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Tim Güneysu1,2
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Abstract. The sampling of polynomials with fixed weight is a procedure
required by round-4 Key Encapsulation Mechanisms (KEMs) for Post-
Quantum Cryptography (PQC) standardization (BIKE, HQC, McEliece)
as well as NTRU, Streamlined NTRU Prime, and NTRU LPRrime. Recent
attacks have shown in this context that side-channel leakage of sampling
methods can be exploited for key recoveries. While countermeasures re-
garding such timing attacks have already been presented, still, there is
no comprehensive work covering solutions that are also secure against
power side channels.
To close this gap, the contribution of this work is threefold: First, we
analyze requirements for the different use cases of fixed weight sam-
pling. Second, we demonstrate how all known sampling methods can be
implemented securely against timing and power/EM side channels and
propose performance-enhancing modifications. Furthermore, we propose
a new, comparison-based methodology that outperforms existing meth-
ods in the masked setting for the three round-4 KEMs BIKE, HQC, and
McEliece. Third, we present bitsliced and arbitrary-order masked soft-
ware implementations and benchmarked them for all relevant crypto-
graphic schemes to be able to infer recommendations for each use case.
Additionally, we provide a hardware implementation of our new method
as a case study and analyze the feasibility of implementing the other
approaches in hardware.

1 Introduction

With the potential advent of large-scale quantum computers, rendering “clas-
sic” asymmetric cryptosystems like Elliptic Curve Cryptography (ECC) insecure,
wide deployment of Post-Quantum Cryptography (PQC) has become inevitable.
After three rounds of thorough analysis and many broken cryptosystems, a first
set of algorithms has been selected for standardization. To enable further diver-
sification of security assumptions, a fourth round of standardization has been
launched, consisting of the three code-based schemes BIKE, HQC, and McEliece.

One building block for all round-four candidates is fixed-weight polynomial
sampling. Additionally, this is also required in the three lattice-based schemes



NTRU, which may replace Kyber if potential patent issues are not resolved,
Streamlined NTRU Prime, which is currently the default algorithm in OpenSSH 9,
and NTRU LPRrime. The output of this sampling is a uniform random binary or
ternary polynomial of a specific size with a fixed number of non-zero coefficients.
Multiple algorithmic approaches have been proposed [5, 9, 10,15,18] for this.

Karabulut et al. presented the first power side-channel attack on fixed weight
sampling [14], targeting NTRU, Streamlined NTRU Prime, and Dilithium. Re-
cently, Guo et al. [12] introduced an attack on HQC and BIKE utilizing the
fixed weight polynomial sampling with variable timing depending on the seed.
Sendrier [18] seized their approach and presented suitable countermeasures for
BIKE. While this attack exploits timing differences, there is no reason to believe
that a power side channel cannot be exploited analogously.

On the defense end, however, there is no comprehensive analysis of effective
countermeasures against this type of attack. In particular, given these recent at-
tacks, it becomes urgent to develop also power side-channel secure methodologies
for fixed-weight polynomial sampling.

Hence, we present a holistic examination of the fixed-weight polynomial sam-
pling problem with different attacker models, parameters, sampling methods,
and implementation variants. We show how power side-channel secure variants
of all suitable algorithms can be realized, propose performance-enhancing mod-
ifications, and provide bitsliced masked software implementations for arbitrary
masking order which we make publicly available1. Additionally, we develop a
new probabilistic sampling method accompanied by a hardware implementation
and a new methodology for Boolean masked comparison which is a core compo-
nent for multiple algorithms. We benchmark and evaluate our implementations
for all relevant PQC schemes.

2 Preliminaries

The two most important parameters for the fixed-weight polynomial sampling
problem are the length of the polynomial and the weight (number of non-zero
coefficients) denoted by N and W throughout the paper.

Binomial Distribution. For the Binomial probability distribution, we denote
the probability mass function as

B(k, n, p) =
(
n

k

)
pk(1− p)n−k (1)

where k is the number of successes in n independent Bernoulli trials, each with
probability p. We know that B(k, n, p)−1 is the expected number of repetitions
of the overall experiment until exactly k out of n successes are reached.

1 https://github.com/Chair-for-Security-Engineering/maskedFWPS
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2.1 Side-Channel Analysis

In this work, we consider timing behavior and power consumption of a target
implementation of a cryptographic algorithm as possible side channels that could
be exploited by an attacker. For timing attacks, we consider runtime differences
caused by memory or cache accesses, branching on sensitive data, or secret-
dependent arithmetic operations.

For power side-channel attacks, we distinguish between single-trace and multi-
trace attacks. In the single-trace scenario, the attacker has given only one single
trace of the cryptographic operation, i.e., the attacker cannot invoke the system
multiple times with the same secret key. However, we additionally assume that
an attacker can mount template attacks. In this case, the attack profiles a target
device to create a power template which is used to match a single trace to the
correct key.

For multi-trace attacks, we assume that an attacker can collect as many
traces as possible. These traces are used for Differential Power Analysis (DPA)
including statistical analyses like Correlation Power Analysis (CPA).

2.2 Masking

Masking is a well-established countermeasure against physical Side-Channel Anal-
ysis (SCA) and is based on the strong theoretic foundation of secret sharing. A
secret value x is split into d+ 1 shares xi with 0 ≤ i ≤ d. To provide the de-
sired security, d− 1 shares are chosen uniformly at random while the remaining
share is determined such that x = x0 ◦ x1 ◦ · · · ◦ xd holds. The group operator
◦ is usually addition, either in F2 (Boolean masking) or a larger field (additive
masking). The parameter d defines the security order based on the d-probing
model [13], where an attacker is assumed to obtain the exact values of up to d
intermediate values of the target design. Hence, if the adversary does not learn
anything about the secret values using d probes, the implementation is assumed
to be secure against d-order attacks.

Functions that can be applied share-wise such that f(x) = f(x0)◦f(x1)◦· · ·◦
f(xd) are easy and efficient to mask. One of these linear functions is for example a
XOR in the Boolean masking domain. Non-linear functions, for example, an AND,
cannot be applied share-wise and need to be expressed differently. The challenge
in masking cryptographic implementations relies upon avoiding or efficiently
implementing non-linear functions.

2.3 Bitslicing

An important method for efficient Boolean-masked software implementations is
bitslicing. Bitslicing changes the representation of values. Instead of storing n
values in n distinct n-bit registers (32-bit in our case), we aggregate the i-th
bit of each value in one register. This corresponds to a matrix transposition.
If the maximum bit-length of the values is below the register width, bitslicing
allows a condensed representation and simultaneously fewer Boolean instruc-
tions. Bitslicing is especially useful for algorithms that operate on single bits at
a time because it allows doing single-bit operations on n values simultaneously
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with one instruction, comparable to Single Instruction Multiple Data (SIMD)
instructions. For masked implementations, bitslicing helps to reduce the number
of costly non-linear operations.

2.4 Random Integer Sampling from Range

Sampling a uniform random integer from a given range is not always as simple as
it seems. Both in software and hardware we can obtain uniform random bits from
e.g., a Pseudorandom Number Generator (PRNG). By concatenating l random
bits, we get a random value in the range of [0, 2l).

If we need a random value r in the range of [0, x) (which we denote with
rand(x) in the following), where x is not a power of two, we can sample r from
[0, 2l), with the smallest l such that x < 2l, and reject r if it is not smaller than
x. The closer x is to 2l, the fewer rejections occur, in the worst case, however,
the chance for rejection is almost 50%.

Instead of rejecting values, one can alternatively use a function that maps the
values from [0, 2l) to [0, x). An obvious function for this is computing r mod x.
Given l random bits stored in r and a bit width of t for the target range x one
can alternatively compute an (l + t)-bit multiplication rx and take the upper t
bits of the result, which again will be a value between 0 and x− 1.

The drawback of both of these mapping methods is that they introduce a
bias. When x is not a power of two, 2l will not divide x, therefore some values
in the output range [0, x) will be more likely than others. With increasing 2l

compared to x, the bias becomes neglectable and the output becomes close to
uniform random.

If we want to sample an integer from a range [i, x) that is not starting at 0,
we can use the previous methods and compute i+ rand(x− i).

2.5 Applications

Fixed weight polynomial sampling is a part of many PQC schemes, and many
of them can potentially become (or already are) a standard determined by the
National Institute of Standards and Technology (NIST).

BIKE. Bit Flipping Key Encapsulation (BIKE) has among three other KEMs ad-
vanced to the fourth round of NIST’s standardization process and is a code-based
scheme relying on Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC)
codes. Polynomials live in the cyclic polynomial ring R := F2[X]/(Xr − 1), thus
coefficients are either 0 or 1 and the number of coefficients is determined by the
parameter r of the reduction polynomial. During key generation, two random
fixed-weight polynomials are sampled: (h0, h1) with |h0| = |h1| = W/2. More-
over, during encapsulation and decapsulation, two fixed weight polynomials e0, e1
are sampled with |e0|+ |e1| = t where t is a publicly known and fixed parameter.

HQC. HQC also advanced to the fourth round of standardization. HQC also de-
ploys fixed-weight sampling in key generation, encapsulation, and decapsulation.
Analogously, polynomials in HQC have the polynomial ringR := F2[X]/(Xr − 1).
Apart from parameters, the only difference then is that the polynomial e0, e1 are
sampled separately rather than with a joint fixed weight.
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McEliece. The third remaining fourth-round candidate also uses fixed-weight
sampling, but only during encapsulation to sample the “message”. McEliece is
deemed to be the most conservative candidate during the whole standardization,
being based on the more than 40 years old original McEliece cryptosystem.

NTRU. NTRU is a lattice-based Key Encapsulation Mechanism (KEM) and
comes in two “flavors”: HRSS and HPS. For both, four polynomial rings are
deployed. Fixed-weight sampling is used only during key generation of the HPS
parameter sets. Furthermore, NTRU-HPS imposes the special requirement of
having exactly W/2 coefficients +1 and W/2 to be −1.

Streamlined NTRU Prime and NTRU LPRrime. Streamlined NTRU Prime is a
lattice-based KEM and is, together with X25519, currently the default algorithm
for OpenSSH 9. NTRU LPRrime is a merger with Streamlined NTRU Prime during
the second round of NIST standardization. Both require fixed-weight sampling
in their respective key generations, similar to NTRU with a ternary target space.
However, no requirement is set on the number of +1 and −1.

Dilithium. Dilithium is the designated PQC digital signature standard. It is based
on the Module-Learning With Errors problem and operates on polynomials in
the ring Zq[X]/(X256 + 1) with q = 8380 417. Security is scaled through the ma-
trix parameters. Being constructed with the help of the Fiat-Shamir with aborts
technique, it simulates the verifier by querying a random oracle to sample a
challenge during signature generation. This challenge has the specific form of a
fixed-weight polynomial with ternary coefficients and no special restrictions on
the number of coefficients with value −1. Based on several abort checks, a sig-
nature candidate may get rejected, starting over the whole signature generation
including computing a new challenge c. Thus, it is not directly clear that c from
rejected iterations is public information, even though the final c is part of the
signature.

Previous work on the GLP signature scheme, which is a predecessor of
Dilithium, has found that if the rejected challenges are viewed as public infor-
mation together with their respective commitment, either one has to live with
an additional heuristic security assumption or add a statistically hiding com-
mitment scheme, tolerating the additional communication cost [3]. This is also
stated regarding Dilithium in a recent preprint [1], where they state that rejected
challenges are public and the commitment as well, but based on the Learning
with Rounding assumption. To avoid this additional assumption, in our opinion
it would be also feasible to perform the rounding masked, hashing w1 in masked
domain, obtaining a masked bit-string c̃, which is already a representation of
the challenge. This can then be unmasked (since we know that also rejected
challenges are non-sensitive) and used to perform fixed-weight sampling.

3 Conceptual Considerations

Although the fixed weight polynomial sampling problem at is core is simple, its
application comes with multiple problem dimensions depending on the algorith-
mic scheme, and implementation target.
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Attacker Model. Sampling can be used in different parts of a KEM. If it is part
of the key generation that is only executed once for one key, only single-trace
side-channel attacks are applicable. The profiled Simple Power Analysis (SPA)
is assumed as the strongest attacker model in our case.

Since in encapsulation, no secret key is used at all, usually no multi-trace
attacks are eligible. In the current setting and applications, fixed weight sam-
pling is used once during encapsulation to sample the message or an error. For
decapsulation, multi-trace attacks are possible if the KEM key is non-ephemeral.

Target Space. Some use cases require binary polynomials while others sample
ternary polynomials. For the ternary polynomials, it then can vary how the
weight must be split between the ones and the minus ones.

Target Representation. The classic representation for a polynomial is an array
of length N with one element for each coefficient (coefficient representation).
However, polynomials can also be expressed by a list of non-zero indices (index
representation). The cryptographic scheme may require different representations
and the sampling methods output different representations. It is possible to
convert one representation into the other.

Determinism. If the sampling is used in the encapsulation and decapsulation, it
is usually required to provide the same output when given the same input seed.
This can be achieved for all algorithmic approaches by using a PRNG as the
source of randomness that is initialized with the seed. Determinism is usually
not required in the key generation.

Secret Seed. In some use cases, the input seed for the PRNG is a secret value,
thus the sampling algorithm must be constant-time not only with respect to the
sampled polynomial but also with respect to the input seed. Concrete attacks
have been presented recently in [12,18].

Parameters N and W . The most important parameters that determine the
performance of the sampling methods are the number of coefficients N and the
number of non-zero coefficients W or the weight of the polynomial. In particular,
N can vary distinctly from values between 256 to 81 194.

Target Platform. Implementing hardware or software influences the performance
of an algorithm. Parallelism is important in either case, in software it can some-
times be achieved with bitslicing as introduced in Section 2.3, while in hardware,
more fine-grained parallelism and trade-offs are possible.

3.1 Requirement Analysis

In Table 1 we give an overview of the most important parameters and require-
ments of each relevant scheme for the fixed-weight polynomial sampling.

The parameter sets of BIKE and HQC include relatively large N and small
to medium W , and therefore a small W/N ratio which are all important factors
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Table 1: Requirements for all potential applications

Scheme Param. Where? N W W/N Target Space Det. Sec. Seed

BIKE L1 en/decaps 24646 134 0.005 binary yes yes
BIKE L1 keygen 12323 71 0.006 binary no no
BIKE L3 en/decaps 49318 199 0.004 binary yes yes
BIKE L3 keygen 24659 103 0.004 binary no no
BIKE L5 en/decaps 81194 264 0.003 binary yes yes
BIKE L5 keygen 40973 137 0.003 binary no no

HQC 128 en/decaps 17669 75 0.004 binary yes yes
HQC 128 keygen 17669 66 0.004 binary no no
HQC 192 en/decaps 35851 114 0.003 binary yes yes
HQC 192 keygen 35851 100 0.003 binary no no
HQC 256 en/decaps 57637 149 0.003 binary yes yes
HQC 256 keygen 57637 131 0.003 binary no no

McEliece 348864 encaps 3488 64 0.018 binary no no
McEliece 460896 encaps 4608 96 0.021 binary no no
McEliece 6688128 encaps 6688 128 0.019 binary no no
McEliece 6960119 encaps 6960 119 0.017 binary no no
McEliece 8192128 encaps 8192 128 0.016 binary no no

NTRU hps2048509 keygen 509 254 0.499 W/2 ternary no no
NTRU hps2048677 keygen 677 254 0.375 W/2 ternary no no
NTRU hps4096821 keygen 821 510 0.379 W/2 ternary no no

sNTRU Prime 653 keygen 653 288 0.441 uni. ternary no no
NTRU LPRrime 653 keygen 653 252 0.386 uni. ternary no no
sNTRU Prime 761 keygen 761 286 0.376 uni. ternary no no
NTRU LPRrime 761 keygen 761 250 0.329 uni. ternary no no
sNTRU Prime 857 keygen 857 322 0.376 uni. ternary no no
NTRU LPRrime 857 keygen 857 329 0.384 uni. ternary no no
sNTRU Prime 953 keygen 953 396 0.416 uni. ternary no no
NTRU LPRrime 953 keygen 953 345 0.362 uni. ternary no no
sNTRU Prime 1013 keygen 1013 448 0.442 uni. ternary no no
NTRU LPRrime 1013 keygen 1013 392 0.387 uni. ternary no no
sNTRU Prime 1277 keygen 1277 492 0.385 uni. ternary no no
NTRU LPRrime 1277 keygen 1277 429 0.336 uni. ternary no no

for the sampling algorithms. Both schemes are also the only ones, that require
seed security and a deterministic sampling algorithm for their encapsulation and
decapsulation. Their polynomials have coefficients that are either 0 or 1, this is
also the case for McEliece. NTRU on the other hand has ternary coefficients that
are either 0, 1 or −1 and the fixed number of nonzero coefficients W must be
equally split between the 1s and −1s. For the ternary coefficients in Streamlined
NTRU Prime and NTRU LPRrime, this relation is uniformly random. The schemes
with ternary coefficients also have in common that the sampling is only used
during the key generation, security against single-trace side-channel attacks is
therefore sufficient.

4 Designing Masked Fixed Weight Sampling

In the following sections, we present multiple side-channel secure approaches
for fixed-weight polynomial sampling. The different approaches can be catego-
rized into three different groups. The rejection method in Section 4.4 and its
bounded variant in Section 4.5 solve the problem by sampling W distinct values
in the range [0, N), which represent the indices of the non-zero coefficients. The
methods based on Fisher-Yates in Section 4.2 and sorting in Section 4.3 utilize
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shuffling of fixed input polynomials. ANDing in Section 4.7 and our compari-
son method in Section 4.6 both sample fixed-weight polynomials by randomly
setting bits.

For each approach, we start by explaining the fundamental idea, then we
clarify how to achieve a timing side-channel secure (constant-time) variant that
is a necessity for a power side-channel secure implementation. Based on this, we
explain how to realize a masked and efficient variant. In Section 5, we provide
more details about our implementations. We present the algorithms only for the
binary use case, in most cases they can easily be adapted for the ternary use
case. If this adoption is not obvious, we explain how it can be achieved. Some
of the algorithms have a small bias, so their output is only close to uniform
random. Before actually deploying a scheme with one of the biased methods one
needs to diligently prove that the bias does not impair the security.

Masked Sampling by Coron et al. In recent work [9], Coron et al. present an
approach of side-channel-secure fixed-weight sampling for NTRU, which proposes
the following strategy:

1. Initialize an empty polynomial with the first W/2 coefficients set to −1, the
subsequent W/2 coefficients to +1, and the remaining coefficients set to 0.

2. Generate a fresh arithmetic masking of this polynomial.
3. Shuffle each share with the same permutation.
4. Re-share the arithmetic sharing.
5. Repeat the last two steps a total of d + 1 times, every time using a new

permutation.

This high-level procedure is proven to be secure in the d-probing model. For
their proof, however, the applied permutation is assumed to be a black box. Thus,
we believe that it will be very hard, if not impossible, to instantiate securely
in practice. Moreover, Karabulut et al. show a single-trace attack that targets
the permutation itself [14] and there is no reason to believe that an attacker
is not able to attack multiple subsequent executions of different permutations
successfully. Hence, it is reasonable to assume that this countermeasure does not
protect against SPA attackers comprehensively.

4.1 Core Operations

The masked algorithmic approaches for fixed-weight polynomial sampling that
we present in the following sections, share a small set of operations that are
repeatedly used and contribute distinctly to the overall performance. In this
section, we explain how to perform a masked conditional move and different
integer comparisons in the Boolean domain with little non-linear operations.

Conditional Move in Boolean Domain. A very important building block for
our masked algorithms is the conditional move. The semantic of cmov(d, s, c) is
that d is overwritten by s, if the condition flag c is set and d remains unchanged
if c is 0.
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For non-masked, but constant-time implementations, a conditional move is
most efficiently expressed in software with a dedicated instruction, but can gen-
erally be expressed with a short sequence of arithmetic or Boolean instructions to
avoid branching on the secret condition c and thus leak c via timing differences.
A straightforward sequence would be d = (d ∧ ¬c) ∨ (s ∧ c).

This solution is, however, costly to mask, because it includes three non-linear
operations, two ANDs, and one OR. It is possible to reduce the number of non-
linear operations to one by using XOR operations: d = d⊕ ((d⊕ s)∧ c) evaluates
to d = d⊕ d⊕ s = s, if c is true and to d = d⊕ 0 = d, if c is false.

Integer Comparison in Boolean Domain. Let a[l − 1 : 0], b[l − 1 : 0] be
bit vector variables representing integers in the range [0, 2l). To check whether
a < b, we can simply compute a−b and then check whether the result is negative,
in which case we know that a < b, and else, a ≥ b. Thus, in Boolean domain, we
can employ a Ripple-Carry subtractor which computes r[l : 0] = a[l − 1 : 0] −
b[l − 1 : 0]. Then, r[l] is the uppermost carry-out bit, which decides whether or
not the result is negative. The Ripple-Carry subtractor performs the following
computations:

r[0] = a[0]⊕ b[0] (2)

c[0] = a[0] ∧ b[0] (3)

r[i] = a[i]⊕ b[i]⊕ c[i− 1] ∀1 ≤ i < l (4)

c[i] = (c[i− 1] ∧ (a[i]⊕ b[i]))⊕ (a[i] ∧ b[i]) ∀1 ≤ i < l (5)

r[l] = c[l − 1] (6)

This is usually done in Central Processing Units (CPUs), where the sub-
traction instruction is also used for integer comparison, but without writing the
result back to the registers. In the masked case, however, we aim to achieve a
very low number of secure AND gates. Thus, as we only want to recover r[l]
rather than the full subtraction result, we propose an alternative approach.

t = a ⊕ b gives us the bits, where a and b differ. The highest set bit of t
determines the bit or rather the index g in a and b that determines which of the
two variables is greater. Because we know that a and b differ at this bit, it is
enough to look at one of them. E.g. if bg is set, b is greater than a. To perform
this concept in constant-time we iterate over all bits, starting from the lowest
bit, and update our output with bi if ti is set, which ultimately results in bg in
our output. With our output initialized with 0, it will result in 0 if a ≥ b and 1
if a < b. Algorithm 1 describes this idea formally.

At first sight, Algorithm 1 does not need any expensive AND gadgets, but for
implementing the conditional move securely we require one AND, as explained in
the previous subsection. Compared to the traditional approach via subtraction,
we can half the amount of expensive non-linear gadgets. The overall asymptotic
runtime is determined by the bit length of the inputs. In the algorithms presented
in the following, we compare values bounded byN , so the cost for one comparison
is ⌈log2(N)⌉.
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Algorithm 1 Optimized Integer Comparison in Boolean Domain

Require: a =
∑l

i=0 ai2
l, b =

∑l
i=0 bi2

l

Ensure: res← a < b ? 1 : 0
function cmpl(res, a, b)

t← a⊕ b
res← 0
for i← 0 to l do

cmov(res, bi, ti) ▷ res := res⊕ ((res⊕ bi) ∧ ti)
end for

end function

Comparison with Fixed Public Input. We can simplify this further when we
have one fixed and public input b rather than two variable ones. Then, to compare
whether or not a < b, we first employ the same procedure as in Algorithm 1.
However, for each ti, we now know publicly that it is either

– ai in the case that bi = 0, or
– ¬ai in the case that bi = 1.

Thus, we have

– for bi = 0, res := res⊕ ((res⊕ 0) ∧ ai) = res ∧ ¬ai, and
– for bi = 1, res := res⊕ ((res⊕ 1) ∧ ¬ai) = res ∨ ¬ai.

This does not save non-linear gates, as we still need one per bit, but it
saves several XOR operations, which are cheap, but not free. Moreover, we can
completely omit all lower bits until the first bi = 1, since we start with res = 0,
which sets all subsequent intermediate res to zero.

Comparison on Equality. Evaluating whether two masked values are equal
or not is even cheaper to realize in the Boolean domain. c = a⊕b is only zero if a
is equal to b. Thus we can iterate over all bits in c and condense them to one bit
with masked OR operations. After flipping the resulting bit, res will be one, if c
is zero and thus a is equal to b and zero otherwise, denoted with cmpeq(res, a, b)
in the following. The asymptotic runtime cost is again O(log2(N)).

4.2 Fisher-Yates

The Fisher-Yates shuffle is an algorithm to get a uniform random permutation of
a fixed input sequence in O(N) time. Similar to the sorting approach explained
in Section 4.3 it can be directly applied to a fixed polynomial with the correct
weight to get a random polynomial with the correct weight.

Alternatively, one can apply Fisher-Yates to an array with length N with
distinct integers from 0 to N and treat the first W elements of the output as
the indices respectively the coefficients of the polynomials which are non-zero.
In this case, the permutation of the elements beyond the first W elements is
irrelevant and the algorithm can be stopped after W iterations because the first
W elements are not affected by further shuffling.
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In its original version, Fisher-Yates is not timing side-channel-secure, because
its memory accesses reveal the permutation and (only relevant for a secret seed)
it requires uniform random numbers from a varying range, which requires a
rejection step.

Sendrier [18] tackled these problems with two modifications. First of all, he
showed for BIKE that the security of the cryptographic scheme is not necessarily
impaired when the sampling is only close to uniform random if the parameters
are correctly chosen. This eliminates the need for the rejection step by allowing
a slightly biased constant-time approach as explained in Section 2.4. The se-
cret dependent memory accesses can also be circumvented, but this comes with
quadratic runtime instead of the original linear runtime. The solution for the
index sampling method is depicted in Algorithm 2.

Algorithm 2 Constant-Time Fisher-Yates [18]

Require: N , W
Ensure: W distinct elements of 0, ..., N − 1

function fisher-yates(N,W )
for i← 0 to W − 1 do

p[i]← i+ rand(N − i)
end for
for i←W − 1 to 0 do

for j ← i+ 1 to W − 1 do
cmpeq(cond, p[j], p[i])
cmov(p[j], i, cond)

end for
end for

end function

For masking the constant-time Fisher-Yates algorithm two components need
to be protected. The first component is sampling a random integer in the range
of [0, N − i). Sendrier [18] proposed to compute a random value r mod N − i,
but the implied division is a costly operation. Furthermore, in most CPUs, a
division is an instruction with a variable cycle count depending on the input
and thus not constant time. A modulo reduction with a constant modulo might
be translated by a compiler to a constant-time Barrett reduction, but there is
no guarantee for this.

We propose to use the faster multiplication approach as explained in Sec-
tion 2.4 instead. Multiplication instructions are constant-time for most CPUs.
In the additive masking domain, the multiplication with the public range value
and the addition of the public index i can be efficiently performed sharewise.

The second component is the comparison of equality and the following con-
ditional move, both can the done in Boolean domain, therefore a transformation
from arithmetic to Boolean domain between the two components is necessary.
The inner loop in Algorithm 2 containing the comparison and conditional move
can be computed in parallel for multiple j, because the iterations are independent
of each other.
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A masked implementation of this Fisher-Yates algorithm results in an asymp-
totic runtime of O(W 2 log2(N)), for sampling a close-to-uniform polynomial in
the index representation without leaking a secret seed.

4.3 Sorting

An alternative approach to obtain a uniformly random permutation of a set is
to attach distinct random values to each element and sort the pairs according
to the random value. Bernstein [5] suggested applying this principle to sampling
fixed-weight polynomials by starting with a polynomial with the desired weight
and then getting a random permutation by sorting.

Algorithm 3 Sort based Sampling [5]

Require: N , W , l, p[N ]
Ensure: random bitpolynomial in p[N ] with weight W

function sortsampling(N,W )
for i← 0 to N − 1 do

if i < W then
t← 1

else
t← 0

end if
r ← rand(2l)
p[i]← (r << 1) + t

end for
sort(p)
for i← 0 to N − 1 do

p[i]← p[i] ∧ 1
end for

end function

To get distinct random values one can use rejection sampling, e.g., for each
new randomly sampled value one checks if it collides with one of the values sam-
pled before. If yes, the new value gets rejected and one continues until enough
distinct values are sampled. Bernstein showed that the rejection step can be
skipped if the size of the random value is big enough compared to the num-
ber of elements such that the chance of a collision becomes neglectable. With
a constant-time sorting algorithm, the entire procedure is constant-time with
respect to the sampled polynomial and the seed for the PRNG. The runtime
depends on the implementation of the sorting algorithm and the polynomial size
N as a parameter. This approach can be directly applied to sampling binary and
ternary polynomials.

Sorting algorithms can have at lowest linear asymptotic runtime, but then
usually no efficient constant-time implementation exists. A group of sorting
algorithms that can be very efficiently implemented in constant-time is sort-
ing networks, they consist only of a fixed number of comparisons and swaps.
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Comparison-based sorting algorithms have at best an asymptotic runtime of
O(N log(N)). A naive masked implementation of a sorting network mainly con-
sists of a comparison and a conditional move depending on the comparison, both
can be masked efficiently in software and in hardware.

The sorting approach is deployed in NTRU and Streamlined NTRU Prime [6]
with an implementation based on Batcher’s Odd-Even mergesort [4]. For our
implementation, we opted for Batchers’s Bitonic mergesort [4], because it is
easier to parallelize in the bitsliced domain, which is critical for our efficient
masked software implementation. Both sorting algorithms have an asymptotic
runtime of O(N log2(N)). Although we use our improved comparison approach
explained in Section 4.1 instead of a costly subtraction, the masked comparison
and the conditional move are still the overwhelming driver in cycle costs.

A major drawback of this sampling method besides its high runtime costs
for large polynomial size N is the high amount of randomness required upfront
resulting also in high memory usage, compared to other methods. This can be
circumvented by using radixsort. Radixsort utilizes an arbitrary, stable sorting
algorithm to sort numbers e.g., bit by bit, starting from the lowest bit. The
stableness of the sorting algorithm ensures that the order according to the lower
bits is maintained when sorting according to the higher bits1. As radixsort only
works on one bit per sorting iteration, only one random bit per element needs
to be sampled and stored at a time because we are not interested in the sorted
random values, but only in the permutation the sorting provides. Stable sorting
networks exist, but they have a quadratic asymptotic runtime, which makes this
approach more costly. Radixsort combined with an unstable sorting network
does not result in correct sorting universally and coherently also not in uniform
random permutations, which we confirmed for small parameters by exhaustive
testing.

4.4 Rejection Sampling

Probably the most obvious solution for fixed-weight polynomial sampling is the
rejection method. One samples a uniform random value r below N by rejecting
values from the range [0, 2l), with the smallest l such that x < 2l. Then one
iterates over the already sampled indices and checks for a collision, if a collision is
found, r gets rejected. The rejection sampling continues until W distinct indices
are sampled as presented in Algorithm 4.

The runtime of this probabilistic algorithm varies and depends on the ran-
domness, therefore it is not suitable for cryptographic schemes, where the seed
for the PRNG is secret. This restriction in application allows early termination
of loops, as soon as the rejection becomes evident. Although the result of the
comparisons for equality for the collision check is public, we cannot XOR both
arguments and then simply unmask the result and check if it is zero or not. In
this case, we would leak the bits in which r differs from p[c]. So the comparisons
themselves must be side-channel secure to protect the non-rejected values. This
can be done with the core operations presented in Section 4.1.

1 Stable sorting in ascending manner according to the MSB of (10, 11, 01) results in
(01, 10, 11) and not (01, 11, 10).
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Algorithm 4 Rejection Sampling - Index

Require: N , W , 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function rejection-index(N,W )
i← 0
while i < W do

r ← rand(2l)
cmpl(t, r,N)
if ¬t then

continue
end if
collision← 0
for c← 0 to i− 1 do

cmpeq(t, p[c], r)
if t then

collision← 1 break
end if

end for
if collision = 1 then

continue
end if
p[i]← r
i← i+ 1

end while
end function

For this algorithm, N determines the probability for the first rejection step,
with an N only slightly greater than the closest power of two this probability
can be close to 50%. W/N determines the probability of the second rejection
when checking for collisions. With a W/N close to 0.5, the chance for a collision
for a single value gets close to 50% for the last iterations when i reaches W ,
so on average the probability for rejection due to a collision for a single value
can be up to 25%. Drucker et al. [10] already pointed out that the fixed weight
polynomial sampling problem is symmetric such that for W/N > 0.5, one can
solve it for (N −W )/N and invert the result.

4.5 Bounded Rejection Sampling

The idea of a bounded rejection sampling algorithm as presented by Drucker et
al. [15] for the BIKE use case, is to transform the rejection sampling method as
presented in Section 4.4 such that it is constant-time also with respect to the
PRNG seed. This idea has also been implemented similarly by Guo et al. [12]
for HQC.

For this, the rejections must not influence the path taken in the algorithm
and therefore branches in a software implementation and the memory access
pattern must be independent of the randomness. This is done by keeping track
of the number of valid samples with a secret counter that indicates where to
input the next valid index into the array and does not get incremented if a
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Algorithm 5 Bounded Rejection Sampling - Index [15]

Require: N , W , B, 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function bound-rejection-index(N,W,B)
cntr ← 0
for i← 0 to B − 1 do

r ← rand(2l)
dup← 0
for c← 0 to W − 1 do

cmpeq(t, p[c], r)
dup← dup ∨ t
cmpeq(f, c, cntr)
cmov(p[c], r, f)

end for
cmpl(t, r,N)
t←!dup ∧ t
cntr ← cntr + t

end for
end function

sample gets rejected so that the next sample can overwrite the rejected one.
Early termination of loops is not possible anymore, so with every sampled value
one has to iterate over the entire array of indices and securely check for a collision.
These comparisons can however be performed in parallel. Also, the comparison of
the current index with the counter and the conditional move can be parallelized,
as the comparison only outputs 1 for a single index for one complete iteration
over the array. Thus the counter can be conditionally incremented only once
after iterating over the array and remains constant during the loop.

The second challenge for any seed-independent timing is the number of ran-
dom values that need to be sampled which can not be determined exactly up-
front, but they can be estimated. Depending on the parameters N and W one
can compute a loose upper bound B of iterations or rather samples, within with
overwhelming probability at least W valid indices are found.

The majority of the algorithm can be masked with Boolean components that
we already discussed in previous algorithms. The incrementation of the secret
counter is most efficient in the additive masking domain, however, the counter
is also required in the Boolean domain for the comparison. To avoid the costly
transformations between the domains, we propose performing the addition with
a single bit in the Boolean domain with half-adders implying ⌈log2(N)⌉ masked
ANDs.

Algorithm 5 demonstrates this approach, since B is a multiple of W the
runtime is O(W 2 log2(N)). The asymptotic view indicates a similar performance
to the Fisher-Yates algorithm, but a closer inspection reveals that first, bounded
rejection takes more than W 2 iterations compared to 1

2W
2 for Fisher-Yates

and the rejection method requires two masked comparisons for each iteration
compared to one comparison for Fisher-Yates. When the sampling rand(N − i)
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Algorithm 6 Bounded Rejection Sampling - Coefficient

Require: N , W , B, 2l > N , p[N ] initialized with zeros
Ensure: W random coefficients in p are set to 1

function bound-rejection-coeff(N,W,B)
cntr ← 0
for i← 0 to B − 1 do

t← 0
r ← rand(2l)
cmpeq(f0, cntr,W )
for c← 0 to N − 1 do

cmpeq(f1, c, r)
cmpeq(f2, p[c], 0)
f ← ¬f0 ∧ f1 ∧ f2
cmov(p[c], 1, f)
t← t ∨ f

end for
cntr ← cntr + t

end for
end function

of W values in Fisher-Yates does not contribute significant costs, the bounded
rejection is probably less performant when masked.

Alternatively, the sampling of values less than N can be realized with the
biased multiplication method as we use it for Fisher-Yates. For some parameter
sets of HQC, this might be faster, because N is close to the next lower power of
two, thus the chance of rejection when r ≥ N is high and the upper bound B
is higher. In this case, however, the runtime comparison to Fisher-Yates is even
more clear and indicates that Fisher-Yates is the faster solution.

In Algorithm 6 we show how the bounded rejection method can be adapted
to output polynomials in the coefficient representation instead of the index rep-
resentation with asymptotic runtime O(WN log2 N).

The bounded rejection sampling is only relevant for cryptographic schemes,
where the PRNG input needs to be protected as the protection comes with a
performance overhead compared to the simple rejection method.

4.6 Comparison Sampling

The idea of this novel approach is to sample each coefficient of the polynomial
individually with an approximation of the probability W/N . This can be imple-
mented efficiently by comparing a uniform random bit string of length ℓ with a
fixed threshold t such that t/2ℓ ≈ W/N . If t is smaller than the random ℓ-bit
value, the coefficient is set to 1.

After performing this for each coefficient, a masked weight check of the poly-
nomial is carried out and the polynomial is accepted only if the correct weight
W is hit. Else, the whole procedure is repeated, which renders this approach
infeasible for use cases that require runtime independent of the input seed. This
method can be considered somewhat of a generalization of the RepeatedAND
method by Drucker and Gueron that we cover in Section 4.7.
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Table 2: BIKE Comparison sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

ℓ
BIKE-L1 BIKE-L3 BIKE-L5

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 2439.74 240 518 881 1 31.88 6 289 754 1 169.06 55 415 054
9 3 21.30 2 362 385 2 31.88 7 075 973 2 169.06 62 341 935
10 6 21.30 2 624 872 4 31.88 7 862 192 3 92.48 37 892 643
11 12 21.30 2 887 359 9 29.10 7 892 628 7 30.30 13 658 519
12 24 21.30 3 149 847 17 25.46 7 533 925 14 30.30 14 900 203
13 47 21.10 3 379 948 34 25.46 8 161 752 27 29.73 15 833 552
14 94 21.10 3 639 944 68 25.46 8 789 579 55 29.34 16 829 906

For efficiency, the choice of ℓ, t is decisive and the expected number of repe-
titions of the overall procedure is determined by

B(W,N, t/2ℓ)−1 (7)

Therefore, these parameters must be chosen carefully for each potential use case.
Let p = W/N be the target probability. Then, for ℓ random bits, the best

comparison threshold t is ⌊p2ℓ⌉. Intuitively, the larger we choose ℓ, the better we
approximate p at cost of more randomness and more secure operations. Interest-
ingly, for all applications, there exists a threshold for ℓ, from which increasing
does not improve the success probability significantly.

Apart from minimizing the number of non-linear operations, we also want
to minimize the number of fresh random bits that are required. For a given
(N,W, ℓ, t), we know that

B(W,N, t/2ℓ)−1 ·Nℓ (8)

is the expected number of fresh random bits for this method, which will help
us choose ℓ, t for each use case. On the lower layer, we can employ our effi-
cient comparison from Algorithm 1 and the optimizations for comparison with
one fixed operand, resulting in ℓ − 1 non-linear operations per coefficient and
B(W,N, t/2ℓ)−1 · N(ℓ − 1) expected non-linear operations overall for a given
(N,W, ℓ, t).

Note that these numbers refer to the unprotected instantiation. When mask-
ing this approach, we require d+ 1 times as much randomness and in addition,
fresh randomness for each non-linear operation.

In the following, we give details on each potential application.

BIKE and HQC Key Generation. For BIKE and HQC, we cannot deploy this
method for encapsulation and decapsulation, due to the attack by [12,18]. Still, it
is eligible for key generation in both cases. Table 2 and Table 3 give details on the
choice of ℓ, t for both algorithms. As can be seen there, for BIKE-L1 ℓ = 9, t = 3
is the obvious choice, as well as ℓ = 8, t = 1 for BIKE-L3 and ℓ = 11, t = 7 for
BIKE-L5.

For HQC, ℓ = 8, t = 1 is the best choice for HQC-128, ℓ = 10, t = 3 for
HQC-196, and ℓ = 12, t = 9 for HQC-256. Moreover, the randomness numbers
indicate that BIKE performs better with this approach.
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Table 3: HQC Comparison Sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

ℓ
HQC-128 HQC-196 HQC-256

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 21.77 3 076 984 1 1.5e4 4 270 634 825 1 3.7e11 1.7e17
9 2 21.77 3 461 607 1 7272.20 2 346 440 182 1 120.43 62 473 484
10 4 21.77 3 846 230 3 28.33 10 155 736 2 120.43 69 414 983
11 8 21.77 4 230 853 6 28.33 11 171 310 5 40.46 25 649 983
12 15 20.62 4 371 146 11 26.90 11 572 734 9 30.89 21 361 556
13 31 20.47 4 700 992 23 25.11 11 700 990 19 29.46 22 076 057
14 61 20.36 5 036 069 46 25.11 12 601 066 37 28.75 23 201 162

Table 4: McEliece Comparison Sampling, for number of expected repetitions and ex-
pected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

348864 460896 6688128 6960119 8192128
t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd.

6 1 44.13 923655 1 965.40 26691249 1 344.42 13820908 1 43.68 1823905 1 28.16 1383882
7 2 44.13 1077597 3 49.42 1593954 2 344.42 16124392 2 43.68 2127889 2 28.16 1614530
8 5 22.66 632174 5 29.70 1094851 5 28.88 1544999 4 43.68 2431873 4 28.16 1845177
9 9 21.11 662545 11 25.49 1057213 10 28.88 1738124 9 28.43 1780973 8 28.16 2075824
10 19 19.98 696744 21 24.62 1134475 20 28.88 1931249 18 28.43 1978859 16 28.16 2306471

Table 5: NTRU HPS Comparison Sampling, for number of expected repetitions and
expected random bits, see Eqs. 7 and 8. Note that these are the numbers for generating a
masked binary polynomial. In Section 4.6 we explain the transformation into a ternary.

ℓ
Parameter Set

2048509 2048677 4096821
t rep. rnd. t rep. rnd. t rep. rnd.

1 1 28.32 14 414 1 5.73e+10 3.878e+13 1 1.32e+12 1.086e+15
2 2 28.32 28 827 2 5.73e+10 7.757e+13 2 1.32e+12 2.172e+15
3 4 28.32 43 241 3 31.59 64 164 5 35.75 88 043
4 8 28.32 57 655 6 31.59 85 551 10 35.75 117 391
5 16 28.32 72 069 12 31.59 106 939 20 35.75 146 739
6 32 28.32 86 482 24 31.59 128 327 40 35.75 176 087
7 64 28.32 100 896 48 31.59 149 715 80 35.75 205 435
8 128 28.32 115 310 96 31.59 171 103 159 34.85 228 911

Table 6: Streamlined NTRU Prime Comparison Sampling, for number of expected
repetitions and expected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

653 761 857 953 1013 1277
t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 1966846 1 5.1e+14 1 1.3e+16 1 3.1e+10 1 3.5e+07 1 3.0e+19
2 2 3933692 2 1.0e+15 2 2.5e+16 2 6.3e+10 2 7.0e+07 2 6.0e+19
3 4 5900538 3 76571 3 91488 3 2945795 4 1.1e+08 3 222512
4 7 84497 6 102095 6 121985 7 371651 7 168223 6 296683
5 14 105621 12 127618 12 152481 13 215382 14 210278 12 370853
6 28 126745 24 153142 24 182977 27 235987 28 252334 25 360750
7 56 147869 48 178666 48 213473 53 255543 57 286495 49 396206

BIKE-L1 Optimization. We have ℓ = 9, t = 3 and thus want to have a = 29−4 in
Algorithm 1 to obtain a 1 output bit in 3/29 cases for a random input b. Then,
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Table 7: NTRU LPRrime Comparison Sampling, for number of expected repetitions
and expected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

653 761 857 953 1013 1277
t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 5.7e+11 1 1.7e+24 1 4.1e+14 1 3.3e+20 1 8.6e+15 1 1.4e+35
2 2 1.1e+12 1 6.4e+09 2 8.2e+14 1 4.1e+17 2 1.7e+16 1 1.8e+15
3 3 72090 3 2643045 3 106026 3 150085 3 160778 3 11021700
4 6 96120 5 155129 6 141368 6 200113 6 214370 5 1083789
5 12 120150 11 183384 12 176711 12 250142 12 267963 11 321266
6 25 126010 21 148387 25 199178 23 215790 25 243060 22 385519
7 49 144495 42 173118 49 214613 46 251755 50 283570 43 378276
8 99 163109 84 197849 98 245272 93 284544 99 315026 86 432315

we apply the above-described optimizations for a fixed input comparison:

r = ((0 ∨ b0) ∨ b1) ∧ b2 ∧ b3 ∧ b4 ∧ b5 ∧ b6 ∧ b7 ∧ b8

= (b0 ∨ b1) ∧
8∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
8∧

i=2

bi

Note that we convert the logical OR into a logical AND by De Morgan’s law
since this is how it is implemented with masked gadgets. Inversion is O(1), while
SecAnd is O(d2), so this does not increase asymptotic complexity. Still, we can
save two inversions, since b0, b1 are random input bits, which we can assume to
be inverted already. It follows that for BIKE-L1, the following Boolean formula
can be used to obtain a random bit with approximately the correct probability
of being one, using random input bits b0, . . . , b8.

r = ¬(b0 ∧ b1) ∧
8∧

i=2

bi (9)

BIKE-L3 and HQC-128 Optimization. With ℓ = 8, t = 1, we fall back to the
repeated AND method and can just compute r =

∧7
i=0 bi for uniform random

bits b0, . . . , b7. Notably, we can use this approach both for BIKE-L3 and HQC-128.

BIKE-L5 Optimization. With ℓ = 11, t = 7, we have a = 211 − 8 in Algorithm 1
with random bits b0, . . . , b10. Then, applying the analog optimizations as above,
including not inverting random input bits:

r =

(
2∨

i=0

bi

)
∧

10∧
i=3

bi = ¬

(
2∧

i=0

¬bi

)
∧

10∧
i=3

bi

∼ ¬

(
2∧

i=0

bi

)
∧

10∧
i=3

bi (10)

HQC-196 Optimization. Using ℓ = 10, t = 3, we set a = 210 − 4 in Algorithm 1
with random bits b0, . . . , b9. Applying the aforementioned optimizations, we ob-
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tain

r = (b0 ∨ b1) ∧
9∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
9∧

i=2

∼ ¬(b0 ∧ b1) ∧
9∧

i=2

bi (11)

HQC-256 Optimization. ℓ = 12, t = 9 implies setting a = 212−10 in Algorithm 1
with random bits b0, . . . , b11.

r =

((
2∧

i=0

bi

)
∨ b3

)
∧

11∧
i=4

bi = ¬

(
¬

(
2∧

i=0

bi

)
∧ ¬b3

)
∧

11∧
i=4

bi

∼ ¬

(
¬

(
2∧

i=0

bi

)
∧ b3

)
∧

11∧
i=4

bi (12)

McEliece Encapsulation. For this application, we have no special restrictions,
which renders the Comparison approach possible. As can be seen from Table 4,
there are feasible choices of ℓ, t for each parameter set. Notably, the highest
parameter set has both N and W set to a power of two, which implies that the
Comparison method falls back effectively to the RepeatedAND method.

NTRU, Streamlined NTRU Prime, and NTRU LPRrime Key Generation.
For NTRU, Streamlined NTRU Prime and NTRU LPRrime, we have an interesting
different case, since the target space is not binary, but ternary. Additionally,
NTRU imposes the condition that exactly W/2 coefficients need to be +1 and
the remaining −1. To convert a binary polynomial to a ternary one, we employ
the following strategy, assuming that we already have sampled a Boolean masked,
weight-W polynomial:

1. Sample a uniform random, masked bit ri for each coefficient ai with 0 ≤ i <
N .

2. Compute securely the masked sign si := ri ∧ ai for each masked coefficient.
3. If there is a weight restriction on the number of −1 and +1, accumulate all

si securely, unmask the result and check whether the correct number of −1
is hit. If not so, start over from Step 1.

Note that for NTRU, the initially sampled binary weight-W polynomial is
not rejected, but only the vector of signs. This adds B(127, 254, 0.5)−1 ≈ 20
expected repetitions of the above procedure for NTRU-HPS2048{509,677}, and
for NTRU-HPS4096821 B(255, 510, 0.5)−1 ≈ 28.3.

The numbers for sampling binary polynomials with correct weight are pre-
sented in Table 5, Table 6, and Table 7. It stands out that compared to the
code-based schemes, a notably lower amount of randomness is required. This
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is due to the smaller polynomial degrees and the more favorable ratio between
W and N . However, the very low numbers for NTRU are misleading, since they
do not include the additional randomness required for sampling the correct sign
weight.

4.7 RepeatedAND

In [10], Drucker and Gueron propose ANDing random bit strings repeatedly with
subsequent dedicated correction of the weight as a method for sampling fixed
weight vectors. Starting with a zero bit string A of length N , they compute a
random bit string A of the same length by repeatedly ANDing random strings so
that the expected weight of the string is halved with each AND, until the weight
is below or equal to the target weight W . Then, A is set to A ∨ A, so that the
new weight of A is less or equal the sum off the individual weights of A and A.
As long as the weight of A is not W , a new A is computed with a target weight
of the difference between the weight of A and W and ORed with A to increase
its weight towards W .

Just like the simple rejection and our comparison sampling, this method is
not secure for the decapsulation in HQC and BIKE.

At first sight, this method can be masked in a straight-forward manner, by
checking the weight of secret intermediate vectors being the only non-trivial
component. However, it makes heavy use of computing the (secret) weight of
intermediate vectors, which is cheap in unmasked domain, but a big cost fac-
tor for masking. Experimentally, we found that for BIKE, HQC and McEliece,
the average number of required weight checks significantly exceeds the average
for our Comparison method presented in Section 4.6, with the smallest differ-
ence being McEliece-348864 (31.02 vs. 22.66), and the biggest difference being
BIKE-L5 (60.38 vs. 30.30). In software, this masked weight check would predom-
inantly determine the performance, rendering RepeatedAND obsolete for BIKE,
HQC and McEliece. In hardware, however, the weight check could be performed
in parallel with the ANDing. For NTRU, Streamlined NTRU Prime and NTRU
LPRrime the average number of comparisons are very similar, the RepeatedAND
method, however, requires less randomness.

4.8 Conversions between Polynomial Representations

Some implementations of the cryptographic schemes use the index representa-
tion for fast multiplications that follow the sampling process, but one can also
transform this representation to the coefficient representation in a constant-time
and masked way. For each of the W non-zero indices one iterates over all coeffi-
cients N that are initialized with 0, and if the current indices are hit one replaces
the 0 with a 1. We therefore need NW iterations with a cmpeq and a cmov. A
conversion in the other direction from coefficient to index representation can be
done similarly with comparable costs.
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5 Masked Implementation

5.1 Software

We implemented all methods presented in Section 4 in software generalized
for arbitrary masking order and thus secure against multi-trace power side-
channel attacks. Except for the comparison method, our implementations are
parametrized for N and W . We based our software implementations on masked
gadgets presented in [7]. These gadgets can be proven to be secure under the
assumptions provided by the d-probing model. Additionally, they fulfill certain
composability notions ensuring that a design constructed by these gadgets is still
secure in the d-probing model.

For Boolean masked software implementations, bitslicing is often a very ef-
ficient methodology to improve performance. All of our implementations are
bitsliced as far as the algorithms allow, we also bitsliced all core operations
presented in Section 4.1.

Fisher-Yates. The first component of the Fisher-Yates algorithm is to sample
a random value with a varying range [0, N − i). We implemented this in the
additive masking domain with the biased multiplication method. To be compat-
ible with unmasked implementations we take 32-bit Boolean masked randomness
(for example from a masked Keccak) as input and transform it bitscliced to the
48-bit additive domain (modulo 248). We unbitslice the randomness and perform
the multiplication with the public value N − i by a simple sharewise unmasked
multiplication. The result is at most 48-bit wide, therefore the additive domain
modulo 248 and not e.g. 264 which saves us some costly non-linear operations in
the Boolean to arithmetic and arithmetic to Boolean conversions.

Taking the upper 16 bit from the results can be done in the Boolean domain,
which we need anyway for the second component of the algorithm. But before
transforming to the Boolean domain, we add i to the upper 16 bit, which is
cheaper in the additive domain. The additive to Boolean transformation is again
implemented bitsliced and we keep the data in the bitsliced domain for the
comparisons and conditional moves of the second component. With W padded
to the next multiple of 32, we can perform the inner loop with the comparison
and condition move on 32 values at a time.

Sorting. To evaluate the sorting approach presented in Section 4.3 we imple-
mented a masked bitonic sort in software. Bitonic sort for n elements performs
n/2 comparisons operating on all n elements in each iteration and each pair of
elements that are compared has the same distance during one iteration. For the
cases where the distance is greater than our register width of 32, we thus can
directly compare and conditionally swap a group of 32 consecutive values with
their respective pairs in the bitsliced domain where 32 values share a register for
each bit.

Comparisons of elements with a distance of less than 32 are also possible in
the bitsliced domain but require a transformation. When the distance is halved
from one iteration to the next as is the case for most iterations, we need to swap
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half of the bits of one group of 32 elements in one register with the respective
other half of paired group. In the non-bitsliced domain, this would correspond
to simple register swaps, in the bitsliced domain we need to swap bits by using
rotations and Boolean operators. By implementing this transformation in the
bitsliced domain, we are able to perform the entire sorting algorithm in the
bitsliced domain and save transformations between the domains.

For distances below 32, our method works on 64 consecutive elements at a
time, we therefore pad the polynomial width to the next multiple of 64 for a
clear and efficient implementation. The additional coefficients appended by the
padding get initialized with zero and not paired with random values, but with
the highest value possible so that the nonzero lower coefficients will not be sorted
to the additional indices and they can simply be cut off after sorting. Bitonic
sort originally only works on power-of-two input sizes, but can be adapted to
arbitrary sizes, as we did for our implementation.

Rejection. To be able to parallelize the comparison of r versus N we perform
the outer loop on batches of 32 values. We then iterate over the batch, if the
result of the comparison indicates that a value r is not less than N we directly
continue with the next value. If not, we compare the value to the already sampled
ones, again performing 32 bitsliced comparisons at a time. By performing 32
comparisons at a time we often perform comparisons with elements that are not
yet set by the algorithm, but are initialized with a value e.g. zero. The result
of these comparisons must not influence the rejection behavior, otherwise the
initialization value can never be included in the output which would violate the
uniform randomness requirement. We solve this by simply masking out the bits
of these comparisons.

If no collision is found r is stored in the array, in contrast to the bounded
rejection method, this condition is not a secret value, thus we do not need the
masked cmov operation. But we implemented this move in the bitsliced domain,
so that the array of indices can be kept in the bitsliced domain throughout the
entire algorithm and only converted to the non-bitsliced domain at the end.

Bounded Rejection. Similar to the simple rejection method, the implemen-
tation of the bounded rejection method for the index representation has to deal
with false collisions with the initialization values. Tracking which values are set
and thus which comparisons are valid is cumbersome in this case because the
amount of already correctly sampled values is secret. Instead, we implemented
this by initializing the array with a value that is out of bound, e.g. N . This
induces only a small overhead for the collision comparison, which now has to
operate on ⌈log2(N)⌉+ 1 bits instead of ⌈log2(N)⌉.

Again we parallelized the inner loop with bitslicing to significantly improve
the performance.

We determined the bound according to the formulas provided by Drucker et
al. [15]. Drucker et al. suggest bounds for BIKE Level 1 (B = 327) and Level 3
(B = 488) which give a probability to fail of less than 2128. If a sampling failure
does not affect the security of the scheme, a lower bound can be chosen for better
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performance. We selected a bound of 704 for BIKE Level 5 and 364, 460 and 267
for the three relevant parameter sets of HQC to reach the same probability.

Comparison. Generally, this approach can be parallelized very efficiently as
each coefficient is sampled individually. For software, this means that bitslicing
is eligible, and for hardware, an individual trade-off between area and latency
can be found.

In software, the weight check is the bottleneck of this method. Since it is hard
to accumulate single masked bits in Boolean sharing on software platforms, we
first deploy a bitsliced Boolean-to-additive masking conversion, which converts
32 masked bits to 32 arithmetically masked values modulo 2z for a sufficiently
large chosen z. Then, we unbitslice these values and accumulate the additively
masked values share-wise. Finally, when we iterated over the whole polynomial
with this procedure, we can unmask the shared accumulation value to obtain
the weight of the masked polynomial.

Optimized Masked Weight Check. To check whether the masked polynomial can-
didate has the correct weight or not, it is required to compute the weight of the
polynomial. For this operation, the intermediate weight is a sensitive information
as it could reveal the position of single coefficients. The masked weight compu-
tation itself is a secure accumulation of all masked coefficients to a value of size
⌈log2 N⌉ bits, e.g., by means of a secure ⌈log2 N⌉-plus-one-bit adder. It is worth
noting that for all three code-based applications, though, W is much smaller
than N . It follows that most of the upper bits of such a secure adder are not
required with overwhelming probability.

Since we know the expected weight of our polynomial candidate (under the
assumption that no biased randomness is used as input), we can decrease the
secure accumulator size and accept the possibility of an overflow happening.
An overflow of the accumulator is not critical as long as it does not lead to a
false-positive result, i.e., approving a polynomial that has not the correct weight.

Let z be the bit length of the secure accumulator output. Then, for a given
(N,W, ℓ, t) as explained in Section 4.6, we have probability pfp of a false positive:

pfp =

⌊N−W
2z ⌋∑

i=−⌊W
2z ⌋

i ̸=0

B
(
W + i · 2z, N,

t

2ℓ

)
(13)

Obviously, it is desirable to have a negligible pfp, but also a low z, since
this affects the efficiency of the weight check. We find that for all use cases
and parameter sets, choosing z = 8 (i.e., an 8-bit secure accumulator), yields
pfp < 2−200.

RepeatedAND. Using the same weight check module as above, we also im-
plemented the RepeatedAND method presented in [10]. This time, however, we
cannot use the optimization shown above, since we do not check for equality,
but rather whether a weight is bigger or smaller. Thus, we use 10-bit secure
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accumulation, which is enough for nearly all parameter sets of NTRU, Stream-
lined NTRU Prime, and NTRU LPRrime. For Streamlined NTRU Prime- and NTRU
LPRrime-1277, the probability that an intermediate weight is greater or equal
than 210 is negligible. This approach is not efficient for McEliece, BIKE and HQC,
because compared to the Comparison approach, significantly more and bigger
weight checks are required.

5.2 Hardware

As a case study, we implement the comparison sampling approach for BIKE in
hardware. Additionally, we give some remarks on how hardware implementations
of the other algorithms could be realized.

For hardware implementations, we generally have similar restrictions com-
pared to embedded software platforms. Most importantly, only very limited
memory is available, rendering sorting-based methods for high polynomial de-
grees infeasible. As an example, the smallest BIKE parameter set already would
require 32 · 12323 · 2 = 788672 bit storage for first-order masking assuming that
31 bit randomness per coefficient would be sufficient. On the other hand, comparison-
based sorting networks can be implemented very efficiently for smaller N as in
NTRU and its variants and parallelized in a more fine-grained manner than for
software platforms. This allows for precise trade-offs between latency and area
demand.

To reduce the latency of comparisons, a parallel-prefix subtractor could be
deployed by optimizing it to only obtain the uppermost carry-out bit. In return,
this would require more secure non-linear gadgets compared to our comparison
method presented in Section 4.1.

For Fisher-Yates, the boolean to arithmetic and vice versa transformations
could be implemented with secure Boolean adders, which is possible efficiently
and pipelined [17]. Then, the relatively big integer multiplications are a major
cost factor in hardware, as they involve many bit operations.

For the RepeatedAND method, we certainly expect a higher control overhead
due to the more complex algorithm compared to the comparison approach. Also,
an intermediate masked vector must be stored in addition to the output vector,
which results in a higher memory requirement. On the other hand, in contrast
to software implementations, where the weight check is the bottleneck, we can
execute the weight check in parallel to the secure AND operations. This could
make this method efficient for the BIKE and HQC key generations and McEliece
encapsulation.

Comparison Method. Since we aim for a masked implementation, we store
each share of the target sampled polynomial in a separate memory (for BIKE
level 1, we instantiate one 18KB memory for each share). Each of these memory
modules can be accessed via a 32-bit interface. As explained in Section 4.6, the
approach requires ℓ bits of randomness to sample one bit. Due to the 32-bit
interface of the memory modules, our hardware design samples 32 bit in parallel
which leads to ℓ · d · 32 bits of randomness required as input to the fixed input
comparison. Since our target is to implement a side-channel resistant design,
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we replace all non-linear gates by secure gadgets (in our case study, we used
Domain-Oriented Masking (DOM) gadgets [11]). As shown in Section 4.6, the
comparison for BIKE level 1 consists of eight secure multiplication gadgets where

each gadget requires d·(d+1)
2 bit of fresh randomness.

To track the Hamming weight of the sampled masked polynomial, we instan-
tiate a masked Hamming weight computation unit. The design follows the imple-
mentation concept of the unmasked Hamming weight unit from [16]. However,
we realize each adder stage by masked Ripple-Carry Adder (RCA) generated
from HPC2 gadgets [8]. Eventually, we obtain a masked six-bit result for each
32-bit block which is fed into an accumulation stage. The accumulator is im-
plemented by a fully pipelined masked 8-bit Sklansky adder as proposed in [2].
Since the adder consists of eight register stages, we obtain eight masked inter-
mediate results that need to be accumulated to a final result. For this, we utilize
the same adder and cleverly feed in the intermediate results from the adder to
its input to add up all intermediate results. The final result is not secret and
can be unmasked in order to compare it to the desired weight W . The procedure
needs to be repeated in case the weight is not met.

6 Evaluation

6.1 Software

The target of our software implementations is the 32-bit Cortex-M4 microcon-
troller on the STM32F4 discovery board. To measure the cycle counts we set the
frequency to 24MHz to make the cycle counts independent of the memory speed.
We used the arm-none-eabigcc-10.3.1 compiler with optimization-level O3 and
report average cycle counts of 10 runs for algorithms without data-dependent
branching and average counts of 1000 runs otherwise. For comparison sampling,
we measure the non-branching execution of one iteration and report this value
multiplied by the expected number of repetitions.

We excluded the generation of randomness required by calls to rand in our
measurements so that only the performance of the fixed weight polynomial sam-
pling algorithm is measured and not the performance of the PRNG. The gener-
ation of randomness required by masked operations is however included.

Table 8 show our measurements in kilo cycle counts for first-order masking
on the Cortex-M4, and Table 9 shows measurements for second-order masking.

From our measurements, we can first of all conclude that masked fixed-weight
polynomial sampling is expensive in software.

For masked sampling of fixed-weight polynomials in the index representation,
the simple rejection method is the fastest and can always be applied when there is
no need for seed security. If seed security is required, one could alternatively use
the bounded method, which is always slower compared to the simple rejection.
We thus only benchmarked the bounded rejection for the use cases in BIKE
and HQC. Fisher-Yates also provides seed security, and outputs in the index
representation and is faster than the bounded rejection for all parameter sets
that we measured.
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Table 8: Performance on the Cortex-M4 in kilo cycles for first order masking. Entries
marked with – are irrelevant combinations that we did not implement/measure.

Scheme N W Sort Fisher-Y. Reject B. Reject RepAND Comp. I2C Trans.

BIKE 24646 134 – 7128 – 34077 – – 770708
BIKE 12323 71 – 2854 647 – 101629∗ 45838 195945
BIKE 49318 199 – 13206 – 69140 – – 2394245
BIKE 24659 103 – 4901 1255 – 156631∗ 129050 592411
BIKE 81194 264 – 21680 – 131135 – – 5497931
BIKE 40973 137 – 7514 2176 – 320522∗ 234007 1372560

HQC 17669 75 – 3063 – 25803 – – 309894
HQC 17669 66 – 2852 620 – 185348∗ 63242 272707
HQC 35851 114 – 5377 – 41500 – – 999526
HQC 35851 100 – 5034 1282 – 391503∗ 183833 876778
HQC 57637 149 – 7808 – 28930 – – 2094589
HQC 57637 131 – 7367 2132 – 837777∗ 348099 1841552

McEliece 3488 64 108596 1847 462 – 19519† 12948 32246

McEliece 4608 96 160777 3326 972 – 31778† 20392 68236

McEliece 6688 128 240949 5044 1555 – 63766† 31652 131539

McEliece 6960 119 249618 4848 1386 – 59875† 34571 127568

McEliece 8192 128 300713 4591 1527 – 62867† 34609 161312

NTRU 509 254 9699 11532 4709 – 2141 1666 15342
NTRU 677 254 14958 12445 4833 – 3559 2935 22674
NTRU 821 510 18338 17737 7022 – 4140 3921 32655

sNTRU Prime 653 288 14958 15086 6345 – 3023 3033 24650
NTRU LPRrime 653 252 14958 12390 4806 – 3177 3299 21515
sNTRU Prime 761 286 16464 15063 6005 – 3699 3336 27828
NTRU LPRrime 761 250 16464 12350 4570 – 3457 3773 24264
sNTRU Prime 857 322 19848 20249 7461 – 4125 4012 34948
NTRU LPRrime 857 329 19848 20569 7805 – 4482 4650 35825
sNTRU Prime 953 396 21564 27494 11253 – 4403 6266 47664
NTRU LPRrime 953 345 21564 20867 8404 – 4496 6617 41385
sNTRU Prime 1013 448 23405 31680 14421 – 4836 5763 57395
NTRU LPRrime 1013 392 23405 27380 10843 – 5428 7015 50228
sNTRU Prime 1277 492 32361 42388 18445 – 6861 9612 85013
NTRU LPRrime 1277 429 32361 33673 13822 – 7285 9245 74318

∗ average over 3 executions † average over 10 executions
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The sorting method required too much stack to fit into the 192-KB SRAM
of our board for the large N of BIKE and HQC, but the results of McEliece
with medium sized N already indicate high costs for large N . As the runtime
for sorting grows sub-quadratic in N , but Fisher-Yates performance is mainly
determined by its O(W 2) loop iterations, the sorting method is faster for the
higher parameter sets of Streamlined NTRU Prime and NTRU LPRrime which
have medium sized N and relatively high W .

However, sorting is always outperformed by the two other coefficient repre-
sentation methods, the RepeatedAND and our comparison method. For BIKE,
HQC and McEliece the comparison method is superior to the RepeatedAND in
runtime costs. For NTRU the performance of both methods is very similar, for
Streamlined NTRU Prime and NTRU LPRrime, RepeatedAND is mostly faster.

In the last column of Table 8 we present the cycle counts for a masked
transformation from index to coefficient representation. In general, it depends
on the implementation of the scheme which representation is required for further
operations, the index representation of sparse polynomials can for example be
used for efficient multiplications. The high costs for a masked transformation
indicate, that if only a single representation is required, a method that directly
outputs the correct representation is usually preferable.

To summarize the recommendations for masked software implementations
derived from our performance measurements: if no seed security is required, the
simple rejection method is the fastest index sampling method and either Re-
peatedAND or our comparison method is preferable for an output in coefficient
representation. For the scenarios in BIKE and HQC, where the seed must be
kept secret, Fisher-Yates yields the best performance with an output in index
representation, and one could use a masked transformation to get the coefficient
representation, or implement a less memory-consuming variant of the sorting
method, by utilizing radixsort, as explained in Section 4.3.

Two schemes have parameter sets that lead to a special case for some al-
gorithms. When N is a power of two which is the case for one parameter set
of McEliece, then Fisher-Yates and rejection sampling become easier because
checking if r < N is not necessary. We adopted our code accordingly when
benchmarking this parameter set and the effect shows clearly in the cycle num-
bers of Fisher-Yates that are lower compared to the next smaller parameter set of
McEliece. The second special case is the highest parameter set for NTRU where
W > N/2. In this case, the symmetry of fixed weight sampling allows to sample
with W ′ = N −W instead.

6.2 Hardware

Table 10 shows the hardware implementation results for the comparison ap-
proach presented in Section 4.6 for BIKE level 1. Therefore, we implement our
design for a Xilinx Artix-7 xc7a200 Field-Programmable Gate Array (FPGA)
and report the required resources and performance numbers. As a baseline, we
first implement an unprotected design that consumes just 100 slices and fin-
ishes on average one sampling process in 33.4 µs. Note, the number of required
Block-RAMs (BRAMs) is reported in 36KB memory modules. Therefore, the
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Table 9: Performance on the Cortex-M4 in kilo cycles for second order masking.
Entries marked with – are irrelevant combinations that we did not implement/measure.

Scheme N W Sort Fisher-Y. Reject B. Reject Comp. I2C Trans.

BIKE 24646 134 - 11207 - 51304 1121610
BIKE 12323 71 - 4552 1030 - 283200
BIKE 49318 199 - 20988 - 104545 3503932
BIKE 24659 103 - 7725 2009 - 860229
BIKE 81194 264 - 34385 - 177824 8068646
BIKE 40973 137 - 11834 3499 - 2016180

HQC 17669 75 - 4876 - 35354 451090
HQC 17669 66 - 4566 986 - 396960
HQC 35851 114 - 8446 - 56733 1454307
HQC 35851 100 - 7937 2054 - 1275709
HQC 57637 149 - 12270 - 39524 3065744
HQC 57637 131 - 11616 3450 - 2695393

McEliece 3488 64 153289 2867 743 - 51444
McEliece 4608 96 226936 5194 1567 - 109064
McEliece 6688 128 340152 7886 2514 - 211037
McEliece 6960 119 352248 7590 2239 - 205572
McEliece 8192 128 424376 7077 2453 - 258268

NTRU 509 254 13723 18234 7620 - 24363
NTRU 677 254 21152 19518 7856 - 36109
NTRU 821 510 25930 27993 11384 - 52005

sNTRU Prime 653 288 21152 23708 10271 - 39047
NTRU LPRrime 653 252 21152 19516 7799 - 34259
sNTRU Prime 761 286 23282 23649 9725 - 44227
NTRU LPRrime 761 250 23282 19457 7408 - 38646
sNTRU Prime 857 322 28063 32204 12109 - 55622
NTRU LPRrime 857 329 28063 32483 12680 - 57058
sNTRU Prime 953 396 30488 43281 18278 - 75955
NTRU LPRrime 953 345 30488 32959 13661 - 66245
sNTRU Prime 1013 448 33091 50029 23395 - 91284
NTRU LPRrime 1013 392 33091 43162 17573 - 80173
sNTRU Prime 1277 492 45734 67456 29901 - 135680
NTRU LPRrime 1277 429 45734 53205 22458 - 118322

∗ average over 3 executions † average over 10 executions
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Table 10: Implementation results for the comparison sampling approach for BIKE
level 1 on an Artix-7 FPGA.

Resources Performance

Logic Memory Area Cycles Frequency Latency

d LUT FF BRAM Slices Cycles MHz µs

0 194 115 0.5 100 8 350 250 33.400

1 1 957 2 721 1 627 9 756 250 39.024
2 5 075 5 815 1.5 1 548 9 756 250 39.024
3 9 038 10 085 2 2 584 9 756 250 39.024

unprotected design requires only one 18KB memory to store the final polyno-
mial.

The next three lines in Table 10 show the implementation results for a first,
second, and third-order protected design. The first-order protected implementa-
tion consumes 627 slices compared to 100 slices of the unprotected design. How-
ever, all protected implementations of the sampler can be executed with the
same frequency, but have a slightly higher latency due to additional register
stages introduced by the masking approach.

7 Conclusion

In this work, we demonstrated how all fixed-weight polynomial sampling meth-
ods in the literature can be masked at arbitrary order. Our implementations
indicate that despite bitslicing and optimized subcomponents, the existing al-
gorithms are costly for masked software. Drucker and Gueron [10] benchmarked
a subset of our algorithms and schemes without power side-channel counter-
measures, their numbers indicate that the relative performance of the sampling
algorithms for a given scheme is equal for masked and nonmasked software im-
plementations.

The flexibility of hardware implementations allows faster solutions, further
implementations would be an interesting target for future work. Additionally,
we identified that shuffling should be investigated for the sampling algorithms
as an efficient countermeasure against single-trace attacks.
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