure,
hence Pr[bad1] = negl(λ). The event bad2 implies f ′(X) ̸= f(X), and
hence it must be that (x∗, y∗) is not a point of f(X), i.e., f(x∗) ̸= y∗.
Since A succeeded, point (x∗, y∗) and proof π∗ satisfy Π.Check(vk, Cf , x

∗,
y∗, π∗) = 1. But in this case, B can break the evaluation binding of Π in the
following way. It asks for the opening at x∗, hence obtaining (π, y), where
y = f(x∗). This destroys any hope of B to break the hiding property, but it
can attack evaluation binding, using (x∗, y∗) and (x∗, y), for which y ̸= y∗,
Π.Check(vk, Cf , x

∗, y∗, π∗) = 1, and Π.Check(vk, Cf , x
∗, y, π) = 1. Since by

assumption Π satisfies the evaluation-binding property, we get Pr[bad2] =
negl(λ). Finally, the event bad3 would violate the polynomial-binding prop-
erty of Π, since f(X) ̸= f ′(X) and Com(ck, f(X)) = Com(ck, f ′(X)), thus
Pr[bad3] = negl(λ). Moreover, from the hiding property of Π we get Pr[HidExpℓB,Π(λ) =
1] ≤ negl(λ).

Putting it all together, (1) gives that Pr[SignExpℓA,DSKEpoly
(λ) = 1] ≤

negl(λ).

Theorem 7 (Extractable Set). Assuming the underlying polynomial com-
mitment scheme Π satisfies the evaluation binding property, the DSKE
scheme DSKEpoly has a (k, 1 − negl(λ))-extractable set for any k ≥ ℓ + 1.
That is,

δ = Pr


mi ∈M, for i ∈ [k]

mi ̸= mj , for i, j ∈ [k], i ̸= j, and k ≥ ℓ+ 1

σi ← Sign(sk,mi), for i ∈ [k]

Extract
(
{(mi, σi)}i∈[k], pk

)
→ sk′

: sk = sk′


= 1− negl(λ)

Proof. The proof follows from two facts. First, by assuming that the signer
does not commit to polynomials of degree bigger than ℓ. Second, from the
evaluation binding property, and since the points (xi, yi) correspond to valid
signatures, we know that yi = f(xi), for some polynomial f(X) ∈ F≤ℓ(X)

19

and for all i ∈ [k], except with negligible probability. Due to the uniqueness
of polynomial interpolation, we know that any ℓ + 1 distinct points (xi, yi)
define a unique polynomial ϕ(X) of degree at most ℓ, hence ϕ(X) must be
the same as f(X), hence sk = sk′ with probability 1− negl(λ).

5.1 KZG-Based DSKE Scheme

We now show DSKEkzg, a concrete construction of DSKEpoly from the Πkzg

polynomial commitment scheme [KZG10] (see Section 2.3).

• Setup(1λ, d): Run Πkzg.Setup(1
λ, d) to obtain the commitment key, ck =

{gαi ∈ G}i∈[d], and, the verification key, vk = ĥα ∈ G. It samples a
collision-resistant hash function h : M → Zp The algorithm returns the
public parameters, par, containing ck, vk, d, and the specification of h.

• KeyGen(1λ, ℓ): On input, 1 ≤ ℓ ≤ d, sample f(X)
$←− Fℓ(X) as an ℓ-

degree polynomial. The algorithm returns the public key, pk = Cf =
Πkzg.Com(ck, f(X)) = gf(α) ∈ G and the secret key, sk = f(X).

• Sign(sk,m): Parse sk = f(X), compute x = h(m), and output the sig-
nature σ = (π, y) = Πkzg.Open(ck, Cf , x, f(X)) ∈ G× Zp.

• Verify(pk,m, σ): Parse pk = Cf and σ = (π, y), compute x = h(m), and
output Πkzg.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): As in the general construction, check the
validity of σi, for i ∈ [k], interpolate ϕ(X) from points (xi, yi), and output
sk′ = ϕ(X) ∈ Fℓ(X).

Theorem 8 (Unforgeability). The scheme DSKEkzg is existentially unforge-
able under an ℓ-times adaptive chosen-message attack, under the same cryp-
tographic assumptions as the Πkzg polynomial commitment scheme.

Theorem 9 (Extractable set). The scheme DSKEkzg has an extractable set
of size k for any k ≥ ℓ+ 1 with probability δ = 1− negl(λ), under the same
cryptographic assumptions as the Πkzg polynomial commitment scheme.

The proofs for Theorems 8 and 9 follow directly from Theorems 6 and 7,
because Πkzg satisfies the properties required from the polynomial commit-
ment scheme Π in the generic construction.

6 Applications

In this section, we present two concrete applications of DSKE.

20

6.1 Non-Attributable Email

Problem Statement: Non-Attributable Email. The notion of non-
attributable emails [SPG21] addresses the inherent drawbacks of DKIM by
deploying a forward-forgeable signature (FFS) scheme. An FFS scheme con-
sists of the standard KeyGen(1λ), Sign(sk,m), and Verify(pk,m, σ) algo-
rithms, and additionally an Expire(sk, T) algorithm, that generates expiry
information η for a private key sk, possibly using additional information
T , and a Forge(η,m) algorithm, that, given the expiry information of a
key, outputs a signature on a message m. The scheme satisfies the stan-
dard correctness and unforgeability properties, and the forgeability on expiry
property.

Definition 15 (Forgeability on Expiry [Gre]). A digital signature scheme
satisfies the forgeability on expiry property if no PPT adversary can distin-
guish a signature created with private key sk from a signature created with
the expiry information η of sk. Formally, for any m ∈ M and any PPT
distinguisher D, there is a negligible function negl(·), such that for all λ,

Pr


(pk, sk)← KeyGen(1λ), σ0 ← Sign(sk,m)

η ← Expire(sk, T), σ1 ← Forge(η,m)

b
$← {0, 1}, b′ ← D(σb, η)

: b = b′


≤ 1

2
+ negl(λ)

The authors in [SPG21] provide two constructions, KeyForge and Time-
forge. Both satisfy the FFS properties by requiring signers either to publish
old private keys or to issue signed updates to a publicly verifiable timekeep-
ing service, respectively.

KeyForge is an FFS scheme where signatures expire after a predefined
delay ∆. The expiry information is the private key itself, which has to be
published by the server every ∆ time. It is based on a hierarchical identity-
based signature scheme (HIBS). In a HIBS every signer has an identity, from
which the private key can be derived. The identities are organized in a tree
structure, with the property that any node (encoding an identity) can derive
the private keys of its children (sub-identities). The master private key (the
root of the tree) can generate all the other private keys. KeyForge uses a
hierarchical tree structure with four levels, where each level corresponds to
distinct timespans, namely, years, months, days, and minutes. Each tag
(i.e., leaf in the tree) represents a unique 15-minute time chunk, and the
signer of HIBS can derive a private key for this time chunk from the master
private key. The underlying HIBS enables email servers to publish succinct
expiration information; instead of publishing all private keys for, say, one
day, it is enough to publish the private key that corresponds to the node
that encodes that day on the third level.

21

Figure 3: An example of GroupForge for hT = 2 and between the interval
[t, t + 2hT · ∆]. In this example, {(mi, σi)}i∈[2] can potentially act as the
deniable group for the message-signature pair (m3, σ3), and {(mi, σi)}i∈{4,5}
can act as the deniable group for the message-signature pair (m6, σ6).

Solution: GroupForge from DSKE. In the following, We show how a
DSKE scheme, such as DSKEpoly, can be used in a non-attributable email
protocol [SPG21]. DSKE removes the requirement for email servers to
periodically publish expiration information. Looking ahead, we introduce
GroupForge, an FFS scheme that builds on top of a DSKE and achieves
the same properties as KeyForge, while it does not require the email servers
to publish any expiry information, i.e., algorithm Expire() requires only
information already published by the email servers.

GroupForge uses a DSKE scheme ΣDSKE with extractable sets of size k,
a collision-resistant hash function H(), and a local clock Time() that returns
the current time. GroupForge works as follows3:

• KeyGen(1λ,∆, hT , t): On input the security parameter λ, the length ∆,
the height of the Merkle tree hT ∈ N, and the starting time t, it in-
vokes ΣDSKE.Setup(), and generates 2hT key pairs {(pki, ski)}i∈[2hT] using
the algorithm ΣDSKE.KeyGen(). The algorithm then uses the hash func-
tion H() to construct a Merkle tree from {pki}i∈[2hT]. Let R be the
root of this Merkle tree. Then it sets PK = (R,∆, hT , t) and SK =
(R,∆, hT , t, {ski}i∈[2hT]), and outputs (SK,PK).

• Sign(SK,m): On input the key, SK = (R,∆, hT , t, {ski}i∈[2hT]), it ob-

tains the current time t′ ← Time(), and computes leafi = ⌊(t′ − t)/∆⌋
(the leaf that corresponds to the current time chunk i). It invokes s =
ΣDSKE.Sign(ski,m), the authenticity proof proofi for the path from leafi
to the root R, and outputs the signature σ = (s, pki, leafi, proofi).

3For simplicity we ignore the parameters specific to the DSKEpoly scheme, e.g., d and ℓ.

22

• Verify(PK,m, σ): On input the public key PK, the message m, and the
signature σ, it parses PK = (R,∆, hT , t), and σ = (s, pki, leafi, proofi),
obtains the current time t′ ← Time(), and computes leaf ← ⌊(t′ − t)/∆⌋.
If leafi ̸= leaf, then returns 0. It validates proofi starting from leafi; if
invalid, it returns 0. Otherwise, returns ΣDSKE.Verify(pki,m, s).

• Expire(PK, {(mj , σj)}j∈[k]): On input the public key PK and k message-
signature pairs {(mj , σj)}j∈[k], the algorithm checks that the messages are
pairwise different, i.e., for all j1, j2 ∈ [k], mj1 ̸= mj2 , that all signatures
are valid, i.e., for all j ∈ [k], Verify(PK,mj , σj) = 1 , and that all
signatures are created in the same time chunk, i.e., there exists i ∈ [2hT]
such that for all j ∈ [k], σj = (sj , pki, leafi, proofi). If the conditions do not
hold, it returns⊥. Otherwise, it calls ΣDSKE.Extract({(mj , σj)}j∈[k], pki).
If this call returns ⊥, then Expire() also returns ⊥. If it returns an
extracted key ski, then Expire() returns the expiry information info =
(leafi, proofi, ski).

• Forge(PK,m, info): On input the public key PK, a message m, and
the expiry information info = (leafi, proofi, ski), for some i ∈ [2hT], the
algorithm computes s = ΣDSKE.Sign(ski,m) and returns the signature
σ = (s, pki, leafi, proofi), where pki = extractPK(ski) is the public key of
leafi.

Figure 3 provides a pictorial example of how GroupForge works. GroupForge
satisfies the correctness, unforgeability, and forgeability on expiry properties
of an FFS scheme (see Appendix A).

Remark on Threat Models. In non-attributable email protocol, there are
two types of attack scenarios: real-time attacks and after-the-fact attacks.
In the first attack model, a real-time attacker can be the recipient of the
message that immediately discloses received messages to third parties. In
the after-the-fact attack model, the recipient of the message is assumed to
be honest at the time of email receipt, but can be compromised afterward
by an after-the-fact attacker; hence, the attacker can take a snapshot of all
emails received in the past. More importantly, Specter et al. emphasize that
it is impossible to defend against a real-time attacker without interaction.
Therefore, our GroupForge protocol specifically targets the after-the-fact
attack scenario. Due to the need for interaction, we believe interactive
protocols such as OTR [BGB04] are more suitable for achieving deniability
in the real-time attack scenario.

6.2 Rate-Limiting Nullifier

Problem Statement: Rate Limiting Nullifier. A Rate-Limiting Nul-
lifier (RLN) [Pri24] is a scheme aimed at restricting the quantity of user
actions, thereby facilitating a robust mechanism for spam prevention. This

23

approach has been extensively discussed in a range of real-world applica-
tions [Bla21b, Res21, Bla21a, BB21]. Generally, RLN achieves spam deter-
rence by either increasing the difficulty of duplicating identities or risking
the disclosure of a user’s private key once a certain number of actions are
exceeded. In the following, we propose a RLN construction that is directly
derived from our DSKEpoly scheme. The formal study and construction of
secure RLN schemes has, to the best of our knowledge, not appeared in
academic literature before.

Solution: RLN from DSKEpoly. A RLN scheme typically consists of four
parts, setup, registration, interaction, and slashing, run between two types
of participants, a user U and a server T . Our DSKEpoly-based RLN works
as follows:

• Setup(1λ, d,U , T): On input the security parameter λ and degree d ∈ N,
it runs DSKEpoly.Setup(1

λ, d) to obtain (ck, vk), which allows a signer to
commit to polynomials in F≤d(X). It samples a collision-resistant hash
function h :M→ F. The public parameters par contain ck, vk, d, and h.
The parameters are publicly known for the user U and the server T .

• Registration(1λ,U , T): The user U runs DSKEpoly.KeyGen(1
λ, d) to ob-

tain the private key skU = f(X) and the public key pkU = Cf . The public
key pkU is registered and stored on the server T . T initializes a counter
MsgNumU = 0 to record the number of messages signed by U .

• Interaction(m,U , T): The interaction algorithm is run between
U and T in order to sign and verify a message m. User U
parses sk = f(X), computes x = h(m) and the signature σ =
DSKEpoly.Open(ck, Cf , x, f(X)) = (π, y), and sends σ to the server T . Upon
receiving σ, server T parses the user’s pkU = Cf and σ = (π, y), com-
putes x = h(m), and outputs DSKEpoly.Check(vk, Cf , x, y, π) ∈ {0, 1}.
If DSKEpoly.Check(vk, Cf , x, y, π) = 1, then T increases the counter
MsgNumU and stores the message-signature pair (m,σ).

• Slashing({(mi, σi)}i∈[MsgNum], pkU , T): If server T has received more
than l message-signature pairs from the user U , i.e., MsgNum > d, then
T runs the algorithm Extract({(mi, σi)}i∈[MsgNum], pkU) of DSKEkzg to ex-
tract skU . Subsequently, T publishes skU and removes U from the system.

Spam Prevention in DSKEpoly-based RLN. The key extraction property
of a DSKEploy (see Theorem 7) empowers the server to extract the private
key of a user who issues more than d messages with their signatures. Here,
d serves as a predefined parameter, influencing the polynomial’s degree that
the user can select. Consequently, in a DSKEpoly-based RLN, a user is pre-
vented from generating excessive spam (exceeding d messages) because their
private key would be publicly disclosed, leading to their expulsion from the
system.

24

Table 1: Performance of DSKElamp and DSKEkzg. Note that the probability
of extracting the key in DSKElamp is overwhelming in k, so the actual size of
the extractable group can be smaller than k = 64.

Scheme Group Size Key Generation Signing Verification Extraction

DSKElamp(SHA256) k = 64 451.583µs 17.625µs 160.458µs 45.083µs

DSKEkzg(BLS12-377)

k = 16 2.795ms 2.425ms 4.949ms 1.785ms
k = 32 2.825ms 2.523ms 6.123ms 7.813ms
k = 64 2.852ms 2.756ms 7.202ms 35.341ms
k = 128 3.624ms 3.404ms 8.045ms 166.433ms

Table 2: Performance of GroupForge Constructions with ∆ = 0.5 hour.

Scheme
Parameters:

Tree height (Duration)
Key Generation Signing Verification

GroupForgehash
(SHA256)

hT = 14 (0.93 years) 7.407s 21.791µs 176.541µs

hT = 15 (1.87 years) 14.815s 34.708µs 177.416µs

hT = 16 (3.74 years) 29.631s 41.291µs 178.083µs

hT = 17 (7.48 years) 59.262s 45.916µs 179.374µs

GroupForgekzg
(SHA256,BLS12-377, k = 32)

hT = 14 (0.93 years) 46.294s 1.554ms 6.139ms

hT = 15 (1.87 years) 92.588s 1.591ms 6.140ms

hT = 16 (3.74 years) 185.175s 1.611ms 6.141ms

hT = 17 (7.48 years) 370.350s 1.722ms 6.143ms

Using RLN in Anonymous Setting. As discussed in existing works of
RLN [Bla21b, Res21, Bla21a, BB21], we can utilize non-interactive zero-
knowledge proofs [Gro16] or mixing services [LG21, WCQ+23, WCL+23]
to obscure the public key pkU of a user U , thereby achieving anonymity
for an RLN scheme. Nevertheless, a significant challenge persists in linking
the signed messages of U in an anonymous context without revealing any
details about their public key pkU . A feasible approach might be leveraging
linkable ring signatures [LW05]: this method integrates a linkable tag into
the signed message, allowing the server to track the number of messages
originating from the same user. Incorporating these techniques for privacy
protection into our DSKEpoly-enhanced RLN represents a promising direction
for further work.

7 Evaluation and Discussion

In this section, we evaluate the performance of both hash-based and poly-
nomial commitment-based DSKE constructions, as well as the performance
of GroupForge constructions. Finally, we discuss potential future directions
for DSKE.

7.1 Evaluation

We evaluate the performance of Lamport signature-based DSKE (DSKElamp)
and KZG-based DSKE scheme (DSKEkzg) as well as the performance of

25

Groupforce constructions.

Testbed. We evaluate our schemes on a macOS Monterey machine with an
Apple M1 chip (8-core, 3.2 GHz), 8 GB of RAM.

DSKE Constructions. We have implemented prototypes of our proposed
constructions of DSKElamp and DSKEkzg in Rust. For our DSKElamp, we use
the SHA-256 implementation. For DSKEkzg, we adapt the KZG polynomial
commitment implementation using the curve BLS12-377 from arkworks li-
brary 4.

Table 1 provides a comprehensive overview of the performance metrics
for both DSKElamp and DSKEkzg. Remarkably, the execution time of functions
within DSKElamp consistently remains below 1ms, indicating efficient pro-
cessing across various DSKElamp functions. The extraction time of DSKEkzg
appears as approximately a quadratic function of the group size k. This
is because the complexity of ϕ(X) in DSKEkzg increases quadratically as k
grows.

GroupForge Constructions. We also implement two GroupForge con-
structions based on DSKElamp and DSKEkzg respectively. We leverage the
Merkle tree library using SHA-256 from arkworks 5 to construct our GroupForge.
We implement GroupForgehash with DSKElamp, and GroupForgekzg with DSKEkzg
using BLS12-377 curve and the group size k = 32. Table 2 summarizes the
performance of GroupForge constructions. We evaluate our constructions
with Merkle tree heights of 14, 15, 16, and 17, which correspond to a du-
ration of 0.93, 1.87, 3.74 and 7.48 years respectively (given a time chunk
of ∆ = 0.5 hour). For both GroupForgehash and GroupForgekzg, the most
expensive computation is the key generation. This is because we need to
generate 2hT key pairs, where hT is the Merkle tree height.

7.2 Discussion

In this part, we discuss relevant properties and examine potential future
directions and improvements for our constructions.

GroupForge with Forward-Secure Signature Schemes. Forward-
secure signature schemes (FSS) 6 [BM99] allow signers to derive future keys
from past keys while preventing users from deriving past keys from future
keys. This property of FSS can be combined with GroupForge to demon-
strate that if there is a deniable group at some point, the same group can be
used as a deniable proof for all message-signature pairs before that point. In
particular, to achieve this property, the signer can produce several FSS key
pairs from a master private key, and use them in reverse order in the leaves
of the Merkle hash tree. For instance, a private key ski used in the interval

4https://github.com/arkworks-rs/poly-commit
5https://github.com/arkworks-rs/crypto-primitives
6FSS is not to be confused with forward-forgeable signatures

26

https://github.com/arkworks-rs/poly-commit
https://github.com/arkworks-rs/crypto-primitives

Figure 4: An example of GroupForge using FSS. The group {(mi, σi)}i∈{4,5}
can act as a deniable group for all message-signature pairs in the past,
{(mi, σi)}i∈[3].

[ti, ti +∆] can produce all previous private keys skj used before ti. Hence,
it is not difficult to see that, if a deniable group exists at some time t′, the
same group can derive all private keys before t′. Figure 4 gives a high-level
example of how FSS can help improve GroupForge.

Trusted Setup. The KZG scheme used in DSKEpoly requires a trusted setup
to generate the public parameters. Although the scheme can leverage a
trusted third party to run the setup, such a reliance on a trusted party is typ-
ically not welcome in various settings. To remove this trusted assumption,
practitioners and the academic community have developed practical solu-
tions to securely generate these parameters, knows as ceremony [NRBB22].
Also, one may deploy polynomial commitment schemes that do not require
trusted setup, such as the one constructed from Bulletproofs [BBB+18].

Time-Agnostic Forgeability. Although not explicitly mentioned, mak-
ing a synchronous assumption on the communication is required to ensure
parties (i.e., group of size k) receive their signatures in the respective time
chuck. Moreover, the proper operation of the system relies on parties hav-
ing access to a local clock that advances at the same pace. The original
work of [SPG21] requires the stronger assumption of a shared global clock.
However, we observe that the forgeability aspect of the DSKE is generally
independent of the notion of time as it comes from the availability of a suffi-
cient number of signatures for key extraction. This essentially opens up the
door to use DSKE for adding forgeability property in settings where reliance
on time is not desirable.

DSKE and Unique Signatures. Apart from the aspect of key extractabil-
ity, DSKEpoly also satisfies the uniqueness property, i.e., there is only one
valid signature for any combination of the message and public key. For ref-
erence, BLS [BLS01] is a unique-signature scheme while ECDSA [JMV01]
is not. This property is of importance in applications that need to ensure
the consistency of the produced signature, such as when generating shared
randomness [HMW18].

Compacting the Keys and Signatures. We can also consider extend-
ing DSKEpoly to multi-signature schemes, where a group of individuals, each
holding their own key pairs, collectively sign a message and the resulting sig-

27

nature is verifiable under the respective set of public keys. In recent years,
there has been a surge of interest in multi-signature schemes that support an
aggregation property for the public key and the signature, aiming to reduce
the size of blockchains [BDN18]. Leveraging the homomorphic property of
the underlying KZG polynomial commitment scheme, these key and signa-
ture aggregation techniques are also applicable to DSKEkzg, offering a high
level of space efficiency.

Further Applications. DSKE can facilitate more applications where the
need for authenticity is momentary and signers desire long-term deniability.
Such examples are electronic voting and monetary donations. It has been ar-
gued that, even if future adversaries cannot go back to change the integrity or
the result of a finished election, the privacy requirements of voters in the face
of retaliation are everlasting [GCG+19]. Similarly, leaked donation records
have reportedly caused individuals to be targeted and threatened [Ott22],
and transaction deniability might be desirable in such scenarios as well.

8 Related Work

DSKE. Designing digital signature scheme with a key-extraction property
has already been explored in the context of double authentication preventing
signatures (DAPS). DAPS are genuinely designed with the purpose of double
or multiple authentication prevention [PS14, BPS17, DRS18], and they par-
ticularly aim at messages of special form, namely m = (a, p), where a is an
address and p is a payload. In case a signer signs two (or more) messages with
the same address but different payloads, its private key is leaked. However,
DSKE essentially provides key extractability as an inherent feature without
making assumptions about the type of message, increasing its applicabil-
ity. In particular, the key extraction in our polynomial commitment-based
DSKE (i.e., DSKEpoly) directly comes from the polynomial interpolation the-
orem. Note that one major downside of many DAPS schemes is their limited
address space, i.e., exponentially large address space is not supported. More-
over, a notable difference between DSKE and DAPS is that the former has
a sole design similar to the typical signature scheme in the literature like
BLS [BLS01], while the latter has a hybrid design, containing different com-
ponents. For instance, DAPS of [BPS17] builds on trapdoor identification
schemes [MR02] and that of [DRS18] involves encryption scheme and secret
sharing. This, in turn, results in DAPS having considerably larger key pairs
and also signature sizes compared to the normal signatures [DRS18].

GroupForge. Specter, Park, and Green formally defined the notion of
forward-forgeable signature (FFS) [SPG21] and showed how FFS can be used
to achieve deniability in the email protocol. The main idea of their scheme
is to make the signatures become forgeable after a fixed delay. They present
two concrete constructions: KeyForge and TimeForge. In the KeyForge

28

construction, the email server needs to periodically publish expired keys to
claim deniability over sent emails, and in the TimeForge construction, the
signers need to rely on a trusted publicly verifiable time-keeping (PVTK)
service to provide them with a verifiable clock time proof. The forgeability
comes from the possibility of obtaining a valid proof by querying the PVTK
service after a fixed delay.

Arun, Bonneau, and Clark proposed a similar notion to FFS called short-
lived signatures [ABC23]. The main idea of their work is to leverage a dis-
junctive statement to achieve deniability, building up on the previous efforts
in the literature, e.g., designated verifier proofs [JSI96, SWP04], proofs-
of-work-or-knowledge (PoWorKs) [BKZZ16], ring signatures [RST01], and
one-out-of-many proofs [GK15]. In particular, the construction in Arun et
al.’s work [ABC23] deploys verifiable delay functions [BBBF18, Wes19] as its
main building block together with a (trusted) randomness beacon [SJK+17].
They use a statement of the form: I know the witness, x (e.g., private key),
or someone solved a VDF on a beacon value derived from the trusted bea-
con before a time, t. Hence, their construction offers deniability to the
prover because anyone can produce a valid proof by evaluating the VDF
through sequential computation. Moreover, a recent analysis report [LMPR]
of the VDF implementation shows that VDFs in practice, such as Min-
root [KMT22], the VDF for the Ethereum blockchain, might be prone to
various potential attacks, which have yet not been explored thoroughly. This
work, on the other hand, offers a simpler approach without requiring costly
VDF evaluations and a trusted random beacon. We provide a comparison of
our work and state-of-the-art signature schemes with deniability in Table 3.

Finally, there is a subtle difference between the aforementioned types of
signatures. While forward-forgeable signatures provide non-attributability
by selective release of some expiry information, short-lived signatures auto-
matically become non-attributable after some time without further action.
Interestingly, GroupForge, proposed in this work, can offer the best of both
worlds. In other words, as the deniability property of GroupForge relies
on the number of generated signatures, it essentially can be considered a
short-lived signature in scenarios where the signer is supposed to generate a
certain number of signatures, achieving deniability for free without requir-
ing any trusted service or computing costly VDFs. Moreover, GroupForge
can also be modeled as a forward-forgeable signature, achieving forgeability
without constantly publishing key materials that are problematic in practice
due to unreliable distribution [SPG21].

Rate-Limiting Nullifier. A Rate-Limiting Nullifier (RLN) [Pri24] is a
mechanism designed to restrict users in the number of actions within a sys-
tem, thereby facilitating an effective spam prevention mechanism. Typically,
RLN accomplishes spam prevention by elevating the cost of identity repli-
cation or exposing a user’s private key after a predefined number of actions.

29

Table 3: Comparison of signature schemes with deniability.

Scheme
Without Requiring
Future Actions

(e.g., Publishing Keys)

Without Requiring
External Services

(e.g., Random Beacon)

Without
Requiring

VDF

KeyForge [SPG21] ✗ ✓ ✓

TimeForge [SPG21] ✓ ✗ ✓

Short-lived signature [ABC23] ✓ ✗ ✗

GroupForgehash ✓ ✓ ✓
(based on DSKEhash)
GroupForgepoly ✓ ✓ ✓

(based on DSKEpoly)

RLN can be used in anonymous voting schemes [Bla21b], privacy-preserving
P2P networks [Res21], and decentralized blockchain applications [Bla21a].
RLN has been extensively discussed by the blockchain community [Lim23]
and implemented in practice 7. However, to our knowledge, no academic ini-
tiative has been undertaken to formally propose and establish secure RLN
constructions as we do in this work with DSKE. In addition, it is feasible
to extend DSKE-based RLN to an anonymous setting by employing non-
interactive zero-knowledge proofs.

9 Conclusion

This paper introduces DSKE, a novel signature scheme featuring key ex-
traction capabilities. We present concrete DSKE constructions based on
the hash signatures and polynomial commitment schemes. We provide for-
mal proof of security for our constructions, demonstrating that signers can
consistently achieve deniability by presenting a set of signatures utilized to
regenerate old private keys. Furthermore, we illustrate how DSKE can serve
as the foundation for constructing both RLN schemes and GroupForge signa-
tures. We posit that DSKE holds promise for application in other protocols
that require short-term authenticity.

Acknowledgments

The authors would like to thank Harry W. H. Wong for helpful discussions
and comments.

7https://github.com/Rate-Limiting-Nullifier,
https://github.com/sec-bit/kzg-rln-go,
https://github.com/dynm/kzg-rln-contracts

30

https://github.com/Rate-Limiting-Nullifier
https://github.com/sec-bit/kzg-rln-go
https://github.com/dynm/kzg-rln-contracts

References

[ABC23] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-
lived zero-knowledge proofs and signatures. In Advances in
Cryptology–ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5–9, 2022, Proceedings,
Part III, pages 487–516. Springer, 2023.

[ACD+07] E Allman, Jon Callas, M Delany, Miles Libbey, J Fenton, and
M Thomas. Domainkeys identified mail (dkim) signatures.
Technical report, RFC 4871, May, 2007.

[BB21] Blagoj and WhiteHat Barry. Decentralised cloudflare - using
rln and rich user identities, 2021. Available at: https://ethr
esear.ch/t/decentralised-cloudflare-using-rln-and-r

ich-user-identities/10774.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE symposium
on security and privacy (SP), pages 315–334. IEEE, 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable delay functions. In Annual international cryptology
conference, 2018.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas
Hülsing, and Markus Rückert. On the security of the win-
ternitz one-time signature scheme. In Progress in Cryptology–
AFRICACRYPT 2011: 4th International Conference on Cryp-
tology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings 4,
pages 363–378. Springer, 2011.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo
infinite: Proof-carrying data from additive polynomial commit-
ments. In Annual International Cryptology Conference, pages
649–680. Springer, 2021.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing.
XMSS - A Practical Forward Secure Signature Scheme Based
on Minimal Security Assumptions. In Bo-Yin Yang, editor,
Post-Quantum Cryptography, pages 117–129, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact
multi-signatures for smaller blockchains. In International Con-

31

https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774
https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774
https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774

ference on the Theory and Application of Cryptology and Infor-
mation Security, pages 435–464. Springer, 2018.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record
communication, or, why not to use pgp. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society, pages
77–84, 2004.

[BKZZ16] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and
Bingsheng Zhang. Indistinguishable proofs of work or knowl-
edge. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 902–933.
Springer, 2016.

[Bla21a] Blagoj. Private message sharing for eth2 validators, 2021. Avail-
able at: https://ethresear.ch/t/private-message-shari

ng-for-eth2-validators/10664.

[Bla21b] Blagoj. Rate limiting nullifier: A spam-protection mechanism
for anonymous environments, 2021. Available at: https://me
dium.com/privacy-scaling-explorations/rate-limitin

g-nullifier-a-spam-protection-mechanism-for-anonymo

us-environments-bbe4006a57d.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the weil pairing. In International conference on the theory
and application of cryptology and information security, pages
514–532. Springer, 2001.

[Bly05] Stephen E Blythe. Digital signature law of the united nations,
european union, united kingdom and united states: Promotion
of growth in e-commerce with enhanced security. Richmond
Journal of Law & Technology, 11(2):6, 2005.

[BM99] Mihir Bellare and Sara K Miner. A forward-secure digital sig-
nature scheme. In Annual international cryptology conference,
pages 431–448. Springer, 1999.

[BPS17] Mihir Bellare, Bertram Poettering, and Douglas Stebila. De-
terring certificate subversion: efficient double-authentication-
preventing signatures. In Public-Key Cryptography–PKC 2017,
2017.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. Draft 0.5, 2020.

32

https://ethresear.ch/t/private-message-sharing-for-eth2-validators/10664
https://ethresear.ch/t/private-message-sharing-for-eth2-validators/10664
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Short
double-and n-times-authentication-preventing signatures from
ecdsa and more. In 2018 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P), pages 273–287. IEEE, 2018.

[GBH17] Leon Groot Bruinderink and Andreas Hülsing. “oops, i did it
again”–security of one-time signatures under two-message at-
tacks. In International Conference on Selected Areas in Cryp-
tography, pages 299–322. Springer, 2017.

[GCG+19] Huangyi Ge, Sze Yiu Chau, Victor E Gonsalves, Huian Li, Tian-
hao Wang, Xukai Zou, and Ninghui Li. Koinonia: verifiable
e-voting with long-term privacy. In Proceedings of the 35th An-
nual Computer Security Applications Conference, pages 270–
285, 2019.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs:
Or how to leak a secret and spend a coin. In Annual Interna-
tional Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 253–280. Springer, 2015.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A dig-
ital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on computing, 17(2):281–308, 1988.

[Gre] Matthew Green. Ok Google: please publish your DKIM secret
keys. https://blog.cryptographyengineering.com/2020/

11/16/ok-google-please-publish-your-dkim-secret-key

s/.

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Advances in Cryptology–EUROCRYPT 2016: 35th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305–326. Springer, 2016.

[HMW18] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-
ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic
curve digital signature algorithm (ecdsa). International journal
of information security, 1(1):36–63, 2001.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Des-
ignated verifier proofs and their applications. In International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 143–154. Springer, 1996.

33

https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/

[Kar19] Nikolaos Karanikolas. Digital signature legality in different ju-
risdictions: Legally binding issues. 2019.

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Ti-
wari. Minroot: Candidate sequential function for ethereum vdf.
Cryptology ePrint Archive, 2022.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2010 - 16th In-
ternational Conference on the Theory and Application of Cryp-
tology and Information Security, volume 6477, pages 177–194.
Springer, 2010.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way
function. 1979.

[LG21] Duc Viet Le and Arthur Gervais. Amr: Autonomous coin mixer
with privacy preserving reward distribution. In AFT ’21: 3rd
ACM Conference on Advances in Financial Technologies, pages
142–155, Arlington, Virginia, USA, 2021. ACM.

[Lim23] Wanseob Lim. Rln on kzg polynomial commitment scheme,
2023. Available at: https://zkresear.ch/t/rln-on-kzg-p

olynomial-commitment-scheme-cross-posted/114.

[LMPR] Gaetan Leurent, Bart Mennink, Krzysztof Pietrzak, and Vin-
cent Rijmen. Analysis of minroot: Public report. Available at:
https://crypto.ethereum.org/events/minrootanalysis20

23.pdf.

[LW05] Joseph K Liu and Duncan S Wong. Linkable ring signatures:
Security models and new schemes. In Computational Science
and Its Applications–ICCSA 2005: International Conference,
Singapore, May 9-12, 2005, Proceedings, Part II 5, pages 614–
623. Springer, 2005.

[Mas16] Stephen Mason. Electronic signatures in law. University of
London Press, 2016.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meik-
lejohn. Sonic: Zero-knowledge snarks from linear-size universal
and updatable structured reference strings. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2111–2128, 2019.

34

https://zkresear.ch/t/rln-on-kzg-polynomial-commitment-scheme-cross-posted/114
https://zkresear.ch/t/rln-on-kzg-polynomial-commitment-scheme-cross-posted/114
https://crypto.ethereum.org/events/minrootanalysis2023.pdf
https://crypto.ethereum.org/events/minrootanalysis2023.pdf

[Mer89] Ralph C Merkle. A certified digital signature. In Conference
on the Theory and Application of Cryptology, pages 218–238.
Springer, 1989.

[MR02] Silvio Micali and Leonid Reyzin. Improving the exact security
of digital signature schemes. Journal of Cryptology, 15(1):1–18,
2002.

[NRBB22] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan
Boneh. Powers-of-tau to the people: Decentralizing setup cere-
monies. Cryptology ePrint Archive, 2022.

[Ott22] Ottawa Citizen. Threats close stella luna gelato café after
owner’s name appears in givesendgo data leak, 2022. https:

//ottawacitizen.com/news/local-news/threats-close-s

tella-luna-gelato-cafe-after-owners-name-appears-i

n-givesendgo-data-leak.

[Per01] Adrian Perrig. The biba one-time signature and broadcast au-
thentication protocol. In Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, pages 28–37,
2001.

[Pri24] Privacy and Scaling Explorations team, Ethereum Foundation.
Rate-limiting nullifier, 2024. Available at: https://rate-lim
iting-nullifier.github.io/rln-docs/rln.html.

[PS14] Bertram Poettering and Douglas Stebila. Double-
authentication-preventing signatures. In Computer Security-
ESORICS 2014: 19th European Symposium on Research in
Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I 19, pages 436–453. Springer, 2014.

[Res21] Vac Research. Privacy-preserving p2p economic spam protec-
tion in waku v2, 2021. Available at: https://vac.dev/rlog

/rln-relay/.

[RKS15] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar,
coins on fire! penalizing equivocation by loss of bitcoins. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 219–230, 2015.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision
resistance. In International workshop on fast software encryp-
tion, pages 371–388. Springer, 2004.

35

https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://rate-limiting-nullifier.github.io/rln-docs/rln.html
https://rate-limiting-nullifier.github.io/rln-docs/rln.html
https://vac.dev/rlog/rln-relay/
https://vac.dev/rlog/rln-relay/

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a
secret. In International conference on the theory and application
of cryptology and information security, pages 552–565. Springer,
2001.

[SJK+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nico-
las Gailly, Linus Gasser, Ismail Khoffi, Michael J Fischer, and
Bryan Ford. Scalable bias-resistant distributed randomness. In
2017 IEEE Symposium on Security and Privacy (SP), pages
444–460. Ieee, 2017.

[SPG21] Michael A Specter, Sunoo Park, and Matthew Green.
KeyForge:non-attributable email from Forward-Forgeable Sig-
natures. In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 1755–1773, 2021.

[SWP04] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Effi-
cient extension of standard schnorr/rsa signatures into univer-
sal designated-verifier signatures. In International Workshop on
Public Key Cryptography, pages 86–100. Springer, 2004.

[WCL+23] Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knotten-
belt, and Christian Cachin. Pay Less for Your Privacy: To-
wards Cost-Effective On-Chain Mixers. In 5th Conference on
Advances in Financial Technologies (AFT 2023), volume 282,
pages 16:1–16:25, 2023.

[WCQ+23] Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi Zhou,
Lifeng Gao, Pascal Berrang, Benjamin Livshits, and Arthur
Gervais. On how zero-knowledge proof blockchain mixers im-
prove, and worsen user privacy. In Proceedings of the ACM Web
Conference 2023, pages 2022–2032, 2023.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, 2019.

A Proofs of GroupForge

GroupForge satisfies the correctness, unforgeability, and forgeability on ex-
piry properties of an FFS scheme.

Correctness follows from the underlying ΣDSKE scheme and from the
correctness of the Merkle proofs: every signature σ = (s, pki, leafi, proofi)
constructed with Sign() will be valid according to ΣDSKE.Verify(), and
proofi will be a valid Merkle proof that pki is the public key that corresponds
to leafi.

36

Unforgeability is also reduced to the unforgeability of ΣDSKE through
standard arguments on Merkle-based constructions [BDH11]. Assume an
adversary A that is given PK and attacks GroupForge. For each time
chunk i ∈ [2h], A is allowed to make up to k signing queries. The challenger
of A delegates these queries to ΣDSKE. Assume a successful forgery σ∗ =
(s∗, pk∗, leaf∗, proof∗), for some leaf leaf∗. Since ΣDSKE is unforgeable, pk∗

must be a public key under which s∗ is a valid signature. In this case,
however, the hash of pk∗ and the Merkle proof proof∗ can be used by the
challenger to break the collision resistance of H().

Forgeability on expiry is proven in the following theorem.

Theorem 10. GroupForge achieves correctness, unforgeability, and forge-
ability on expiry properties.

Proof. Let D be an adversary that is given a signature σb, for b ∈ {0, 1},
and, as described in the definition of FFS, aims to distinguish the value of b.
Signature σ0 is created with the private key ski of some time chunk i, i.e.,
σ0 ← Sign(ski,m). Signature σ1 is created using the expiry information
η, which in turn is computed from the additional material T , i.e., η ←
Expire(T) and σ1 ← Forge(η,m). Let us assume that T contains k valid
message-signature pairs, i.e., T = {(mj , σj)}j∈[k], that all mj are pairwise
different, and that all signatures are created in time chunk i, i.e., σj =
(sj , pki, leafi, proofi), for each j ∈ [k]. In this case, since the underlying
DSKE scheme ΣDSKE has (k, δ)-extractable sets, Expire(T) returns h ̸=
⊥ with probability δ. For this h = (leafi, proofi, sk

′
i) we know from the

properties of ΣDSKE that ski = sk′i, and Forge() will compute σ1 by calling
s = ΣDSKE.Sign(ski,m), which is identical to how σ0 is created. Hence, D
can only guess the value of b with probability 1/2.

Overall, assuming that the signer has created enough message-signature
pairs T with the properties described above, with probability δ, D can only
at random guess the value of b, while with probability 1−δ (when Expire(T)
returns⊥), the challenger ofD cannot produce a valid σ1 andD can correctly
guess b. The overall success probability of D is P = 1 − δ/2. Observe that
for the polynomial commitment-based DSKE scheme δ = 1− negl(λ), hence
P = 1/2+negl(λ), while for the hash-based DSKE scheme δ ≥ 1−λ/(2k−1)+
negl(λ), hence P asymptotically approaches 1/2 as k grows.

Setting the Deniable Group Size k and Delay ∆. GroupForge requires
that no recipients of k signatures collaborate within a time chunk ∆. This
requirement can be made plausible by adjusting two variables. First, the
size of the deniable group k can be set to a value large enough, for example,
⌈n/2⌉, where n is the number of recipient email servers. This would be
equivalent to the assumption that no more than half of the nodes may be
Byzantine, which is typical in distributed protocols. Second, time delay ∆
can be set to a low value. Similar to that of KeyForge, we can assume an

37

upper bound ∆̂ in the time required for email delivery and then set ∆ = ∆̂.
Hence, even if the signature recipients collaborate, the forged signature has
a high probability of reaching the recipient email server in the next time
chunk.

Moreover, the value of k and the choice of the underlying DSKE scheme
affect the probability of the algorithm Forge() outputting a signature and
not ⊥. For DSKEpoly we have δ = 1 for all k ≥ ℓ+1, and the signer can choose
the size of the group by selecting the degree of the polynomial accordingly.
For DSKElamp the probability δ changes with k.

38

	Introduction
	Preliminaries
	Notation
	Hash Functions
	Polynomial Commitment Schemes

	Digital Signatures with Key Extraction (DSKE)
	DSKE from Hash-Based Signature Schemes
	Lamport Signature-Based Construction
	Winternitz OTS-Based Construction

	DSKE from Polynomial Commitment Schemes
	KZG-Based DSKE Scheme

	Applications
	Non-Attributable Email
	Rate-Limiting Nullifier

	Evaluation and Discussion
	Evaluation
	Discussion

	Related Work
	Conclusion
	Proofs of GroupForge

