
PSEUDORANDOMNESS OF DECODING, REVISITED: ADAPTING OHCP

TO CODE-BASED CRYPTOGRAPHY

MAXIME BOMBAR 1,2,3, ALAIN COUVREUR 2,1, AND THOMAS DEBRIS–ALAZARD 2,1

Abstract. Recent code-based cryptosystems rely, among other things, on the hardness of the

decisional decoding problem. If the search version is well understood, both from practical and
theoretical standpoints, the decision version has been less studied in the literature, and little

is known about its relationships with the search version, especially for structured variants. On

the other hand, in the world of Euclidean lattices, the situation is rather different, and many
reductions exist, both for unstructured and structured versions of the underlying problems. For

the latter versions, a powerful tool called the OHCP framework (for Oracle with Hidden Center

Problem), which appears to be very general, has been introduced by Peikert et al. (STOC 2017)
and has proved to be very useful as a black box inside reductions.

In this work, we revisit this technique and extract the very essence of this framework, namely

the Oracle Comparison Problem (OCP), to show how to recover the support of the error, solving
an Oracle with Hidden Support Problem (OHSP), more suitable for code-based cryptography.

This yields a new worst-case to average-case search-to-decision reduction for the Decoding Prob-

lem, as well as a new average-case to average-case reduction. We then turn to the structured
versions and explain why this is not as straightforward as for Euclidean lattices. If we fail to

give a search-to-decision reduction for structured codes, we believe that our work opens the
way towards new reductions for structured codes, given that the OHCP framework proved to

be so powerful in lattice-based cryptography. Furthermore, we also believe that this technique

could be extended to codes endowed with other metrics, such as the rank metric, for which no
reduction is known.

1. Introduction

Security reductions in post–quantum cryptography. In the last two decades, there has
been a longstanding trend to develop reductions between generic or even worst-case problems,
in view to provide security guarantees of some encryption schemes and digital signatures. The
most significant part of the known reductions concern lattice–based cryptography. In particular,
the worst-case to average-case reductions between various lattice problems ([Reg05, LPR10, SS11,
LS15, PRS17, RSW18, PMS21]) provide a very convincing argument to assert that the security
of cryptographic primitives rest only on the worst-case hardness of well-studied problems such as
SVP or SIS. The recent conclusion of the third round of NIST standardisation process testifies
from this trust: among the four selected schemes for standardisation, three of them are based on
lattices.

In comparison, code–based cryptography appears to lag behind from the point of view of security
reductions, despite being very promising in terms of simplicity of the designs, short length of
ciphertexts, efficiency of encryption and decryption; and even short key sizes, for instance with

1 Laboratoire LIX, École Polytechnique, Institut Polytechnique de Paris, 1 rue Honoré d’Estienne

d’Orves, 91120 Palaiseau Cedex
2 Inria
3 CWI, Cryptology Group, Amsterdam, The Netherlands

E-mail addresses: maxime.bombar@cwi.nl, alain.couvreur@inria.fr, thomas.debris@inria.fr.

Date: October 27, 2023.
The authors would like to thank Damien Stehlé for his helpful insights on the OHCP technique for lattices, and

Jean-Pierre Tillich for pointing us toward this framework. MB and TDA would also like to thank Eleni Pavlakis and

Théo Gantzer for sharing their flat in San Francisco which permitted this work to be conducted in good conditions.
This work was funded by the French Agence Nationale de la Recherche through ANR JCJC COLA (ANR-21-

CE39-0011), ANR BARRACUDA (ANR-21-CE39-0009-BARRACUDA) and Plan France 2030 ANR-22-PETQ-

0008.

1

BIKE [AAB+21a] and HQC [AAB+21b]. Indeed, in the last decades, a recurrent argument to
claim the security of code–based cryptosystems was the NP–completeness of the so-called Decoding
Problem [BMvT78]. This NP–completeness argument is only partially convincing since it is well–
known that some NP–hard problems turn out to be easy for a large density of instances. In
short, cryptographers are much more interested by problems which are hard on average, while
NP–completeness only guarantees a worst-case hardness.

The Decoding Problem. A random [n, k]−code is the row–space of a uniformly random matrix

G ∈ Fk×n
2 (called a generator matrix of the code)1:

C = {mG |m ∈ Fk
2} ⊂ Fn

2 .

The (average-case) Decoding Problem can then be defined as follows:

Definition 1 ((Average-case) Search Decoding Problem). Given a random code C, a vector y ∈ Fn
2

and a target distance t ∈ N, the goal is to find a codeword (if exists) c ∈ C and an error vector
e ∈ Fn

2 of Hamming weight |e| = t such that y = c+ e.

Alternatively, this problem can be seen as solving a linear system with a non linear constraint
given by the targetted Hamming weight. Indeed, a code C can also be defined by a parity-check

matrix, that is to say a matrix H ∈ F(n−k)×n
2 such that

C = {x ∈ Fn
2 | xH

⊤ = 0}.

The above decoding problem is then equivalent to finding a word e ∈ Fn
2 of Hamming weight t

such that eH⊤ = s for a given syndrome s
def
= yH⊤ ∈ Fn−k

2 .
Note that for solving the Decoding Problem, it is enough to recover the positions i such that

ei ̸= 0, i.e. the support of the error. This is even true for larger fields Fq, at the cost of solving an
additional linear system to recover the exact coefficients. In other words, decoding is equivalent
to recovering the support of the error.

This computational problem has been studied for over sixty years [Pra62, Ste88, Dum91,
BJMM12, MO15, BM17, CDMT22], and is widely considered to be hard to solve, even with the
help of a putative quantum computer. Moreover, it benefits from a search-to-decision reduction,
due to Fischer and Stern [FS96], which asserts the hardness of the following decisional version:

Definition 2 ((Average-case) Decision Decoding Problem). Given a random code C defined by

a uniformly random generator matrix G ∈ Fk×n
2 , a target distance t ∈ N and a vector y ∈ Fn

2 ,
decide whether y is uniformly distributed over Fn

2 , or of the form mG+ e for some m ∈ Fk
2 and

e ∈ Fn
2 of Hamming weight |e| = t.

Such a reduction is very useful for cryptographic applications, since various cryptosystems, such
as Alekhnovich cryptosystem [Ale03], rely on the hardness of the decisional version. When the
length n of the code is a priori unbounded, this problem is also known as LPN (Learning Parity
with Noise) in the literature.

If the hypothesis that the Decoding Problem is hard on average is widely accepted by the com-
munity, we lack theoretical results to corroborate that, since the literature on security reductions
for codes remains very limited. The first worst-case to average-case reduction for the Decoding
Problem is due to Brakerski, Lyubashevsky, Vaikuntanathan and Wichs in the recent breakthrough
work [BLVW19] (and subsequently Yu and Zhang [YZ21]). This limited number of reductions is
probably one of the reasons why NIST did not yet select any code–based submission. On the other
hand, three of the four submissions selected to advance to the fourth round are based on binary
error correcting codes. Moreover, with the recent attacks on SIDH ([CD23, MMP+23, Rob23]),
NIST announced its will to standardise at least one code-based candidate, which increases the
importance of theoretical studies of the underlying assumptions.

1Note that such a code has a dimension less than k when G has not full rank but this happens only with a

negligible probability.

2

Structured variants. The plain Decoding Problem often leads to cryptosystems with large key
sizes. In order to improve on that, it has been proposed to use codes with an additional struc-
ture, such as a large automorphism group Aut(C). For example, quasi-cyclic codes, introduced in
cryptography by Gaborit in [Gab05], are very appealing since they offer a very good efficiency,
while keeping the same security parameter as for truly random codes. Indeed, the best approach
for solving the Decoding Problem of such structured codes remains the DOOM attack by Sendrier
[Sen11], which only allows a

√
♯Aut(C) speed–up. Quasi–cyclic codes are in particular used in

BIKE [AAB+22a] and HQC [AAB+22b] which are two of the three code–based proposals remain-
ing in the fourth round of NIST competition. However, such structured codes are not restricted
to encryption schemes. In particular, Bombar, Couteau, Couvreur and Ducros ([BCCD23]) have
recently used the decision version of the Decoding Problem of random quasi-abelian codes, which
generalise both random linear codes and quasi-cyclic codes, to build an efficient pseudorandom
correlations generator for the OLE correlation (Oblivious Linear Evaluation) over any field Fq

with q > 2. This allows to design the first efficient silent (i.e. which requires almost no communi-
cation in the preprocessing phase) N -party secure computation protocols for computing arbitrary
arithmetic circuits over Fq for q > 2.

However, on the security reductions point of view, the situation is even worse than that of the
plain Decoding Problem; there is even no complete search-to-decision reduction. The only known
reduction for structured variants is the recent work of Bombar, Couvreur and Debris-Alazard
[BCD22], via the introduction of the new problem called Function Field Decoding Problem (FFDP),
which yield a search-to-decision reduction for some quasi-cyclic codes. This reduction has been
extended in [BCCD23] to slightly more general quasi-abelian codes, but the question remains fully
open for the codes and parameter sets used in NIST submissions BIKE and HQC.

From lattices to codes. Motivated by this state-of-affairs, a recent trend of research in code–
based cryptography has been to take inspiration from the literature on Euclidean lattices to provide
new reductions for codes: [DRT21] gives a quantum reduction from the Decoding Problem to the
problem of finding a short codeword, in the way of [Reg05, SSTX09]; the reduction of [BCD22] is an
average-case to average-case search-to-decision reduction for structured variants of the Decoding
Problem, in the spirit of [LPR10], replacing number fields used in the lattice setting by function
fields (somehow the analogue in positive characteristics). However, their reduction only works
when the irreducible modulus splits completely in the underlying ring of integers, which is not the
case with the parameter choice of BIKE and HQC. In the latter situation, the problem remains
fully open. Our motivation with this work was to advance towards a general search-to-decision
reduction. In this context, one may wonder if all the tools used to design reductions for lattices
have been translated in the context of error correcting codes.

The answer to this question is negative. Indeed, in the breakthrough paper [PRS17], Peikert,
Regev and Stephens-Davidowitz introduced a powerful tool for reductions called the OHCP frame-
work (for Oracle with Hidden Center Problem). Until the aforementioned work, search-to-decision
reductions for lattices had arithmetic and algebraic limitations in the choice of the modulus and
the number field of the considered structured lattice problem: [LPR10] required the modulus to
split completely, and the chosen number field to be Galois. The arithmetic hypothesis on the
modulus was removed in [LS15] with the use of the modulus switching technique. The work of
[PRS17] allows to completely get rid of such algebraic and arithmetic hypotheses, and Rosca,
Stehlé and Wallet later used it in [RSW18] to design a complete search-to-decision reduction.
This OHCP technique proved itself extremely useful as a black box inside the latest reductions in
the context of structured lattice problems such as ring-LWE [PRS17, RSW18], polynomial-LWE
[RSW18], module-LWE [BJRW20] or NTRU [PMS21]. On the other hand, even if this technique
is considered to be very general, it has never been used outside of the lattice world.

Contributions. In this article, we revisit the OHCP framework from [PRS17] and adapt it to
the coding theoretic setting (in Section 3). More precisely, we extract the very essence of this
technique which appears to be the OCP technique (for Oracle Comparison Problem) ([PRS17,
Definition 4.1]) and was overlooked before as a mere technical step. Building on top of OCP, we

3

show how given an algorithm solving the decisional Decoding Problem, it is possible to recover
the support of the error, and hence to decode, solving the computational Decoding Problem. In
other words, we show how to solve a problem which may be called OHSP for Oracle with Hidden
Support Problem, and which is more suitable for code-based cryptography (see Figure 1)2

OCP

OHCP OHSP

suitable for
lattice-based cryptography

suitable for
code-based cryptography

−−−→: [PRS17]
−−→: This work

Figure 1. Relationships between OCP, OHCP and OHSP.

Combining this framework with a recent result of Debris-Alazard and Resch ([DR22]) on
smoothing bounds for codes which applies to any radial smoothing distribution (in particular,
it applies to the Bernoulli noise, which was not captured before), we derive a new reduction from
the worst-case search Decoding Problem to the average-case decision Decoding Problem, in the
spirit of what has been done in the lattice-based setting.

In Section 4, we discuss instantiations and parameters for which our reduction holds for relevant
parameters. It turns out that with this completely different approach, we recover the same param-
eters and noise ratio than the worst-case to average-case search-to-search reduction of Brakerski et
al. [BLVW19]. In particular, we reduce a worst-case search decoding problem whose hardness is
superpolynomial, to an average-case decisional problem, to get the following (informal) theorem.

Theorem (Informal). Let n, k, t ∈ N, D < 1/2 be such that

k

n
=

1

nD
and

t

n
=

log2(n)
2

n1−D
·

Suppose that there exists an algorithm which distinguishes with polynomial advantage between
(A, sA+ t) and (A,y) where A is a random binary k × n matrix, y is a random binary vector,
and t is a random binary vector of Hamming weight n

2

(
1− 1/nD(1+o(1))

)
.

Then there exists an algorithm which solves the worst-case decoding problem for input codes3 of
length n, dimension k and at decoding distance t.

Note that since the search-to-decision reduction of [FS96] is very tight, it can be composed with
the reduction of [BLVW19] to yield a worst-to-average case search-to-decision reduction with the
same parameters.

Finally, in Section 5, we discuss our attempt to give a reduction in the structured case, such
as quasi-cyclic codes. In particular, we single out a difficulty that arises with codes but was
not present in the lattice world, due to the choice of the error distribution. More precisely,
in the lattice setting, the error distribution is taken through the Minkowski embedding, which
transforms an actual product of polynomials (convolution) into a Shur product (coordinate-wise
multiplication). The error then affects each component independently. In the Hamming world,
this independence is not respected, and there seems to need a new idea to derive the reduction.

2Note that it is possible to give a formal definitions of all the problems we mention, but instead, we choose to put
forth the intuition (as well as rigourous proofs on how to solve them), in order to avoid superfluous technicalities
which would only obfuscate the speech.

3Input codes are supposed to be balanced as in the reduction of [BLVW19].

4

However, we believe that our OHSP technique can be seen as a first step towards more general
reductions for structured codes, in the same manner that OHCP had a huge impact for reductions
in lattice–based cryptography. We also believe that this paves the way for reductions for other
metrics used in cryptography, such as the rank metric, for which no search-to-decision reduction
is known.

The diagram in Figure 2 represents the relationships between problems in code–based cryptog-
raphy. The black arrows represent previously known reductions.

Average Search
LPN

Worst-Case
Search

Decoding Problem

Average
Search

Decoding Problem

Average
Decision

Decoding Problem

[BLVW19]

[YZ21]

[FS96] This paper:
OHSP technique

→: Harder than

Figure 2. Known reductions for the decoding problem used in code-based cryptography.

Outline of the article. The present article is organized as follows: In Section 2 we recall
the notations and some elementary notions. Then we start Section 3 by giving formally our
search-to-decision reduction in Theorem 1. It is followed by a high-level description of how this
theorem is obtained. In Subsections 3.1 and 3.2 we prove formally Theorem 1. In Section 4 we
discuss instantiations of our search-to-decision reduction, first as an average-to-average reduction
and ultimately as a worst-to-average reduction, in the context of the plain decoding problem. In
section 5 we describe our failed attempt to apply our reduction template to quasi-cyclic codes.

2. Preliminaries

Notation. When a and b are two integers, Ja, bK denotes the set of integers {a, a + 1, . . . , b},
and we denote by poly(n) any quantity which is an O (nα) for some constant α. Vectors are in
row notation and they will be written with bold letters, such as e. Uppercase bold letters are
used to denote matrices (such as G). The canonical inner product

∑n
i=1 xiyi between two vectors

x,y ∈ Fn
2 is denoted by ⟨x,y⟩. The support Supp(x) of x is the positions of its non-zero coordinates

Supp(x)
def
= {i ∈ J1, nK : xi ̸= 0}

and its Hamming weight |x| is the cardinality of its support

|x| def= ♯Supp(x).

The sphere in Fn
2 centered at 0 and of radius t (for the Hamming metric | · |) will be denoted by

Snt (or simply St when the ambient space is clear).

In this article, we wish to emphasize on which probability space the probabilities or the expec-
tations are taken. We will denote by a subscript the random variable specifying the associated

5

probability space over which the probabilities or expectations are taken. For instance the proba-
bility PX(E) of the event E is taken over the probability space Ω over which the random variable
X is defined.

The statistical distance between two random variables X and Y taking their values in a same
finite space E is defined as

∆(X,Y)
def
=

1

2

∑
a∈E
|P (X = a)− P (Y = a)| . (1)

The statistical distance between two random variables depends only on their distributions. Recall
that for any event E, we have |PX(E)− PY (E)| ⩽ ∆(X,Y). Therefore, computing probabilities
over X or Y will differ by at most ∆(X,Y). The statistical distance enjoys many interesting
properties. Among other things, it cannot increase by applying a function f ,

∆(f(X), f(Y)) ⩽ ∆(X,Y) (data processing inequality). (2)

For the data processing inequality to hold, the function f may be randomized as soon as its
internal randomness is independent from X and Y . In particular, it implies that the “success”
probability of any algorithm A for inputs distributed according to X or Y , can only differ by at
most ∆(X,Y). Furthermore, when (X1, . . . , Xr) and (Y1, . . . , Yr) are two sequences of random
variables such that the Xi’s (respectively the Yi’s) are pairwise independent, then

∆((X1, . . . , Xr), (Y1, . . . , Yr)) ⩽
r∑

i=1

∆(Xi, Yi). (3)

In the sequel, we denote by X ← D when X is a random variable following distribution D.
In addition when E is a finite set, we allow ourselves to denote X ← E when X is uniformly
distributed over E . A Bernoulli random variable X ← Ber(ω) of parameter ω ∈ R+ is any binary
random variable X ∈ F2 such that

P (X = 1) =
1

2

(
1− 2−ω

)
.

Remark 1. This notation may seem surprising. It is however more comfortable to use in our
setting. The rationale behind this choice is that in our reduction we strongly need to “focus” in the
neighbourhood of 1/2. This notation has also the following advantage: a simple calculation shows
that given two independent random variables X ← Ber(ω1) and Y ← Ber(ω2), then X + Y ←
Ber(ω1 + ω2). This will be comfortable in the sequel.

Finally, X ← Ber(ω)⊗N means that X
def
= (X1, . . . , XN) where the Xi’s are independent and

identically distributed Bernoulli random variables of parameter ω.

3. Search-to-decision reduction in the Oracle Comparison Problem (OCP)
framework

Let us assume that we have a probabilistic algorithm A running in time T that can distinguish
noisy codewords at some Hamming distance and uniform random vectors over the ambient space.
Its inputs are A ∈ Fk×N

2 and y ∈ FN
2 . The aim of A is to output “1” if and only if y = sA + e

for some s ∈ Fk
2 and the bits of e are independent and identically distributed Bernoulli random

variables of parameter ω. Namely, y is a noisy codeword c+e where c ∈ C def
=
{
mA : m ∈ Fk

2

}
and

|e| ≈ N
2 (1− 2−ω). Otherwise, A has to output “0”. In addition, to be relevant in a cryptographic

context, we suppose that A may give false answers. In that case we are interested in its advantage
ε(k,N, ω) which is defined as follows

ε(k,N, ω)
def
=

1

2
(PA,s,e (A (A, sA+ e) = 1)− PA,y (A (A,y) = 1)) , (4)

where the random variables satisfy

(i) A← Fk×N
2 , (ii) s← Fk

2 , (iii) y← FN
2 and (iv) e← Ber(ω)⊗N . (5)

6

We say thatA distinguishes between distributions (A, sA+e) and (A,y) with advantage ε(k,N, ω).
It may happen that we omit the dependence in (k,N,w) and simply write ε (that will be clear from
the context). The following general theorem shows that from any such putative “distinguishing”
algorithm A, we can build an algorithm solving a fixed decoding problem, namely recovering t
from (G,mG+ t).

Theorem 1. Let N,n ∈ N and k ∈ J0,min(N,n)K. Let (G,mG+ t) with G ∈ Fk×n
2 , m ∈ Fk

2 ,
and |t| = t ∈ J0, nK. Suppose that there exists an algorithm A which distinguishes in time T
distributions (A, sA + e) and (A,y) with advantage ε(k,N, ω) where A, s, e, y satisfy (5) and
ω ∈ R+ verifying

ω = Ω(1) and ω = O(n). (6)

Let ω0, α ∈ R+ be such that

t ω0 = ω and α
def
= max

(
1

ε(k,N, ω)
, N, n

)
. (7)

Then, there exists an algorithm which takes as input (G,mG+ t) and which outputs t in time
T poly (α) with probability (over its internal randomness and not the choice of G, m and t which
are fixed) bigger than

1− 2−Ω(n) −N poly(α)max
x⩾0

∆
((

r(x)G⊤, ⟨r(x), t⟩
)
, (a, e(x))

)
, (8)

where a← Fk
2 , r(x)← Ber(2xω0)

⊗n and e(x)← Ber(2xω0t) with x ⩾ 0.

This theorem will follow from a sequence of lemmas. Before providing a rigorous demonstration,
let us give an informal sketch of the proof.

Remark 2. Similarly to [PRS17], our algorithm rests on a distinguishing process between two dis-
tinct oracles. Informally, by oracle we mean a black box that we can query arbitrarily many times
and whose outputs are independent random elements following a given distribution. Formally, an
oracle O(x) can be modelised by a sequence (Xi)i∈N of independent identically distributed random
variables whose distribution may depend from some parameter x.

Step 1. (From distinguishing LPN samples to distinguishing noisy codewords). We start from an
algorithm A that distinguishes, with advantage ε, between a noisy codeword c + e (by
outputting 1) and a uniform y ∈ FN

2 (by outputting 0) with c drawn uniformly at random
from some random binary [N, k]-code C, and e ← Ber(ω)⊗N . This algorithm can easily
be turned into an algorithm A′ distinguishing (with the same advantage ε) oracles

O(ω) : (a, ⟨a, s⟩+ e) and O(∞) : (a, u) (9)

where s ∈ Fk
2 , e ← Ber(ω), a ← Fk

2 and u ← F2
4.Indeed, given one of the above oracles

O, in order to design A′, it is enough to perform N queries (ai, bi) to O and gather them
to generate the pair (A,b) where the columns of A are the a⊤i ’s and b = (b1, . . . , bN).
Then, we feed A with the generated pair (A,b) to make our decision. Defining such an
algorithm A′ solving the above LPN-decisional problem with at most N queries may seem
at first sight tautological, but for our reduction it is more convenient to emphasize this
point.

This is why, for proving Theorem 1, we will suppose that we directly have an algorithm
A′ distinguishing LPN-oracles O(ω) and O(∞) with some advantage ε and querying at
most N times the input oracle.

Step 2. (From a noisy codeword to LPN-samples). The starting point of the reduction consists
in noticing that, from any input of a decoding problem, we can build some LPN-oracle.
Given (

G,y
def
= mG+ t

)
∈ Fk×n

2 × Fn
2 ,

4A sample from O(·) is called an LPN sample.

7

we can design the following oracle O0. Sample r according to Ber(ω0)
⊗n, then compute

rG⊤ and

⟨y, r⟩ = ⟨mG+ t, r⟩ = ⟨m, rG⊤⟩+ ⟨t, r⟩. (10)

The oracle O0 outputs LPN–like samples of the form:

O0 : (a′, ⟨s,a′⟩+ e′) where


s

def
= m

a′
def
= rG⊤

e′
def
= ⟨t, r⟩.

(11)

The random variable e′ follows a Bernoulli distribution of parameter ω0 |t| = ω0t (see
Lemma 1 further) which equals ω (under the notation of Theorem 1, Equation (7)). How-

ever, one can notice that our above sample is not a valid LPN instance since a′ = rG⊤ is
a priori not uniformly distributed and is correlated to e′. Nonetheless, thanks to the data
processing inequality (see Equation (2)), replacing the sample (rG⊤, ⟨m, rG⊤⟩ + ⟨t, r⟩)
by a genuine LPN sample (a, ⟨a,m⟩+ e) changes the probabilities by at most the additive
term

∆
((
rG⊤, ⟨r, t⟩

)
, (a, e)

)
, where e← Ber(ω) and is independent from a.

Further, in § 4, when we instantiate Theorem 1, parameters are chosen so that this sta-
tistical distance is negligible. This is obtained by carefully choosing ω0. In particular, we
use smoothing bounds as given in [BLVW19, DST19, DDRT22, DR22].

Now, one may wonder how we can use O0 with our algorithm A′ distinguishing between
LPN-distributions to solve our underlying decoding problem. It is the aim of the next step.

Step 3. (Applying the Oracle Comparison Problem OCP framework). For a formal definition of
OCP, the interested reader can refer to [PRS17, Definition 4.1]. Intuitively, given access to
two oracles O1 and O2 whose acceptance probability are just a “shift” of one another, the
goal of OCP is to tell which one is in advance, and which one lags behind (see Figure 3).

The first core idea of the reduction is to notice that in order to build the oracle O0

of (11), we have computed ⟨y, r⟩ (see (10)), leading to an LPN sample with parameter
ω0|t| = ω (see Lemma 1 further). One could have done the same thing but this time by
computing ⟨y+z, r⟩ for some fixed z ∈ Fn

2 instead. This has the following consequence: our
new oracle provides LPN-samples with Bernoulli noise of parameter ω0|t + z|. Arguably
this innocent looking fact is the key of our reduction, which follows the approach of
[PRS17, RSW18]. Let us define the oracle Ovi as O0, but instead of outputting ⟨y, r⟩ it
outputs ⟨y+vi, r⟩ where (vj)1⩽j⩽n is the canonical basis of Fn

2 . Then we feed A′ with Ovi .
By assumption, A′ distinguishes between an LPN oracle with noise Ber (ω) and a uniform
noise Ber(∞) with advantage ε. Therefore, the probability that A′ outputs 1 when fed
with O0 is roughly 1/2+ ε. On the other hand, Ovi defines an LPN oracle with Bernoulli
parameter ω0 |t+ vi|, where |t| = t and |vi| = 1. Therefore, the noise is distributed either
as Ber(ω0(t − 1)) or Ber(ω0(t + 1)) depending on whether ti = 1 or not, that is to say
on whether i belongs to the support of t or not. In other words, the behaviour of Ovi

depends on the hidden support of t. From then on, one may prematurely conclude that
the acceptance probability of A′ when fed with Ovi slightly differs from the one when
fed with O0; a behaviour that could be detected. Unfortunately the success probability,
1/2 + ε, may be the same in all these cases. This brings us to the second core idea of the
reduction. Instead of defining O0 and Ovi by sampling r according to Ber(ω0), we choose
r← Ber(2xω0) for x ∈ R+. The LPN-noise now follows the following distributions

Ber(2xω0t) in O0 and

 Ber (2xω0(t− 1)) if ti = 1

Ber (2xω0(t+ 1)) if ti = 0
in Ovi . (12)

We can notice that by letting x → ∞, above distributions go to Ber(∞). However, the
fundamental remark is not here. By definition, our distinguishing algorithm A′ does not

8

Figure 3. Illustration of Step 3 (in the case ti = 1).

behave “in the same way” when is given as input O(ω0t) or O(∞); fact which is quantified
by its advantage ε. Therefore, if one feeds A′ with the oracle O0 (which outputs LPN
samples with Bernoulli noise of parameter ω0t when x = 0), then playing on x ⩾ 0 one
can detect a difference in its probability to output 1. Let us say that the change of
behaviour happens at some x0, namely for a noise Ber(2x0ω0t). Let us suppose that now
we feed Ovi to A′. One can also choose different values x and look at the probability that
A′ outputs 1. But, we know that this change of behaviour will happen when the noise
follows some Bernoulli distribution of parameter 2x0ω0t. Therefore, in that case, we will
observe a difference at some x′

0 ⩾ 0 when (according to Equation (12); see also Figure 3)
2x

′
0ω0(t− 1) = 2x0ω0t ⇐⇒ x′

0 = x0 + log
(

t
t−1

)
> x0 if ti = 1,

2x
′
0ω0(t+ 1) = 2x0ω0t ⇐⇒ x′

0 = x0 + log
(

t
t+1

)
< x0 if ti = 0.

It turns out that with classical statistical methods, we can now detect this difference
in the acceptance probability of A′. The idea is just to estimate when A′ changes its
behaviour given as input O0 and Ovi . Depending whether ti = 1 or not, this change of
behaviour will happen for a smaller x with input O0, or a bigger x. This yields the claimed
reduction: we are able to decide whether ti = 1 or 0 for any i ∈ J1, nK, i.e. we are able
to recover the hidden support of the error, and hence to solve the decoding problem. In
other words, we turned a “distinguishing decoding” algorithm into a “search decoding”
algorithm.

From now on, A denotes an algorithm running in time T and taking as input an oracle O which
can be queried at most N times and outputting vectors in Fk

2 × F2. Furthermore, its advantage
to distinguish between O(ω) and O(∞) (defined in (9)) is given by

ε =
1

2

(
P (A (O(ω)) = 1)− P (A (O(∞)) = 1)

)
> 0. (13)

Remark 3. After possibly replacing A(O) by 1−A(O), one can always suppose the advantage to
be positive.

3.1. Building LPN-oracles from a decoding instance: Step 2. Our aim in this step is to
study oracles Oz(x) and Oz

ideal(x) which are given in Figure 4, where z ∈ Fn
2 is a parameter, x ∈ R

an input and y = mG+ t. Notice that (G,y) is known while (m, t) are unknown; preventing us
from being able to run Oz

ideal(x). However, as we will explain below, Oz
ideal(x) is an ideal version

of Oz(x) that we “only” use to analyse the success probability of the reduction.
9

Oracle Oz(x):
Input: x ∈ R
Sample: r← Ber(2xω0)

⊗n

Return:
(
rG⊤, ⟨y + z, r⟩

)
Oracle Oz

ideal(x):
Input: x ∈ R

Sample r← Ber(2xω0)
⊗n

and a← Fk
2

Return: (a, ⟨a,m⟩+ ⟨z+ t, r⟩)

Figure 4. Oracles Oz(x) and Oz
ideal(x)

Oracle Oz
ideal(x) is an ideal version of Oz(x). It follows from the fact that Oz outputs LPN-like

samples (
rG⊤, ⟨m, rG⊤⟩+ ⟨z+ t, r⟩

)
.

Notice that, contrary to Oz
ideal, oracle Oz does not provide genuine LPN samples (that is the reason

why we said LPN like) since rG⊤ is not uniformly distributed and is correlated to ⟨z + t, r⟩.
However, in both oracles the noise term is the same. In the following lemma (often called the
piling-up lemma) we show how it behaves.

Lemma 1. Let r← Ber(α)⊗n, then for any z ∈ Fn
2 we have

⟨z, r⟩ ← Ber(|z|α).

Proof. Let z
def
= |z| and p

def
= 1

2 (1− 2−α). By definition of r ← Ber(α)⊗n we have the following
computation

Pr (⟨z, r⟩ = 1) =
∑
j odd

(
z

j

)
pj(1− p)z−j

=
1

2

∑
j

(
z

j

)
pj(1− p)z−j −

∑
j

(−1)j
(
z

j

)
pj(1− p)z−j


=

1

2
(1− (1− 2p)z)

=
1

2

(
1− 2−zα

)
,

which concludes the proof. □

3.2. Oracle Comparison Problem technique: Step 3. Let us introduce the following function

p : x ∈ R 7−→ P
(
A(O0

ideal(x)) = 1
)

(14)

where we feed to A the ideal oracle. Recall that (vi)1⩽i⩽n denotes the canonical basis of Fn
2 ; from

Lemma 1, we notice that

p

(
x+ log

|t+ vi|
|t|

)
= P

(
A
(
O0

ideal

(
x+ log

|t+ vi|
|t|

))
= 1

)
= P (A (Ovi

ideal (x)) = 1) (15)

where the last equality follows from the fact that O0
ideal

(
x+ log |t+vi|

|t|)
)

outputs proper LPN

samples with Bernoulli noise of parameter

2x+log
|t+vi|

|t| ω0|t| = 2xω0 |t+ vi| .
In other words, the probability that A outputs 1 when fed with Ovi

ideal(x) is the probability that
A outputs 1 when fed with O0

ideal on x shifted by

log

(
|t+ vi|
|t|

)
=

{
log (1− 1/t) if ti = 1
log (1 + 1/t) otherwise.

Let us stress that (15) would not hold if one had defined p in (14) by feeding A with O0 instead
of O0

ideal. Indeed, notice that outputs (a, b) of O0(x) are such that both the distributions of b
10

and a are functions of x. Hence, changing x in the non–ideal oracle O0(x) might change the
distribution of the first component of the output and (15) would no longer hold. We crucially used
that changing x in O0

ideal(x) only modifies the noise term.
As roughly described below Theorem 1, the core idea of the reduction is to feed to A oracles

O0
ideal(x) and O

vi

ideal(x) and then to draw the probability to output 1 when x ranges over [0,+∞[.
Practically, we compute statistical estimates of this probability when x ranges over a discretisation
of [0, Xmax], for some Xmax. In the choice of Xmax and the discretisation step, a trade-off should be
made. On the one hand, for the empirical estimates to be close enough to the actual probability
function p of (14), the upper bound Xmax should be large enough and the discretisation step
should be small enough. On the other hand for the statistical estimator to run in polynomial
time, Xmax should not be too large and the discretisation step should not be too small.

Then, using that A discriminates oracles O(ω0t) = O0
ideal(0) and O(∞) = O0

ideal(∞), we will be
able for both oracles to determine the first input x that induces a change in the behaviour of A.
We will compare both values and depending on which one is the biggest, we will decide if ti = 1,
or not. The correction of this procedure relies on (15) showing that one distribution is the shift of
the other one. However, one may note that we cannot run A

(
O0

ideal(x)
)
and A (Ovi

ideal(x)) as m, t

are unknown. We have instead access to A
(
O0(x)

)
and A (Ovi(x)) for which we do not know

if their probabilities to output 1 are a shift of the other one. In order to be able to analyse our
procedure, we will use the following remark: the probability of success when given the real oracles
only differs by at most an additive term ∆

((
rG⊤, ⟨r, t⟩

)
, (a, e)

)
(multiplied by the number of

queries to the oracles) to the case where it is given the ideal oracles. Therefore, as soon as we can
estimate the aforementioned statistical distance, it is enough to perform the analysis when given
ideal oracles.

The following technical lemma (whose proof is essentially the same as the one of [PRS17, Lemma
4.2]) shows how two oracles depending on a parameter x can be distinguished if the distribution of
one is the shift of the other one. This statement was initially used to solve the Oracle Comparison
Problem (OCP) problem introduced in [PRS17, §4]. Think that we will instantiate this lemma
using oraclesOs1(x) = A

(
O0

ideal(x)
)
with s1 = 0 andOs2(x) = A (Ovi

ideal(x)) with s2 = log
(
1± 1

t

)
.

Lemma 2. Let s1, s2 ∈ R and p : R→ [0, 1]. We suppose that there exists α > 0 and p∞ ∈ [0, 1]
such that p verifies the following assumptions

(i) p(s1)− p∞ ⩾ 1
α ;

(ii) ∀x ∈ R+, |p(x)− p∞| ⩽ α2−
x
α ;

(iii) p is α-lipschitz.

Let Os1 and Os2 be two oracles that output 0 or 1 and such that

∀x ∈ R, P (Os1(x) = 1) = p(s1 + x) and P (Os2(x) = 1) = p(s2 + x).

We suppose that a call to one of the above oracle costs a time T . Furthermore, s1 and s2 are such
that

either (I) s1 ⩽ s2 or (II) s1 ⩾ s2 +
1

α
·

Then, there exists an algorithm, running in time T poly (α), taking as inputs (Os1 ,Os2), querying
them poly(α) times and which can decide whether (I) or (II) holds, with a success probability
⩾ 1− e−α (over the outputs of the oracles Osi ’s).

Proof. The fundamental idea of the proof is to introduce the following function

h(s)
def
= max

x⩾0
(1 + x) |p(s+ x)− p∞| .

Estimating this function thanks to the oracles Os1 and Os2 (by using classical statistical methods)
will discriminate both considered cases, namely if s1 ⩽ s2 or s1 ⩾ s2 +

1
α . We will show in the

second part of the proof how to estimate h evaluated at s1 and s2. Let us first show that h
discriminates cases s1 ⩽ s2 or s1 ⩾ s2 +

1
α .

11

• Case s1 ⩽ s2: we have

h(s2) ⩽ h(s1). (16)

By definition,

h(s2) = max
x⩾0

(1 + x) |p(s2 + x)− p∞|

= max
x⩾0

(1 + x) |p (s1 + (x+ s2 − s1))− p∞|

⩽ max
x⩾0

(1 + (x+ s2 − s1)) |p (s1 + (x+ s2 − s1))− p∞|

= max
y⩾s2−s1⩾0

(1 + y) |p (s1 + y)− p∞| ,

which shows Equation (16).

• Case s1 ⩾ s2 +
1
α : we have

h(s1) < h(s2)− P

(
1

α

)
. (17)

for some polynomial P . For this case let us define

x̂(s)
def
= min argmax

x⩾0
(1 + x) |p(s+ x)− p∞| .

It is the smallest value x ∈ [0,+∞) at which h reaches its maximum. Notice that

h(s1) = (1 + x̂(s1)) |p(s1 + x̂(s1))− p∞|
⩽ (1 + x̂(s1) + s1 − s2) |p(s1 + x̂(s1))− p∞|
= (1 + (x̂(s1) + s1 − s2)) |p (s2 + (x̂(s1) + s1 − s2))− p∞|
⩽ h(s2),

where in the last line we used that x̂(s1) + s1 − s2 ⩾ 0 as x̂(s1) ⩾ 0 and s1 − s2 ⩾ 0 by
assumption. Therefore, from the above last inequality,

h(s2) ⩾ (1 + (x̂(s1) + s1 − s2)) |p (s2 + (x̂(s1) + s1 − s2))− p∞|

=

(
1 +

s1 − s2
1 + x̂(s1)

)
h(s1),

which shows that

h(s2)− h(s1) ⩾
s1 − s2
1 + x̂(s1)

h(s1) ⩾
1

α

h(s1)

1 + x̂(s1)
· (18)

But,

h(s1) = max
x⩾0

(1 + x) |p(s1 + x)− p∞| ⩾ |p(s1)− p∞| ⩾
1

α
, (19)

where in the last inequality we used assumption (i) on p. Plugging this in (18) leads to

h(s2)− h(s1) ⩾
1

α2

1

1 + x̂(s1)
· (20)

Let us now bound x̂(s1) from above. We have by assumption (ii) about p,

h(s1) = (1 + x̂(s1)) |p(s1 + x̂(s1))− p∞|

⩽ α(1 + x̂(s1))2
− s1+x̂(s1)

α

⩽ α(1 + x̂(s1))2
− x̂(s1)

α

but h(s1) ⩾ 1
α according to (19). Therefore,

− x̂(s1)

α
+ log (1 + x̂(s1)) ⩾ log

(
1

α2

)
=⇒ x̂(s1) ⩽ 2α log(α) + α log (1 + x̂(s1)) .

12

Consequently,

x̂(s1) ⩽ Cα log(α),

for some constant C. Plugging this in (20) shows (17).

To summarize, considering cases s1 ⩽ s2 or s1 ⩾ s2 + 1
α , we have h(s2) ⩽ h(s1) or h(s2) >

h(s1)+P
(
1
α

)
. Therefore, in order to distinguish both cases it is enough to find an approximation

of h(s1) and h(s2) (by at most a P
(
1
α

)
/2 factor). However, one may wonder how to find these

estimations, since s1 and s2 are unknown. Recall that we have access to the oracles Os1 and Os2

which are such that

P (Osi(x) = 1) = p(si + x).

The idea of the proof is then to estimate P (Osi(x) = 1) by running Osi(x) many times (one call
to it costs a time T) and repeating this process for many different values of x. It will give an
approximation of the graph of the map x 7→ p(si+x) and therefore an estimate of h(si). All of this
can be achieved by using the most basic statistical tool: empirical estimators of the expectation.
The procedure is described in Algorithm 1.

Algorithm 1: Estimator of h(si)

Parameters: Niter, xmax and δ
Input : Osi

Output : h(si) ∈ R+ be the estimation of h(si)

for j = 0, . . . , Xmax
def
= ⌊xmax

δ ⌋ do
p(j) = 0
for ℓ = 0, . . . , Niter − 1 do

b = Osi(δj)
p(j) = p(j) + b

Niter
▷ We compute here the empiric value of

P (Osi(δj) = 1)
end

end

return h(si) = max
j

(1 + δj) |p(j)− p(Xmax)|

Parameters Niter, xmax and δ of Algorithm 1 will be chosen later. Notice that one call to this
algorithm costs a time given by

Xmax Niter T, where,
(
Xmax

def
=
⌊xmax

δ

⌋)
,

as one call to Osi costs T . Furthermore, XmaxNiter is the number of queries to the oracle Osi .
Our aim is to show that for well chosen parameters

P

(∣∣h(si)− h(si)
∣∣ ⩾ P

(
1
α

)
2

)
⩽ e−α, (21)

where the probability is computed over Osi which is itself used to compute h(si). This will
conclude the proof, since in the case s1 ⩽ s2 we will have h(s1)−h(s2) ⩾ −P

(
1
α

)
and in the other

case h(s1)− h(s2) < −P
(
1
α

)
with probability ⩾ 1− e−α.

To prove this statement, let us first show that for all χ ∈ [0, 1] and all j ∈ J0, XmaxK,∣∣∣ |p(j)− p(Xmax)| − |(p(si + (j + χ)δ)− p∞)|
∣∣∣ ⩽ 2Y + α2−

si+Xmaxδ

α (22)

holds with probability larger than 1− 3Xmaxe
−2NiterY

2

.
Notice that p(j) is the empirical expectation of Osi(δj) where E (Osi(δj)) = P (Osi(δj) = 1) =

p(si + δj) (the oracle only outputs 1 or 0). Therefore, by Chernoff’s bound, for some Y ⩾ 0, we
13

have

P (|p(j)− p(si + δj)| ⩾ Y) = P (|p(j)− P (Osi(δj) = 1)| ⩾ Y)

⩽ 2e−2NiterY
2

. (23)

Next, from the union bound,

P (∀j ∈ J0, XmaxK, |p(j)− p(si + δj)| ⩽ Y) ⩾ 1− 2Xmax e−2NiterY
2

. (24)

Let us now make the following computation for χ ∈ [0, 1],

|p(j)− p(si + (j + χ)δ)| ⩽ |p(j)− p(si + jδ)|+ |p(si + jδ)− p(si + (j + χ)δ)|
⩽ |p(j)− p(si + jδ)|+ αδ,

where in the last line we used assumption (iii) that p is α-lipschitz together with χ ∈ [0, 1].
According to Equation (24),

P
(
∀j ∈ J0, XmaxK, |p(Xmax)− p(si + (j + χ)δ)| ⩽ Y + αδ

)
⩾ 1− 2Xmax e−2NiterY

2

. (25)

Furthermore,

|p(Xmax)− p∞| ⩽ |p(Xmax)− p(si +Xmaxδ)|+ |p(si +Xmaxδ)− p∞|

⩽ |p(Xmax)− p(si +Xmaxδ)|+ α2−
si+xmax

α ,

where we used assumption (ii) on p. According to (23),

P
(
|p(Xmax)− p∞| ⩽ Y + α2−

si+xmax
α

)
⩾ 1− 2e−2NiterY

2

. (26)

Notice now by triangle inequalities,∣∣∣ |p(j)− p(Xmax)| − |(p(s+ (j + χ)δ)− p∞)|
∣∣∣

⩽ |p(j)− p(Xmax)− (p(s+ (j + χ)δ)− p∞)|
⩽ |p(j)− p(s+ (j + χ)δ)|+ |p(Xmax)− p∞| .

Therefore, combining the union bound with (25) and (26) leads to our claim given in (22). Let
us define now,

q(j)
def
= (1 + jδ) |p(j)− p(Xmax)| and q(x)

def
= (1 + x) |p(si + x)− p∞| .

We have the following computation,

|q(j)−q((j + χ)δ)|

=
∣∣∣(1 + jδ) |p(j)− p(Xmax)| − (1 + (j + χ)δ) |p(si + (j + χ)δ)− p∞|

∣∣∣
⩽ (1 + jδ)

∣∣∣ |p(j)− p(Xmax)| − |p(si + (j + χ)δ)− p∞|
∣∣∣

+ χδ |p(si + (j + χ)δ)− p∞|

⩽ (1 + xmax)
∣∣∣ |p(j)− p(Xmax)| − |p(si + (j + χ)δ)− p∞|

∣∣∣+ αδ2−
si+(j+χ)δ

α ,

where in the last line, we used assumption (ii) on p together with χ ⩽ 1. Therefore, according to
(22), for all j and χ ∈ [0, 1],

|q(j)− q((j + χ)δ)| ⩽ 2(1 + xmax)Y + α2−
si+xmax

α + αδ (27)
14

with probability ⩾ 1− 3Xmaxe
−2NiterY

2

. Notice now that, by definition of h(si) and h(s), we have∣∣h(si)− h(si)
∣∣ ⩽ ∣∣∣max

j
q(j)− max

j∈K0,XmaxK
χ∈[0,1]

(j+χ)δ⩽xmax

q((j + χ)δ)
∣∣∣+ max

t⩾xmax

q(t)

⩽ max
j,χ
|q(j)− q((j + χ)δ)|+ α(1 + xmax)2

− xmax
α ,

where in the last line, we used assumption (ii). Therefore, by plugging (27) in the above equations,

we have with probability ⩾ 1− 3Xmaxe
−2NY 2

,∣∣h(si)− h(si)
∣∣ ⩽ 2Y + α2−

si+xmax
α + αδ + α(1 + xmax)2

− xmax
α

⩽ 2Y + 2α(1 + xmax)2
− xmax

α + αδ.

Now, let us choose parameters such that

xmax = −α log
P
(
1
α

)
6α(1 + xmax)

, Y =
P
(
1
α

)
12

and δ =
P
(
1
α

)
6α

·

Plugging this in Equation leads to ∣∣h(si)− h(si)
∣∣ ⩽ P

(
1
α

)
2
·

Furthermore, by choosing Niter as

−2NiterY
2 = −α+ log

(
1

3Xmax

)
⇐⇒ Niter =

α+ log(3Xmax)

2Y 2
·

Then the above inequality is true with probability ⩾ 1−e−α. Recall that the cost of our algorithm
is given by

Xmax Niter T = Xmax

(
α+ log(3Xmax)

P
(
1
α

)2
/72

)
T = poly(α)T

as Xmax =
⌊
xmax

δ

⌋
= poly(α). This concludes the proof. □

Equipped with this statement, we are almost ready to prove Theorem 1. However, it still
remains to verify that the function p given in (14) satisfies the assumption of the lemma for some
parameters α and p∞.

Lemma 3. We use the notation of Theorem 1. Let p be the function defined in (14), and let

p∞
def
= P

(
A
(
O0

ideal(∞)
)
= 1
)

(O0
ideal is defined in Figure 4). (28)

Then, we have

(i) p(0)− p∞ ⩾ 1
α ;

(ii) |p(x)− p∞| ⩽ α2−
x
α ;

(iii) p is α-lipschitz;

for some α satisfying

α = Cmax

(
1

ε
,N, n

)
(29)

for some large enough constant C and where ε is the distinguishing advantage of A given in
Equation (13).

Proof. Let us first prove (i). Following the discussion in Step 1, let O(ω) = O0
ideal(0) and O(∞) =

O0
ideal(∞) (defined in (9)). By definition of p,

p(0)− p∞ = P (A (O(ω)) = 1)− P (A (O(∞)) = 1)

= 2ε

⩾
1

α
,

15

where in the last line we used the assumption on α given in Equation (29).
Let us prove (ii). Using the data processing inequality (2) together with (3), for X ←

Ber(2xω0t) and Y ← Ber(∞), we have

|p(x)− p(∞)| ⩽ N ∆(X,Y)

= N 2−2xω0t.

Notice now that

N2−2xω0t ⩽ α2−
x
α ⇐⇒ log(N)− 2xω0t ⩽ −

x

α
+ log(α),

and the last equality is verified for all x ⩾ 0 since, from (6), we know that ω0t = ω = Ω(1) and
α ⩾ CN for some large enough constant C. It proves item (ii).

We are now ready to finish the proof by proving item (iii). In the same manner as before, for
X ← Ber(2xω0t) and Y ← Ber(2yω0y) and for all x, y ⩾ 0, we have

|p(x)− p(y)| ⩽ N∆(X,Y)

= N
∣∣∣2−2xω0t − 2−2yω0t

∣∣∣
⩽ Nω0t |x− y| ,

where the last inequality follows from the mean value theorem. Notice now that Nω0t ⩽ α as
Nω0t = Nω = O(Nn). It concludes the proof. □

We are now ready to prove Theorem 1.

Proof of Theorem 1. The algorithm recovering t from mG+ t simply runs for any i ∈ J1, nK the
procedure of Lemma 2 with oracles A(O0(x)) and A (Ovi(x)). However to see why it works, let
us make the analyse of the success probability as if the following oracles were given

Os1(x)
def
= A

(
O0

ideal(x)
)

and Os2(x)
def
= A (Ovi

ideal(x)) .

with s1 = 0 and s2 chosen later. Notice that according to the definition of p given in Equation
(14) we have

P (Os1(x) = 1) = p(s1 + x) and P (Os2(x) = 1) = p(s2 + x)

where s2 is such that (see Equation (15))

s2 =

{
log
(
1− 1

t

)
if ti = 1

log
(
1 + 1

t

)
otherwise.

Therefore, for t ⩾ 1, either

s2 > s1 = 0 if ti = 0

or,

s2 +
1

t
= log

(
1− 1

t

)
+

1

t
⩽ 0 = s1 if ti = 1.

Consequently, to apply Lemma 2 we need to have α ⩾ t. But the function p has also to verify
items (i), (ii) and (iii) of the lemma. According to Lemma 3, all these assumptions are met if we
choose α as a Θ

(
max

(
1
ε , N, n

))
(recall that t ⩽ n). Notice that poly(α) = poly

(
max

(
1
ε , N, n

))
.

Running the procedure of Lemma 2 for any i ∈ J1, nK will output the support of t, namely
{i ∈ J1, nK, ti ̸= 0}, with probability

⩾
(
1− e−α

)n
=
(
1− e−Ω(n)

)n
= 1− 2−Ω(n).

and in time Tpoly(α).
However, in reality it is not possible to run the procedure with the ideal oracles. Instead, we

need to use oracles A(O0(x)) and A (Ovi(x)). But, according to Lemma 1, the statistical distance
between outputs of O0(x) and O0

ideal(x) is smaller than

∆
((

r(x)G⊤, ⟨r(x), t⟩
)
, (a, e(x))

)
16

where a ← Fk
2 , r(x) ← Ber(2xω0)

⊗n and e(x) ← Ber(2xω0t). Furthermore we have the same
upper-bound between outputs of Ovi(x) and Ovi

ideal(x) except that we have to replace t by t+ vi

and e(x)← Ber(2xω0(t± 1)) as |vi| = 1. In both cases, the statistical distances are equal up to a
factor (1 + 2−Ω(n)).

Therefore, by using the data processing inequality and Equation (3), the procedure will recover
the support of t in the same time and with probability

⩾ 1− 2−Ω(n) −N ′ max
x⩾0

∆
((

r(x)G⊤, ⟨r(x), t⟩
)
, (a, e(x))

)
where N ′ is the number of queries that our procedure makes to oracles O0(x) and Ovi(x). Accord-
ing to Lemma 2, the procedure makes poly(α) queries to its input oracle which is here A(O0(x))
and A (Ovi(x)). But at the same time, A makes N queries to its input oracles. Therefore
N ′ = poly(α)N which concludes the proof. □

Remark 4. This algorithm bares similarities with the OHCP framework introduced in [PRS17]
to prove pseudorandomness of the ring-LWE distribution. However, contrary to the lattice-based
setting, in the case of codes we do not need to introduce a random walk towards a center. Indeed,
in the Hamming metric, the support gathers all the needed information to recover the error. The
situation is even simpler in the case of the binary field F2, for there are only two situations: either
the error is 1 or 0. For a bigger finite field Fq, we would have to distinguish between a 0 value or a
non-zero error, letting us with q − 1 choices for the actual error value. However, the information
“being in the support or not” is enough to recover the error, even if that means solving a linear
system. Note that this remark also applies to the rank metric, which could be a good starting point
to design search-to-decision reductions for codes endowed with this metric.

4. Instantiations

4.1. Plain decoding. In order to instantiate the above reduction, we need to carefully understand
how close our oracle Oz(x) is to output LPN-like samples, from genuine LPN samples which are
produced by Oz

ideal(x) (see Figure 4). That is to say, we want to understand when the additive
term

Npoly(α) ∆
((

r(x)G⊤, ⟨r(x), t⟩
)
, (a, e(x))

)
in Equation (8) is negligible. Recall that |t| = t, r(x)← Ber (2xω0)

⊗n
and e← Ber (2xω0t)

⊗n
. In

other words, we want to understand for which parameters ω0, x the distribution of r(x) smoothes
the dual of the code generated by G. We will consider two situations:

• Average-case to Average-case reduction: for cryptographic applications, we need to
assess the hardness of our problem on average. In this situation, the matrix G is chosen
uniformly at random in Fk×n

2 . This yields another search to decision reduction for the
plain decoding problem, completely different than that of [FS96]. Furthermore this gives
a sense of the best sorts of trade-off between parameters that we can achieve with our
reduction. The main ingredient here will be the following lemma proved in Appendix A
which is a variation of [DST19, Lemma 3, §C.1], itself a particular case of the famous
leftover hash lemma (see [BDK+11]).

Lemma 4. Let E,F be finite sets. Let H = (hi)i∈I be a finite family of applications from
E to F and T ⊆ E. Let t be drawn uniformly at random in T and r ∈ E be a random
variable distributed according to some distribution D. Let,

p
def
= Pt,r (⟨r, t⟩ = 1) (30)

where ⟨·, ·⟩ is a map from E × E → {0, 1}. Let η be the “collision bias” defined by

Ph,t,r0,r1

(
h(r0) = h(r1), ⟨t, r0⟩ = ⟨t, r1⟩

)
⩽

1

♯F
(p2 + (1− p)2 + η) (31)

where h, t are uniformly drawn in H and T respectively and r0, r1 be independent and
distributed according to D.

17

Let Y be the random variable (u, e) where u is uniform over F and e ∈ {0, 1} is a
Bernoulli random variable of parameter p and u, e are independent. Let Y (h, t) be the
random variable (h(r), ⟨r, t⟩) when r is distributed according to D. We have,

Eh,t (∆(Y (h, t), Y)) ⩽
√
η.

In our case, the functions will be defined as h(r) = rG⊤ where G ranges over a family
of matrices, typically double circulant matrices, or the full space of k × n matrices; and
⟨·, ·⟩ will stand for the canonical inner product over Fn

2 .

• Worst-case to Average-case reduction: on a more theoretical perspective, one can
wonder on the worst-case hardness of the decision decoding problem. Such a result has
been obtained for lattices, proving for instance that different flavors of LWE are at least
as hard as worst-case problems on (different classes of) Euclidean lattices. The main in-
gredient here will be the smoothing bounds of [BLVW19, YZ21, DDRT22, DR22]. This is
the first time that such a reduction is derived from the OCP framework in the code–based
setting.

Average-case to average-case reduction. In this paragraph, we consider the plain decoding
problem. First, we prove the following lemma. It will yield the noise allowed in the decision
problem of the reduction.

Lemma 5. Let β, η ∈ (0, 1), k ⩽ n ∈ N, t ∈ J1, nK and ω0 ∈ R+ be such that

ω0 ⩾ − log2

(
1− 2

1 + η

1− β
h−1

(
k

n

))
(32)

with h−1 : [0, 1]→ [0, 1
2] being the inverse of the binary entropy function h. Then, for all x ⩾ 0,

EG,t

(
∆
((

r(x)G⊤, ⟨r(x), t⟩
)
, (a, e(x))

))
= 2−Ω(n)

where a← Fk
2 , r(x)← Ber(2xω0)

⊗n, e(x)← Ber(2xω0t), G← Fk×n
2 and t← Snt being the sphere

of radius t around 0 in Fn
2 .

It is a corollary of Lemma 4 and [DR22, Proposition 6.7] recalled below, which shows that
the Bernoulli distribution inherits the smoothing properties of the uniform distribution over a
Hamming sphere.

Proposition 1 ([DR22, Proposition 6.7]). Let t ∈ Fn
2 , β > 0, ρ ∈ R+ and p

def
= 1

2 (1− 2−ρ). Let

G ∈ Fk×n
2 be the generator matrix of an [n, k]-code. Then,

∆
((

rG⊤, ⟨r, t⟩
)
, (a, e)

)
⩽

(1+β)np∑
r=(1−β)np

∆
((

rrG
⊤, ⟨rr, t⟩

)
, (a, er)

)
+ 2−Ω(n)

where r← Ber (ρ)
⊗n

, a← Fk
2 , e← Ber (ρ|t|), rr ← Sr and the er’s are distributed as the ⟨rr, t⟩’s.

Remark 5. Note that Equation (32) is equivalent to

1

2

(
1− 2−ω0

)
(1− β) ⩾ (1 + η)h−1

(
k

n

)
. (33)

That is to say, require the least index in the sum in Proposition 1 to be above the Gilbert-Varshamov
bound. This is a necessary condition for the statistical distances to be negligible.

We are now ready to prove Lemma 5. We will proceed in two steps: first we show that it holds
when r is instead uniformly distributed over the sphere of radius n

2

(
1− 2−exω0

)
(1− β); we then

apply Proposition 1.
18

Proof of Lemma 5. To ease the reading, let us drop the dependency in x (the maximum of the
statistical distance is reached for x = 0; taking x ⩾ 0 can only decrease this statistical distance

as it increases the noise). Let r
def
= n

2 (1− 2−ω0) (1− β) and r← Sr. Our aim is to show that the
result holds for this distribution. To conclude the proof it will just remain to apply Proposition 1.
By Lemma 4, it suffices to compute the collision probability (where r0, r1 ← Sr, G ← Fk×n

2 and
t← St)

Pr0,r1,G,t

(
r0G

⊤ = r1G
⊤, ⟨t, r0⟩ = ⟨t, r1⟩

)
= Pr0,r1,G,t

(
(r0 − r1)G

⊤ = 0, ⟨t, r0 − r1⟩ = 0
)

=
∑
r̸=0

PG

(
rG⊤ = 0

)
Pt (⟨t, r⟩ = 0)Pr0,r1 (r0 − r1 = r) + Pr0,r1 (r0 = r1)

=
1

2k

∑
r ̸=0

Pt (⟨t, r⟩ = 0)Pr0,r1 (r0 − r1 = r) + Pr0,r1 (r0 = r1)

⩽
1

2k
(
Pt,r0,r1 (⟨t, r0 − r1⟩ = 0) + 2kPr0,r1 (r0 = r1)

)
=

1

2k

(
p2 + (1− p)2 +

2k(
n
r

))

where p
def
= Pr,t (⟨t, r⟩ = 1) and we used in the inequality the law of total probability. By Lemma

4,

EG,t

(
∆
((

rrG
⊤, ⟨rr, t⟩

)
, (a, er)

))
⩽

√
2k(
n
r

) ·
Recall that

(
n
r

)
= 2nh(r/n)(1+o(1)) where h denotes the binary entropy function. By Equation (33),

r verifies (1+ η)h−1
(
k
n

)
⩽ r

n ⩽ 1/2. Therefore, since h is a strictly increasing function, the above

upper-bound is a 2−Ω(n). This yields the claimed result. □

Recall that in Theorem 1, the considered (search) decoding problem is fixed once and for all.
However, the above lemma tells us that on average, on the choice of G and t, the considered
statistical distance is negligible. We can actually prove that it holds for almost all choices.

Lemma 6. Let k ⩽ n ∈ N, t ∈ J0, nK. For a matrix G ∈ Fk×n
2 and a vector t ∈ Fn

2 of Hamming
weight t, denote

X(G, t)
def
= ∆

((
r(x)G⊤, ⟨r(x), t⟩

)
, (a, e(x))

)
.

Let,

γ
def
= EGu,tu (X(Gu, tu))

where Gu ← Fk×n
2 and tu ← St. Then,

♯{(G, t) ∈ Fk×n
2 × St | X(G, t) ⩾

√
γ}

2kn
(
n
t

) ⩽
√
γ.

Proof. Since Gu and tu are independent and uniformly distributed over their respective domains,
this proportion is nothing else than PGu,tu(X(Gu, tu) ⩾

√
γ). By Markov inequality, we have

PGu,tu(X(Gu, tu) ⩾
√
γ) ⩽

EGu,tu(X(Gu, tu))√
γ

⩽
√
γ,

which concludes the proof. □

We are now ready to instantiate our search-to-decision average-to-average case reduction. How-
ever, in the same manner as discussed in [DR22, §6], parameters have to be carefully chosen to
ensure that the decision problem is not too hard and its search counterpart into which we reduce
is not too easy.

19

Notice that the noise of the decision decoding problem of the reduction is distributed as Ber (ω0t)
with ω0 given in Equation (32). If one chooses k, n such that k

n = Θ(1), one would obtain a
noise distributed as Ber(ω0t) = Ber (Θ(t)). In that case, it seems that we need to choose t as a
O(log2(n)) to reach a noise rate 1/2(1−2−ω0t) = 1/2−1/poly(n) in the decision decoding problem.
Otherwise, we would reduce the decoding problem into a decision decoding problem with a noise
rate exponentially or sub-exponentially close to 1/2; an extremely hard problem which is not very
satisfactory. On the other hand, choosing t = O(log2(n)) is a real disaster for the reduction:
decoding a code of length n at distance O (log2(n)) can be done in polynomial time (using for
instance Prange algorithm [Pra62]). That is, we would be reducing an easy worst-case search
decoding problem to an average-case decision decoding problem; which says nothing about the
hardness of the decision version. We therefore conclude that the only way to reach an error rate
1/2(1− 2−ω0t) = 1/2− 1/poly(n) is to decrease as much as possible ω0 given in Equation (32). In
particular, we are led to choose k/n = o(1), since in that case ω0 = − log2(1− o(1)) = o(1). More
precisely, for these parameters ω0 verifies

ω0 = − log2

(
1−Θ

(
h−1

(
k

n

)))
≈ 1

log2
(
n
k

) k

n

where we used the expansion h−1(ε) ≈
ε→0

ε
log2(1/ε)

. Therefore, to reach the noise rate 1/2−1/poly(n)
we need to choose parameters such that

k

n
= o(1) and ω0t =

1

log2
(
n
k

) k

n
t = O (log2(n)) . (34)

Notice that necessarily in the above choice of parameters, we need t to be sublinear in n, since
otherwise k would be too small, allowing an exhaustive search to decode in polynomial time.
Fortunately, in that case the reduction is non-trivial. The cost of Prange’s algorithm [Pra62]
(which is asymptotically the best known decoding algorithm when the decoding distance t is
sublinear in the length of the input code, see [CS16]) is given by

2Θ(t
k
n) = 2Θ(log2(n) log2(n/k)) = nΘ(log2(n/k))

which is super-polynomial.
In what follows we focus our attention to a noise rate 1/2− 1/poly(n) in the decision problem,

that is to say we propose parameters where the rate k/n of the codes considered in the reduction
verifies k/n = o(1).

Theorem 2. Let β, η ∈ (0, 1), C > 0 and n, k, t ∈ N be such that

k

n
= o(1) and

2

ln(2)

1 + η

1− β

1

log2
(
n
k

) k

n
t = C log2(n). (35)

Furthermore, let

ω0 = − log2

(
1− 2

1 + η

1− β
h−1

(
k

n

))
i.e.

1− β

2

(
1− 2−ω0

)
= (1 + η)h−1

(
k

n

)
. (36)

Suppose that there exists an algorithm A, with advantage ε = 1
poly(n) , which distinguishes in time

T distributions (A, sA+ e) and (A,y) with

A← Fk×n
2 , s← Fk

2 , y← Fn
2 and e← Ber (ω0t)

⊗n
.

Then, there exists an algorithm running in time Tpoly(n), which takes as inputs G ∈ Fk×n
2 , mG+t

where m ∈ Fk
2 , t ∈ Snt , and outputs t (or equivalently m) with probability at least 1− 2−Ω(n) over

a uniform choice of G and t .

Remark 6. With the above parameter choice, we have

ω0t = C log2(n)(1 + o(1))
20

i.e. the error rate in the decision problem is

1

2
(1− 2−ω0t) =

1

2
− 1

poly(n)
·

Proof. We use the notations of Theorem 1 and Lemma 6. Let G ← Fk×n
2 and t ← St. Notice

that, since k/n = o(1), the following computation holds

ω0t = − log2

(
1− 2

1 + η

1− β
h−1

(
k

n

))
t

=
2

ln(2)

1 + η

1− β
h−1

(
k

n

)
t(1 + o(1))

=
2

ln(2)

1 + η

1− β

1

log2
(
n
k

) k

n
t (1 + o(1)),

where we used the expansion h−1(x) = x
log2(1/x)

(1 + o(1)). Therefore, by Equation (35), we have

ω0t = C log2(n)(1 + o(1)).

Let us consider now the algorithm B given by Theorem 1 which is obtained from an algorithm
distinguishing distributions (A, sA+e) and (A,y) with advantage ε = 1

poly(n) . It will output some

t′ in time Tpoly(α) and with probability 1−2−Ω(n)−npoly(α)X(G, t). Notice that we do not have
a max here because it is reached when x = 0: the higher is the noise, the closer our distribution is

from the genuine LPN. Since α = max

(
1

ε
, n

)
= poly(n), then this probability is 1− 2−Ω(n) when

X(G, t) = 2−Ω(n). But since ω0 is chosen as in Equation (36), we have EG,t (X(G, t)) = 2−Ω(n).

Therefore, according to Lemma 6, the proportion of (G, t) for which it happens is 1−2−Ω(n) (since
ω0 was chosen such that γ = EG,t (X(G, t)) = 2−Ω(n)). Moreover, the success probability of B is
independent from G and t. Therefore, the probability that B(G, t) outputs 1 will be greater than
(1− 2−Ω(n))(1− 2−Ω(n)) = 1− 2−Ω(n), which concludes the proof. □

Remark 7. In Theorem 2, we instantiated Theorem 1 with N = n to get a decisional version of
the actual decoding problem. However, we are not really limited by the length N of the input code
in the decision decoding problem; we have total liberty in the choice of N . Increasing N would
only increase the running time of the reduction. In other words, this reduction would also apply
in the context of LPN, where N is a priori unbounded.

Worst-case to average-case reduction. We will now deal with the worst-case to average-case
reduction. Recall that in Theorem 1, we need to set the statistical distance between our produced
samples and genuine LPN samples to be negligible. For a worst-case hardness we need it to be
negligible for any code, i.e. for any matrix G. To this end we will use smoothing bounds as given
in [DR22, Proposition 7.6]. However, this bound is only stated when G is a generator matrix of
an [n, k]-code which is balanced (in the same manner than in [BLVW19]).

Definition 3 (Balanced code). An [n, k]-code is δ-balanced if its minimum distance is at least δn
and all the codewords have Hamming weight at most (1− δ)n. That is, for all x ∈ C \ {0},

δn ⩽ |x| ⩽ (1− δ)n.

In the worst-case to average-case search-to-decision reduction we will restrict “worst” instances
to δ-balanced codes. Therefore, we will first need to fix an [n, k]-code C which is δ-balanced. A
natural choice for δ is given by the relative Gilbert-Varshamov bound h−1

(
1− k

n

)
which appears

ubiquitously in the coding-theoretic literature: amongst other contexts, it arises as the (expected)
relative minimum distance of a random code of dimension k and length n (see for instance [BF02,
§C]). However, for the same reasons as above with random codes, in order to reach a noise rate
1/2 − 1/poly(n) in the decision problem, we will choose parameters k, n so that k/n = o(1).
Many other interesting sets of parameters for the reduction can be proposed, for instance choosing
k/n = Θ(1) and t/n = o(n) leading to a noise rate in the decision decoding problem 1/2− 2−o(n).

21

To reach a negligible statistical distance we will use the following proposition.

Proposition 2 ([DR22, Proposition 7.6]). Let G ∈ Fk×n
2 be the generator matrix of an [n, k]-code

which is δ-balanced with 1/2 ⩾ δ ⩾ h−1
(
1− k

n

)
⩾ C for some constant C > 0. Let t ∈ Fn

2 and

suppose that |t|
n = o (1).

Let β, η > 0 and ρ ∈ R+ be such that

(1− β)
1

2
(1− 2−ρ) ⩾ (1 + η)h−1

(
2
k

n
+D
|t|
n

)
for some large enough constant D. Then,

∆
((

rG⊤, ⟨r, t⟩
)
, (a, e)

)
= 2−Ω(n)

where r← Ber (ρ)
⊗n

, a← Fk
2 and e← Ber (ρ|t|).

This proposition allows to instantiate our reduction in the worst-to-average case in the following
theorem.

Theorem 3. Let β, η ∈ (0, 1), C > 0 and n, k, t ∈ N be such that

k

n
= o(1),

t

n
= o

(
k

n

)
and

4

ln(2)

1 + η

1− β

1

log2
(
n
k

) k

n
t = C log2(n). (37)

Furthermore, let (for some large enough constant D)

ω0 = − log2

(
1− 2

1 + η

1− β
h−1

(
2
k

n
+D

t

n

))
i.e.

1− β

2

(
1− 2−ω0

)
= 2(1 + η)h−1

(
2
k

n
+D

t

n

)
. (38)

Suppose that there exists an algorithm A, with advantage ε = 1
poly(n) , which distinguishes in time

T distributions (A, sA+ e) and (A,y) with

A← Fk×n
2 , s← Fk

2 , y← Fn
2 and e← Ber (ω0t)

⊗n
where ω0t = C log2(n)(1 + o(1)).

Then, there exists an algorithm running in time Tpoly(n), which takes as inputs G ∈ Fk×n
2 a

(fixed) generator matrix of a δ-balanced [n, k] code (with δ ⩾ h−1
(
1− k

n

)
= 1

2 −
√

k
n (1 + o(1))),

a noisy codeword mG + t with t of Hamming weight t, and outputs t (or equivalently m) with
probability at least 1− 2−Ω(n) (where the probability is not taken over the choice of m, G and t).

Proof. We use the notations of Theorem 1 and Proposition 2. Notice that, since k/n = o(1) and
t/n = o(k/n), we have the following computation

ω0t = − log2

(
1− 2

1 + η

1− β
h−1

(
2
k

n
+D

t

n

))
t

=
4

ln(2)

1 + η

1− β

1

log2
(
n
k

) k

n
t (1 + o(1))

where we used the expansion h−1(x) = x
log2(1/x)

(1 + o(1)). Therefore, by Equation (37), we have

ω0t = C log2(n)(1 + o(1)),

i.e.
1

2

(
1− 2−ω0t

)
=

1

2

(
1− 1

nC(1+o(1))

)
.

Let,

Y (G, t)
def
= ∆

((
r(x)G⊤, ⟨r(x), t⟩

)
, (a, e(x))

)
.

Let us consider now the algorithm B given by Theorem 1 which is obtained from an algorithm
distinguishing distributions (A, sA+e) and (A,y) with advantage ε = 1

poly(n) . It will output some

t′ in time Tpoly(α) and with probability 1−2−Ω(n)−npoly(α)Y (G, t). Notice that we do not have
22

a max here because it is reached when x = 0: the higher is the noise, the closer our distribution

is from the genuine LPN. Since α = max

(
1

ε
, n

)
= poly(n), then this probability is 1 − 2−Ω(n)

when Y (G, t) = 2−Ω(n). But since ω0 is chosen as in Equation (38) we have Y (G, t) = 2−Ω(n).
Moreover, the success probability of B is independent from G which concludes the proof. □

A set of parameters. One can apply Theorem 3 for instance with the following set of parameters

k

n
=

1

nD
and

t

n
=

log2(n)
2

n1−D

with D < 1/2. Theorem 3 shows that solving the decision-average decoding problem of codes
with length n, dimension n1−D at distance 1/2 − O

(
1/nD ln(2)/4

)
is at least as hard as decoding

a fixed δ-balanced code (with δ ⩾ h−1
(
1− 1

nD

)
) at distance nD log2(n)

2. Note that, as noticed
in [BLVW19, §1.1] or [YZ21] and even [BF02] (though not under the same terminology), most of
the codes are δ-balanced, and no generic decoding algorithm is known to take advantage of this
property.

5. Failed attempt: the case of structured codes

In the manner of [PRS17] and [RSW18], it would be very tempting to apply our reduction in
the case of structured error correcting codes, such as quasi-cyclic codes. Such codes are used in
NIST submissions BIKE and HQC because they offer a very good efficiency while keeping the
same security parameter as truly random codes.

Quasi-cyclic codes are codes that have a generator matrix formed out by multiple circulant
blocks, i.e. of the form 

a0 an−1 . . . a1
a1 a0 . . . a2
a2 a1 . . . a3
...

...
. . .

...
an−1 an−2 . . . a0

 .

In order to simplify the discourse, in the sequel we consider the situation of quasi-cyclic codes
formed out by a single row of circulant blocks. This generalizes easily to multiple rows, which
corresponds to what is sometimes called module-LPN in the literature (see for instance [BCG+20]).

Very conveniently, quasi-cyclic codes benefit from a so-called polynomial representation. Indeed,
each vector of length n can be represented as an element of F2[X]/(Xn− 1); such that the matrix-
vector product is nothing but the usual product of polynomials.

Consider a quasi-cyclic code generated by a matrix G of rate R, i.e. with 1/R circulant blocks.
A noisy codeword y = mG+ t where t is a regular error of weight t (i.e. a concatenation of 1/R
words of Hamming weight t, which is the usual noise considered with quasi-cyclic codes) yields
1/R noisy polynomials of the form ma+t′ ∈ F2[X]/(Xn−1), using the polynomial representation.

Hence, we could change the inner product ⟨·, ·⟩ in Theorem 1 by the following inner product

(with value in F2[X]/(Xn − 1)): if x = (x1, . . . ,x1/R) ∈ (F2[X]/(Xn − 1))
1/R

, define

⟨x,y⟩ def=
1/R∑
i=1

xiyi.

With this inner product in hand, given y = (ma1+t′1, . . . ,ma1/R+t′1/R) ∈ (F2[X]/(Xn − 1))
1/R

,

we can compute ⟨y, r⟩ where r = (r1, . . . , r1/R) and each ri are distributed according to Ber(ω0),
meaning in this context that all the n coefficients of ri are distributed according to Ber(ω0). Then,

⟨y, r⟩ = m

1/R∑
i=1

airi

+

1/R∑
i=1

t′irj︸ ︷︷ ︸
LPN noise

(39)

23

We can then follow the same strategy than previously to prove a structured analogue of Theorem
1. However we have to show that sampling elements as in (39) is close to sample from the ring-LPN
distribution instead of the plain LPN. Lemma 4 can be adapted to this case and collisions can be
easily computed; therefore we are able to compute the noise from which the Bernoulli distribution
smoothes the distribution, which would actually be roughly the same as in the unstructured case
(this is actually a consequence of the fact that random quasi-cyclic codes of use in cryptography
have on average a minimum distance reaching the Gilbert-Varshamov bound [GZ06], so as genuine
random codes). However there is a strong caveat when one wants to estimate the noise in a sample
given in Equation (39).

For the sake of simplicity, let us consider R = 1. Let t =
∑n−1

i=0 tiX
i ∈ F2[X]/(Xn − 1)

with Hamming weight t, namely with t non-zero coefficients. Now, sample r =
∑n−1

i=0 riX
i ∈

F2[X]/(Xn − 1) where (r0, . . . , rn−1) ← Ber(ω0)
⊗n. The noise in the built LPN-samples is given

by the inner product between t and r, namely

tr =

n−1∑
k=0

∑
i+j≡k mod n

tirjX
k. (40)

Notice that each coefficient of tr is exactly the sum of t independent Ber(ω0) random variables,
therefore is a Bernoulli random variable of parameter tω0. It may seem at first glance that we
obtain the same analysis than in the plain case, starting from a noisy codeword y = ma + t
we build LPN-like samples with Bernoulli noise given by Ber(ω0t). There is a strong caveat here
though: the coefficients of the product in Equation (40) are not independent, even though this
inner product would have the good Hamming weight on average. Therefore our new noise does
not follow the right distribution.

It turns out that this distribution is very difficult to analyze, and this fact was already empha-
sized in the HQC submission to the NIST [AAB+21b] when studying the Decoding Failure Rate
(DFR) of the scheme. In particular, the authors replaced this weird distribution by an actual
Bernoulli distribution and made experimental results to support their modelization. Such a mod-
elization is not enough from a theoretical standpoint, and we cannot use it to build reductions.
In other words, in order to apply our reduction, we lack a random self reducibility for structured
codes, such as quasi-cyclic codes as the direct approach given in Equation (39) does not seem to
work directly.

In the world of Euclidean lattices, this caveat is avoided since the error distribution is taken
through the Mikowski embedding. The noise would then affect each coordinate independently.
The reduction from [RSW18, Section 4] benefits from the fact that the Vandermonde matrix,
which maps the so-called coefficient embedding onto the Mikowski embedding, does not distort
the noise too much. In the case of codes, such a Fourier-based approach takes an exagerated toll
on the noise distribution.

6. Conclusion

We gave the first reduction from the worst-case search decoding problem to the average-case
decision decoding problem by following the OCP framework introduced in [PRS17]. This reduction
paradigm applied to lattices also permitted to obtain many new reductions for structured variants.
Therefore it is tantalizing to try to apply such an approach in order to get worst-case to average-
case and search-to-decision reductions for structured codes such as quasi-cyclic codes which are
used for instance in BIKE and HQC, two of the three code-based proposals remaining in the
fourth round of NIST post-quantum competition. However, as mentioned in Section 5, such an
extension to structured codes is far from being straightforward and represents a highly interesting
challenge.

References

[AAB+21a] Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo

24

Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor. BIKE. Round 3 Submission to the
NIST Post-Quantum Cryptography Call, v. 4.2, September 2021.

[AAB+21b] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jean-Christophe

Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Round 3
Submission to the NIST Post-Quantum Cryptography Call, June 2021. https://pqc-hqc.org/doc/

hqc-specification_2021-06-06.pdf.

[AAB+22a] Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim Güneysu, Rafael

Misoczki, Edoardo Persichetti, Jan Richter-Brockmann, Nicolas Sendrier, Jean-Pierre Tillich, Valentin

Vasseur, and Gilles Zémor. BIKE. Round 4 Submission to the NIST Post-Quantum Cryptography
Call, v. 5.1, October 2022.

[AAB+22b] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jurjen Bos, Jean-
Christophe Deneuville, Arnaud Dion, Philippe Gaborit, Jérôme Lacan, Edoardo Persichetti, Jean-Marc

Robert, Pascal Véron, Gilles Zémor, and Jurjen Bos. HQC. Round 4 Submission to the NIST Post-

Quantum Cryptography Call, October 2022. https://pqc-hqc.org/.
[Ale03] Alekhnovich, Michael. More on Average Case vs Approximation Complexity. In 44th Symposium on

Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Pro-

ceedings, pages 298–307. IEEE Computer Society, 2003.
[BCCD23] Maxime Bombar, Geoffroy Couteau, Alain Couvreur, and Clément Ducros. Correlated Pseudorandom-

ness from the Hardness of Quasi-Abelian Decoding. In Helena Handschuh and Anna Lysyanskaya, edi-

tors, Advances in Cryptology - CRYPTO 2023 - 43nd International Cryptology Conference. Springer,
August 2023.

[BCD22] Maxime Bombar, Alain Couvreur, and Thomas Debris-Alazard. On Codes and Learning With Errors

over Function Fields. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd International Cryptology Conference, volume 13508 of LNCS. Springer, August

2022.
[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudo-

random correlation generators from ring-LPN. In Daniele Micciancio and Thomas Ristenpart, editors,

Advances in Cryptology - CRYPTO, pages 387–416, Cham, 2020. Springer International Publishing.
[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-Xavier

Standaert, and Yu Yu. Leftover hash lemma, revisited. In Advances in Cryptology - CRYPTO 2011

- 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
pages 1–20, 2011.

[BF02] Alexander Barg and G. David Forney. Random codes: Minimum distances and error exponents. IEEE

Trans. Inf. Theory, 48(9):2568–2573, 2002.
[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear

codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances in Cryptology -

EUROCRYPT 2012, LNCS. Springer, 2012.
[BJRW20] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen. Towards classical

hardness of module-lwe: The linear rank case. In Shiho Moriai and Huaxiong Wang, editors, Advances

in Cryptology - ASIACRYPT 2020. Springer, December 2020.
[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-case hardness

for LPN and cryptographic hashing via code smoothing. In Yuval Ishai and Vincent Rijmen, editors,

Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,

Part III, volume 11478 of LNCS, pages 619–635. Springer, 2019.
[BM17] Leif Both and Alexander May. Optimizing BJMM with Nearest Neighbors: Full Decoding in 22/21n

and McEliece Security. In WCC Workshop on Coding and Cryptography, September 2017.

[BMvT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the inherent intractability of certain
coding problems. IEEE Trans. Inform. Theory, 24(3):384–386, May 1978.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology - EUROCRYPT, pages 423–447. Springer, April 2023.

[CDMT22] Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich. Statistical

decoding 2.0: Reducing decoding to LPN. In Advances in Cryptology - ASIACRYPT 2022, LNCS.

Springer, 2022.
[CS16] Rodolfo Canto-Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error

weight. In Post-Quantum Cryptography 2016, LNCS, pages 144–161, Fukuoka, Japan, February 2016.
[DDRT22] Thomas Debris-Alazard, Léo Ducas, Nicolas Resch, and Jean-Pierre Tillich. Smoothing codes and

lattices: Systematic study and new bounds. CoRR, abs/2205.10552, 2022.

[DR22] Thomas Debris-Alazard and Nicolas Resch. Worst and average case hardness of decoding via smoothing
bounds. preprint, December 2022. eprint.

[DRT21] Thomas Debris-Alazard, Maxime Remaud, and Jean-Pierre Tillich. Quantum reduction of finding short

code vectors to the decoding problem. preprint, November 2021. arXiv:2106.02747.

25

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/

[DST19] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. In Steven D. Galbraith and Shiho Moriai,

editors, Advances in Cryptology - ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 21–51,

Kobe, Japan, December 2019. Springer.
[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish Int.

Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[FS96] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator provably as secure as
syndrome decoding. In Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT’96, volume 1070

of LNCS, pages 245–255. Springer, 1996.
[Gab05] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the 2005 International

Workshop on Coding and Cryptography (WCC 2005), pages 81–91, Bergen, Norway, March 2005.

[GZ06] Philippe Gaborit and Gilles Zémor. Asymptotic improvement of the Gilbert-Varshamov bound for
linear codes. In Proc. IEEE Int. Symposium Inf. Theory - ISIT 2006, pages 287–291, Seattle, USA,

June 2006.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Advances in Cryptology - EUROCRYPT2010, volume 6110 of LNCS, pages 1–23. Springer,

2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Des.
Codes Cryptogr., 75:565–599, 2015.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski. A direct

key recovery attack on sidh. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology -
EUROCRYPT, pages 423–447. Springer, April 2023.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of bi-

nary linear codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015,
volume 9056 of LNCS, pages 203–228. Springer, 2015.

[PMS21] Alice Pellet-Mary and Damien Stehlé. On the hardness of the NTRU problem. In Asiacrypt 2021 -
27th Annual International Conference on the Theory and Applications of Cryptology and Information

Security, Advances in Cryptology – ASIACRYPT 2021. Lecture Notes in Computer Science, vol 13090.,

Singapore, Singapore, December 2021.
[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information

Theory, 8(5):5–9, 1962.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE for any
ring and modulus. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-

puting, pages 461–473, 2017.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24,

2005, pages 84–93, 2005.

[Rob23] Damien Robert. Breaking sidh in polynomial time. In Carmit Hazay and Martijn Stam, editors, Ad-
vances in Cryptology - EUROCRYPT, pages 423–447. Springer, April 2023.

[RSW18] Miruna Rosca, Damien Stehlé, and Alexandre Wallet. On the ring-LWE and polynomial-LWE prob-
lems. In Annual International Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 146–173. Springer, 2018.

[Sen11] Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptography 2011, volume 7071 of
LNCS, pages 51–67, 2011.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.

In Advances in Cryptology - EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47, 2011.
[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption

based on ideal lattices. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th

International Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of LNCS, pages 617–635. Springer,

2009.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann,
editors, Coding Theory and Applications, volume 388 of LNCS, pages 106–113. Springer, 1988.

[YZ21] Yu Yu and Jiang Zhang. Smoothing out binary linear codes and worst-case sub-exponential hardness
for LPN. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st

Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,

Proceedings, Part III, volume 12827 of LNCS, pages 473–501. Springer, 2021.

26

Appendix A. Proof of Proposition 4

Lemma 4. Let E,F be finite sets. Let H = (hi)i∈I be a finite family of applications from E to F
and T ⊆ E. Let t be drawn uniformly at random in T and r ∈ E be a random variable distributed
according to some distribution D. Let,

p
def
= Pt,r (⟨r, t⟩ = 1) (30)

where ⟨·, ·⟩ is a map from E × E → {0, 1}. Let η be the “collision bias” defined by

Ph,t,r0,r1

(
h(r0) = h(r1), ⟨t, r0⟩ = ⟨t, r1⟩

)
⩽

1

♯F
(p2 + (1− p)2 + η) (31)

where h, t are uniformly drawn in H and T respectively and r0, r1 be independent and distributed
according to D.

Let Y be the random variable (u, e) where u is uniform over F and e ∈ {0, 1} is a Bernoulli
random variable of parameter p and u, e are independent. Let Y (h, t) be the random variable
(h(r), ⟨r, t⟩) when r is distributed according to D. We have,

Eh,t (∆(Y (h, t), Y)) ⩽
√
η.

Proof. By definition of the statistical distance we have

Eh,t (∆(Y (h, t), Y)) =
∑
h∈H
t∈T

1

♯H ♯T
∆((h(r), ⟨r, t⟩) , (u, e))

=
1

2

∑
h∈H
t∈T

1

♯H ♯T

∑
f∈F

b∈{0,1}

∣∣∣∣Pr(h(r) = f, ⟨r, t⟩ = b)− P(e = b)

♯F

∣∣∣∣
=

1

2

∑
h,t
f,b

∣∣∣∣Ph0,t0,r (h0 = h, t0 = t, h0(r) = f, ⟨r, t0⟩ = b)− P(e = b)

♯H ♯T ♯F

∣∣∣∣
=

1

2

∑
h,t
f,b

∣∣∣∣qh,t,f,b − P(e = b)

♯H ♯T ♯F

∣∣∣∣ (41)

where qh,t,f,b
def
= Ph0,t0,r (h0 = h, t0 = t, h0(r) = f, ⟨r, t0⟩ = b) with (h0, t0) being uniformly chosen

at random in H × T and r be distributed according to D. Using the Cauchy-Schwarz inequality,
we obtain

∑
h,t
f,b

∣∣∣∣qh,t,f,b − P(e = b)

♯H ♯T ♯F

∣∣∣∣ ⩽
√√√√√∑

h,t
f,b

(
qh,t,f,b −

P(e = b)

♯H ♯T ♯F

)2√
2♯H ♯T ♯F · (42)

Let us observe now that∑
h,t
f,b

(
qh,t,f,b −

P(e = b)

♯H ♯T ♯F

)2

=
∑
h,t
f,b

(
q2h,t,f,b − 2P(e = b)

qh,t,f,b
♯H ♯T ♯F

+
P(e = b)2

♯H2 ♯T 2 ♯F 2

)

=
∑
h,t
f,b

q2h,t,f,b −
1

♯H ♯T ♯F

∑
b

P(e = b)

2
∑
h,t
f

qh,t,f,b − P(e = b)


(43)

27

Let us observe now that∑
h,t
f

qh,t,f,b =
∑
h,t
f

Ph0,t0,r (h0 = h, t0 = t, h0(r) = f, ⟨r, t0⟩ = b)

= Pt0,r (⟨r, t0⟩ = b)

= P(e = b)

where in the last line we used Equation (30) and the assumption on e. Plugging this in Equation
(43) we obtain ∑

h,t
f,b

(
qh,t,f,b −

P(e = b)

♯H ♯T ♯F

)2

=
∑
h,t
f,b

q2h,t,f,b −
P(e = 0)2 + P(e = 1)2

♯H ♯T ♯F

=
∑
h,t
f,b

q2h,t,f,b −
p2 + (1− p)2

♯H ♯T ♯F
(44)

Consider now for i ∈ {0, 1} independent random variables hi, ti and ri that are drawn uniformly
at random in H, T and according to D respectively. We continue this computation by noticing
now that∑

h,t,f,b

q2h,t,f,b =
∑
h,f

Ph0,t0,r0 (h0 = h, t0 = t, h0(r) = f, ⟨r0, t0⟩ = b)

Ph1,t1,r1 (h1 = h, t1 = t, , h1(r1) = f, ⟨r1, t1⟩ = b)

= Ph0,h1,t0,t1,r0,r1 (h0 = h1, t0 = t1, h0(r0) = h1(r1), ⟨t0, r0⟩ = ⟨t1, r1⟩)

=
Ph0,t0,r0,r1 (h0(r0) = h0(r1), ⟨t0, r0⟩ = ⟨t0, r1⟩)

♯H ♯T

⩽
p2 + (1− p)2 + η

♯H ♯T ♯F
. (45)

where in the last line we used the definition of η given in Equation (31). By substituting for∑
h,f q

2
h,f the expression obtained in (45) into (44) and then back into (42) we finally obtain

∑
h,t
f,b

∣∣∣∣qh,t,f,b − P(e = 0)2 + P(e = 1)2

♯H ♯T ♯F

∣∣∣∣ ⩽
√

p2 + (1− p)2 + η

♯H ♯T ♯F
− p2 + (1− p)2

♯H ♯T ♯F

√
2♯H ♯T ♯F

=

√
η

♯H ♯T ♯F

√
2♯H ♯T ♯F

=
√

2η.

which concludes the proof. □

28

	1. Introduction
	2. Preliminaries
	3. Search-to-decision reduction in the Oracle Comparison Problem (OCP) framework
	3.1. Building LPN-oracles from a decoding instance: Step 2.
	3.2. Oracle Comparison Problem technique: Step 3.

	4. Instantiations
	4.1. Plain decoding

	5. Failed attempt: the case of structured codes
	6. Conclusion
	References
	Appendix A. Proof of Proposition 4

