
Leakage Resilient `-more Extractable Hash and
Applications to Non-Malleable Cryptography

Aggelos Kiayias1, Feng-Hao Liu2, and Yiannis Tselekounis3

1 University of Edinburgh & IOG, akiayias@inf.ed.ac.uk
2 Florida Atlantic University, fenghao.liu@fau.edu
3 Carnegie Mellon University, itseleko@cs.cmu.edu

Abstract. `-more extractable hash functions were introduced by Ki-
ayias et al. (CCS ’16) as a strengthening of extractable hash functions
by Goldwasser et al. (Eprint ’11) and Bitansky et al. (ITCS ’12, Eprint
’14). In this work, we define and study an even stronger notion of leakage-
resilient `-more extractable hash functions, and instantiate the notion
under the same assumptions used by Kiayias et al. and Bitansky et al.
In addition, we prove that any hash function that can be modeled as a
Random Oracle (RO) is leakage resilient `-more extractable, while it is
however, not extractable according to the definition by Goldwasser et al.
and Bitansky et al., showing a separation of the notions.
We show that this tool has many interesting applications to non-malleable
cryptography. Particularly, we can derive efficient, continuously non-
malleable, leakage-resilient codes against split-state attackers (TCC ’14),
both in the CRS and the RO model. Additionally, we can obtain suc-
cinct non-interactive non-malleable commitments both in the CRS and
the RO model, satisfying a stronger definition than the prior ones by
Crescenzo et al. (STOC ’98), and Pass and Rosen (STOC ’05), in the
sense that the simulator does not require access to the original message,
while the attacker’s auxiliary input is allowed to depend on it.

1 Introduction

The notion of extractable collision-resistant hash functions (ECRHs) was origi-
nally proposed by [8,9,34] as a tool for building efficient succinct non-interactive
arguments of knowledge (SNARKs). Informally, a family of functions, H, is ex-
tractable, if for a uniform h ∈ H, sampling an element v ∈ Image(h) without
actually evaluating the function on a pre-image s (i.e., h(s) = v) is infeasible.
This concept is formalized in the following way: for any algorithm A that pro-
duces some v ∈ Image(h), there exists an extractor that, possibly depending on
the code of A, outputs s such that h(s) = v. Typically, such families are inter-
esting only if they possess some sort of hardness property, like one-wayness, or
otherwise the problem can be trivial. In [8] the authors propose two constructions
for ECRH: the first one is based on a variant of the Knowledge of Exponent

assumption, called t-KEA, and the hardness of the discrete logarithm problem,
while the latter uses a lattice based knowledge assumption, called Knowledge of
Knapsack.

`-more extractable hash function families. An important observation regarding
the setting described above is that ECRHs provide no guarantee against attack-
ers that receive access to precomputed hash values, prior to producing their own.
However, there are applications of the primitive that can deviate from the above
setting. For instance, the attacker might be given access to a number of valid
hash values for which it does not know the pre-images, prior to delivering its own
hash value. In this setting, creating a new valid hash value could be achieved by
mauling the received ones without knowing the pre-image. To tackle this issue,
in [38], a new notion was introduced called `-more extractable hash functions.
Briefly speaking, `-more extractable hash function families capture the following
idea: if an adversary is given access to ` ∈ N precomputed hash values v1, . . . , v`,
and produces a new valid hash value ṽ, then it must know a pre-image of ṽ.
As it is proven in [38], this notion is not implied by the one by Bitansky et
al. [9] and Goldwasser et al. [34], which considers adversaries that get no access
to precomputed hash values prior to producing their own value. The separation
between the notions is based on the hardness of the discrete logarithm problem.
Moreover, by requiring the attacker not only to produce some ṽ ∈ Image(h) but
also to come up with a valid pre-image for ṽ, `-more extractable hash functions
are feasible under the same assumptions used in [9,34]. This puts forth a weaker
form of extractability (we refer to it as wECRH) in the sense that the extractor
is allowed to fail in case a pre-image exists but is not somehow efficiently com-
putable based on the view of the adversary. There is no contradiction in terms
here: this extra requirement does not trivialize the notion of `-more wECRH,
since the extractor is required to depend only on the adversarial program that
produces ṽ and is independent of the program that produces the valid pre-image
for ṽ. In [38], the authors show that the weaker form of extractability provided
by `-more wECRHs is sufficient for constructing very efficient computationally
secure non-malleable codes [27] against split-state attackers [27,43].

The natural question that rises from these previous works is whether `-more
wECRHs (and suitable extensions of them) can be used to improve the efficiency
and/or the security of other primitives in the context of non-malleable cryptog-
raphy. This is the main subject of the present paper, which focuses on continuous
malleable codes (CNMC) and non-malleable commitments (NMCOM) with re-
spect to opening.

1.1 Non-malleable codes

Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27], as a relaxation of error correction and error detection codes, aim-
ing to provide strong privacy, but not necessarily correctness. Informally, non-
malleability guarantees that any modified codeword decodes either to the original
message or to a completely unrelated one, with overwhelming probability. The

2

definition of non-malleability is simulation-based, stating that for any tamper-
ing function f , there exists a simulator that simulates the tampering effect by
only accessing f , i.e., without making any assumptions on the distribution of
the encoded message.

The main application of non-malleable codes that motivated the seminal work
by Dziembowski et al. [27] is the protection of cryptographic implementations
from active physical attacks against memory, known as tampering attacks. In this
setting, the adversary modifies the memory of the cryptographic device, receives
the output of the computation, and tries to extract sensitive information related
to the private memory. Security against such types of attacks can be achieved
by encoding the private memory of the device using non-malleable codes. Be-
sides that, various applications of non-malleable codes have been proposed in
subsequent works, such as CCA secure encryption schemes [15], non-malleable
commitments [1], and others [14,28,30,31].

The split-state model. Due to the impossibility of non-malleable codes for ar-
bitrary functions classes [27], various models have been proposed and studied
over the years, including the extensively studied split-state model. The split-
state model is a generalization of the bit-wise independent tampering function
class [27], and it was originally introduced in the context of non-malleable codes,
by Dziembowski et al. [27] and Liu and Lysyanskaya [43], who considered the
case of two split-states. Briefly speaking, in the split-state model with two states,
the codeword is split into two parts, c0, c1, and the attacker is allowed to apply
on it any function f = (f0, f1), that results in a tampered codeword equal to
(f0(c0), f1(c1)). The critical point here is that each fi, for i ∈ {0, 1}, tampers
with ci, independently of the value c1−i. This is a plausible model to assume,
since there are many scenarios in which sensitive data may be split into two
storage devices, that are physically separated, for security reasons.

Continuous non-malleable codes. The notion of continuous non-malleable codes
(CNMC) was introduced by Faust et al. [30], and considers adversaries that
tamper continuously with the same codeword,4 as opposed to the original notion
that considers one-time attackers. In this setting, the adversary chooses the
tampering function that he will apply to the codeword, based on the output of
the tampering experiment in previous rounds. As it has been pointed by [30],
CNMCs constitute a natural extension of the original notion that broadens the
applicability of the primitive.

1.2 Non-malleable commitments

The notion of non-malleable commitments was introduced in the seminal work
of Dolev, Dwork and Naor [24], as a countermeasure against man-in-the-middle
adversaries. In the man-in-the-middle setting, we consider two parties that wish

4 This is the notion of non-persistent tampering, which is stronger than persistent
tampering.

3

to execute a protocol in the presence of an adversary, that fully controls the
communication channel between the parties. The adversary is allowed to modify,
block, or introduce messages, and also schedule the order of delivery, while the
parties might not be aware of the adversarial presence. Protocols that remain
secure against man-in-the-middle adversaries are said to be non-malleable [24].

In [24], Dolev, Dwork and Naor, propose security definitions for the notions
of non-malleable commitments and non-malleable zero-knowledge, and assuming
the existence of one-way functions, they construct secure protocols that require
log(k) rounds of interaction, where k denotes the security parameter. Informally,
a commitment scheme is non-malleable, if any man-in-the-middle adversary that
is given a commitment over a message v, is not able to create a valid commitment
of a message ṽ, which is related to v. This idea has been modeled in two ways,
yielding two different notions of security. The first one is non-malleability with
respect to commitment [24], in which the adversary succeeds in breaking security,
if he manages to commit to a related value, even without being able to produce
a valid decommitment. This notion is meaningful only for statistically-binding
commitments. The second one, is non-malleability with respect to opening [20],
according to which the adversary breaks security if he manages to both commit
and decommit to a related value. This notion is meaningful, both for the case of
statistically-binding and statistically-hiding commitment schemes.

1.3 Our contributions

In the present work we formalize and study the notion of leakage-resilient, `-
more, (weakly) extractable hash function families, according to which, the ad-
versary, in addition to receiving access to ` ∈ N precomputed hash values, it also
receives bounded leakage over the randomness used to compute those values. Sub-
sequently, we illustrate the usefulness of this primitive by constructing efficient,
computationally secure, leakage-resilient continuous non-malleable codes against
split-state attackers [30], and finally, we show that assuming `-more wECRH
we can construct succinct, non-interactive non-malleable commitments with re-
spect to opening, achieving a stronger definition than the ones by [20, 47]. Our
contributions are informally summarized below.

First, we revisit the `-more wECRH construction of [38] and we prove secu-
rity in the presence of leakage over the randomness that is used to compute the
hash. In particular, we prove the following theorem (informally stated).

Theorem 1.1 (Informal). DLOG and t-KEA imply leakage-resilient `-more
wECRH.

Similar to [38], the main building block of our construction is a non-malleable
code for the class of affine functions. Our construction can tolerate λ bits of
leakage, for m ≥ λ + k + ω(log k), where k is the security parameter, and m
is the min-entropy of the codewords produced by the underlying NMC scheme.
Intuitively, an important property of the `-more wECRH of [38], is that the
hash values are indistinguishable from uniform, and this is essential for proving

4

extractability. In this work, we prove that the uniformity property can be still
preserved in the presence of leakage, i.e., when the attacker receives partial
access over the randomness (and is in full knowledge of the pre-images). For
more details we refer the reader to Section 3.1.

Next, we prove that any hash function that can be modeled as a random
oracle, is an `-more wECRH. As the adversary receives black-box access to the
hash, leakage-resilience in this setting is straightforward. Concretely, we prove
the following informal theorem.

Theorem 1.2 (Informal). Let h be a hash function. If h can be modeled as a
random oracle, then it is a leakage-resilient, `-more wECRH.

We note that, even though any function h that can be modeled as a random
oracle is a leakage-resilient `-more wECRH, it cannot be extractable according
to [8, 9], as the range of the function is dense, thus an attacker can just output
a random element in the range of the hash, and then there is no knowledge
to extract, as the extractor needs to invert a uniform valid hash value. Given
the results of [38], in which the authors prove (cf. Lemma 3.5 in [38]) that the
notion of [9] does not imply 1-more (weak) extractability, and also general 1-
more extractability (not the weaker form), we receive a separation between the
notion of [9] and `-more wECRH.5

In our next result, we leverage the power of leakage-resilient `-more wECRH
in the continuous setting, and we construct efficient, continuously non-malleable,
leakage-resilient codes against split-state attackers [30]. Our result is summarized
in the following informal theorem.

Theorem 1.3 (Informal). Assuming leakage resilient, 1-more wECRH, there
exists an explicit, leakage-resilient continuous non-malleable code, against split-
state functions.

By instantiating the above theorem with the leakage-resilient `-more wE-
CRH of the Informal Theorems 1.2,1.1, we receive efficient split-state CNMCs
in the random oracle and the CRS, model, respectively. The first instantiation
is secure against arbitrary polynomial-time adversaries, while the latter is secure
against PPT adversaries that make a constant number of tampering queries.
Our constructions are way more efficient than the current state-of-the-art in
CNMC and we provide a concrete comparison in Section 1.4. We notice that
the notion of continuous non-malleable codes (even for 2-time tampering) can-
not be achieved generically from a one-time non-malleable code, thus our latter
result still improves the state of the arts in efficiency.

Our CRS-based construction tolerates a constant number of tampering queries
due to the fact that, in the current proof, the extractor for round i depends on the
extractor for round i−1 and extraction is non-black box. Thus, assuming a con-
stant number of rounds the final extractor avoids the super-polynomial blow-up.
If the extractor’s overhead is linear additively, then the construction can tolerate

5 From Lemma 3.5 of [38], we have that general `-more extractability (not the weaker
form), is a notion strictly stronger than the one by [9].

5

any arbitrary polynomial number of tampering rounds. Furthermore, our CRS-
based `-more wECRH (as in [38]), guarantees extractability only if the hash is
indistinguishable from uniform, which is a property that cannot be achieved if
the adversary is given access to the CRS and split-state leakage over the both
parts of the codeword. Therefore, for the wECRH-based construction we con-
sider non-adaptive leakage, i.e., the adversary defines the leakage queries only at
the very beginning of the experiment.

In our final result, we construct succinct, non-interactive non-malleable com-
mitments [47], with respect to opening, from `-more wECRHs. Our result is
summarized in the following informal theorem.

Theorem 1.4 (Informal). Assuming `-more wECRH, there exists an explicit
succinct non-interactive, non-malleable commitment scheme with respect to open-
ing.

Our primitive achieves a stronger definition of non-malleability, that allows
the adversary’s auxiliary input to depend on the message (this is not allowed
in [20]), and in contrast to [47], our simulator is weaker, in the sense that it does
not need access to the original message in order to simulate the decommitment
phase. To our knowledge this is the first construction that achieves this type of
security. Our KEA-based instantiation produces commitments of size 2k, while
for the random oracle based construction the commitment size is k. In Section
1.4, we highlight the importance of our primitive, by providing various useful
applications.

1.4 Technical overview

Leakage-resilient `-more wECRH. We formulate the notion of leakage-resilient
`-more wECRH, that considers attackers which, in addition to receiving access
to ` ∈ N precomputed hash values, they also receive bounded leakage over the
randomness used to compute them, and we provide two instantiations of the
primitive.

Our first instantiation is based on [38], thus we first revisit their construc-
tion. Let G be a group of prime order p and let g be a generator of G. The
construction of [38] is a composition between the extractable hash of [9], and
a non-malleable code (Enc,Dec) against affine functions. In particular, an el-
ement from the hash function family of [9] is described by the pair (gr, gar),
for uniformly random vector r, and element a ∈ Zp, where gr denotes the
value (gr1 , . . . , grt), and r = (r1, . . . , rt), t ∈ N. The `-more wECRH of [38],
on input message s = (s1, . . . , st), computes the hash of it, h(s; τ), as a pair
v :=

(
g〈r,Enc(s;τ)〉, ga〈r,Enc(s;τ)〉), where 〈r,Enc(s; τ)〉 is the inner product of r,

Enc(s; τ), and τ is the randomness used by the encoder. In this work we prove
that, if Enc(s; τ) has sufficient entropy even given bounded leakage over τ , then v
is indistinguishable from uniform due to the universality property (cf. Definition
A.5) of the inner product, and we manage to reduce `-more extractability in the
presence of leakage to `-more extractability without leakage, using a series of
hybrids.

6

Our second instantiation is in the random oracle model. In particular, we
prove that any hash function is `-more wECRH, if it can be modeled as a random
oracle. Briefly, the main idea behind our result, is as follows. The attacker,
denoted as a pair of PPT algorithms (Av,As), is required (i) to produce a new
valid hash value ṽ (this value is produced by Av) and (ii) to produce a valid pre-
image for ṽ (this value is produced by As). The extractor, who is given access
only to the queries made by Av, checks if there is any query (pre-image) that
hashes to ṽ, and if so, it correctly outputs that pre-image, otherwise it outputs
⊥. In the latter case, the extractor fails only if As manages to output a valid
pre-image for ṽ, which happens with negligible probability, as for any s̃ output
by As, when querying the oracle with s̃, the probability of receiving ṽ as a reply,
is negligible. As we stated in Section 1.3, our result yields a separation between
the notion of extractability by [9] and `-more wECRHs [38].

Continuous non-malleable codes. Our CNMC scheme is inspired by [30], thus we
first revisit their construction. To encode a message m, the encoder of [30], com-
putes (s0, s1) ← LRSenc(m) and outputs ((s0, v1, π1, π0), (s1, v0, π0, π1)), where
LRSenc is the encoder of a leakage-resilient storage (LRS) scheme [19, 26, 30],
vi = h(si) and h is a member of a collision resistant hash function family, and
πi is a robust non-interactive zero knowledge proof, proving knowledge of the
witness (pre-image) si of vi, with label v1−i.

6

Our goal is to construct an LRS based solution that will enable the simu-
lation of tampering queries through leakage against the LRS, however without
requiring the costly computation and storage of four NIZK proofs; replacing the
NIZK proofs with a hash-based primitive, is what we aim for. In what follows we
highlight why the use of `-more extractable hash is necessary, i.e., the extractable
hash function family of [9] is inadequate for our needs.

Towards that direction, assume an encoding scheme that computes the leak-
age resilient storage of the message m, i.e., it computes (s0, s1) ← LRSenc(m)
and outputs ((s0, h(s1)), (s1, h(s0))), where h ∈ H, and H is an extractable hash
function family [9]. There are two issues with this construction. First of all, it
does not satisfy the uniqueness property [30], which informally states that it
should be computationally infeasible for the adversary to find two valid code-
words (c0, c1) and (c0, c

′
1), with c1 6= c′1.7 Thus the two parts of the codeword

should be correlated in a way that modification over only one part, will yield
an invalid codeword, with overwhelming probability. Secondly, since H is ex-
tractable according to [9], then it can be malleable (as it is proven in [38])
and security cannot be proved as generic LRS schemes do not provide non-
malleability, thus the attacker could create related codewords.

Our construction resolves the above challenges by combining LRS with leakage-
resilient 1-more wECRH [38], as follows: assuming H is a leakage-resilient, 1-
more wECRH and H̄ is a collision resistant hash function family, our encoder on
input messagem, computes (s0, s1)← LRSenc(m), and outputs ((τ0, s0, v1), (τ1, s1, v0)),

6 The labels are used to bind together the two parts of the memory.
7 And symmetrically for codewords (c0, c1) and (c′0, c1) for which c0 6= c′0.

7

where vi = h(si||v̄1−i; τi), and v̄1−i = h̄(τ1−i||s1−i). Here, the collision resistance
property ofH (also w.r.t. τ) ensures the uniqueness property of our scheme. Also,
H̄k is essential for proving security of our construction, as it enables simulata-
bility of the hash values v0, v1, w.r.t. Hk, via split-state leakage queries to the
LRS oracles. I.e., our reduction computes v1 (resp. v0) by first leaking v̄0 (resp.
v̄1) from the left (resp. right) LRS oracle, and then leaking v1 (resp. v0) via
a leakage query that depends on v̄0 (resp. v̄1), from the right (resp. left) LRS
oracle. If v1 would be a hash w.r.t. Hk over both s0 and s1, then v1 would be
impossible to simulate via split-state leakage against LRS. Finally, the 1-more
extractability property of H guarantees that, even if the attacker is given ac-
cess to a valid hash value vi, it cannot produce a new valid hash value, unless
it knows a valid pre-image of it. Proving security of our scheme from any 1-
more wECRH posses several challenges, mainly due to the following reasons:
(1) 1-more wECRH [38] is a one-time primitive, thus it is not straightforward
how it could provide security in the continuous setting, and (2) the two parts of
the codeword are correlated, thus using the same wECRH hash function twice,
could compromise the extactability property of the primitive. In our proof, we
take advantage of the split-state structure of the codeword, and we are able to
overcome those issues, while having a more efficient (in terms of running time
and leakage) reduction than [30] (see below).

Our construction improves the efficiency of [30], while avoiding the need of a
trapdoor CRS (the work of [30] computes and stores four NIZK proofs, while we
only require two hashes of size at most 2k, where k is the security parameter). In
addition, the simulator of [30] requires leakage proportional to O(k log(q) + λ),
while we only require O(k + λ), where k is the security parameter, q is the
number of rounds that the attacker tampers with the codeword, and λ is the
leakage requested by the tampering adversary. As a result, in our case the size of
the code becomes independent of q, which is essential when aiming for efficiency
in the continuous setting. Regarding the reduction tightness, our reduction has
1/q loss in advantage compared to [30], but [30]’s reduction requires more time.
By following a proof strategy similar to [30] we can achieve tightness w.r.t. the
advantage but we chose to go with the simpler proof strategy. For more details
we refer the reader to Section 3.

Non-malleable commitments. Man-in-the-middle (MIM) attacks, that non-malleable
commitments are aiming to prevent, are modeled using a two stage adversary,
A = (A1,A2), where A1 (resp. A2) participates in the commitment (resp. open-
ing) stage. In this setting, a sender, Sender, sends a commitment c over a message
v, to A, and A1 sends a commitment c̃ to a receiver, Receiver. In the second stage,
Sender sends the opening of c to A and A2 sends the opening of c̃ to Receiver.
The goal of the adversary is to decommit to a value ṽ, which is related to v. In
addition, the adversary could also possess auxiliary information, which is fixed
before initiating the protocol execution. The crucial point here is that such in-
formation can potentially depend on v: consider, for instance, a setting in which
A has participated in the past in a protocol that depends on, and leaks some
information about, v.

8

The work of Crescenzo et al. [20] constructed non-malleable commitments,
assuming that the adversarial auxiliary information, denoted here by z, is inde-
pendent of the message, v, while in case of dependency, the proof works only if
there exists an efficient way to sample a message distribution which is consistent
with v, given z. However, this cannot apply for all settings, as for instance, z
could be the encryption of v, revealing no information about it.

The work by Pass and Rosen [47], made an important step towards solving
the above problem, by considering a slightly different definition of security, in
which: (1) z is allowed to depend on v, and (2) during the decommitment phase
the simulator requires access to the original message, v, in order to simulate
a valid decommitment for ṽ. Although, this conforms with the MIM execution
described above, in which the adversary learns the original message v (recall that
in stage two the sender decommits to A), and makes the simulator stronger,
it is very specific to the way A accesses v, excluding cases in which A could
potentially receive partial, or even no-information, over v. Consider for instance
the commit-and-prove setting [10], in which the sender first sends a commitment,
c, over the message v, and then, instead of revealing v, it sends a zero-knowledge
proof, proving relations over v. In this setting, the simulator looses access to
v and any attempt to prove security of the commitment scheme according to
the definition of [47], would depend to the way A accesses v, or any sort of
encoding of it. In this work, we achieve a stronger definition of non-malleability,
that allows the adversary’s auxiliary input to depend on the message (this is not
allowed in [20]), and in contrast to [47], our simulator does not require access to
the original message in order to simulate the decommitment phase, covering all
possible settings, from zero/partial, to even full access to v.

We prove that any `-more wECRH that produces outputs indistinguishable
from uniform, is a non-malleable commitment with respect to opening. To commit
to a message s, one just samples a uniformly random string r and outputs c =
h(s; r), as the commitment.8 Intuitively, if the hash function produces outputs
that are indistinghuishable from uniform, then the commitment scheme achieves
the hiding property. In addition, if it is collision resistant, then the scheme is also
binding. Finally, if the hash function is a 1-more wECRH, then for any man-in-
the-middle attacker that produces a commitment (hash value) c̃, given c, where
c̃ 6= c, there exists an extractor that extracts (ŝ, τ̂), such that h(ŝ; τ̂) = c̃. Since
c reveals no information about s, the extracted value, ŝ, is unrelated to s.

1.5 Related work

In [45], Ostrovsky et al., construct continuous non-malleable codes in the plain
model, assuming one-to-one one-way functions. Their scheme uses a one-time,
unconditionally secure, non-malleable code for split-state adversaries and non-
interactive commitments, and the proposed instantiation produces codewords of
length of O(|s|7).9 In addition, their construction satisfies a weaker notion of

8 In the random-oracle model the source of randomness is the oracle.
9 Our scheme produces codewords of length roughly O(|s|2).

9

non-malleability, in which the adversary is only allowed to see the output of the
decoded message, while our construction satisfies a stronger notion, in which the
adversary receives the tampered codeword, in case it is valid and different than
the original one.

In [28], Faonio et al. construct continuous non-malleable codes in the CRS
model against split-state adversaries. Their work aims at a stronger flavor of
continuous security, in which (1) the messages chosen by the adversary can
depend on the CRS10 and (2) the adversary is allowed to interact with the
codeword even after creating an invalid one, by refreshing the codeword in a
split-state manner.11 In order to achieve this stronger property, their construc-
tion requires a combination of primitives, such as continuous leakage-resilient,
storage friendly, public-key encryption [22], non-interactive commitments and
zero-knowledge proofs. Finally, their simulation strategy is efficient, requiring
only O(k + λ) bits of leakage.

Given the impossibility of split-state CNMC in the information-theoretic
setting for two states [30], Aggarwal et al. [25] construct information-theoretic,
continuously non-malleable, codes in the split-state model with 8 states. Also, the
works [14, 15] construct unconditionally secure continuous non-malleable codes
for the bit-wise tampering model.

In [18, 20, 21], the authors construct non-interactive NMCOM, by either
assuming that the adversary’s auxiliary input does not depend on the message,
or that the process of sampling a message that is consistent with the adversarial
auxiliary input, is efficient. The work of [47], allows the adversarial auxiliary
input to depend on the message, however the simulator requires access to the
original message in order to simulate a valid commitment. In [11–13, 35, 41, 42]
the authors construct interactive (concurrent) non-malleable commitments using
various assumptions, while in [46] Pass proves that non-interactive NMCOM
cannot be proved using a black-box reduction to standard assumptions.

A related line of work in tamper resilience aims to protect circuit computa-
tion against tampering attacks on circuit wires [16,17,32,37] or gates [40], [4,5]
aim at protecting circuits against hardware Trojans, while [7] relies on trusted
hardware. In this setting, using non-malleable codes for protecting the circuit’s
private memory is an option, still in order to achieve security the encoding and
decoding procedures should be protected against fault injection attacks using the
techniques from [16, 17, 32, 37, 40]. The work of [39] is the first that constructs
(one-time) NMCs for the class of partial functions that tamper with almost the
entire codeword. Whether NMCs could be useful in secure messaging remains
an interesting open question [2, 3].

10 In the original notion of continuous NMC the messages are fixed before sampling
the CRS.

11 The standard notion of continuous security [30] considers adversaries that loose
access to the codeword, after an invalid one is produced, and this is unavoidable,
otherwise security is impossible to achieve [33] without any sort of refreshing.

10

2 Preliminaries

In this section we present the basic definitions and notation that will be used
throughout the paper. More standard definitions are presented in Section A.

Notation. Let t, i, j, be non-negative integers. Then, [t] is the set {1, . . . , t}. For
bit-strings x, y, x||y, is the concatenation of x, y, |x| denotes the length of x,
for i ∈ [|x|], x[i] is the i-th bit of x, and for i ≤ j, x[i : j] = x[i]|| . . . ||x[j]. For
a distribution D over a set X , x← D, denotes sampling an element x ∈ X , ac-
cording to D, x← X denotes sampling a uniform element x from X , UX denotes
the uniform distribution over X . The statistical distance between two random
variables X, Y , is denoted by ∆(X,Y), “≈” and “≈c”, denote statistical and
computational indistinguishability, respectively, and negl(k) denotes an unspec-
ified, negligible function, in k. For a random variable X, H∞(X) and H̃∞(X),
denote the min-entropy, and average min-entropy, of X, respectively. For any
element g and vector r = (r1, . . . , rt), we define gr := (gr1 , . . . , grt).

For an algorithm A, using y ← A(x) we denote the execution of A on input
x, receiving output y. In case A is randomized, y is a random variable and
A(x; r) denotes the execution of A on input x with randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any x, r ∈
{0, 1}∗, the computation of A(x; r) terminates in at most poly(|x|+|r|) steps. For
any algorithm that outputs a vector of values we use “∼” to denote coordinates
that are not being assigned to any variable, i.e., the calling program simply drops
the returned values.

Below, we define encoding schemes, based on the definitions of [27,43].

Definition 2.1. (Encoding scheme in the Common Reference String
(CRS) Model [43]) A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N,
is a triple of algorithms (Init,Enc,Dec) such that: Init is a randomized algo-
rithm which receives 1k, where k denotes the security parameter, and produces a
common reference string Σ ∈ {0, 1}poly(k), and (Enc(1k, Σ, ·),Dec(1k, Σ, ·)) is a
(κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec.
The definition of the split-state continuous tampering oracle due to [30] fol-

lows.

Definition 2.2 (The split-state tampering oracle Ocnm [30]).
Let (Init,Enc,Dec) be a split-state, (κ, ν)-encoding scheme, in the CRS model.
For any (c0, c1) ∈ {0, 1}ν/2×{0, 1}ν/2, and any split-state function f = (f0, f1),
f0, f1 : {0, 1}ν/2 → {0, 1}ν/2, define the stateful oracle Ocnm(·, ·) with initial
state st := 0, as follows,

Ocnm((c0, c1), (f0, f1)) :
If st = 1, return ⊥
(c̃0, c̃1)← (f0(c0), f1(c1))
If (c0, c1) = (c̃0, c̃1) return same∗

If Dec(Σ, (c̃0, c̃1)) = ⊥, return ⊥ and set st← 1
Else return (c̃0, c̃1)

11

where Σ ← Init(1k).

The λ-bit leakage oracle, returning a total of at most λ bits.

Definition 2.3 (The λ-bit leakage oracle Oλ(·, ·)). A leakage oracle Oλ(·, ·), is
a stateful oracle, with initial state st := 0. For any λ ∈ N, string s, and function
g : {0, 1}|s| → {0, 1}λ′ , if λ′+ st ≤ λ, Oλ(s, g) outputs g(s), and updates it state
to st← st+ λ′, otherwise it outputs ⊥.

The definition of split-state, leakage-resilient storage, due to [19, 26, 30], fol-
lows.

Definition 2.4 (Leakage-resilient storage [30]). Let (LRSenc, LRSdec) be a coding
scheme. For any PPT algorithm A, message m, θ ∈ {0, 1}, and k ∈ N we define

LeakθA,m(k) :=
{

(s0, s1)← LRSenc(1
k,m); out← AO

λ(s0,·),Oλ(s1,·); Output: (sθ, out)
}
.

Then, (LRSenc, LRSdec) is a λ-leakage-resilient storage (λ-LRS), if for any PPT
algorithm A, messages m0, m1 ∈ {0, 1}poly(k), θ ∈ {0, 1}, and all, sufficiently

large k ∈ N,
{
LeakθA,m0

(k)
}
k∈N
≈
{
LeakθA,m1

(k)
}
k∈N

.

Here we follow the definition of [30], which is stronger than previous defini-
tions in the sense that the attacker is allowed to see one of the two shares, after
the completion of the leakage experiment. As the authors suggest in [30], the
scheme of [26] satisfies this stronger notion.

Below we provide the definition of continuously non-malleable, leakage-resilient
codes due to [30].

Definition 2.5 (Continuously non-malleable, leakage-resilient codes [30]). Let
ES = (Init,Enc,Dec) be a split-state encoding scheme in the CRS model, and
let λ, q ∈ N. Then, ES is a q-continuously λ-leakage resilient ((q, λ)-CNMLR
) code, if for every, sufficiently large k ∈ N, any pair of messages m0, m1 ∈
{0, 1}poly(k), and any PPT algorithm A,

{
Tampercnmlr

A,m0
(k)
}
k∈N
≈c
{
Tampercnmlr

A,m1
(k)
}
k∈N

,

where,

Tampercnmlr
A,m (k) :=

{
Σ ← Init(1k); (c0, c1)← Enc(Σ,m);

out← AOλ(c0,·),Oλ(c1,·),Ocnm((c0,c1),·)(Σ);Output : out

}
and A makes at most q tampering queries against Ocnm.

Next, we define the Uniqueness property by [30].

Definition 2.6 (Uniqueness [30]). Let ES = (Init,Enc,Dec) be a split-state cod-
ing scheme in the CRS model. Then, ES satisfies the uniqueness property if for
any PPT algorithm A and all, sufficiently large k ∈ N, we have:

Pr

[
Σ ← Init(1k); (c0, c1, c

′
1)← A(1k, Σ) :

Dec(Σ, (c0, c1)) 6= ⊥ ∧ Dec(Σ, (c0, c
′
1)) 6= ⊥ ∧ c1 6= c′1

]
≤ negl(k),

and symmetrically for the case in which we fix the right part of the codeword.

12

3 Continuous NMC from `-more wECRH

In the current section we construct leakage-resilient continuous non-malleable
codes from any leakage-resilient, `-more weakly extractable, hash function family,
and then, in Section 3.1 we provide instantiations.

First we define the notion of leakage-resilient, `-more wECRH. Our definition
is along the lines of the one given in [38], however in this work we allow the
adversary to receive leakage over the randomness that is used to compute the
hash.

Definition 3.1 (`-more weakly extractable, leakage-resilient hash function fami-
lies). Let `, λ ∈ N. An efficiently samplable hash function ensemble H = {Hk}k∈N,
is `-more weakly extractable against λ bits of leakage, if for any PPT algo-
rithm Av and any zv ∈ {0, 1}poly(k), there exist a PPT extractor EHAv and

zE ∈ {0, 1}poly(k), such that for all PPT algorithms As, any large k ∈ N and
any vector of messages s = (s1, . . . , s`), we have

Pr
h←Hk

[
Exps,hAv,As,EAv (`, λ, zv, zE) = 1

]
≤ negl(k),

where,

Exps,hAv,As,EAv (`, λ, zv, zE) :

τi ← {0, 1}poly(k), vi = h(si; τi), i ∈ [`] (hash computation)
t = (τ1, . . . , τ`),v = (v1, . . . , v`)

(ṽ, st)← AO
λ(t,·)

v (h,v, zv) (hash tampering)
(τ̂ , ŝ)← EAv (h,v, zE) (pre-image extraction)
(τ̃ , s̃)← As (h, t, s, st) (pre-image tampering)
If h(s̃; τ̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ; τ̂) 6= ṽ, return 1
otherwise, return 0

Following [38], the main steps in the above experiment are the following.
First, randomness is sampled and then the hash computation is performed over
` ∈ N, pre-images. For deterministic hash function families, randomness sampling
is omitted and the hash is computed only over the messages. The challenge for
the attacker Av, is to produce a valid hash value ṽ, given ` hash values, denoted
as v, and auxiliary information zv. Then, the extractor EHAv is executed, given v
and its own auxiliary input zE . The adversary As is required to produce a valid
pre-image for ṽ, while given all information generated during the execution. The
output of the experiment is 1, if Av produces a valid hash value ṽ, As produces
a valid pre-image for ṽ, while the extractor fails.

Notice that, in the above definition, the adversary is given leakage access to
the randomness, still the extractor does require access to it. Also, similarly to
[38], s can be any message, even one that the attacker knows. When considering
the random oracle model, extractability is with respect to a single function h
(not a family), and furthermore, we assume that all entities receive black-box

13

access to it. In addition, when the extractor receives black-box access to the
adversary, we denote it as E , i.e., we don’t parameterize E with Av.

In the above definition, we only define extractability, however our construc-
tions require both extractability and collision resistance, where the latter should
also hold w.r.t. the input randomness, τ . Our instantiations satisfy both. Above
we only present extractability to ease presentation, i.e., we don’t want to mix the
two properties into one. We refer to the primitive that satisfies both properties,
by leakage-resilient `-more wECRH.

Our construction of non-malleable codes is inspired by [30], thus we first
revisit their construction. To encode a message m, the encoder of [30], computes
(s0, s1)← LRSenc(m) and outputs ((s0, v1, π1, π0), (s1, v0, π0, π1)), where LRSenc
is the encoder of a leakage-resilient storage (LRS) scheme (cf. Definition 2.4),
vi = h(si) and h is a member of a collision resistant hash function family, and
πi is a robust non-interactive zero knowledge proof, proving knowledge of the
witness (pre-image) si of vi, with label v1−i.

12

Our construction, which is defined below, improves the efficiency of [30] by
combining LRS with leakage-resilient 1-more wECRH.

Construction 3.2 (A continuous non-malleable code). Let Hk, H̄k, be hash
function families and (LRSenc, LRSdec) be a leakage-resilient storage scheme. We
define an encoding scheme (Init,Enc,Dec) as follows:

– Init(1k): Sample h← Hk, h̄← H̄k, and set Σ = (h, h̄).
– Enc(Σ, ·): Let m be the input to the encoder. The encoder samples (s0, s1)←

LRSenc(1
k,m), τ0, τ1 ← {0, 1}poly(k), computes v̄0 ← h̄(τ0||s0), v̄1 ← h̄(τ1||s1),

and outputs ((τ0, s0, v1), (τ1, s1, v0)), where v0 ← h(s0||v̄1; τ0), v1 ← h(s1||v̄0; τ1).
– Dec(Σ, ·): On input ((τ0, s0, v1), (τ1, s1, v0)), for i ∈ {0, 1}, if h

(
si||h̄(τ1−i||s1−i); τi

)
=

vi, output LRSdec(1
k, (s0, s1)), otherwise, output ⊥.

In what follows we will assume that H is a 1-more wECRH and this is
essential for proving security. Observe that, if H is 0-more extractable, then
it can be malleable (as it is proven in [38]) and security cannot be proved as
generic LRS schemes do not provide non-malleability, thus the attacker could
create related codewords. The 1-more extractability property resolves this issue:
even if the attacker is given access to a valid hash value vi, it cannot produce
a valid hash value unless it knows a valid pre-image. Finally, H̄k is essential
for proving security of our construction, as it enables simulatability of the hash
values v0, v1, w.r.t. Hk, via split-state leakage queries to the LRS oracles (cf.
Section 1.4).

In what follows, we briefly discuss the main ideas behind our proof, while
highlighting the differences from [30]. The security of our scheme relies on three
primitives, namely, on leakage-resilient 1-more wECRH, on the collision resis-
tance property of H̄ and the security of LRS. Our adversary is denoted by A′
and is depicted in Figure 1, while its main subroutine, TComp, is depicted in
Figure 2. A′ simulates the tampering experiment against the codeword, while

12 The labels are used to bind together the two parts of the memory.

14

given split-state leakage over (s0, s1) ← LRSenc(m), where m denotes the mes-
sage. In step 1, A′ samples the elements required for simulating the codewords
inside the leakage oracles, i.e., it samples hash functions h, h̄, and randomness τi,
for h. Then, it makes a guess, j∗, on the index of the round in which the attacker
produces an invalid codeword. Such a round is called a “self-destruct” round.13

Then, in step 2, the adversary leaks the actual hashes over s0, s1, and in this way
it simulates perfectly the codewords inside the leakage oracles without using a
trapdoor CRS, i.e., for i ∈ {0, 1}, ci = (τi, si, v1−i) is perfectly simulated inside
Oλ(si, ·). This approach is in contrast to [30], in which the authors use robust
NIZKs, and simulate the codeword inside the oracles using simulated proofs,
that require a trapdoor CRS.

In step 3, A′ executes A inside the leakage oracles and verifies if j∗ is a
correct guess for the self-destruct round. As we prove, this holds, if for all rounds
before j∗ the executions inside the two oracles are identical, while they differ
in round j∗. The challenge here, is to execute A inside the oracles, as each
Oλ(si, ·) gives access to ci = (τi, si, v1−i), but provides no information about
s1−i (recall that τ1−i, vi can be simulated), thus it is unclear how to provide the
adversary with c̃1−i. We discuss how to resolve this issue, by first considering a
non-leakage tampering adversary, A. The main idea behind step 3 of A′, is as
follows: A′ executes A inside Oλ(si, ·), and for each tampering query (f0, f1) of
A, A′ computes c̃i ← fi(ci), and uses the 1-more wECRH property of H to
extract c̃1−i. When considering adversaries that issue leakage queries, A′ replies
to those queries by executing repeatedly TComp (cf. Figure 2) against the two
oracles (cf. step 3-(a) in Figure 1). In steps 3-(b),(c), A′ verifies if j∗ is a self-
destruct round, by leaking the hashes of the replies sent to A inside the oracles.
We note that, our strategy is similar to [44], but different than [30] in which
the adversary executes binary search to compute the exact value of the index,
requiring leakage proportional to O(k log(q)+λ), while we only require O(k+λ).
In Step 4, A′ learns s0 and simulates the tampered execution in the same way
it does in Step 3. Finally, in contrast to [30], in which extractability is easily
implied by the robust NIZKs, proving extractability in the continuous setting
using `-more wECRH, which is a one-time primitive, is non-trivial.

For starters, we prove that the above construction satisfies the uniqueness
property (cf. Definition 2.6), which is required for achieving non-malleability in
the continuous setting.

Lemma 3.3. Assuming Hk is a collision resistant hash function family, the
split-state code of Construction 3.2 satisfies the uniqueness property.

Proof. Let (h, h̄) ∈ Hk × H̄k, and let Hk be a collision resistant hash function
family. Towards contradiction, assume there exists a PPT attacker A that, given
(h, h̄), it produces two distinct, valid codewords, (c0, c1), (c0, c

′
1), with probability

greater than ε = 1/poly(k), i.e., A produces c0 = (τ0, s0, v1), c1 = (τ1, s1, v0),

13 We can always assume that such a round exists, since for any A that is not producing
an invalid codeword, we can construct another adversary that does so and has the
same advantage with A, cf. [30].

15

Algorithm A′

1. (Setup): Sample h← Hk, h̄← H̄k, ĥ← Ĥk, τ0, τ1 ← {0, 1}poly(k), j∗ ← [q].
2. (Hash leaking):

(a) For i ∈ {0, 1}, define Li(si) := h̄(τi||si) and issue the leakage query (L0, L1) against

Oλ(s0, ·), Oλ(s1, ·). Let v̄0, v̄1, be the corresponding leaked values.
(b) For i ∈ {0, 1}, define L′i(si) := h(si||v̄1−i; τi) and issue the leakage query (L′0, L

′
1)

against Oλ(s0, ·), Oλ(s1, ·). Let v0, v1, be the leaked values.
3. (Verifying j∗): Let lk be a q×2 zero matrix and for j ∈ [q], i ∈ {0, 1} define the leakage

function Lji (si, lk) that computes TCompq(i, τi, si, v1−i, lk, j) (cf. Figure 2) and outputs
its first coordinate, i.e., lk.

(a) For j = 1, . . . , q: (i) lk′ ← Lj0(s0, lk), lk′′ ← Lj1(s1, lk
′), (ii) set lk← lk′′.

(b) Let L̄0(·) be the leakage function that on input s0, it computes (∼, t0) ←
TCompq(0, τ0, s0, v1, lk, q), lk ← ĥ(t0[1 : j∗ − 1]), lk′ ← ĥ(t0[j∗]), and outputs

(lk, lk′). Send L̄0(·) to Oλ(s0, ·).
(c) Define L̄1(s1) that,

i. Computes (∼, t1)← TCompq(1, τ1, s1, v0, lk, q).

ii. If lk = ĥ(t1[1 : j∗ − 1]) and lk′ 6= ĥ(t1[j∗]), output 1, otherwise output 0.

L̄1(·) is executed against Oλ(s1, ·), and let d be the bit output by the leakage query.
(d) Receive s0 (the leakage queries have ended).

4. (Simulating tampering and leakage queries): Set c0 := (τ0, s0, v1).
Execute A and for j = 1, . . . , q:

Receive (gj0, g
j
1) from A, send lk[j] to it, receive fj = (fj0 , f

j
1) from A and:

– if j ≥ j∗ send ⊥ to A,

– otherwise, compute c̃0 := (τ̃0, s̃0, ṽ1) = fj0 (τ0, s0, v1) and
(a) If c̃0 = c0, send same∗ to A.
(b) If c̃0 6= c0:

If ṽ1 = v1, send ⊥ to A, otherwise, (τ̂1, ŝ1, v̂0)← E0,j(h, v1, zE0,j).

• If h̄(τ̃0||s̃0) = v̂0 and h(ŝ1||v̂0; τ̂1) = ṽ1, set v0 := h
(
s̃0||h̄(τ̂1||ŝ1); τ̃0

)
,

and c̃1 := (r̂1, ŝ1, v0). Send (c̃0, c̃1) to A.
• Otherwise, send ⊥ to A.

5. (Output): Let out be the output of A after the completion of the previous step. A′
outputs (out, d).

Fig. 1. The algorithm A′ playing in Leak0A′,mb(k).

Algorithm TCompq
Input: i, τi, si, v1−i, lk, r.
Set ci := (τi, si, v1−i) and let t be the zero vector with q coordinates.

For j = 1, . . . , r:

– Receive (gj0, g
j
1) from A and

1. If j < r, send lk[j] to A and receive (fj0 , f
j
1) from it.

2. If j = r, set lk[j, i+ 1] = gji (si) and break.

– Compute c̃i := (τ̃i, s̃i, ṽ1−i) = fji (τi, si, v1−i).
1. If c̃i = ci, set t[j] = same∗ and send same∗ to A.
2. If c̃i 6= ci, then if ṽ1−i = v1−i, set t[j] = ⊥i and send ⊥ to A, otherwise, sample

(τ̂1−i, ŝ1−i, v̂i)← Ei,j(h, v1−i, zEi,j).

• If h̄(τ̃i||s̃i) = v̂i and h(ŝ1−i||v̂i; τ̂1−i) = ṽ1−i, set t[j] = (c̃0, c̃1), where c̃i is
defined above, c̃1−i = (r̂1−i, ŝ1−i, vi) and vi = h

(
s̃i||h̄(τ̂1−i||ŝ1−i); τ̃i

)
. Send

t[j] to A.
• Otherwise, set t[j] = ⊥i and send ⊥ to A.

Output (lk, t).

Fig. 2. The algorithm TComp executed by A′.

16

c′1 = (τ ′1, s
′
1, v
′
0), where c1 6= c′1,14 with probability ε. We construct an adversary

A′, that given h ← Hk, it breaks the collision resistance property of Hk with
non-negligible probability: A′ samples h̄← H̄k and

(τ0, s0, v1), (τ1, s1, v0), (τ ′1, s
′
1, v
′
0)← A(h, h̄),

and outputs (τ1, s1), (τ ′1, s
′
1). Let v̄0 ← h̄(τ0||s0). By the validity of the code-

words and Construction 3.2, we have that h(s1||v̄0; τ1) = v1 = h(s′1||v̄0; τ ′1).
Conditioned on c1 6= c′1 we have that (τ1, s1) 6= (τ ′1, s

′
1): if (τ1, s1) = (τ ′1, s

′
1),

we also have that v0 = v′0 and the codewords are equal. Thus, conditioned on
c1 6= c′1 we have that (τ1, s1) 6= (τ ′1, s

′
1) and A′ breaks the collision resistance

property of Hk with non-negligible probability, ε (here we assume collision re-
sistance of Hk also w.r.t. to τ , which is achieved by our instantiations). �

Below we prove non-malleability of Construction 3.2 in the continuous setting
with respect to any 1-more wECRH.

Theorem 3.4. Let k, λ, λ′ ∈ N, and let b be polynomial in k. Assuming Hk
is a leakage-resilient 1-more wECRH function family against λ bits of leakage,
that outputs b(k) bits, H̄k, Ĥk, are collision resistant hash function families that
output k bits, and (LRSenc, LRSdec) is a λ′-LRS, for λ′ ≥ 2λ+2b(k)+4k+1. Then,
the encoding scheme (Init,Enc,Dec) of Construction 3.2 is a (q, λ)-CNMLR code
(cf. Definition 2.5), where q = poly(k) if extraction w.r.t. to Hk requires linear
time, otherwise q is constant.

Proof. Towards contradiction, assume there exists a pair of messages m0, m1,
PPT adversary A and PPT distinguisher D, such that for infinitely many k ∈ N,∣∣∣Pr

[
D
(
Tampercnmlr

A,m0
(k)
)

= 1
]
− Pr

[
D
(
Tampercnmlr

A,m1
(k)
)

= 1
]∣∣∣ > ε,

for ε = 1/poly(k). Here, Tampercnmlr
A,mi(k) is the experiment of Definition 2.5 with

respect to A, mi. We will use m0, m1, A, D, to construct m′0, m′1, A′, D′, for
which ∣∣∣Pr

[
D′
(
Leak0

A′,m′0(k)
)

= 1
]
− Pr

[
D′
(
Leak0

A′,m′1(k)
)

= 1
]∣∣∣ > ε′,

for ε′ = 1/poly(k) and infinitely many k, where Leak0
A′,m′i(k) is the experi-

ment of Definition 2.4, with respect to A′, m′i. The idea is that A′ will play in
Leak0

A′,m′b
(k), for b ∈ {0, 1}, interacting with Oλ(s0, ·), Oλ(s1, ·), where (s0, s1)

follows LRSenc(mb), and it will simulate Tampercnmlr
A,mb(k), through its access to

the aforementioned oracles. A′ executes A using always the same randomness.
Assume A issues q leakage/tampering queries and that there is always a round
in which self-destruct occurs, i.e., a round in which the output of the decoder in
the real experiment will be ⊥. This round is denoted by jd. We define m′0 := m0,
m′1 := m1 and A′ is defined in Figure 1. The definition of the distinguisher D′

14 The case where c0 6= c′0 is symmetric.

17

against Leak0
A′,mb(k) follows.

Algorithm D′: D′ receives the output of A′, (out, d), and if d = 1 it outputs
b′ ← D(out), otherwise it outputs b′ ← {0, 1}.

Claim 3.5. For any message m and all sufficiently large k, A′ simulates per-
fectly Enc(Σ,m) inside the leakage oracles by leaking 2k + 2b(k) bits during the
execution of Leak0

A′,sb(k), where Σ ← Init(1k).

Proof. By Construction 3.2 and the definition of A′, it is not hard to see that c0
(resp. c1) is perfectly simulated inside the oracle Oλ(s0, ·) (resp. Oλ(s1, ·)). A′
initially samples h← Hk, h̄← H̄k (the CRS), and τ0, τ1 ← {0, 1}poly(k). Then,
by querying the leakage oracles with (L0, L1), where Li(si) := h̄(τi||si), it receives
v̄0, v̄1 and finally, by leaking (L′0, L

′
1), where L′i(si) := h(si||v̄1−i; τi), it receives v0,

v1. All the remaining leakage queries against Oλ(s0, ·) (resp. Oλ(s1, ·)) depend
on τ0, v1 (resp. τ1, v0), and the execution inside the oracles takes place over
(c0, c1). �

Claim 3.6. Let lkReal and tReal be the vectors of the replies to the first j∗ − 1
leakage and tampering, respectively, queries made by A in Tampercnmlr

A,mb(k). Then,
conditioned on jd = j∗, for any message m and all sufficiently large k, lk[1 :
j∗ − 1] ≈c lkReal, tReal ≈c ti[1 : j∗ − 1], for i ∈ {0, 1}, over the randomness of
Tampercnmlr

A,mb(k), Leak0
A′,mb(k).

Proof. Using strong induction, we prove that conditioned on jd = j∗, lk[1 :
j∗ − 1] ≈c lkReal, tReal ≈c ti[1 : j∗ − 1], for i ∈ {0, 1}, assuming that jd > 1,
otherwise the claim holds trivially.

Base, j = 1: By executing TCompq(i, τi, si, v1−i, lk, 1), for i ∈ {0, 1} (Step 3-

a), it is clear that A′ computes the replies to (g1
0 , g

1
1) as in the real execution.

Thus, lk[1] = lkReal[1]. Regarding, the replies to the tampering queries produced
by the execution of TCompq(i, τi, si, v1−i, lk, 1) inside Oλ(si, ·), we consider the
following cases.

– ∃i : c̃i = ci: Assume that for some i ∈ {0, 1}, c̃i = ci. Then by assumption
we have that j is not a round in which self-destruct occurs, and in order for
the tampered codeword to be valid, it must be the case that c̃1−i = c1−i
with overwhelming probability, otherwise we can use (f1

0 , f
1
1) to break the

uniqueness property of the encoding scheme (cf. Lemma 3.3), by simulat-
ing the first round of execution. Thus, for i ∈ {0, 1}, ti[j] = same∗, which
matches the reply tReal[1] of the tampering oracle in the real execution, since
by Claim 3.5, ci is perfectly simulated inside Oλ(si, ·).

– ∀i : c̃i 6= ci ∧ ∃j : ṽj = vj : Let Ei be the event in which c̃i 6= ci∧ ṽ1−i = v1−i,
and E the event of not having a round with self-destruct. We prove that
Pr[Ei ∧ E] ≤ negl(k), for i ∈ {0, 1}. Towards contradiction, assume that for
some i in {0, 1}, Pr[Ei ∧ E] > ε′i, for ε′i = 1/poly(k). Then, we have a valid
codeword for which (τi, si) 6= (τ̃i, s̃i) and ṽ1−i = h(s̃1−i||h̄(τ̃i||s̃i); τ̃1−i) =

18

h(s1−i||h̄(τi, si); τ1−i) = v1−i. If h̄(τ̃i||s̃i) = h̄(τi, si), then we can use f j

to break the collision resistance property of h̄, otherwise f j can be used
to break the collision resistance property of h, with non-negligible proba-
bility εi, by simulating Tampercnmlr

A,mb(k). Thus, such an event never happens

with non-negligible probability during the execution of Tampercnmlr
A,mb(k) and

Leak0
A′,m(k).

– ∀i : ṽi 6= vi: In order to prove consistency between Tampercnmlr
A,mb(k) and Leak0

A′,m(k),
we need to define two extractors, Ei,1, for i ∈ {0, 1}, and the correspond-
ing auxiliary inputs, and prove that the extracted values are consistent with
Tampercnmlr

A,mb(k). For this reason we relate (see below) the execution of TComp
inside the oracles, with the `-more experiment of Definition 3.1.

In the execution inside Oλ(si, ·), the adversary is given direct access to ci =
(τi, si, v1−i) and leakage access over c1−i, and tampers with the hash v1−i and
some auxiliary values (τi, si). We relate this adversary to Av of Definition 3.1
by defining a program Av,i with auxiliary input zv,i, as follows:15

1. Program AO
λ(τ1−i,·)

v,i (h, v1−i, zv,i):
– Sample (g1

0 , g
1
1)← A(h) and parse zv,i as (τi, si, s1−i).

– Query Oλ(τ1−i, ·) with gs1−i(x) := h̄(x||s1−i) and let v̄1−i be the answer.

– Set vi = h(si||v̄1−i; τi).

– Define gvi,s1−i(τ1−i) := g1
1−i(τ1−i, s1−i, vi), send gvi,s1−i to Oλ(τ1−i, ·)

and let w1−i be the answer.

– Compute wi ← g1
i (τi, si, v1−i), send (w0, w1) to A and receive (f1

0 , f
1
1).

– Output: ([f1
i (τi, si, v1−i)]3, st), where st := (f ji (τi, si, v1−i), zv,i, v1−i).

2. (Auxiliary input for Av,i): set zv,i = (τi, si, s1−i).

3. (Existence of the extractor, Ei,1, and auxiliary input, zEi,1): Given
Av,i and zv,i, by the 1-more extractability property of Hk under leakage,
there exists an extractor Ei,1 for Av,i, with auxiliary input, zEi,1 , that com-
putes (τ̂1−i, ŝ1−i, v̂i)← Ei,1(h, v1−i, zEi,1).

Clearly,Av,i is an admissible attacker againstHk, that produces a tampered hash
value ṽ1−i, as A does in the first round of the execution inside Oλ(si, ·). Now
we relate the execution inside Oλ(s1−i, ·) with a program As,1−i that outputs a
tampered pre-image, and we define the message s of the experiment of Definition
3.1.

1. Program As,1−i(h, τ, s, st):
– Parse s as s1−i||v̄i, and set τ1−i := τ .

– Compute vi := h(si||h̄(τi−1||si−1); τi),
16 (τ̃1−i, s̃1−i, ṽi) = f1

1−i(τ1−i, s1−i, vi).

– Output: (τ̃1−i, s̃1−i||h̄(τ̃i, s̃i)).

2. (Define message s): set s := s1−i||h̄(τi||si).

15 Av,i is implicitly parameterized by h̄.
16 As knows (τi, si), (τ̃i, s̃i), since they are stored in st.

19

By the 1-more extractability property of Hk under leakage, we have

Pr
h←Hk

[
Exps,hAv,i,As,1−i,Ei,1(1, λ, zv,i, zEi,1) = 1

]
≤ negl(k).

Let B be the event in which the extractor fails to produce a valid pre-image.
Then, if B happens, and since we are not in a self-destruct round (an event de-
noted as E), we have that Av,i produces a valid hash and As,1−i, produces a valid

pre-image, still the extractor fails, i.e., we have Exps,hAv,i,As,1−i,Ei,1(1, λ, zv,i, zEi,1) =

1. Thus, by the above relation we receive Pr[B ∧ E] ≤ negl(k), and the ex-
tractor outputs a valid pre-image for ṽ1−i, i.e., h(ŝ1−i||v̂i; τ̂1−i) = ṽ1−i. Since
the attacker creates a valid codeword, we also have h(s̃1−i||h̄(τ̃i||s̃i); τ̃1−i) =
ṽ1−i. We prove that the extracted values are consistent with the ones pro-
duced by the attacker in Tampercnmlr

A,mb(k), i.e., we prove that (τ̂1−i, ŝ1−i||v̂i) =

(τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)), with overwhelming probability.
Let B′ be the event in which (τ̂1−i, ŝ1−i||v̂i) 6= (τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)). Then,

assuming there exist m, A, A′, for which Pr[¬B ∧ E ∧ B′] > ε′′, for ε′′ =
1/poly(k), we build an attacker A′′ that breaks the collision resistance prop-
erty of Hk, with non-negligible probability: given m, A′′ simulates Leak0

A′,s(k)
while having full access to (s0, s1) ← LRSenc(m), and outputs (τ̂1−i, ŝ1−i||v̂i),
(τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)). We conclude that ti[1] ≈c tReal[1]. The case of t1−i[1] is
symmetric.

The proof for the inductive step is provided in Section A.2. �

Claim 3.7. Conditioned on jd = j∗, for any message m and all sufficiently
large k, t0[jd] 6= t1[jd], with overwhelming probability over the randomness of
Leak0

A′,m(k).

Proof. By Claim 3.6, we have that the output of the decoder in Tampercnmlr
A,mb(k),

is simulated perfectly for the first jd−1 rounds, by the execution of TComp inside
the leakage oracles. Thus, the tampering query made by the attacker in round
jd inside the oracles is consistent with the jd-th tampering query made by the
attacker in the execution of Tampercnmlr

A,mb(k). By assumption, jd is self-destruct

round, thus there exists i ∈ {0, 1}, for which h(s̃i||h̄(τ̃1−i||s̃1−i); τ̃i) 6= ṽi. We
denote such an event by Ei and analyze the execution of TComp under the event
E0 ∨ E1. We consider the following cases.

– ∀i ṽi = vi: Since E0 ∨ E1 has occurred we know that for some i ∈ {0, 1},
(τ̃i, s̃i) 6= (τi, si), and by the definition of TCompq, ti[jd] = ⊥i 6= t1−i[jd],
independently of the value in t1−i[jd].

– ∃i : ṽi 6= vi ∧ ṽ1−i = v1−i: If (τi, si) = (τ̃i, s̃i), we have that ti[jd] = same∗ 6=
t1−i[jd], since c̃1−i 6= c1−i, else if (τi, si) 6= (τ̃i, s̃i), we have that ti[jd] =
⊥i 6= t1−i[jd], independently of the value in t1−i[jd].

– ∀i ṽi 6= vi: We prove the needed for the non-trivial case in which for all
i ∈ {0, 1}, ti[jd] 6= ⊥i. Assuming the extractors executed inside the oracles
output valid pre-images, we have t0[jd] = ((τ̃0, s̃0, ṽ1) , (τ̂1, ŝ1, v0)) , t1[jd] =
((τ̂0, ŝ0, v1) , (τ̃1, s̃1, ṽ0)) . Conditioned on Ei, we have h(s̃i||h̄(τ̃1−i, s̃1−i); τ̃i) 6=

20

ṽi = h(ŝi||h̄(τ̃1−i, s̃1−i); τ̂i), which implies that (τ̂i, ŝi) 6= (τ̃i, s̃i). Thus t0[jd] 6=
t1[jd], under E0 ∨ E1. �

Claim 3.8. For any message m and all sufficiently large k, j∗ = jd iff d = 1,
with overwhelming probability over the randomness of Leak0

A′,m(k).

Proof. Recall that d is the output bit of the leakage query defined in 1. By Claims
3.6, 3.7, we have that for all j ∈ [jd − 1], t0[j] = t1[j] and t0[jd] 6= t1[jd], and

clearly, assuming j∗ = jd, we have that ĥ(t0[1 : j∗ − 1]) = ĥ(t1[1 : j∗ − 1]) and

ĥ(t0[j∗]) 6= ĥ(t1[j∗]), with overwhelming probability, otherwise we can break

the collision resistance property of ĥ by simulating Leak0
A′,m(k). Thus d = 1.

Symmetrically, assuming d = 1 we know that t0[j∗] 6= t1[j∗], and using the

collision resistance property of ĥ, with overwhelming probability, t0[1 : j∗−1] =
t1[1 : j∗ − 1]. Thus, d = 1 iff A′ makes a correct guess on jd. �

Claim 3.9. Conditioned on j∗ = jd, out ≈c Tampercnmlr
A,mb(k), over the random-

ness of Leak0
A′,m(k).

The main arguments that prove the current claim, have already been proved
in Claim 3.6, as the execution in of A′ in Step 4, is similar to the TComp.

Claim 3.10. For any pair of messages m0, m1, PPT adversary A, all suffi-
ciently large k, and all PPT distinguishers D, assuming that∣∣∣Pr

[
D
(
Tampercnmlr

A,m0
(k)
)

= 1
]
− Pr

[
D
(
Tampercnmlr

A,m1
(k)
)

= 1
]∣∣∣ > ε,

for ε = 1/poly(k), we have∣∣Pr
[
D′
(
Leak0

A′,m0
(k)
)

= 1
]
− Pr

[
D′
(
Leak0

A′,m1
(k)
)

= 1
]∣∣ > ε/q − negl(k),

where D′, A′, have already been defined above with respect to D, A, respectively.

The proof of the above claim can found in Appendix A.4.

Total leakage. Step 2 of Figure 1 leaks four hash values requiring 2k+ 2b(k) bits
of leakage. Step 3-a simulates the leakage queries of the adversary against the
encoding scheme, i.e., λ bits for each part of the codeword, thus upper bounded
by 2λ. Step 3-b leaks two hash values, requiring 2k bits of leakage, plus one bit.
Therefore, the total amount of leakage is upper bounded by 2λ+ 4k + 2b(k).

The above conclude the proof of the theorem. �

3.1 Instantiating `-more wECRH

In what follows, we prove that any hash function is an `-more wECRH (cf.
Definition 3.1) when it can be modeled as a random oracle. Since in the random
oracle model, the randomness comes from the oracle, we do not hash the message
using independent randomness τ . Leakage resilience is straightforward in this
setting as the adversary has no access to the randomness.

21

Theorem 3.11. Let k, ` ∈ N and let h be a function, h : {0, 1}∗ → {0, 1}k.
Assuming h can be modeled as a random oracle, then h is an leakage resilient
`-more wECRH (cf. Definition 3.1).

The intuition behind the proof of the above the theorem has been provided in
the Introduction while the full proof is presented in Section A.3. By plugging the
`-more wECRH of Theorem 3.11 to Theorem 3.4 we obtain a leakage-resilient
continuous NMC. In particular, we receive the following corollary.

Corollary 3.12. Assuming Hk can be modeled as a random oracle and H̄k is
collision resistant, then construction 3.2 is a q-CNMLR code against λ bits of
leakage, for any q = poly(k), assuming λ′ ≥ 2λ+ 6k + 1, where k, λ′ ∈ N are as
in Theorem 3.4.

The proof of Theorem 3.4 is with respect to any `-more wECRH. When
considering the random oracle model, and similarly to [29], the random oracle
can be simulated inside the leakage oracles using a pseudo-random function.

As a second instantiation, in what follows, we prove that the `-more wECRH
of [38] satisfies a weaker form of leakage-resilience that is non-adaptive with
respect to the CRS. This notion if formally defined below.

Definition 3.13 (`-more weakly extractable, leakage-resilient hash function
families). Let `, λ ∈ N. An efficiently samplable hash function ensemble H =
{Hk}k∈N, is `-more weakly extractable against λ bits of leakage, if for any g :
{0, 1}∗ → {0, 1}λ, any PPT algorithm Av and any zv ∈ {0, 1}poly(k), there exist
a PPT extractor EHAv and zE ∈ {0, 1}poly(k), such that for all PPT algorithms
As, any large k ∈ N and any vector of messages s = (s1, . . . , s`),

Pr
h←Hk

[
Exps,hAv,As,EAv (`, λ, zv, zE) = 1

]
≤ negl(k),

where,

Exps,hAv,As,EAv (`, λ, zv, zE) :

τi ← {0, 1}poly(k), vi = h(si; τi), i ∈ [`] (hash computation)
t = (τ1, . . . , τ`),v = (v1, . . . , v`)
(ṽ, st)← Av(h,v, g(t), zv) (hash tampering)
(τ̂ , ŝ)← EAv (h,v, zE) (pre-image extraction)
(τ̃ , s̃)← As (h, t, s, st) (pre-image tampering)

If h(s̃; τ̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ; τ̂) 6= ṽ, return 1
otherwise, return 0

Before presenting our result, we first revisit the `-more wECRH construction
of [38].

Construction 3.14 (`-more weakly extractable hash [38]). Let k ∈ N, G be
a group-generation algorithm and let (Enc,Dec) be a (kt, kt′)-coding scheme,
t, t′ = O(poly(k)). An instance of a (kt, 2k)-compressing hash function family
H = (G, h) is defined as follows:

22

1. Gen(1k): sample (G, g, p) ← G(1k), (a, r) ← Zp × Zt′p , where p = |G|, and
output h = (G, gr, gar).17

2. Hashing: on input s, sample τ ← {0, 1}poly(k), c ← Enc(s; τ) and output
h(s; τ) = (g〈r,c〉, g〈ar,c〉).

For coding schemes (Init,Enc,Dec) in the CRS model, G(1k) outputs (h,Σ),
where Σ ← Init(1k).

In [38] the authors prove that if (Enc,Dec) is a non-malleable code against
affine functions, and Enc(s) has sufficient entropy, then construction 3.14, is an
`-more wECRH under the t-KEA assumption and DLOG. In the following the-
orem, we reduce the `-more extractability in the presence of leakage to standard,
i.e., `-more extractability without leakage, under the same assumptions.

Theorem 3.15. For k ∈ N, let H be the `-more wECRH family of Construc-
tion 3.14 instantiated with an NMC, (Enc,Dec), such that for any message s,
H∞ (Enc(s)) ≥ λ+ k + ω(log k). Then, H is an `-more wECRH against λ bits
of non-adaptive leakage (cf. Definition 3.13).

Proof. We prove the needed for the 1-more case (the `-more case is identical)
using a series of hybrid experiments that we describe below and they are depicted
in Figure 3.

– For any g : {0, 1}∗ → {0, 1}λ, PPT Av with auxiliary input zv, any As,
any message s and h ∈ H, Exp0 is the `-more experiment under leakage,

Exps,hAv,As,EAv (`, λ, zv, zE), of Definition 3.13. In order to fully define the ex-
periment we need to define E , zE : for any g, Av, zv, we define the non-
leakage attacker A′v such that A′v(h, v, zv) samples independent randomness
τ ′ ← {0, 1}poly(k) and executes (ṽ, st) ← Av(h, v, g(τ ′), zv). By the 1-more
extractability of H (without leakage) there exists extractor EHA′v with hard-

coded auxiliary information zE , for A′v, and we define E := EHA′v . We prove

that for any Av, zv, As and any message s, Pr[Exp0 = 1] ≤ negl(k), otherwise
we break 1-more extractability, without leakage, of H, with non-negligible
probability.

– In Exp1 we modify Exp0 in two ways. First the leakage is computed over
the independent randomness τ ′, instead of τ , which is used to compute v.
As we prove, if the adversary is not leaking more than λ bits in total, v
is statistically close to a uniform element in the range of the hash even if
the attacker receives leakage over τ , and this modification does not induce
any statistical difference between the two experiments. Thus, Av cannot
distinguish between the two experiments. However, As might do so since
for some leakage query g we might have g(τ) 6= g(τ ′). Hence, for any As,
we define an A′s, that given τ , s, computes the output of As exactly as it
happens in Exp0, i.e., A′s (h, τ, s, st) computes (i) v ← h(s; τ), (ii) (ṽ, st) ←
Av(h, v, g(τ), zv), (iii) outputs (τ̃ , s̃)← As (h, τ, s, st), and clearly, the out-
put of As in Exp0, matches the output of A′s in Exp1.

17 For a vector r = (r1, . . . , rt), g
r := (gr1 , . . . , grt).

23

– In Exp2, for any Av, we substitute Av with A′v such that A′v(h, v, zv) sam-
ples τ ′ ← {0, 1}poly(k) and outputs (ṽ, st) ← Av(h, v, g(τ ′), zv). Exp2 is the
original `-more experiment (without leakage) and it is not hard to see that
Exp1 ≈ Exp2.

In the following claims we prove statistical indistinguishability between the hy-
brids. The statistical distance between Exp0 and Exp1 is bounded by the distance
of the input/output variables to Av, As, A′s and E .

Claim 3.16. For any any leakage function g, any s, Av, As, zv, (h(s; τ), g(τ)) ≈
(h(s; τ), g(τ ′)), over the randomness of Exp0, Exp1.

Proof. By assumption we have that for any s, H∞ (Enc(s)) ≥ λ+ k + ω(log k).
Moreover, each leakage query g can leak at most λ bits of τ (as all queries
cannot leak more than λ bits, in total). Since the randomness of the encoder
is independent of zv, h, we have that for Z = (zv, h, g(h)), H∞ (Enc(s) | Z) ≥
k+ω(log k). Thus, H̃∞(Enc(s) | Z) ≥ k+ω(log k). By the Left-Over Hash Lemma
(Lemma A.3) and the universality of the inner product function (Lemma A.5),
the distribution 〈r,Enc(s; τ)〉 is statistically close to uniform over Zp and we
have

(h(s; τ), g(τ)) =
((
g〈r,Enc(s;τ)〉, ga〈r,Enc(s;τ)〉

)
, g(τ)

)
≈ ((gr, gar), g(τ)) ,

for uniform r, τ . Since τ , τ ′, r, are uniform and independent we have ((gr, gar), g(τ))
≈ ((gr, gar), g(τ ′)), and thus (h(s; τ), g(τ)) ≈ (h(s; τ), g(τ ′)). This concludes the
proof of the claim and the input and output distributions for Av and E in both
experiments are the same. �

By the above claim and the fact that the input and output distributions of
As and A′s are the same (by the definition of A′s), we have that Exp0 ≈ Exp1.

Finally, in Exp2 A′v is just sampling τ ′ internally and then executes Av. Again
the output distributions of Av and A′v are the same, thus Exp1 ≈ Exp2.

From the above we have that Exp0 ≈ Exp2 and |Pr[Exp0 = 1] − Pr[Exp2 =
1]| ≤ negl(k). Thus, assuming Pr[Exp0 = 1] > ε, for ε = 1/poly(k), we receive
that Pr[Exp2 = 1] > ε′ = ε−negl(k), and 1-more extractability of H breaks with
non-negligible probability (recall that Exp2 is the 1-more experiment without
leakage). Thus, Pr[Exp0 = 1] ≤ negl(k), and 1-more extractability under leakage
for H follows. The collision resistance property of the construction follows by [38]
(cf. Lemma 5.3). �

By plugging the non-malleable encoding scheme (Enc,Dec) against affine
functions (cf. Construction 5.8 of [38]) with |p| = k+λ, as the underlying encod-
ing scheme to Construction 3.14, we have that for any message s, H∞ (Enc(s)) ≥
λ+ k + ω(log k), and Construction 3.14 is an `-more wECRH against λ bits of
leakage, which by Theorem 3.4 yields a continuous NMC against split-state ad-
versaries for a constant number of rounds and tolerating λ bits of non-adaptive
leakage. In particular, we receive the following corollary.

24

Exp0 :

τ ← {0, 1}poly(k), v = h(s; τ)

(ṽ, st)← Av(h, v, g(τ), zv)
(τ̂ , ŝ)← E(h, v)
(τ̃ , s̃)← As (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Exp1 :

τ, τ ′ ← {0, 1}poly(k), v = h(s; τ)

(ṽ, st)← Av(h, v, g(τ ′), zv)
(τ̂ , ŝ)← E(h, v)
(τ̃ , s̃)← A′s (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Exp2 :

τ ← {0, 1}poly(k), v = h(s; τ)

(ṽ, st)← A′v(h, v, zv)
(τ̂ , ŝ)← E(h, v)
(τ̃ , s̃)← A′s (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Fig. 3. The hybrid experiments for the proof of Theorem 3.15.

Corollary 3.17. For k, t, λ′ ∈ N as in Theorem 3.4, assuming DLOG, t-KEA,
and collision resistant hash function families, Construction 3.2 is a q-CNMC
against λ bits of non-adaptive leakage, for λ′ ≥ 2λ + 8k + 1 and any constant
round PPT adversary.

4 Non-malleable commitments

In the present section, we construct succinct,18 non-interactive non-malleable
commitments with respect to opening, from `-more wECRHs. Our result is sum-
marized in the following informal theorem.

Theorem 4.1 (Informal). Assuming `-more wECRH, there exists an explicit
succinct non-interactive, non-malleable commitment scheme with respect to open-
ing.

Our primitive achieves a stronger definition of non-malleability, that allows
the adversary’s auxiliary input to depend on the message (this is not allowed
in [20]), and in contrast to [47], our simulator is weaker, in the sense that it does
not need access to the original message in order to simulate the decommitment
phase. Our KEA based instantiation produces commitments of size 2k, while
for the random oracle based construction the commitment size is k.

We start by presenting the notion of non-interactive commitments in the
CRS model.

Definition 4.2 (Non-interactive commitment in the CRS model).
Let (Init,Commit,Open) be a commitment scheme and let Σ ← Init(1k). Then,
it satisfies the following properties:

– (Computational binding): It is computationally infeasible to find s 6= s′,
and τ , τ ′, such that Commit(Σ, s; τ) = Commit(Σ, s′; τ ′).

– (Statistical hiding): For any two messages s, s′, Commit(Σ, s) ≈ Commit(Σ, s′).

18 The length of the commitment is independent of the message length.

25

For brevity, the CRS is omitted when calling Commit and Open.
We define the notion of non-malleable, non-interactive commitments, in the

standalone setting, following the definition of Pass and Rosen [47], with some
simplifications for the non-interactive settings. First, present the man-in-the-
middle execution with respect to the real game and the ideal experiment, as
follows.

Man-in-the-middle experiment (real game). Here we consider a two-stage man-
in-the-middle adversary, A = (A1,A2), where A1 participates in the commit-
ment stage and A2 participates in the opening stage. More specifically, given a
binary relation R(·, ·), a man-in-the-middle adversary, A = (A1,A2), a sender,
Sender, a receiver, Receiver, a message s, and auxiliary input z, we define the
real experiment RealA(R, s, z) as follows: (1) Sender sends a commitment c ←
Commit(s; τ) to A; (2) A1(c, z) sends a commitment c̃ to Receiver; (3) Sender
sends the opening of c to A; (4) A2(z, s, τ) sends the opening of c̃ to Receiver.
The experiment outputs 1 if and only if A produces a valid s̃ for the commitment
c̃, and R(s, s̃) = 1. The message s is chosen prior to the experiment and A is
allowed to receive auxiliary input, z, that might depend on s.

The Ideal experiment. Given a binary relation R(·, ·), an ideal adversary, S,
a sender, Sender and receiver Receiver, message s, and auxiliary input z, the
Ideal experiment, IdealS(R, s, z), is defined as follows: S only interacts with
Receiver by (1) sending a commitment to c̃ it and (2) sending the corresponding
decommitment. The experiment outputs 1 if and only if S produces a valid
decommitment, s̃, for c̃ and R(s, s̃) = 1. The message s is chosen prior to the
experiment and S receives the auxiliary input z, asA does in the real experiment.

Having defined the real and ideal executions, we define the notion of non-
malleable (non-interactive) commitments.

Definition 4.3 (Non-malleable non-interactive commitment). A non-interactive
commitment scheme is said to be non-malleable (with respect to opening) if for
every PPT man-in-the-middle adversary A, there exists a PPT adversary S
and a negligible function negl(·), such that for every non-reflexive polynomial-
time computable relation R ⊆ {0, 1}n × {0, 1}n, every s ∈ {0, 1}n and every
z ∈ {0, 1}∗, we have that

Pr [RealA(R, s, z) = 1] < Pr [IdealS(R, s, z)] + negl(n).

It should be noted that, the definition presented above is stronger from the
ones presented in [20, 47], since (1) we allow the attacker’s auxiliary input to
depend on the message s, and (2), our simulator does not need the original
message in order to simulate the decommitment phase.

In the CRS model, both the real and ideal experiments will generate the
CRS by running Init and all parties will receive access to it.19

19 There is a weaker model called trapdoor CRS, in which the simulator S generates
an indistinguishable CRS with a trapdoor. The construction that is proposed in this
work uses the honestly generated CRS, i.e., it does not require trapdoor information.

26

Below we define our construction.

Construction 4.4 (Non-malleable non-interactive commitment). Let Hk be a
hash function family. We define a non-interactive commitment scheme (Init,Commit,Open),
as follows:

– Init(1k): Sample h← Hk and set Σ := h.
– Commit(Σ, ·): on input string s ∈ {0, 1}poly(k), the algorithm selects random

string τ ∈ {0, 1}poly(k) and outputs h(s; τ).
– Open(Σ, ·): on input a commitment c, the algorithm outputs s, τ . The receiver

accepts if h(s; τ) = c.

In the following statement we formalize the properties that Hk should meet,
in order for the above scheme to be non-malleable.

Theorem 4.5. Let Hk collision resistant hash function family, such that for
h← Hk and any message s, h(s) is statistically close to uniform. Then the com-
mitment scheme of Construction 4.4 is statistically hiding and computationally
binding. Furthermore, if the hash function family Hk, is a 1-more wECRH, then
the commitment scheme is non-malleable with respect to opening (cf. Definition
4.3).

Proof. The first part of the proof, i.e., proving the statistical hiding property
of the scheme, is straightforward, as by assumption, the distribution of h(s; τ)
is statistically close to uniform. In addition, since the hash function family
is collision resistant, no PPT adversary can find two distinct valid openings
for the same commitment, i.e., computing efficiently (s, τ) 6= (s′, τ ′), for which
h(s; τ) = h(s′; τ ′), happens only with negligible probability, assuming the colli-
sion resistance property of Hk. The binding property of the scheme follows.

Next we are going to prove non-malleability. Given any man-in-the-middle
adversary A, we define an ideal adversary S as follows: S, (1) samples τ ←
{0, 1}poly(k) and sends c := h(0; τ) to A, (2) then executes c̃ ← A1(h, c, z) and
forwards c̃ to the external receiver Receiver, and (3) for the opening, if c̃ = c,
then S just sends (0, τ). Otherwise, S runs the extractor E (defined below) to
extract (s̃, τ̃) and forwards the extracted value to Receiver.

Below, we relate the above execution, with the execution of the `-more ECRH
experiment, of Definition 3.1, without considering any sort of leakage.
We first define Av:

Av on input the description of a hash function h, a hash value c = h(s; τ),
and the auxiliary input z, outputs c̃ ← A1(h, c, z). By the properties of
the 1-more wECRH (cf. Definition 3.13), there exist auxiliary input z′

and ex tractor E that on input z′ and c outputs (ŝ, τ̂).

We will prove that for any A, Pr [RealA(R, s, z) = 1] < Pr [IdealS(R, s, z)] +
negl(k), using a hybrid argument presented below.

27

H1: this hybrid is the same as the Real execution, for the first two steps. In the
third step, the sender Sender does not provide an opening for the commitment.
Instead, if the man-in-the middle adversary A forwards the commitment sent
by Sender, i.e., c̃ = c the experiment just outputs R(s, s). Otherwise, the exper-
iment runs the extractor E (defined above) to extract a value (ŝ, τ̂), and sends
(ŝ, τ̂) to Receiver. The experiment finally outputs R(s, ŝ).

H2: this hybrid is the same as H1 except that Sender commits to zero in the first
step.

Claim 4.6. Assuming that Hk is a 1-more wECRH, then for any non-reflexible
polynomially computable relation R and any s, z we have

Pr[RealA(R, s, z) = 1] < Pr[H1 = 1] + negl(k).

The proof of the above claim can be found in Appendix A.5.

Claim 4.7. Assuming the hiding property of the commitment scheme, we have
|Pr[H1 = 1]− Pr[H2 = 1]| < negl(k).

Proof. We observe that both H1 and H2 do not depend on the opening of the
commitment. Therefore, if one can distinguish H1 from H2, then it can distin-
guish between Commit(0) from Commit(s). �

It is clear that Pr[IdealS(R, s, z) = 1] = Pr[H2 = 1], as S simulates perfectly
the experiment H2. By the above claims, we receive

Pr [RealA(R, s, z) = 1] < Pr[H1 = 1] + negl(k) ≤ Pr[H2 = 1] + negl(k)

= Pr [IdealS(R, s, z)] + negl(k).

This concludes the proof of the theorem. �

Instantiations. Construction 4.4 can be instantiated using the 1-more (`-more)
wECRH of Construction 3.14, since it produces hashes that are indistinguish-
able from uniform (see Claim 3.16 in the proof of Theorem 3.15). It can also
be instantiated in the random oracle model, as the uniformity property of the
random oracle based `-more wECRH (cf. Theorem 3.11) is straightforward.

References

1. S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran. Explicit non-
malleable codes against bit-wise tampering and permutations. In R. Gennaro and
M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
538–557. Springer, Heidelberg, Aug. 2015.

28

2. J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Security analysis and im-
provements for the ietf mls standard for group messaging. In D. Micciancio and
T. Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages 248–277,
Cham, 2020. Springer International Publishing.

3. J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Modular design of secure
group messaging protocols and the security of mls. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, CCS ’21,
page 1463–1483, New York, NY, USA, 2021. Association for Computing Machinery.

4. G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Venturi. Secure out-
sourcing of circuit manufacturing. Cryptology ePrint Archive, Paper 2016/527,
2016. https://eprint.iacr.org/2016/527.

5. G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Venturi. Secure outsourc-
ing of cryptographic circuits manufacturing. In J. Baek, W. Susilo, and J. Kim,
editors, Provable Security, pages 75–93, Cham, 2018. Springer International Pub-
lishing.

6. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and
Y. Yu. Leftover hash lemma, revisited. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 1–20. Springer, Heidelberg, Aug. 2011.

7. P. Bhatotia, M. Kohlweiss, L. Martinico, and Y. Tselekounis. Steel: Composable
hardware-based stateful and randomised functional encryption. In J. A. Garay,
editor, Public-Key Cryptography – PKC 2021, pages 709–736, Cham, 2021. Springer
International Publishing.

8. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and
E. Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report
2014/580, 2014. http://eprint.iacr.org/2014/580.

9. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
S. Goldwasser, editor, ITCS 2012, pages 326–349. ACM, Jan. 2012.

10. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503.
ACM Press, May 2002.

11. Z. Cao, I. Visconti, and Z. Zhang. Constant-round concurrent non-malleable
statistically binding commitments and decommitments. In P. Q. Nguyen and
D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 193–208. Springer,
Heidelberg, May 2010.

12. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Concurrent non-malleable
commitments (and more) in 3 rounds. In M. Robshaw and J. Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 270–299. Springer, Hei-
delberg, Aug. 2016.

13. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Four-round concurrent
non-malleable commitments from one-way functions. In J. Katz and H. Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 127–157. Springer,
Heidelberg, Aug. 2017.

14. S. Coretti, Y. Dodis, B. Tackmann, and D. Venturi. Non-malleable encryption:
Simpler, shorter, stronger. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A,
Part I, volume 9562 of LNCS, pages 306–335. Springer, Heidelberg, Jan. 2016.

15. S. Coretti, U. Maurer, B. Tackmann, and D. Venturi. From single-bit to multi-bit
public-key encryption via non-malleable codes. In Y. Dodis and J. B. Nielsen,
editors, TCC 2015, Part I, volume 9014 of LNCS, pages 532–560. Springer, Hei-
delberg, Mar. 2015.

29

https://eprint.iacr.org/2016/527
http://eprint.iacr.org/2014/580

16. D. Dachman-Soled and Y. T. Kalai. Securing circuits against constant-rate tam-
pering. In Proceedings of the 32Nd Annual Cryptology Conference on Advances in
Cryptology — CRYPTO 2012 - Volume 7417, pages 533–551, 2012.

17. D. Dachman-Soled and Y. T. Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In Y. Lindell, editor, Theory of Cryptography: 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February
24-26, 2014. Proceedings. 2014.

18. I. Damg̊ard and J. Groth. Non-interactive and reusable non-malleable commitment
schemes. In 35th ACM STOC, pages 426–437. ACM Press, June 2003.

19. F. Dav̀ı, S. Dziembowski, and D. Venturi. Leakage-resilient storage. In J. A. Garay
and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 121–137. Springer,
Heidelberg, Sept. 2010.

20. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable
commitment. In 30th ACM STOC, pages 141–150. ACM Press, May 1998.

21. G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and non-interactive
non-malleable commitment. In B. Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 40–59. Springer, Heidelberg, May 2001.

22. Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually
leaky devices. In R. Ostrovsky, editor, 52nd FOCS, pages 688–697. IEEE Computer
Society Press, Oct. 2011.

23. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg,
May 2004.

24. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

25. N. Döttling, J. B. Nielsen, and M. Obremski. Information theoretic continuously
non-malleable codes in the constant split-state model. Cryptology ePrint Archive,
Report 2017/357, 2017. http://eprint.iacr.org/2017/357.

26. S. Dziembowski and S. Faust. Leakage-resilient cryptography from the inner-
product extractor. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 702–721. Springer, Heidelberg, Dec. 2011.

27. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In A. C.-C.
Yao, editor, ICS 2010, pages 434–452. Tsinghua University Press, Jan. 2010.

28. A. Faonio, J. B. Nielsen, M. Simkin, and D. Venturi. Continuously non-malleable
codes with split-state refresh. In B. Preneel and F. Vercauteren, editors, Applied
Cryptography and Network Security, pages 121–139, Cham, 2018. Springer Inter-
national Publishing.

29. S. Faust, K. Hostáková, P. Mukherjee, and D. Venturi. Non-malleable codes for
space-bounded tampering. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 95–126. Springer, Heidelberg, Aug. 2017.

30. S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. Continuous non-malleable
codes. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 465–488.
Springer, Heidelberg, Feb. 2014.

31. S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. A tamper and leakage
resilient von neumann architecture. In J. Katz, editor, PKC 2015, volume 9020 of
LNCS, pages 579–603. Springer, Heidelberg, Mar. / Apr. 2015.

32. S. Faust, K. Pietrzak, and D. Venturi. Tamper-proof circuits: How to trade leakage
for tamper-resilience. In Automata, Languages and Programming: 38th Interna-
tional Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, pages 391–402, 2011.

30

http://eprint.iacr.org/2017/357

33. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages
258–277. Springer, Heidelberg, Feb. 2004.

34. S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without
rejection problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456, 2011. http://eprint.iacr.org/2011/456.

35. V. Goyal, O. Pandey, and S. Richelson. Textbook non-malleable commitments.
In D. Wichs and Y. Mansour, editors, 48th ACM STOC, pages 1128–1141. ACM
Press, June 2016.

36. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

37. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits ii: Keep-
ing secrets in tamperable circuits. In Advances in Cryptology - EUROCRYPT
2006, St. Petersburg, Russia, May 28 - June 1, 2006. Proceedings. Springer Berlin
Heidelberg, 2006.

38. A. Kiayias, F.-H. Liu, and Y. Tselekounis. Practical non-malleable codes from
l-more extractable hash functions. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages 1317–1328. ACM Press,
Oct. 2016.

39. A. Kiayias, F.-H. Liu, and Y. Tselekounis. Non-malleable codes for partial func-
tions with manipulation detection. In H. Shacham and A. Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 577–607, Cham, 2018. Springer
International Publishing.

40. A. Kiayias and Y. Tselekounis. Tamper resilient circuits: The adversary at the
gates. In K. Sako and P. Sarkar, editors, Advances in Cryptology - ASIACRYPT
2013, pages 161–180, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

41. H. Lin and R. Pass. Constant-round non-malleable commitments from any one-
way function. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages
705–714. ACM Press, June 2011.

42. H. Lin, R. Pass, and P. Soni. Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In 58th FOCS, pages 576–587.
IEEE Computer Society Press, 2017.

43. F.-H. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state
model. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 517–532. Springer, Heidelberg, Aug. 2012.

44. A. S. Mortazavia, M. Salmasizadeh, and A. Daneshgar. FMNV continuous non-
malleable encoding scheme is more efficient than believed. Cryptology ePrint
Archive, Report 2016/604, 2016. http://eprint.iacr.org/2016/604.

45. R. Ostrovsky, G. Persiano, D. Venturi, and I. Visconti. Continuously non-malleable
codes in the split-state model from minimal assumptions. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 608–639,
Cham, 2018. Springer International Publishing.

46. R. Pass. Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–
354. Springer, Heidelberg, Mar. 2013.

47. R. Pass and A. Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages
533–542. ACM Press, May 2005.

31

http://eprint.iacr.org/2011/456
http://eprint.iacr.org/2016/604

A Basic notions

A.1 Randomness extractors and universal hash function families

Using extractors we can extract randomness from sources that produce weakly-random
values, assuming those values have sufficient min-entropy. Here, we follow the definition
given by [23], that uses average conditional min-entropy H̃∞(·).

Definition A.1 (Randomness Extractor [23]). A polynomially time computable func-
tion Ext :M× {0, 1}n → {0, 1}k is an average case, strong, (m, ε)-extractor, if for all
random variables S, Z, where S is a variable over M and H̃∞(S|Z) ≥ m, it holds that

∆(Ext(S;R), Uk | (R,Z)) ≤ ε,

where R denotes the random coins of Ext. The value L = m − k is called the entropy
loss of Ext, and n is the seed length of Ext.

Universal hash functions are good randomness extractors, and they are defined as
follows:

Definition A.2 (ρ-Universal Hashing). A family H of deterministic functions h :
M→ {0, 1}k is called a ρ-universal hash family, if for any s1 6= s2 ∈M, Prh←H[h(s1) =
h(s2)] ≤ ρ. If ρ = 1/2k, H is called universal.

Now we state the leftover-hash lemma [36], following the definition given in [6].

Lemma A.3 (Leftover-Hash Lemma [6, 36]). Assume that the family H of functions
h :M→ {0, 1}k is a 1+γ

2k
-universal hash family. Then, the extractor Ext(s;h) = h(s),

where h is sampled according to H, is an average case, strong (m, ε)-extractor, where

ε = 1
2
·
√
γ + 1

2L
and L = m− k is the entropy loss.

Below, we define the inner product hash function family and in Lemma A.5 we
prove that it is universal.

Definition A.4 (The inner product hash function family). Let Fp be a finite field of
prime order p, where p is a k-bit integer. For any t ∈ N, the inner-product function
family Hip = (Gen, h), for messages over Ftp is defined as follows:

– Gen(1k): sample (r1, . . . , rt)← Ftp and set z = (r1, . . . , rt).
– Hash computation: on input message s = (s1, . . . , st) ∈ Ftp, compute hz(s) =∑t

i=1 si · ri, where the summation refers to the addition operation, and · is the
multiplication operation, over Fp.

Lemma A.5. The function family Hip of Definition A.4 is universal.

Proof. For any k in N, let Fp be any field of order p, where p is a k-bit integer, and let
s = (s1, . . . , st), s̄ = (s̄1, . . . , s̄t) be two distinct messages, i.e., s and s̄ differ in at least
one coordinate. Without loss of generality, we assume that s1 6= s̄1. Then,

Pr
hz←Hip

[hz(s) = hz(s̄)] = Pr

[
t∑
i=1

ri · (si − s̄i) = 0

]
= Pr

[
r1 =

−
∑t
i=2 ri · (si − s̄i)
(s1 − s̄1)−1

]
Hence, for any choice of r2, . . . , rt, there is a unique r1 for which hz(s) = hz(s̄). Since
r1 is random over Fp, we have that Pr[hz(s) = hz(s̄)] ≤ 1/p ≤ 1/2k. �

32

A.2 Inductive step for the proof of Claim 3.6

Inductive step:
Inductive hypothesis: For i ∈ {0, 1}, lk[1 : n] ≈c lkReal[1 : n], ti[1 : n] ≈c tReal[1 : n].
In particular, for j ∈ [n], i ∈ {0, 1}, there exist Ei,j with auxiliary inputs zEi,j , that
output valid pre-images in rounds 1, . . . , n.

Proving that lk[n + 1] ≈c lkReal[n + 1] is straightforward, as the tampering and
leakage queries are simulated correctly in the previous rounds: by leaking the first
coordinate of TCompq(i, τi, si, v1−i, lk, n+1), for i ∈ {0, 1}, it is clear that A′ computes

the replies to (gn+1
0 , gn+1

1) as in the real execution, as previous tampering and leakage
queries are simulated correctly. Thus, lk[n+ 1] ≈c lkReal[n+ 1]. Regarding, the replies
to the tampering queries the proof for the two cases, “∃i : c̃i = ci” and “∀i : c̃i 6=
ci ∧ ∃j : ṽj = vj” are identical to the base case. For the last case “∀i : ṽi 6= vi”,
the proof slightly changes, as the extractors Ei,n+1 for the round n + 1 depend on all
previous extractors, and A. As in the base case, we define Av,i, zv,i and As,1−i.

1. Program AO
λ(τ1−i,·)

v,i (h, v1−i, zv,i):
Parse zv,i as (τi, si, s1−i), query Oλ(τ1−i, ·) with gs1−i(x) := h̄(x||s1−i) and let
v̄1−i be the answer. Compute vi ← h(si||v̄1−i; τi).
For j = 1, . . . , n+ 1:

– Sample (gj0, g
j
1)← A(h).

– Define gvi,s1−i(τ1−i) := gj1−i(τ1−i, s1−i, vi), send gvi,s1−i to Oλ(τ1−i, ·) and let
w1−i be the answer.

– Compute wi ← gji (τi, si, v1−i).
– Send (w0, w1) to A and receive (f j0 , f

j
1).

– Compute (τ̃i, s̃i, ṽ1−i)← f ji (τi, si, v1−i) and set c̃i := (τ̃i, s̃i, ṽ1−i).
– If j ≤ n:
• Sample (τ̂1−i, ŝ1−i, v̂i)← Ei,j(h, v1−i, zEi,j).
• Compute vi ← h

(
s̃i||h̄(τ̂1−i||ŝ1−i); τ̃i

)
and set c̃1−i := (r̂1−i, ŝ1−i, vi).

• Send (c̃0, c̃1) to A.
Output: (ṽ1−i, st), where st = (τ̃i, s̃i, ṽ1−i, τi, si, v1−i).

2. (Auxiliary input for Av,i): set zv,i = (τi, si, s1−i).
3. (Existence of the extractor, Ei,n+1, and auxiliary input, zEi,n+1): Given
Av,i and zv,i, by the 1-more extractability property of Hk under leakage, there
exists an extractor Ei,n+1 for Av,i, with auxiliary input, zEi,n+1 , that computes
(τ̂1−i, ŝ1−i, v̂i)← Ei,n+1(h, v1−i, zEi,n+1).

The definition of As,1−i, s, follows.

1. Program As,1−i(h, τ, s, st):
– Parse s as s1−i||v̄i, and set τ1−i := τ .
– Compute vi ← h(si||h̄(τi−1||si−1); τi).

20

– Compute (τ̃1−i, s̃1−i, ṽi)← fn+1
1−i (τ1−i, s1−i, vi).

– Output: (τ̃1−i, s̃1−i||h̄(τ̃i, s̃i)).
2. (Define message s): set s := s1−i||h̄(τi||si).

By the 1-more extractability property of Hk under leakage, Ei,n+1 outputs a valid pre-
image with overwhelming probability and using the same arguments that we used for
the base case, we prove that the extracted value is consistent with tReal[n + 1]. This
concludes the proof of the claim and implies the correctness of the values computed by
A′ in step 3, lk, t0, t1, up to round j∗ − 1, conditioned on jd = j∗.

20 As knows (τi, si), (τ̃i, s̃i), since they are stored in st.

33

A.3 Proof of Theorem 3.11

Proof. Let h be a random function that will be accessed by the extractor and the at-
tacker in a black-box way. For any Av with auxiliary input zv we define zE := zv and
Eh(·) as follows:

Eh(·)(v, zE):

1. (Initialization): Set Qv := ∅.
2. (Execute Av): Execute Av(v, zv) and for each oracle query q of Av, query the

oracle with q, set Qv = Qv ∪{q} and send h(q) to Av. At the end of the execution
receive ṽ from Av.

3. (Output): If there exists q ∈ Qv such that h(q) = ṽ, set ŝ := q, otherwise, set
ŝ := ⊥. Output ŝ.

Clearly, the running time of Eh(·) is linear in the running time of Av. According to
Definition 3.1 (the leakage is omitted here), we need to prove that for any any PPT
algorithm Av, any zv ∈ {0, 1}poly(k), all PPT algorithms As, any large k ∈ N and any
vector of messages s = (s1, . . . , s`),

Pr
h

[
Exps,hAv,As,E(`, zv, zE) = 1

]
≤ negl(k),

where,

Exps,hAv,As,E(`, zv, zE) :

vi = h(si), i ∈ [`]
v = (v1, . . . , v`)

(ṽ, st)← Ah(·)v (v, zv)

ŝ← Eh(·)(v, zE)
s̃← Ah(·)s (s, st)

If h(s̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ) 6= ṽ, return 1
otherwise, return 0

Let Q = {si | i ∈ [`]}. We define the following events,

B: Exps,hAv,As,E(`, zv, zE) = 1, E: h(s̃) = ṽ ∧ ∀i : ṽ 6= vi.

Clearly, Pr[B ∧ ¬E] = 0, thus we only need to bound Pr[B ∧ E].

Pr[B ∧ E] = Pr[h(s̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ) 6= ṽ]

= Pr[h(s̃) = ṽ ∧ ∀i : s̃ 6= si ∧ ŝ = ⊥]

≤ Pr[h(s̃) = ṽ ∧ s̃ /∈ (Q∪Qv)] ≤ 1

2k
= negl(k),

where the last inequality follows from the fact that s̃ does not belong to the set of
queries made to h, thus h(s̃) is completely random over {0, 1}k. This completes the
proof of the theorem. �

34

A.4 Proof of Claim 3.10

Proof. Let Li := Leak0A′,mi(k) and Ti := Tampercnmlr
A,mi(k). For i ∈ {0, 1} we have,

Pr
[
D′(Li) = 1|j∗ = jd

]
≥ Pr

[
D′(Li) = 1|j∗ = jd, d = 1

]
· Pr[d = 1|j∗ = jd]

≥ Pr [D(Ti) = 1]− negl(k).

The last inequality follows from Claims 3.8, 3.9 and the definition of D′. Symmetrically,

Pr
[
D′(Li) = 1|j∗ 6= jd

]
≥ Pr

[
D′(Li) = 1|j∗ 6= jd, d 6= 1

]
· Pr[d 6= 1|j∗ 6= jd]

≥ 1

2
− negl(k). (Claim 3.8, D′)

and from the above relations we receive

Pr
[
D′(Li) = 1

]
= Pr

[
D′(Li) = 1|j∗ = jd

]
· Pr[j∗ = jd]

+ Pr
[
D′(Li) = 1|j∗ 6= jd

]
· Pr[j∗ 6= jd]

≥ Pr [D(Ti) = 1] · 1

q
+
q − 1

2q
− negl(k). (1)

Similarly, we obtain an upper bound on Pr [D′(Li) = 1],

Pr
[
D′(Li) = 1

]
≤ Pr [D(Ti) = 1] · 1

q
+
q − 1

2q
+ negl(k). (2)

From 1, 2 we receive∣∣∣∣Pr
[
D′(Li) = 1

]
−
(

Pr [D(Ti) = 1]

q
+
q − 1

2q

)∣∣∣∣ ≤ negl(k). (3)

Let δ := |Pr[D′(L0) = 1]− Pr[D′(L1) = 1]|. We compute,

δ =

∣∣∣∣Pr [D(T0) = 1]

q
− Pr [D(T1) = 1]

q
+ Pr[D′(L0) = 1]− Pr[D′(L1) = 1]

−
(

Pr [D(T0) = 1]

q
+
q − 1

2q

)
+

(
Pr [D(T1) = 1]

q
+
q − 1

2q

)∣∣∣∣
≥ ε/q −

∣∣∣∣Pr [D(T0) = 1]

q
+
q − 1

2q
− Pr[D′(L0) = 1]

+ Pr[D′(L1) = 1]− Pr [D(T1) = 1]

q
− q − 1

2q

∣∣∣∣ ≥ ε/q − negl(k). (4)

The above inequalities follow from 3, the triangle inequality, and the assumption that
A distinguishes between Tampercnmlr

A,m0
(k) and Tampercnmlr

A,m1
(k), with non-negligible prob-

ability ε. Assuming such an attacker A, we proved that D′ distinguishes between
Leak0A′,m0

(k) and Leak0A′,m1
(k), with non-negligible probability ε/q − negl(k), and the

proof is complete. �

A.5 Proof of Claim 4.6

Proof. Let Av and E be the adversary and extractor as defined above, and let (ŝ, τ̂)
be the extracted value in H1. We further define As as follows: on input (h, τ, s, z), As

35

outputs (s̃, τ̃)← A2(h, τ, s, z). We define the following events:
E1: h(s̃; τ̃) = h(ŝ; τ̂) ∧ (s̃; τ̃) 6= (ŝ; τ̂), E2: h(s̃; τ̃) = c̃ ∧ c̃ 6= c ∧ h(ŝ; τ̂) 6= c.

Since Hk is collision resistant, Pr[E1] = negl(k). Otherwise, one can find a collision
with non-negligible probability by simulating H1 with A = (A1,A2) and E . By the
1-more extractability property of Hk, we have that Pr[E2] = negl(k).

Finally, we observe that Real outputs 1 and H1 = 0 only when the extractor E fails
to extract a valid decommitment, or it extracts a value such that (ŝ, τ̂) 6= (s̃, τ̃). This is
captured by the events E1, E2. Therefore, conditioned on ¬(E1∨E2), RealA(R, s, z) = 1
implies that H1 = 1. We can then conclude:

Pr[RealA(R, s, z) = 1] < Pr[H1 = 1] + Pr[¬(E1 ∨ E2)] = Pr[H1 = 1] + negl(k).

This completes the proof of the claim. �

36

	Leakage Resilient -more Extractable Hash and Applications to Non-Malleable Cryptography

