
Two-Round Concurrent 2PC from
Sub-Exponential LWE

Behzad Abdolmaleki1, Saikrishna Badrinarayanan2⋆, Rex Fernando3⋆, Giulio
Malavolta4,5, Ahmadreza Rahimi5, and Amit Sahai6

1 University of Sheffield, UK
behzad.abdolmaleki@sheffield.ac.uk

2 LinkedIn, USA
bsaikrishna7393@gmail.com

3 Carnegie Mellon University, USA
rex1fernando@gmail.com
4 Bocconi University, Italy

5 Max Planck Institute for Security and Privacy, Germany
{giulio.malavolta, ahmadreza.rahimi}@mpi-sp.org

6 UCLA, USA
sahai@cs.ucla.edu

Abstract. Secure computation is a cornerstone of modern cryptogra-
phy and a rich body of research is devoted to understanding its round
complexity. In this work, we consider two-party computation (2PC) pro-
tocols (where both parties receive output) that remain secure in the
realistic setting where many instances of the protocol are executed in
parallel (concurrent security). We obtain a two-round concurrent-secure
2PC protocol based on a single, standard, post-quantum assumption: The
subexponential hardness of the learning-with-errors (LWE) problem. Our
protocol is in the plain model, i.e., it has no trusted setup, and it is secure
in the super-polynomial simulation framework of Pass (EUROCRYPT
2003). Since two rounds are minimal for (concurrent) 2PC, this work
resolves the round complexity of concurrent 2PC from standard assump-
tions.
As immediate applications, our work establishes feasibility results for in-
teresting cryptographic primitives, such as the first two-round password
authentication key exchange (PAKE) protocol in the plain model and
the first two-round concurrent secure computation protocol for quantum
circuits (2PQC).

1 Introduction

Secure computation is a fundamental primitive in cryptography which allows two
or more parties, all of whom have private inputs, to collectively compute some
function over their inputs securely without revealing the inputs themselves. In
recent years, significant attention has been devoted to the round-complexity of

⋆ Part of the work was done while the author was affiliated with UCLA.



secure computation in the setting of two parties, as well as in the multi-party
setting (MPC). This has culminated in recent work of [37, 4, 22, 10, 45, 29],
which give protocols that run in four rounds, known to be the least amount of
rounds possible for full security in the plain model7.

The results above achieve security in the standalone setting, where all parties
are assumed to participate in only one instance of the protocol.

The concurrent setting. A more realistic setting allows parties to participate
concurrently in arbitrarily many instances. Unfortunately, Barak, Prabhakaran
and Sahai [13] show that achieving the standard definition of concurrent security
is impossible in any rounds in the plain model, without a trusted setup. In an
effort to overcome the above mentioned impossibility results, many recent works
have focused on proving concurrent security for two-party computation (2PC) in
alternative models, e.g., in the bounded concurrent model [64], in the multiple
ideal-query model [42], and for input-indistinguishable computation [60].

One standard relaxation of simulation security, which is widely used to cir-
cumvent many lower-bound results, is the notion of super-polynomial simula-
tion, or SPS [63]. With this notion, for any real-world adversary, we require
an ideal-world simulator that runs in super-polynomial time. More precisely, in
this scenario, the simulator in the ideal world is allowed to run in (fixed) super-
polynomial time. Informally, the SPS security guarantees that any polynomial-
time attack in the real execution can also be mounted in the ideal world execu-
tion, albeit in super-polynomial time. This is directly applicable in settings where
ideal world security is guaranteed statistically or information-theoretically and
it is known to imply input-indistinguishable computation [60]. There has been
a fruitful line of research devoted to understanding the power of SPS security
for secure computations in the concurrent setting [59, 27, 35, 54, 65, 53, 52]
[44, 36, 11].

The round complexity. In the concurrent setting, a series of works [35, 53]
constructed constant-round protocols (approximately 20 rounds) in the simul-
taneous message exchange model. Later, Garg et al. [36] decreased the round
complexity to 5 rounds with SPS security from standard sub-exponential as-
sumptions. In 2017, the work of Badrinarayanan et al. [11] used this notion to
circumvent both the impossibility of concurrent MPC and the four-round lower-
bound, giving a protocol that works in three rounds and satisfies concurrent
security. For several years, this result was the best-known result regarding the
round complexity of MPC in the plain model. Until very recently, no two-round
protocols were known. This was the case even in the restricted setting of two-
party computation (where both parties receive output).

Recently two new works improved the state of the art in this area:

7 It is also known how to achieve two-round MPC that satisfies a much weaker notion of
semi-malicious security, where the adversary is assumed to follow the honest protocol
specification. [38] Alternately, achieving full security in two rounds is possible if we
allow for a trusted setup. In this paper, we focus on achieving full malicious security
in the plain model, without setup.

2



– The work of [1] gave a two-round MPC protocol for general functionalities
which achieves standalone security in the plain model without setup and
with a super-polynomial simulator, assuming subexponential non-interactive
witness-indistinguishable arguments, the subexponential SXDH assumption,
and the existence of a special type of non-interactive non-malleable commit-
ment.8

– The work of [33] gave a concurrent, highly-reusable9 two-round MPC proto-
col for general functionalities, assuming subexponential quantum hardness
of the learning-with-errors (LWE) problem, subexponential classical hard-
ness of SXDH, the existence of a subexponentially-secure (classically-hard)
indistinguishability obfuscation (iO) scheme, and time-lock puzzles.

Assumptions for two-party secure computation. The goal of our work is to
focus on secure computation in the two-party setting and to explore the assump-
tions under which two-round secure protocols are possible. Even in this more
specific setting, the two above results are the only known protocols that achieve
two-round protocols for general two-party functionalities.10 Both of the previ-
ously mentioned works on two-round protocols use powerful primitives which
are only known from strong assumptions. More specifically, the work of [1] re-
quires a strong version of non-interactive non-malleable commitments, which are
only known from strong, non-standard assumptions, such as adaptive one-way
functions [62], or keyless hash functions along with a subexponential variant
of the “hardness amplifiability” assumption of [18]. The work of [33] is able to
avoid using these strong commitments, instead using (a modified version of)
the one-round NMC of [50], which relies on the existence of sub-exponential
indistinguishability obfuscation (iO).

We briefly discuss the assumptions under which iO exists. Our understanding
of these assumptions has vastly improved in recent years, culminating in the work
of [49, 48], which showed that iO can be built on well-founded assumptions,
namely hardness of LPN over Fp, hardness of DLIN, and the existence of PRGs
in NC0. However, our understanding of the assumptions necessary for quantum-
secure iO is much less stable. We note that besides the above-mentioned work,
all other constructions of iO rely on ad-hoc hardness assumptions which were
specifically invented for the purpose of proving the security of iO [34, 23, 67,
7, 12, 28, 30, 61, 57, 6, 56, 5, 2, 47, 15, 3, 20, 39, 21, 70]. Although some of
the most recent of these constructions rely on lattice-based assumptions which
ostensibly could be quantum-secure [39, 21, 70], there are already preliminary
attacks on some versions of these new assumptions [46]. Thus, in this setting,
our understanding is much more limited than in the classical case.

8 The protocol of [1] is given in the form of a compiler that transforms a two-round
semi-malicious-secure MPC protocol into a malicious-secure one.

9 See [33] for the exact definition of reusability obtained.
10 If we restrict ourselves to functionalities where only one party receives output, then

it is known how to achieve two-round secure computation from much simpler as-
sumptions [9], in the setting of standalone security.

3



In addition to iO, both of the constructions of the two-round MPC above
use other assumptions (i.e, SXDH) which, while standard, are quantum-broken.
With all of this in mind, it is interesting to ask the following question:

Can we achieve two-round concurrently secure two-party computation
under simple, post-quantum assumptions, in the plain model?

As mentioned above, this question is interesting even if we restrict ourselves
to the case of two parties, since up to this point the only known results even in
this subcase are the two discussed above, which both require strong, potentially
quantum-unsafe assumptions.

1.1 Our Contributions

In this work, we make a significant process in answering the above question. In
this particular case, we show how to build a two-round, concurrent-secure, two-
party secure computation protocol based on a single, standard, post-quantum
assumption, namely sub-exponential the hardness of the learning-with-errors
(LWE) problem. We state our main theorem now.

Theorem 1. Assuming the sub-exponential hardness of the learning-with-errors
(LWE) problem, there exists a two-round two-party computation protocol for any
polynomial-time functionality f where both parties receive outputs, in the plain
model with super-polynomial simulation.

We note that our protocol is the first two-round concurrent-secure 2PC the
protocol that does not require the existence of a one-round non-malleable com-
mitment (NMC). Instead, we are able to use the two-round NMCs of [51], which
is instantiable from sub-exponential LWE. Our protocol is also the first such
protocol that does not require the existence of non-interactive witness indistin-
guishable arguments or time-lock puzzles. Here, we briefly mention two of the
applications of our protocol.

Application: Round-optimal PAKE. In a password-authenticated key ex-
change (PAKE) [17] protocol, two users hold passwords (x1,x2) and want to
exchange a high-entropy secret if x1 = x2, otherwise, they learn nothing about
the other user’s inputs. Our concurrent 2PC protocol directly yields the first
two-round PAKE scheme in the plain model, resolving a long-standing open
problem in the area. Our protocol achieves the standard game-based security
notion, as defined by Bellare et al. [16].

Application: Concurrent quantum computation. As another application
of our protocol, we show how it immediately yields the first concurrent 2PC for
quantum functionalities (in the plain model) with classical inputs and outputs.
In fact, we show that our classical 2PC provides us with the necessary building
block to instantiate the recent compiler of Bartusek et al. [14], which we then
show how to lift to the concurrent settings.

4



1.2 Technical Overview

To introduce the techniques used in our concurrent 2PC construction, we start
by summarizing a discussion in the work of [11], which gives an intuition for why
two-round secure computation protocols seem difficult to achieve. In particular,
they argue that such a protocol seems to necessarily imply non-interactive non-
malleable commitments (NMCs).

Difficulties in constructing concurrent 2PC. We focus our summary on
the case of two parties since our paper addresses this case. The authors of [11]
note that any such two-round 2PC protocol should have some sort of input
commitment in the first round, and then the second round should be used to
compute the output. They then make the following important observation: Since
we are working in the SPS model without setup, zero knowledge requires at
least two rounds. This means that an honest party must send its second message
without knowing if the adversary’s first-round message is honest. The example
given in [11] to illustrate this is as follows. Consider a case where the honest
party’s input is x, and where there is a “rushing” adversary which waits to
send its first message until after seeing the honest party’s first message. If this
adversary “mauls” the other party’s message and sends a first-round message
which also encodes x, then the honest party cannot detect this before sending out
its second message. Ostensibly, this would cause both the honest party and the
adversary to learn f(x, x), thus breaking SPS security of the protocol. Because of
this, it seems at first glance that non-interactive NMCs are necessary to prevent
such “mauling” attacks in two-round protocols.

Avoiding non-interactive NMCs. As discussed earlier, we want to avoid
non-interactive NMCs, since contrary to two-round NMCs all non-interactive
constructions require strong assumptions. To do so, we must understand why
the intuition above is incorrect. One implicit assumption we have made in this
argument is that the adversary always learns the same output that the honest
party learns after the second round. This is indeed the case in public-output
protocols, where anyone can compute the output given just the transcript of the
protocol and no other information. However, what about the case of private-
output protocols, where each party must use private information in order to
reconstruct the output? In such protocols, when proving security, it is easier to
separate the adversary’s output (or more generally, its view) from the output
of the honest party. Notice that in the example above, the adversary sends its
first message without even knowing the input x which it is encoding. (In order
to prove security, at the very least, we must assume the honest party’s first-
round message does not leak its input.) If we could somehow guarantee that the
adversary can only unlock the protocol output if it knows its own input, this
would prevent the adversary from learning f(x, x).

Our approach. We use all these observations in order to obtain our con-
struction. We will use four main tools in our construction: (1) a two-round
non-malleable commitment, (2) a two-round statistically-sender-private obliv-
ious transfer protocol (SSP OT), (3) a two-round strong SPS zero-knowledge

5



protocol, and (4) garbled circuits. We will require each party Pi to publish two
different types of commitments to its input, one using the NMC and the other
using an OT1 message. Roughly, the OT1 message will be used by party Pi in
reconstructing its own output and the NMC will be used to help P1−i to re-
construct its output. Crucially, we will show that the non-malleability of the
NMC is not needed for the privacy of the protocol, i.e., it is not needed to pre-
vent the adversary from learning f(x, x). Rather, it is only needed in order to
prevent the honest party from learning “mauled” outputs such as f(x, x). Note
that although the (rushing) adversary’s output must be decided before receiving
the adversary’s second-round NMC message, the honest party’s output can be
decided after seeing the entire transcript of the protocol. Thus two-round non-
malleability is easily sufficient to prevent mauling in terms of the honest party’s
output. How do we prevent the adversary from learning f(x, x), then? At a high
level, we rely on the SSP oblivious transfer, which satisfies exactly the property
we hinted at above: an adversary can only unlock the protocol output if it knows
the input of its OT1 message.

Putting these ideas into practice involves several technical issues. We discuss
a few here. One obvious issue is that we must somehow connect the NMC with
the OT1. Otherwise, it would be possible for the adversary to learn f(x1, y)
whereas the honest party learns f(x2, y). To do this, we observe that it is possible
to construct a simultaneous-message two-round NMC scheme, where both the
committer and receiver send a message in the first round, and where the first
round is binding. That is, the first round defines a unique x such that after the
second round, either the transcript commits non-malleably to x, or the transcript
is invalid and cannot be opened. With that in mind, we require that in addition
to committing to its input in its OT1 message, Pi must also commit to the
randomness used for its NMC1 message. P1−i then can construct its garbled
circuit to only reveal the output if this randomness is correct.

Security analysis. Although this solution to the problem seems simple, it in-
troduces some subtleties to the proof of security. One such subtlety is in the
hybrid order when moving from the real world to the ideal world. Namely, we
must switch the OT1 of the honest party to be an OT1 of 0 before we switch
the honest party’s NMC to commit to 0. Since in the real world, the honest
party gets its output by opening the adversary’s OT2 message, and in the ideal
world it gets its output by extracting the adversary’s NMC, this causes there to
be several intermediate hybrids where there is no way for the honest party to
compute its output. We must carefully prove that during these hybrids, although
the honest party cannot compute its output, the output is well-defined and does
not change in any computationally distinguishable way across these hybrids. We
refer to Section 3.3 for details.

One other issue arises in the use of zero-knowledge to prove the honest gen-
eration of the garbled circuits with respect to the inputs committed to in the
NMCs. That is, at some point during the hybrids, we must switch the honest
party from using real proofs to using the SPS zero-knowledge simulator. Once
we do this, we must somehow guarantee that the adversary (who now is re-

6



ceiving simulated proofs) cannot somehow use them to behave dishonestly. The
work of [11] offers techniques to solve this issue, which is highly related to the
notion of simulation-soundness [68]. Their main idea involves using strong SPS-
zero-knowledge arguments in conjunction with non-malleable commitments. In
strong SPS-ZK arguments, the zero-knowledge the property holds even against
adversaries who are powerful enough to run the simulator. We are able to use
the same techniques, although they require careful work to adapt to our setting
and security proof. We again refer to Section 3.3 for more details on this and
other technical issues.

Applications. We highlight two applications of our newly developed concurrent
2PC protocol.

(i) Round-optimal PAKE (Appendix B): In Password-Authenticated Key-
Exchange (PAKE) two parties want to exchange a session key if their (low-
entropy) passwords match. This functionality is a special case of general 2PC,
so it is clear that any 2PC protocol immediately yields a PAKE scheme. However,
the de-facto security notion for PAKE [16] models security in the presence of
concurrent sessions. Thus, only concurrently secure 2PC properly generalizes
PAKE to all functionalities. As a corollary of our main theorem, we obtain the
first round-optimal PAKE without a trusted setup. This settles a long-standing
question in the area.

(ii) Quantum computation (Section 5): Observe that we can lift our result to
the quantum setting by plugging in our concurrent 2PC protocol in the construc-
tion of [14]. At the high level, the protocol of [14] converts any quantum-secure
2PC to a quantum 2PC, where parties wish to securely compute a quantum
circuit on their input. In each round, parties compute the encoding of their
quantum inputs, and in parallel, they run a classical concurrent secure 2PC to
compute the classical description of the quantum garbled circuit. In the end of
the second round, the sender can evaluate the circuit and get the output. [14]
requires a 2PC with a straight-line simulator (which we can instantiate with our
protocol) and a quantum garbling scheme [24]. One subtlety in the proof is that
we need to adjust the security parameter for the quantum garbled circuits, as
our simulator has sub-exponential run-time (i.e., we use complexity leveraging).

2 Preliminaries

In the following, we write T1 ≪ T2 for functions T1 and T2 if for all polynomials
p, p(T1(λ)) is asymptotically smaller than T2(λ). We denote with G(x; r) the
execution of a probabilistic algorithm G, where x is the input to the algorithm
and r is the string of random coins. When we do not need to explicitly deal with
the random coins of G, we write G(x) and assume that the coins r are chosen
uniformly at random. Additional definitions are given in Appendix A.

2.1 Two-Round SPS Strong Zero Knowledge

We define the notion of two-round strong zero knowledge with super-polynomial
simulation first given in [51]. Here strong means that the zero-knowledge prop-

7



erty holds even against adversaries which themselves are strong enough to run
the simulator.

We consider zero-knowledge protocols with the following syntax. All algo-
rithms below are polynomial-time.

– ZK1(1
λ; r) → zk1 takes as input the security parameter 1λ along with ran-

domness r and produces the verifier’s message.
– ZK2(1

λ, x, w, zk1; r
′)→ zk2 takes as input security parameter, the statement

x and the witness w along with the verifier’s message and randomness r′ and
produces the prover’s message.

– ZKverify(x, zk2, r) → 0/1 is a deterministic algorithm which takes the state-
ment x along with the prover’s message and the randomness used to generate
the verifier’s message and accepts or rejects.

Definition 1 ((Tsound, TSim, Tzk, TL, ϵsound, ϵzk)-SPSS Zero-Knowledge Argu-
ments).

Let L be a language in NP which is decidable in time TL, with a polynomial-
time computable relation RL. Let Tsound, TSim, Tzk be superpolynomial functions
where Tsound ≪ TSim ≪ Tzk ≪ TL, and ϵzk, ϵsound negligible functions. A protocol
between a prover P and a verifier V is a (Tsound, TSim, Tzk, TL, ϵsound, ϵzk)-strong
zero-knowledge argument for L if it satisfies the following properties:

– Perfect Completeness. For every security parameter 1λ and NP statement
x and witness w where (x,w) ∈ RL, it holds that

Pr [ZKverify(x, zk2, r)] = 1,

where zk1 ← ZK1(1
λ; r) and zk2 ← ZK2(1

λ, x, w, zk1; r
′) and the probability

is taken over the randomness of r and r′.
– (Tsound, ϵsound)-Adaptive Soundness. For every polynomial p(λ) and every

prover P∗ that works in time Tsound and is given 1λ and an honest verifier
message zk1; If P∗ chooses an input length 1p for some polynomial p ∈
poly(λ), and then chooses x ∈ {0, 1}p \ L and outputs (x, zk2), it holds that

Pr [ZKverify(x, zk2, r) = 1] ≤ ϵsound(λ),

where r is the randomness used to generate zk1 and the probability is over
the random coins of V .

– (TSim, Tzk, ϵzk)-Strong Zero-Knowledge. There exists a (uniform) simula-
tor Sim which runs in time TSim which takes as input the round-one transcript
zk1 and a statement x such that the following holds. Consider an adversary
V ∗ which runs in time Tzk that takes as input 1λ and advice z and outputs a
verifier’s first round message zk∗1. Then, for all (x,w) ∈ RL, distinguishers
D which run in time Tzk, and advice z,∣∣Pr [D(x, z, r,ZK2(1

λ, x, w, zk∗1)) = 1
]
− Pr

[
D(x, z, r, Sim(1λ, x, zk∗1)) = 1

]∣∣
< ϵzk(λ),

where r is the private randomness of V ∗.

8



2.2 Two-Round Statistically-Sender-Private Oblivious Transfer

We give the formal definition of two-round oblivious transfer, where the re-
ceiver’s security is computational, and there exists a (possibly computationally
unbounded) extractor for the receiver’s first-round message such that statisti-
cal security holds for the sender. The Oblivious Transfer scheme consists of the
following polynomial-time algorithms:

– OT1(1
λ, b; r) → ot1: The receiver’s OT1 algorithm takes a choice bit b and

produces the receiver’s OT message.
– OT2(1

λ, ℓ0, ℓ1,ot1; r
′) → ot2: The sender’s OT2 algorithm takes a pair of

strings to choose from along with the receiver’s OT message and produces
the sender’s OT message.

– OT3(ot2; r) → ℓb: The receiver’s OT3 takes the sender’s OT message and
outputs ℓb.

Definition 2. A tuple (OT1,OT2,OT3) is a (TR, ϵR, ϵS)-statistically-sender-private
oblivious transfer algorithm if the following properties hold:

– Correctness. For all λ, b, ℓ0, ℓ1,

Pr

[
OT3(ot2; r) = ℓb

∣∣∣∣ot1 ← OT1(1
λ, b; r)

ot2 ← OT2(1
λ, ℓ0, ℓ1,ot1)

]
= 1.

– (TR, ϵR)-Computational Receiver Privacy. For all machines D running
in time at most TR(λ),∣∣Pr [D(1λ,ot1,0) = 1

]
− Pr

[
D(1λ,ot1,1) = 1

]∣∣ < ϵR(λ),

where ot1,b ← OT1(1
λ, b) for b ∈ {0, 1}, and the probability is taken over the

coins of OT1 and D.
– ϵS-Statistical Sender Privacy. There exists a (possibly unbounded-time)

extractor such that the following holds. For any sequence {ot1,λ, ℓ0,λ, ℓ1,λ}λ,
define the distribution ensembles {D0,λ}λ and {D1,λ}λ, where Db,λ is defined
as follows:
1. Run OTextract(ot1,λ) to obtain µ.
2. If b = 0, output OT2(1

λ, ℓ0,λ, ℓ1,λ,ot1,λ).
3. If b = 1, set ℓ′b = ℓb,λ and ℓ′1−b = 0 and output OT2(1

λ, ℓ′0, ℓ
′
1,ot1,λ).

The two ensembles {D0,λ}λ and {D1,λ}λ have statistical distance at most
ϵS.

In the body of our paper, we will use the following syntax, which reduces
trivially to the syntax above.

– OT1(1
λ, x; r) → ot1: The receiver’s OT1 algorithm takes a string of choice

bits x and produces the receiver’s OT message.
– OT2(1

λ, lab,ot1; r
′) → ot2: The sender’s OT2 algorithm takes a list lab =

{labi,b}i∈[|x|],b∈{0,1} of pairs of strings to choose from of length |x| along with
the receiver’s OT message and produces the sender’s OT message.

– OT3(ot2; r): The receiver’s OT3 takes the sender’s OT message and outputs
{labi,xi

}i∈[|x|].

9



2.3 Definition of Concurrent MPC

In this section, we present the definition of concurrent secure multi-party com-
putation. The definition below is a generalization of the definition of concurrent
secure multi/two-party computation [58, 64]. Parts of this section are taken ver-
batim from [64], where the main modifications are due to the fact that we allow
the simulator to run in super-polynomial time.

Multi-party computation. Consider an n-party quantum functionality spec-
ified by a family of circuits F = {Fλ}λ where Fλ has m1(λ) + · · · + mn(λ)
input bits and ℓ1(λ) + · · · + ℓn(λ) output bits. Let Π be an n-party proto-
col for computing F . For security parameter λ and any collection of inputs
(x1, . . . ,xn), where xi ∈ {0, 1}mi(λ). We denote the output of the functionality
by Fλ(x1, . . . ,xn)→ (y1, . . . ,yn), where yi ∈ {0, 1}ℓi(λ) and xi is Pi’s input.

Concurrent execution in the ideal model. Next, we describe the concurrent
execution of the protocol in the ideal world. Unlike the stand-alone setting,
here the trusted party computes the functionality many times, each time upon
different inputs. Let Π := (P1, . . . , Pn) be an MPC protocol for computing an
n-ary circuit F and λ be the security parameter. We consider adversaries that
corrupt any subset of the parties, where the subset is pre-determined before the
beginning of the execution, and we denote by I ⊂ [n] the subset of corrupted
parties. An ideal execution with an adversary who controls the parties I proceeds
as follows:

– Inputs: The inputs of the parties P1, . . . , Pn are determined by input-
selecting machines M := M1, . . . ,Mn, where each Mi sends xi,j to each
party Pi and for each session j, at the beginning of the experiment.

– Session initiation: When the adversary initiates the session number j by
sending a (start-session, i) to the trusted party. If i ∈ [n] − I (means Pi

is an honest party) the trusted party sends (start-session, j) to Pi, where
i ∈ [n], and j is the index of the session (i.e., this is the j-th session to be
started by Pi).

– Honest parties send inputs to trusted party: Upon receiving the acti-
vation message (start-session, i) from the trusted party, each honest party
Pi sends (j,xi,j) to the trusted party.

– Corrupted parties send inputs to trusted party: Whenever the adver-
sary wishes, it may ask a corrupted party Pi to send a message (j,x′

i,j) to
the trusted third party, for any x′

i,j of its choice. A corrupted party Pi can
send the pairs (j,x′

i,j) in any order it wishes. The only limitation is that for
any j, at most one pair indexed by j can be sent to the trusted party.

– Trusted party answers corrupted parties:When the trusted third party
has received messages (j,x′

i,j) from all parties (both honest and corrupted)
it computes F(x′

1,j , . . . ,x
′
n,j) → (y1,j , . . . ,yn,j) and sends (j,yi,j) to every

corrupted Pi.
– Adversary instructs the trusted party to answer honest parties:

When the adversary sends a message of the type (send-output, j, i) to the

10



trusted party, the trusted party directly sends (j,yi,j) to the honest party
Pi. If all inputs for session j have not yet been received by the trusted party
the message is ignored. If the output has already been delivered to the honest
party, or i is the index so that Pi is a corrupted party, the message is ignored
as well.

– Outputs: Each honest party always outputs the vector of outputs that
it received from the trusted party. The corrupted parties may output an
arbitrary state and the messages obtained from the trusted party.

Let S be a PPT algorithm (representing the ideal-model adversary) and let
I ⊂ [n] be the set of corrupted parties. The adversary takes as an input an
auxiliary information z. Then the ideal execution of F , denoted by the random
variable

IDEALF,I,S,M (λ, z)

is defined as the outputs of the ideal functionality and the output of S, from the
ideal process described above.

Execution in the real model. We next consider the execution of Π in the
real world. We assume that the parties communicate through an asynchronous
fully connected and authentic point-to-point channel but without guaranteed
delivery of messages. Let F , I be as above, and let Π be a multi-party protocol
for computing the corresponding circuit. Furthermore, let A be a PPT machine
such that for every i ∈ I, the adversary A controls Pi. Then, the real concurrent
execution of Π with security parameter λ, and auxiliary input z to A, is denoted

REALΠ,I,A(λ, z)

and it is defined as the output vector of the honest parties and the adversary
A resulting from the following process. The parties run concurrent executions
of the protocol, where every party initiates a new session whenever it receives
a start-session from the adversary. The honest parties use the string provided
by the attacker as their input for this session. The scheduling of all messages
throughout the executions is controlled by the adversary.

Security. The security of Π under composition is defined by saying that for ev-
ery real-model adversary there exists an ideal model adversary that can simulate
the execution of the secure real-model protocol. We parametrize the definition
by the runtime of the simulator T . Formally:

Definition 3 (Concurrent Security in the Malicious Model). let F , n, λ
and Π be as above. Protocol Π is said to T -securely realize F under concurrent
composition if for every real-model PPT adversary A, there exists an ideal-model
adversary S with runtime bounded by T , such that every state z and every I ⊂ [n]
it holds that

{IDEALF,I,S(λ, z)}n∈N ≈c {REALΠ,I,A(λ, z)}n∈N,

where the notation ≈c denotes computational indistinguishability.

11



Remark 1. We shall pointed out that the above definition can be also generalized
to real-world adversaries A beyond polynomial-time. Furthermore, our proof
in Section 3.3 can be adapted to establish security for a real-world adversary
whose runtime is bounded by T̃ , and the simulator is bounded by some T ≫ T̃ .

Quantum Circuits. We can modify our definition to work with quantum cir-
cuits, how ever we keep the inputs and outputs classical. In particular, we only
allow inputs xi ∈ {0, 1}mi(λ) and outputs yi ∈ {0, 1}ℓi(λ). The only differences
are:

1. F is a family of quantum circuits.
2. A is a quantum circuit with auxiliary (quantum) state z.
3. S runs in quantum polynomial time.

We leave it as an open problem to study the definition of quantum concurrent
multiparty computation with inputs and outputs as quantum states.

Remark 2. We remark that our definition assumes that the honest parties’ out-
puts are only revealed to the distinguisher at the end of the experiment and that
it cannot adaptively choose honest parties’ inputs in subsequent sessions based
on previous honest outputs. Such a definition suffices for many applications con-
current 2PC, although we remark that stronger variants exist [27].

3 The Construction

In this section, we prove the following theorem.

Theorem 2. Assuming the existence of subexponentially-secure versions of the
following primitives:

– A two-round SPSS zero-knowledge argument system
– A two-message concurrent NMC scheme
– A two-round statistically-sender private oblivious transfer scheme
– A garbled circuit scheme

there exists a two-round two-party computation protocol for any polynomial-time
functionality f , in the plain model with super-polynomial simulation.

We note that each primitive is known from the subexponential hardness of
LWE. In particular, [19] show the existence of two-round Statistically-Sender-
Private OT from LWE, and both the SPSS zero-knowledge argument and the
NMC scheme of [51] can be instantiated using LWE (see Section 4 for details).
Finally, garbled circuits can be instantiated using any one-way function, which
is known from LWE. Thus we have Theorem 2 as a corollary.

We now describe the construction of two-round two-party computation where
both parties receive outputs.

12



(nmcPi,send
1 ,nmc

Pj ,recv

1 ,nmc
Pj ,send

1 ,nmcPi,send
2 , C̃P

i ,ot
Pj

1 ,otPi
2 ) ∈ Li→j iff:

There exists (xi, r
Pi,send
c , rPi

gc , r
Pi,send
ot ) where

– nmcPi,send
1 = NMCsend

1 (1λ, val; rPi,send
c ) for the value val = (xi, r

Pi
gc , r

Pi,send
ot ),

– nmcPi,send
2 = NMCsend

2 (1λ, val,nmc
Pj ,recv

1 , rPi,send
c ),

– (C̃P
i , lab) = Garble(C, rPi

gc) for the circuit C defined below, with the hardcoded value

set to (xi,nmc
Pj ,send

1 ), and

– otPi
2 = OT2(lab,ot

Pj

1 , rPi,send
ot ), where lab is the family of labels obtained from

Garble.

Fig. 1. Description of the language Li→j

3.1 Required Primitives

First, we review the syntax of all the primitives we will use.
Let λ be the security parameter, and we assume 1λ is an implicit parameter

in all the following algorithms.

– A two-round (Tsound, TSim, Tzk, TL, ϵ1, ϵ2)-SPSS ZK argument system

(ZK1,ZK2,ZKverify,ZKsim),

where Tsound, TSim, Tzk, TL are specified below and ϵ1, ϵ2 are any negligible
functions.

– A two-round (Tnmc, ϵ)-fully-concurrent non-malleable commitment scheme

(NMCsend
1 ,NMCrecv

1 ,NMCsend
2 ),

where Tnmc is specified below and ϵ is any negligible function. In addition,
we assume that the extraction algorithm NMCextract runs in time TNMCextract .

– A (TG, ϵ)-garbled circuit scheme (Garble,Eval,SimGarble), where TG is speci-
fied below and ϵ is any negligible function.

– A two-round (TR, ϵ1, ϵ2)-statistically-sender-private OT scheme (OT1,OT2,
OT3,OTextract), where TR is specified below and ϵ1, ϵ2 are any negligible
functions. Additionally, we assume the extraction algorithm OTextract runs
in time TOTextract .

For the zero-knowledge system, we define a language Li→j in NP which will
be proved by both parties during the 2PC protocol.

Complexity Hierarchy. We require the primitives above satisfy the following
complexity hierarchy:

poly(λ)≪ Tsound ≪ TSim ≪ Tnmc ≪ TNMCextract ≪ Tzk ≪ TR ≪ TOTextract ≪ TG ≪ TL.

13



Additionally, we require that the language above is decidable in time TL.

Some Final Notation. Let onlychoices(x, lab) take a string x and a list lab =
{labi,b}i∈[|x|],b∈{0,1} of strings as input and produce the list {lab′i,b}i∈[|x|],b∈{0,1},

where for each i lab′i,xi
= labi,xi

, and lab′i,1−xi
= 0.

3.2 The Protocol

We now describe the protocol for two-round 2PC. Without loss of generality, we
describe the actions of Party 1.

2-round 2PC protocol:

In each round, Party 1 performs the following actions.

Round 1:

1. Choose random strings rP1,send
c , rP1,recv

c , rP1
gc , r

P1,recv
ot , rP1,send

ot , and rP1

zk of
appropriate sizes.

2. Compute a ZK verifier’s message zkP1
1 ← ZK1(1

λ; rP1

zk).
3. Compute a round-one committer’s NMC message

nmcP1,send
1 ← NMCsend

1 (1λ, val; rP1,send
c ),

where the committed value val = (x1, r
P1
gc , r

P1,send
ot ) consists of P1’s input

along with the randomness which P1 will use to generate the garbled
circuit and OT2 messages in round 2.

4. Compute a round-one receiver’s NMC message

nmcP1,recv
1 ← NMCrecv

1 (1λ; rP1,recv
c ).

5. Compute an OT receiver’s message

otP1
1 ← OT1(1

λ, (x1, r
P1,send
c , rP1

gc , r
P1,send
ot ); rP1,recv

ot ),

where the choice bits (x1, r
P1,send
c , rP1

gc , r
P1,send
ot ) consist of the randomness

rP1,send
c used to generate the round-one sender’s NMC message along

with the committed values x1, r
P1
gc , r

P1,send
ot .

6. Send (zkP1
1 ,nmcP1,send

1 ,nmcP1,recv
1 ,otP1

1 ) to P1.

Round 2:

After receiving the first-round message (zkP2
1 , nmcP2,send

1 , nmcP2,recv
1 , otP2

1 )
from party 2, party 1 does the following:

14



1. Compute the sender’s second-round NMC message

nmcP1,send
2 ← NMCsend

2 (1λ, val,nmcP2,recv
1 , rP1,send

c ),

where the committed value val = (x1, r
P1
gc , r

P1,send
ot ) is as in round 1.

2. Compute the garbled circuit (C̃P1 , lab)← Garble(1λ, C, rP1
gc ), where C is

the circuit defined below, and the hardcoded values are (λ,x1,nmcP2,send
1 ).

3. Compute the sender’s OT message

otP1
2 ← OT2(1

λ, lab,otP2
1 ; rP1,send

ot ),

with the labels lab obtained from the garbling algorithm in the previous
step.

4. Compute the prover’s ZK message zkP1
2 ← ZK2(1

λ, ϕ, w, zkP2
1 ) for the

language L1→2 with the statement

ϕ = (nmcP1,send
1 ,nmcP2,recv

1 nmcP2,send
1 ,nmcP1,send

2 , C̃P1 ,otP2
1 ,otP1

2 )

and witness w = (x1, r
P1,send
c , rP1

gc , r
P1,send
ot ).

5. Send (nmcP1,send
2 , C̃P1 ,otP1

2 , zkP1
2 ) to P2.

Output Computation:

After receiving party 2’s second-round message (nmcP2,send
2 , C̃P2 ,otP2

2 , zkP2
2 ),

party 1 does the following to compute its output:

1. If the NMC verification algorithm NMCverify(1
λ, τ, rP1,recv

c ) fails with re-
spect to P2’s commitment transcript

τ = (nmcP2,send
1 ,nmcP1,recv

1 ,nmcP1,send
2 ),

then abort and output ⊥.
2. Let

ϕ′ = (nmcP2,send
1 ,nmcP1,recv

1 nmcP1,send
1 ,nmcP2,send

2 , C̃P2 ,otP1
1 ,otP2

2 )

be the statement which party 2 proves via zkP2
2 , with respect to language

L2→1. If ZKverify(ϕ
′, zkP2

2 , rP1

zk) = 0 then abort and output ⊥.
3. Compute the output labels lab′ ← OT3(ot

P2
2 , rP1,recv

ot ) of the OT proto-
col.

4. Output the evaluation Eval(C̃P2 , lab′) of the garbled circuit C̃P2 sent by
P2, using the labels lab′ obtained in the previous step.

The circuit C which is garbled by Party 1 is as follows.

15



Circuit C:

Input: (x2, r
P2,send
c , rP2

gc , r
P2,send
ot )

Hardcoded: (λ,x1,nmcP2,send
1 )

1. If nmcP2,send
1 = NMCsend

1 (1λ, (x2, r
P2
gc , r

P2,send
ot ); rP2,send

c ), then:
(a) Return f(x1,x2)

2. Else:
(a) Return ⊥.

3.3 Security

We now prove Theorem 2 by showing that the protocol above satisfies the defi-
nition of concurrent MPC security given in Section 2.3.

Let there be n parties, with a subset of corrupted parties C ∈ [n]. Consider
a PPT adversary A which spawns a polynomial number of sessions of the pro-
tocol described above, where for each session at most one party is corrupt, and
schedules messages across the different sessions in an arbitrary order, controlling
the inputs and messages of the corrupted parties. At the end of the experiment,
A receives the outputs of all parties in all sessions. We show the existence of
an ideal-world adversary (called the “simulator”) which produces an interaction
with A that is indistinguishable from the real-world interaction of A.

We describe the behavior of the simulator below. In the following, we denote
a session by (s, i, j), where s is the session number, and parties Pi and Pj run
the 2PC protocol during this session. Without loss of generality we assume Pi is
honest and Pj is corrupt, and that A always asks for the message of Pi in both
rounds before sending the the message of Pj for that round.

The Concurrent-Secure Simulator:

At the beginning of the experiment, the simulator invokes A. The simulator also
initializes a database where it will store, for each session (s, i, j), the messages
and extracted values of Pj , the simulator’s private state for this session, along
with the ideal functionality output for the session. The simulator then responds
to A in the following manner.

Whenever A initializes session (s, i, j), do the following to simulate Pi’s
message to Pj :

1. Choose random strings rPi,send
c , rPi,recv

c , rPi
gc , r

Pi,recv
ot , rPi,send

ot , and rPi
zk of

appropriate sizes. Store all strings as the simulator’s private state for session
(s, i, j).

2. Compute a ZK verifier’s message zkPi
1 ← ZK1(1

λ; rPi
zk).

16



3. Compute a round-one committer’s NMC message

nmcPi,send
1 ← NMCsend

1 (1λ, val; rPi,send
c )

for the value val = (0, 0, 0).
4. Compute a round-one receiver’s NMC message

nmcPi,recv
1 ← NMCrecv

1 (1λ; rPi,recv
c ).

5. Compute an OT receiver’s message otPi
1 ← OT1(1

λ, (0, 0, 0, 0); rPi,recv
ot ),

where the choice bits are (0, 0, 0, 0).
6. Send (zkPi

1 ,nmcPi,send
1 ,nmcPi,recv

1 ,otPi
1 ) to Pj on behalf of Pi.

Whenever A sends a first-round message m on behalf of Pj in session
(s, i, j), do the following:

1. Parse m as (zk
Pj

1 , nmc
Pj ,send

1 , nmc
Pj ,recv

1 , ot
Pj

1 ). Store m as Pj ’s first-round
message in session (s, i, j).

2. Compute the extracted values (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot )← OTextract(ot

Pj

1 )

from Pj ’s OT receiver’s message, and save (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ) as Pj ’s

OT receiver value in session (s, i, j).

3. If nmc
Pj ,send

1 = NMCsend
1 (1λ, (xj , r

Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), then send xj to the

ideal functionality and receive back the evaluation y = f(xi,xj). If

nmc
Pj ,send

1 ̸= NMCsend
1 (1λ, (xj , r

Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), set y = ⊥.

4. Store y as the ideal-world output for Pj in session (s, i, j).

Whenever A requests a second-round message from honest party Pi in
session (s, i, j), do the following:

1. Retrieve Pj ’s first-round message m =(zk
Pj

1 , nmc
Pj ,send

1 , nmc
Pj ,recv

1 , ot
Pj

1 )
for session (s, i, j).

2. Compute a round-two NMC sender’s message

nmcPi,send
2 ← NMCsend

2 (1λ, val,nmc
Pj ,recv

1 , rPi,send
c )

for the value val = (0, 0, 0).
3. Compute a simulated garbled circuit (C̃P

i , lab)← SimGarble(1
λ, |C|, y; rPi

gc )
using the output y saved previously for session (s, i, j).

4. Compute an OT sender’s message

otPi
2 ← OT2(1

λ, onlychoices(c, lab),ot
Pj

1 , rPi,send
ot ), where

c = (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ) is the saved OT receiver’s value for round

(s, i, j). Recall that onlychoices sets all non-chosen labels to 0.
5. Compute a simulated prover’s ZK message zkPi

2 ← ZKsim(1
λ, ϕ, zkPTwo

1 , r′)
using the statement

ϕ = (nmcP1,send
1 ,nmcP2,recv

1 nmcP2,send
1 ,nmcP1,send

2 , C̃P1 ,otP2
1 ,otP1

2 )

and r′ is random.
6. Send (nmcPi,send

2 , C̃P
i ,otPi

2 , zkPi
2 ) to Pj on behalf of Pi.

17



Whenever A sends a second-round message m on behalf of Pj for
session (s, i, j), do the following:

1. Parse m as (nmc
Pj ,send

2 , C̃P
j ,ot

Pj

2 , zk
Pj

2 ).
2. If the NMC verification algorithm NMCverify(1

λ, τ, rPi,recv
c ) fails with respect

to Pj ’s commitment transcript τ = (nmc
Pj ,send

1 ,nmcPi,recv
1 ,nmcPi,send

2 ), then
instruct the ideal functionality to deliver ⊥ to Pi.

3. If ZKverify(ϕ
′, zkPi

2 , r
Pj

zk ) = 0 then instruct the ideal functionality to deliver ⊥
to Pi.

4. Extract the committed values

(xj , r
Pj
gc , r

Pj ,send
ot )← NMCextract(nmc

Pj ,send

1 ,nmcPi,recv
1 ,nmc

Pj ,send

2 )

from Pj ’s NMC transcript. If we haven’t already queried the ideal
functionality, send xj to the ideal functionality. Note that because the NMC
is perfectly binding after round 1, the value xj is identical to the value
extracted by OTextract during round 2 as long as the identity checked in C
holds.

5. Use the values obtained in the previous step to check if the conditions in
statement ϕ hold with respect to language Lj→i. If they do not hold, output
“special abort”.

6. If we have not yet aborted, instruct the ideal functionality to deliver the
output to Pi.

We show the view in the real world is indistinguishable from the view in the
ideal world via a series of hybrid games, where the first hybrid H0 corresponds
to the real world and the last hybrid H6 corresponds to the ideal world. The
hybrids are as follows.

Hybrid H0: In this hybrid, the simulator plays the role of all honest parties
in all sessions, and behaves identically to the real-world executions of the
protocol.

Hybrid H1: Here the simulator acts in the same way as in H0 except that for
each honest party Pi’s round 2 message during session (s, i, j) it simulates
the ZK proof it sends to A. This hybrid now runs in time poly(TSim).

Hybrid H2: The simulator acts in the same way as H1, except that when
computing each honest party Pi’s round 1 message during session (s, i, j),
it sends the chooser’s OT message with choice bits (0, 0, 0, 0) instead of

(xi, r
Pi,send
c , rPi

gc , r
Pi,send
ot ). This hybrid still runs in time poly(TSim).

Hybrid H3: The simulator acts in the same way as H2, except for each session
(s, i, j), during rounds 1 and 2 it commits to (0, 0, 0) on behalf of Pi instead

of (xi, r
Pi
gc , r

Pi,send
ot ). This hybrid still runs in time poly(TSim).

Hybrid H4: The simulator acts in the same way as H3, except that after re-

ceiving Pj ’s round 2 message during session (s, i, j) it breaks nmc
Pj ,send
1 to

obtain (xj , r
Pj
gc , r

Pj ,send
ot ) and during the output computation phase outputs

“special abort” if the conditions in statement ϕ don’t hold. This hybrid now
runs in time poly(TNMCextract).

18



Hybrid H5: The simulator acts in the same way as H4, except that after re-
ceiving Pj ’s round 1 message during session (s, i, j), it runs OTextract on

Pj ’s OT receiver message to obtain the values (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ).

If nmc
Pj ,send
1 = NMCsend

1 (1λ, (xj , r
Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), the simulator sends

xj to the ideal functionality to obtain f(xi,xj). On the other hand, if

nmc
Pj ,send
1 ̸= NMCsend

1 (1λ, (xj , r
Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), the simulator sends the

value xj extracted using NMCextract after receiving Pj ’s round 2 message to
the ideal functionality. It tells the ideal functionality to deliver the output
to P1 at the end of session (s, i, j) as long as the session did not abort. This
hybrid now runs in time poly(TOTextract).

Hybrid H6: The simulator acts in the same way as H5, except that for every
honest party Pi’s second-round message during session (s, i, j), it simulates
the generation of the garbled circuit using the saved value y received from the
ideal functionality instead of generating it honestly. This final hybrid runs in
time poly(TOTextract), which is the running time of the ideal-world simulator.

We want to use these hybrids to show the view of A is indistinguishable
between the real and ideal worlds. There is a problem, though: in H2 and H3,
the honest parties have no way to obtain its output. This is because the simulator
switches the honest parties’ ot1 messages to 0 in H2, which means the real-world
method of running the garbled circuit to obtain the output will not work, and
the simulator is not yet powerful enough to break the commitment.

Despite this, it is still possible to use this ordering of hybrids to prove indis-
tinguishability. Consider the pair (s,xj , bi), where xj is the input committed to
by corrupt party Pj during session (s, i, j), and bi is a bit which denotes whether
or not honest party Pi accepts Pj ’s NMC and zero knowledge proof during the
same session. Assuming A cannot generate a proof for a false statement, this
pair determines the output of Pi in session (s, i, j) regardless of whether we are
in the real or the ideal world. So to make the proof work, during certain steps
we will argue indistinguishability of the tuple (v, {(s,xj , bi)}s) between hybrids,
where v is the view of A.

The proof is organized as follows.
We first argue computational indistinguishability between each successive

pair of hybrids. Afterwards we argue indistinguishablity of the combined view
of A along with the output of P1. Before starting, define a “bad” event E which
will be useful in our proofs.

Definition 4. We define event E to occur if there exists a session (s, i, j) where
both of the following happen:

1. Pi accepts Pj’s ZK proof
2. one of the conditions of the statement ϕ′ do not hold w.r.t. Lj→i.

Lemma 1. E occurs with negligible probability in H0.

Proof. This follows from the adaptive soundness of the SPSS ZK argument sys-
tem for languages decidable in time TL and the fact that Lj→i is decidable in
time TL.

19



Lemma 2. Assuming the zero-knowledge property of the SPSS ZK argument
system, the view of A between H0 and H1 are computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch to a simulated ZK2 message for Pi.

Assume there is a PPT adversary A who can interact with the simulator
and then, given P1’s output, distinguish between real and simulated for session
(s, i, j). Then we construct a PPT adversary A′ which contradicts the zero-
knowledge property of the ZK system.

Fix the randomness used by the adversary, and by the simulator to generate
all honest parties’ messages before Pi’s second-round message. There must be
at least one way to fix this randomness such that the advantage of A is still
nonnegligible. This also fixes the statement ϕ (and the witness w for s) which
Pi should prove in round 2.

Now we construct A′ to run the experiment with this fixed randomness, and

to forward zk
Pj

1 to the ZK challenger. Then A′ receives zkPi
2 which is either a

valid proof of s or a simulated one. A′ uses zkPi
2 as the proof to send to A instead

of generating one itself when generating the second-round message for Pi. It then
outputs whatever A outputs.
A distinguishes the real and simulated for (s, i, j) even with the round 1

randomness fixed, and this is identical to the experiment described above with
the new A′. So A′ is a distinguisher for the zero-knowledge property of the ZK
system.

Lemma 3. Assuming the zero-knowledge property of the SPSS ZK argument
system, E occurs with negligible probability in H1.

Proof. Assume there is an adversary A which causes E to happen with nonneg-
ligible probability in H1. Note that by Lemma 1 A cannot cause E to happen
with nonnegligible probability in H0. We can extract the committed value in
time TNMCextract for each session to check whether or not E holds, thus creating a
poly(TNMCextract)-time distinguisher for H0 and H1, contradicting Lemma 2, since
poly(TNMCextract)≪ Tzk.

Lemma 4. Assuming the chooser’s security of the OT scheme, the tuple (v, {(s,xj , bi)}s)
between H1 and H2 is computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch Pi’s ot1 message to 0.

Assume there is a PPT adversary A who can interact with the simulator and
then, given {(s,xj , bi)}s in addition to its view v at the end of the interaction,
distinguishes between the subhybrid for some (s, i, j) and the previous subhybrid
with nonnegligible probability. We use A to build an adversary A′ for the OT
chooser’s security game. For simplicity of exposition, we first assume that A
distinguishes only given its view v. Once we have established the reduction in
this case, we extend it to the case where A also receives (v, {(s,xj , bi)}s).

20



Fix the randomness (rPi,send
c , rPi

gc , r
Pi,send
ot ) generated on behalf of Pi for ses-

sion (s, i, j). There must be at least one such fixed value for which A still dis-
tinguishes with nonnegligible probability. Let A′ run the experiment identically
to the previous subhybrid with the randomness above fixed to this particular
value, except that instead of computing otPi

1 directly it receives this value from
the OT challenger. The challenger either computes the OT with choice bits
(rPi,send

c , rPi
gc , r

Pi,send
ot ) or (0, 0, 0, 0).

Assuming (rPi,send
c , rPi

gc , r
Pi,send
ot ) is fixed, this experiment is identical to the

previous subhybrid in the first case and the subhybrid for (s, i, j) in the second
case. So if A successfully distinguishes then A′ does as well. This contradicts
chooser’s security of the OT, since TSim ≪ TR.

To extend to the case where A also receives {(s,xj , bi)}s, note that we can
break the commitments of each of the corrupted parties in time TNMCextract to
retrieve each corrupted input xj , and bi is known already by the experiment.
Passing these to the adversary we obtain a poly(TNMCextract)-time distinguisher,
which still contradicts chooser’s security of the OT, since poly(TNMCextract) ≪
TR.

Lemma 5. Assuming E occurs with negligible probability in H1, E occurs with
negligible probability in H2.

Proof. Assume there is an adversary A which causes E to happen with nonneg-
ligible probability in H2. Note that by Lemma 3 A cannot cause E to happen
with nonnegligible probability in H1. We can break the corrupted parties’ com-
mitments each in time TNMCextract to create a poly(TNMCextract)-time distinguisher
for H1 and H2, contradicting Lemma 4, since poly(TNMCextract)≪ TR.

Lemma 6. Assuming the non-malleability of the commitment scheme, the tuple
(v, {(s,xj , bi)}s) between H2 and H3 is computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where, in each subhybrid we switch to an NMC of 0 for Pi.

Assume there is a PPT adversary A who can interact with the simulator
and then, given {(s,xj , bi)}s in addition to its view v at the end of the interac-
tion, distinguishes between the previous hybrid and the hybrid for (s, i, j) with
non-negligible advantage. Then we create a TSim-time A′ which contradicts the
non-malleability property of the commitment scheme. Note that {(s,xj , bi)}s is
computable directly from the output of the non-malleability game, since each
corrupted party Pj commits to xj (i.e., these are part of the RHS committed
values).

Fix the randomness rPi
gc and rPi,send

ot generated for Pi in session (s, i, j). There
must be some such fixed values where A still distinguishes between the two
subhybrids with non-negligible advantage. We create A′ as follows. A′ runs the
experiment identically to the previous subhybrid, except that the values rPi

gc

and rPi,send
ot are fixed to maximize the probability of distinguishing, and the

following changes are made to the non-malleable commitment interactions. When

21



computing Pi’s round 1 message, instead of computing nmcPi,send
1 , it receives this

value from the challenger for the NMC game and forwards it to A. It forwards
nmc

Pj ,recv
1 which it receives from A to the challenger as well. When computing

Pi’s round 2 message, it receives nmcPi,send
2 from the challenger and forwards it

to A again. The NMC challenger commits to either (xi, r
Pi
gc , r

Pi,send
ot ) or (0, 0, 0).

If the challenger commits to (xi, r
Pi
gc , r

Pi,send
ot ) then the experiment is identi-

cal to the subhybrid directly preceding the subhybrid for session (s, i, j), and if
the challenger commits to (0, 0, 0) then the experiment is identical to the sub-
hybrid for (s, i, j) (with some fixed randomness, as described above). Thus A′

wins the non-malleability game of the commitment scheme with non-negligible
probability, contradicting the non-malleability of the commitment scheme, since
poly(TSim)≪ Tnmc.

Lemma 7. Assuming E occurs with negligible probability in H2 and the non-
malleability of the commitment scheme, E occurs with negligible probability in
H3.

Proof. Assume that E occurs with non-negligible probability in H3. We can
construct an adversary A′ in the same way as in Lemma 6, playing the role of
the adversary in a full nonmalleability game. By the nonmalleability property
of the commitment scheme, the joint view of A′ combined with the values it
committed to are indistinguishable regardless of what the challenger commits
to. If we have both the view of A′ along with the values committed to it is
easy to check if E occured. If E occurs with nonnegligible probability in H2

then by checking E we have a poly(TSim)-time distinguisher which contradicts
non-malleability of the NMC.

Lemma 8. Assuming E occurs with negligible probability in H3, then the tuple
(v, {(s,xj , bi)}s) between H3 and H4 are computationally indistinguishable.

Proof. The only difference between H3 and H4 is that we break all corrupted
parties’ commitments and output “special abort” if at any point E occurred. So
the only time the two hybrids are distinguishable is if E occurs. Thus indistin-
guishability follows from Lemma 7.

Note that from this point onward, proving hybrid indistinguishability is suf-
ficient for proving E occurs with negligible probability, since every hybrid now
checks E explicitly.

Lemma 9. The tuple (v, {(s,xj , bi)}s) between H4 and H5 are computationally
indistinguishable.

Proof. This follows trivially from the fact that the view of A is identical between
H4 and H5.

Lemma 10. Assuming E happens with negligible probability in H1 and H5, the
view of the adversary A between H1 and H5 is computationally indistinguishable.

22



Proof. By the previous claims the tuple (v, {(s,xj , bi)}s) is indistinguishable
between these hybrids. Assuming E did not happen, in both hybrids the output
of each honest party Pi during session (s, i, j) is f(xi,xj) if b = 1 and ⊥ if b = 0.
To see why this is the case when b = 1, note that the value xj extracted by
OTextract after round 1 is identical to the value extracted for x′

j by NMCextract

after round 2. Assuming E does not occur, P1 outputs x′
j in H1, and P1 outputs

xj in H5.
Thus the claim follows from the fact that E occurs with negligible probability

in H5, which follows from Lemma 9.

Lemma 11. Assuming security of the garbled circuit scheme and statistical
sender’s security of the OT, the view of A between H5 and H6 is computationally
indistinguishable.

Proof. We consider a subhybrid H′
5 which acts similarly to H5 except that when

generating the second-round message for each honest Pi during session (s, i, j),
it uses onlychoices to zero out the labels given by the honest party in ot2 which
do not correspond to the adversary’s input.

This claim then then follows from the next two claims.

Lemma 12. Assuming statistical sender’s security of the OT, the view of the
adversary A between H5 and H′

5 are statistically indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch the ot2 message of Pi to zero out non-chosen
labels. Assume there is an adversary A who can interact with the simulator and
then distinguish between the subhybrid for some session (s, i, j) and the preced-
ing subhybrid with nonnegligible probability. We use A to build an adversary
A′ for the OT sender’s security game.

Fix the randomness rPi
gc used to generate Pi’s garbled circuit which it sends

as part of its second-round message. There must be at least one such fixed value
for which A still distinguishes with nonnegligible probability. Let A′ run the
experiment identically to the subhybrid preceding (s, i, j) with rPi

gc fixed to this

value, except that it passes the ot1 message ot
Pj

1 generated by A to the OT
challenger. The OT challenger then either responds with an otPi

2 corresponding

to the same labels in H5, or breaks ot
Pj

1 and zeros out the labels which do not
correspond to the adversary’s input. A′ then outputs the output of A.

Assuming rPi
gc is fixed, this experiment is identical to the preceding hybrid in

the first case and the subhybrid for (s, i, j) in the second case. So if A successfully
distinguishes then A′ does as well.

Lemma 13. Assuming security of the garbled circuit scheme, the views induced
by H′

5 and H6 are computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch the garbled circuit of Pi to be simulated.

Assume there is an adversary A who distinguishes between the subhybrid
directly preceding the one for some session (s, i, j) and the subhybrid for (s, i, j)

23



with nonnegligible probability. We use A to build a poly(TOTextract)-time adversary
A′ that contradicts security of the garbled circuit.

Fix the randomness used by A and the randomness used by the simulator in
generating all rounds preceding Pi’s second-round message during session (s, i, j).
There must be some such fixed randomness such that A still distinguishes with
nonnegligible probability. This also fixes the circuit which the honest party Pi

garbles along with Pj ’s ot1 input in session (s, i, j).
Let A′ work in the same way as the subhybrid preceding (s, i, j) except

that it receives a garbled circuit and labels (C̃P1 , labels) from the challenger,
which it uses as the garbled circuit and labels for Pi in session (s, i, j). The
challenger either computes the garbled circuit honestly or simulates using the
output f(xi,xj), which is fixed because of the fixed randomness. A′ finally out-
puts the output of A. Based on what the challenger does, the experiment is either
identical to the subhybrid preceding (s, i, j) or the (s, i, j) subhybrid (with the
adversary’s randomness fixed). This means that A distinguishes with nonnegligi-
ble probability and thus so does A′, contradicting security of the garbled circuit,
since poly(TOTextract)≪ TG.

4 Instantiating the Non-Malleable Commitment of [51]
using LWE

In this section, we list all primitives used in each part of the construction of fully
concurrent non-malleable commitments of [51], along with how to instantiate
each primitive using subexponential hardness of LWE.

Two-round extractable commitments are constructed using the following
primitives:
– A non-interactive perfectly binding commitment. Can be obtained from

LWE using one of the LWE-based PKE schemes.
– Two-round statistically-sender-private oblivious transfer. Known from

LWE [19].
– Yao’s garbled circuits. Symmetric-key encryption is known from LWE.
– Two-round zero knowledge with super-polynomial simulation. Known

from LWE [8, 43].
Two-round SPS strong zero knowledge arguments are constructed using

the following primitives:
– A zap. Known from LWE [8, 43].
– The two-round extractable commitment. See above.
– A trapdoor for the prover to use. Can use an instance of SIS.

Two-round constant-tag non-malleable commitments are constructed us-
ing the following primitives:
– The two-round extractable commitment. See above.
– A non-interactive perfectly binding commitment. Can be obtained from

LWE using one of the LWE-based PKE schemes.
One-one non-malleable commitments in two rounds are constructed us-

ing the following primitives:

24



– The two-round constant-tag non-malleable commitment. See above.
– The two-round SPS strong ZK. See above.

One-one simulation-sound zero knowledge in two rounds is constructed
using the following primitives:
– The one-one non-malleable commitment. See above.
– A zap. Known from LWE [8, 43].
– A trapdoor for the prover to use. Can use an instance of SIS.

Fully-concurrent non-malleable commitments in two rounds are constructed
using the following primitives:
– The one-one simulation-sound zero knowledge argument. See above.
– The constant-tag non-malleable commitment. See above.

5 Quantum Computation

We conclude by observing that the simulator for our two-party computation
protocol is straight-line, i.e., it does not resort to rewinding the adversary to
generate a simulated transcript, and black-box. It is shown in [69] that any such
protocol remains secure also against quantum attackers (i.e., it is post-quantum
secure) and furthermore in [14] it is shown that any post-quantum two-round
2PC with a straight-line black-box simulator can be generically compiled into a
secure 2PC for quantum circuits without adding any round. In [14] they proposed
an instantiation of the classical 2PC in the common reference string model.
Plugging our protocol (with a suitable instantiation of the underlying building
blocks) into their result we obtain the following new implication.

Theorem 3. Assuming the quantum sub-exponential hardness of the LWE prob-
lem, there exists a two-round concurrent 2PC for all quantum circuits, with clas-
sical inputs and outputs, in the plain model.

5.1 Quantum Concurrent 2PC

For completeness, we describe our construction of concurrently secure two-round
2PC with respect to quantum functionalities. Our protocol is essentially iden-
tical to the three-message two-party protocol described in [14], except that we
substitute our (classical) 2PC protocol from Section 3 and we only require one
party to know the output. Hence we drop the third round from the protocol
described in [14]. Before describing the protocol, we need bring some definitions
of the quantum primitives and we take them in verbatim from [14].

Definition 5 (Clifford + Measurement Circuit). A Clifford + Measure-
ment circuit with parameters ni + kii∈[d] operates on n1 + k1 input qubits and
applies d alternating layers of Clifford unitary and computational basis mea-
suremtns, during which a total of k1 + · · ·+ kd of the input qubits are measured.
It is specified by (F0, f1, . . . , fd), where F0 us a Clifford unitary, and each fi is a
classical circuit which takes as input the result of computational basis measure-
ments on the i-th layer, and outputs a Clifford unitary Fi. In layer i ∈ [d], ki

25



qubits are measured and ni qubits are left over. The circuit is evaluated by first
applying F0 to the n1 + k1 input qubits, then the following steps are performed
for i = 1, . . . d:

– Measure the remaining ki qubits in the computational basis, resulting in out-
comes mi ∈ {0, 1}k1 .

– Evaluate fi(mi) to obtain a classical description of a Clifford Fi ∈ Cni
.

– Apply Fi to the first ni registers.

The output of the circuit is the result of applying Fd to the final nd registers.

Definition 6 (Garbling scheme for C + M Circuits). A garbling scheme
for C+M circuits consists of three procedures (QGarble, QGEval, QGSim) with the
following syntax.

– (E0, Q̃)← QGarble(1λ, Q): A classical PPT procedure that takes as input the
security parameter and a C+M circuit and outputs a Clifford input garbling
matrix E0 and a quantum garbled circuit Q̃.

– xout ← QGEval(x̃inp, Q̃) : A QPT procedure that takes as input a garbled

input x̃inp and a garbled C+M circuit Q̃, and outputs a quantum state xout.

– (x̃inp, Q̃) ← QGSim(1λ, {ni, ki}i∈[d],xout): A QPT procedure that takes as
input the security parameter, parameters for a C+M circuit, and an output
state, and outputs a simulated garbled input and garbled circuit.

Correctness. For any C +M circuit Q with parameters {ni + ki}i∈[d] and n0-
qubit input state xinp along with (potentially entangled) auxiliary information
z, we have:

{(QGEval(E0(xinp, 0
kλ), Q̃), z) : (E0, Q̃)← QGarble(1λ, Q)} ≈s (Q(xinp), z)).

Security. For any C+M circuit Q with parameters {ni + ki}i∈[d] and n0-qubit
input state xinp along with (potentially entangled) auxiliary information z, we
have:

{(E0(xinp, 0
kλ), Q̃, z) : (E0, Q̃)← QGarble(1λ, Q)}
≈c (QGSim(1

λ, {ni, ki}i∈[d], Q(xinp)), z).

The rest of this section assumes familiarity with basic notions of quantum
computation, and quantum garbled circuits as we defined above and were ini-
tially introduced in [24]. For a comprehensive background, we refer the reader
to [14]. For the construction of our protocols, we need the following building
blocks:

i A post-quantum secure concurrent two-round two-party protocol for classical
computation c2PC (let Tc2PC denote the runtime of the simulator).

ii A quantum garbling scheme for C+M gates (QGarble, QGEval, QGSim), secure
against adversaries running in time TQGC.

26



We denote by Tc2PC the runtime of the simulator of the classical two party
computation and by TQGC the maximum runtime of the distinguisher allowed by
the security of the quantum garbled circuit. We require that poly(λ)≪ Tc2PC ≪
TQGC. In our protocol, parties P1 and P2 each having inputs x0 and x1 want
to compute a quantum circuit Q on their inputs and only P1 gets outputs out1
while P2 receives no output in a way that they do not reveal anything about their
inputs and only one party gets the output of the computation. We assume that
Q is a Clifford+Measurment quantum circuit and takes input (x0,x1,T

k,0k),
where T denotes a magic state T = 1/

√
2 · (|0⟩+ eiπ/4 |1⟩).

At a high level, the quantum two-party protocol between parties P1,P2 runs
in two parallel phases, one is for the parties to jointly encode their quantum
inputs and simultaneously they run a two-message classical 2PC that outputs
a classical description of a quantum garble circuit to P1 according to the func-
tionality f [Q] which is described in fig. 2; which allows P1 to later evaluate the
garbled circuit to get his own output.

To make the protocol secure against a malicious P2 we use the ”cut and
choose” technique from [32] and we refer to [14, §2,5] where they explained how
this technique would be applied on their two-party protocol to make it secure
against malicious P2. The cut-and-choose technique is done by the Clifford uni-
tary Udec-check-enc in the functionality of our c2PC that is used in the computation
phase of our protocol below. Now we describe our protocol in more detail:

Quantum two party computation protocol

Common information: security parameter λ, and C+M circuit Q to be
computed with n1 + n2 input qubits, m1 +m2 output qubits, nZ auxiliary
0 states, and nT auxiliary T states. let
s = n2 + (n1 + λ) + (2nZ + λ) + (nT + 1)λ.
P1’s Input: x1 (Parsed as a computational basis state)
P2’s Input: x2 (Parsed as a computational basis state)

– Round 1 P1 :
• Samples a random Clifford C1 ← Cn1+λ and uses it to encrypt and
authenticate his input x1 as m1 := C1(x1,0

λ).
• Computes the first round message m1, of the c2PC using C1 as his
input.

• Sends (m1,m1) to P2.
– Round 2 P2 :
• Samples random Cliffords C2 ← Cs and Cout ← Cm2+λ uses C2 to
encrypt and authenticate his own input x2 alongside with encoding
of his quantum state m2 := C2(x2,m1,0

2nZ , T (nT+1)λ).
• Computes the second round message m2 for the classical c2PC com-
putation using (C2, Cout) as their input.

27



• Sends (m2,m2) to P1.
– Computation Phase P1 does the following computation:
• Using m2 he can compute the output of the classical c2PC that is
(Udec-check-enc, D, g̃1, . . . , g̃d).

• Compute (minp, zcheck, trap2,Tinp, tcheck)← Udec-check-enc(m2)
• Measure each qubit of (zcheck, trap) in the standard basis and abort

if any measurement is not zero.
• Measure each qubit of tcheck and the T-basis and abort if any mea-
surement is not zero.

• Compute out1 ← QGEval(D0, g̃1, . . . , g̃d,minp).

Classical functionality f [Q]

Common Information: security parameter λ, and C+M circuit Q to be computed
with n1 + n2 input qubits, m1 + m2 output qubits, nZ auxiliary 0 states, and nT

auxiliary T states. let s = n2 + (n1 + λ) + (2nZ + λ) + (nT + 1)λ.

P1’s Input: Classical description of C1 ∈ Cn1+λ

P2’s Input: Classical description of C2 ∈ Cs and Cout ∈ Cm2+λ

1. Sample the unitary Ucheck as follows:
– sample random permutation π on (nT + 1)λ elements.
– Sample random element M ← GL(2nT ,F2).
– Compute a description of the Clifford Ucheck that operates as follows on regis-

ters (A,B,TrapB,ZA,TrapA,TA).
• Rearrange the registers of TA according to the permutation π and then

partition the registers into (Tinp,Tcheck).
• Apply the inner map M to the registers ZA and then partition the registers

into (Zinp,Zcheck).
• Rearrange the registers to (A,B,Zinp,TrapA,Tinp,Zcheck,TrapB,Tcheck).

– Define Udec-check as:

Udec-check := Ucheck(InA ⊗ C†
B ⊗ I(2nZ+λ)+(nT+1)λ)C†

2

2. Sample (E0, D0, g̃1, · · · , g̃d)← QGarble(1λ, Qdist(Cout)).
3. Compute the description of Udec-check-enc := (E0 ⊗ I(nZ+λ)λ)U†

dec-check.

P1 Output:

1. A unitary Udec-check-enc on s qubits.
2. A quantum garbled circuit (D, g̃1, . . . , g̃n)

Fig. 2. Classical functionality F [Q] to be used in the quantum c2PC protocol

28



We note that, in step 2 of fig. 2, given a C + M circuit Q, and a Clifford
Cout ∈ Cm1+λ, the circuit Qdist(Cout) is defined as follows: it takes as input
(n1 + n2 + nZ + λ + nTλ) qubits (x1 + x2 + zinp + trapA, tinp) on registers
(A,B,Zinp, T rapA, Tinp), it will first apply the magic state distillation circuit
from Lemma 3.3 of [14] with parameters (nTλ, λ) to tinp to produce QRV t of
size nT , then it will run Q on (x1,x2, zinp, t) to produce (y1, y2), and in the end,
it outputs (Cout(y2, trapA), y1).

5.2 Security Proof of Quantum Concurrent 2PC

In this section, we prove Lemma 14 that is similar to the proof of Theorem 5.1
in [14]. For the sake of completeness, we write out the proof in its entirety.

Lemma 14. Assuming two-round concurrently secure 2PC protocol with black-
box super-polynomial simulation running in time Tc2PC and sub-exponentially se-
cure quantum garbled circuit with simulation running time TQGC, where poly(λ)≪
Tc2PC ≪ TQGC, there exists a concurrent two-round 2PC for all quantum circuits
in the plain model.

Proof. For the sake of simplicity, we prove it in the following two cases when

1. A quantum polynomial-time adversary A corrupting party P1.

2. A quantum polynomial-time adversary A corrupting party P2.

For the ideal functionality, we use the Classical functionality in fig. 2.

Case 1: Consider any quantum PT adversary A corrupting party P1. The
simulator Sim(x1, auxA) is defined as follows:

– Receive (m1,m1) from A and compute inp ← c2PC.Sim(1λ,m1). If inp = ⊥
the abort, else parse inp as C1 and compute (x′

1, trap1) := C†
1(m1).

– Query ideal functionality and compute simulated round 2 message as follows:

• Compute (m̃inp, D, g̃1, . . . , ˜gd) by running QGSim(1λ, {ni, ki}i∈[d], out1)
where where m̃inp is the simulated quantum garbled input and {ni, ki}i∈[d]

are the parameters of C+M circuit Qdist(Cout).

• Sample a random Udec-check-enc and computem2 := U†
dec-check-enc(m̃inp,0, trap1, T

λ).

• Compute m2 ← c2PC.Sim(1λ,Udec-check-enc, D, g̃1, . . . , g̃d).

• Send (m2,m2) to A.

We now show that the simulation strategy is successful against all malicious
QPT adversaries. That is, the view of the adversary A(x2, auxA) along with
the output of the honest parties is computationally indistinguishable in the real
and ideal worlds. We show this via a series of computationally indistinguishable
hybrids where the first world H0 corresponds to the real world and the last game
corresponds to the ideal world.

29



1. H1: In this game, Sim runs c2PC.SimP1 in time Tc2PC and simulates the c2PC
scheme, using c2PC.Sim to extract A’s input, C1, and runs c2PC.Sim to com-
putes party P2’s message m2. Use C1 and freshly sampled (C2, Cout) to
sample the output of the classical functionality that is given to c2PC.Sim.
The (computational) indistinguishability of H0 and H1 comes directly from
the security against corrupted c2PC scheme.

2. H2: Now, we make a (perfectly indistinguishable) switch in how m2 is com-
puted and how Udec-check-enc (part of the classical c2PC output) is sampled.

Define (x′
1, trap1) := C†

1(m1), where C1 was extracted from m1. As here

exists a Clifford unitary U such that Udec-check-enc = UC†
2 , where C2 was

randomly sampled. Thus, since the Clifford matrices form a group, an equiv-
alent sampling procedure would be to sample Udec-check-enc and define

m2 := U†
dec-check-enc(E0(x

′
1,x2,0

nZ+λ, TnTλ),0nZ , trap1, T
λ).

Notice that, in H1, we have that,

Udec-check-enc(m2) := (E0(x
′
1,x2,0

nZ+λ, TnTλ),0nZ , trap1, T
λ).

This hybrid runs in time Tc2PC. We observe that H1 and H2 are equivalent.

3. H3: In this game, we simulate the quantum garbled circuit. In particular,
compute

out1 ← Qdist[Cout](x
′
1,x2,0

nZ+λ, TnTλ)

and then compute m̂inp by running QGSim and the substitute m̂inp for

E0(x
′
1,x2, 0

nZ+λ, TnTλ) in the computation ofm2, so thatm2 := U†
dec-check-enc

(E0(x
′
1,x2,0

nZ+λ, TnTλ),0nZ , trap1, T
λ). This hybrid runs in time Tc2PC.

The (computational) indistinguishability of H2 and H3 comes directly from
the sub-exponential security of the QGC.

4. H4: Finally, instead of directly computing out1 from the first stage of Qdist,
query the ideal functionality with x′

1 and receive back out1. Now, during
party P2’s output reconstruction step, if the check passes, send ”accept” to
the ideal functionality, and otherwise send ”abort” to the ideal functionality.
This game is now same as the ideal world. This hybrid runs in Tc2PC.
We observe that H4 and H5 are equivalent .

Case 2: Consider any quantum PT adversary A corrupting party P2. The
simulator Sim is defined as follows. Whenever we say that the simulator aborts,
we mean that it sends ⊥ to the ideal functionality and the adversary. The sim-
ulator Sim(x2, auxA) works as follows:

– Compute m1 ← c2PC.Sim(1λ), samples a random Clifford C1, and compute
m1 := C1(0

n1 ,0λ). Send (m1,m1) to A(x2, auxA).

30



– Receive (m2,m2) from A and compute out ← c2PC.Sim(1λ,m2). Abort if
out = ⊥, otherwise, parse out as (C2, Cout).

– Using (C1, C2) sample Udec-check and compute (x′
1,x

′
2,minp, trap2, zcheck, trap1,

Tinp, tcheck)← Udec-check(m2). Measure each qubit of zcheck and trap2 in the
standard basis and each qubit of tcheck in the T-basis. If any measurement
is non-zero, then abort.

We observe that the simulation strategy is successful against all malicious
QPT adversaries. That is, the view of the adversary along with the output of
the honest parties is computationally indistinguishable in the real and ideal
worlds. For this, we consider the following hybrids where H0 is the real word.

1. H1 In this world we run c2PC.Sim to compute the first message of the c2PC
as m1 and extract (C2, Cout) (or abort). This hybrid runs in time Tc2PC.
This world is computationally indistinguishable from the real world by the
security of the c2PC scheme against the malicious P2.

2. H2 In this world, we compute m1 as C1(0
nB ,0λ) and substitute x1 with

x′
1 before computing Qdist(Cout). This hybrid runs in time Tc2PC This world

is statistically indistinguishable from H1 from the security of the Clifford
authentication code.

Acknowledgements. Giulio Malavolta was supported by the German Fed-
eral Ministry of Education and Research BMBF (grant 16KISK038, project
6GEM). Behzad Abdolmaleki was supported by the German Federal Ministry
of Education and Research BMBF (grant 16KISK038, project 6GEM) and most
of the work was done while he was affiliated with the Max Planck Institute
for Security and Privacy. Rex Fernando was supported by the Algorand Cen-
tres of Excellence (ACE) Programme, the Defense Advanced Research Projects
Agency under award number HR001120C0086, the Office of Naval Research un-
der award number N000142212064, and the National Science Foundation under
award numbers 2128519 and 2044679. The views and conclusions contained in
this document are those of the author and should not be interpreted as represent-
ing the official policies, either expressed or implied, of any sponsoring institution,
the U.S. government or any other entity.

References

1. Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and Giulio Mala-
volta. Two-round maliciously secure computation with super-polynomial simula-
tion. In TCC, 2021.

2. Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225.
Springer, Heidelberg, May 2019.

31



3. Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 110–140. Springer,
Heidelberg, May 2020.

4. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach
to round-optimal secure multiparty computation. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 468–499.
Springer, Heidelberg, August 2017.

5. Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfus-
cation without multilinear maps: iO from LWE, bilinear maps, and weak pseu-
dorandomness. Cryptology ePrint Archive, Report 2018/615, 2018. https:

//eprint.iacr.org/2018/615.
6. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryp-

tion and indistinguishability obfuscation from degree-5 multilinear maps. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

7. Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Opti-
mizing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 2014, pages 646–658. ACM Press, November
2014.

8. Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and
Amit Sahai. Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 642–667. Springer,
Heidelberg, May 2020.

9. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay
Wadia. Two-message witness indistinguishability and secure computation in the
plain model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer,
Heidelberg, December 2017.

10. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-
shita Khurana, and Amit Sahai. Promise zero knowledge and its applications
to round optimal MPC. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 459–487. Springer, Heidel-
berg, August 2018.

11. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and
Amit Sahai. Round optimal concurrent MPC via strong simulation. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages
743–775. Springer, Heidelberg, November 2017.

12. Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 764–791. Springer, Heidelberg, May 2016.

13. Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In 47th FOCS, pages 345–354. IEEE Computer Society Press, October
2006.

14. James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On the
round complexity of secure quantum computation. Cryptology ePrint Archive,
Report 2020/1471, 2020. https://ia.cr/2020/1471.

15. James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark
Zhandry. Affine determinant programs: A framework for obfuscation and witness

32

https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615
https://ia.cr/2020/1471


encryption. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1–82:39.
LIPIcs, January 2020.

16. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg, May
2000.

17. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security
and Privacy, pages 72–84. IEEE Computer Society Press, May 1992.

18. Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable com-
mitments. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 209–234. Springer, Heidelberg, November 2018.

19. Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT
from LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 370–390. Springer, Heidelberg, November 2018.

20. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO
from homomorphic encryption schemes. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 79–109. Springer,
Heidelberg, May 2020.

21. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring
and pairings are not necessary for iO: Circular-secure LWE suffices. Cryptology
ePrint Archive, Report 2020/1024, 2020. https://eprint.iacr.org/2020/1024.

22. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure
computation without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 645–677. Springer, Heidelberg, November
2017.

23. Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 1–25. Springer, Heidelberg, February 2014.

24. Zvika Brakerski and Henry Yuen. Quantum garbled circuits, 2020.
25. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

26. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Hei-
delberg, May 2005.

27. Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable
security in the plain model from standard assumptions. In 51st FOCS, pages
541–550. IEEE Computer Society Press, October 2010.

28. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
3–12. Springer, Heidelberg, April 2015.

29. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Os-
trovsky. Round optimal secure multiparty computation from minimal assumptions.
In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551
of LNCS, pages 291–319. Springer, Heidelberg, November 2020.

30. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing

33

https://eprint.iacr.org/2020/1024


without low-level zeroes: New MMAP attacks and their limitations. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 247–266. Springer, Heidelberg, August 2015.

31. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

32. Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz, and Christian
Schaffner. Secure multi-party quantum computation with a dishonest majority.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 729–758. Springer, Heidelberg, May 2020.

33. Rex Fernando, Aayush Jain, and Ilan Komargodski. Maliciously-secure mrnisc in
the plain model. Cryptology ePrint Archive, Report 2021/1319, 2021. https:

//ia.cr/2021/1319.

34. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October
2013.

35. Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure
computation in constant rounds. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 99–116. Springer, Hei-
delberg, April 2012.

36. Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round com-
plexity of self-composable two-party computation. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 194–224. Springer, Heidelberg, April / May 2017.

37. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou.
The exact round complexity of secure computation. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 448–476. Springer, Heidelberg, May 2016.

38. Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE
Computer Society Press, October 2017.

39. Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular secu-
rity. Cryptology ePrint Archive, Report 2020/1010, 2020. https://eprint.iacr.
org/2020/1010.

40. Rosario Gennaro and Yehuda Lindell. A framework for password-based authen-
ticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of
LNCS, pages 524–543. Springer, Heidelberg, May 2003. https://eprint.iacr.

org/2003/032.ps.gz.

41. Vipul Goyal. Constant round non-malleable protocols using one way functions.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704.
ACM Press, June 2011.

42. Vipul Goyal and Abhishek Jain. On concurrently secure computation in the mul-
tiple ideal query model. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 684–701. Springer, Heidelberg,
May 2013.

43. Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical
zaps and new oblivious transfer protocols. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 668–699.
Springer, Heidelberg, May 2020.

34

https://ia.cr/2021/1319
https://ia.cr/2021/1319
https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2003/032.ps.gz
https://eprint.iacr.org/2003/032.ps.gz


44. Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-
efficient concurrently composable secure computation via a robust extraction
lemma. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I,
volume 9014 of LNCS, pages 260–289. Springer, Heidelberg, March 2015.

45. Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 488–520. Springer, Heidelberg, August 2018.

46. Sam Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to circular security-
based io. In CRYPTO, 2021.

47. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 251–281. Springer, Heidelberg, May 2019.

48. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
LPN over Fp, DLIN, and PRGs in NC0. IACR Cryptol. ePrint Arch., 2021.

49. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In STOC, pages 60–73. ACM, 2021.

50. Dakshita Khurana. Non-interactive distributional indistinguishability (nidi) and
non-malleable commitments, 2021.

51. Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or
two rounds. In Chris Umans, editor, 58th FOCS, pages 564–575. IEEE Computer
Society Press, October 2017.

52. Susumu Kiyoshima. Round-efficient black-box construction of composable
multi-party computation. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 351–368. Springer, Hei-
delberg, August 2014.

53. Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round
black-box construction of composable multi-party computation protocol. In
Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 343–367. Springer,
Heidelberg, February 2014.

54. Huijia Lin and Rafael Pass. Black-box constructions of composable protocols with-
out set-up. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 461–478. Springer, Heidelberg, August 2012.

55. Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concur-
rent non-malleable commitments from any one-way function. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 571–588. Springer, Heidelberg,
March 2008.

56. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, edi-
tors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer,
Heidelberg, August 2017.

57. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

58. Yehuda Lindell. Lower bounds for concurrent self composition. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 203–222. Springer, Heidelberg,
February 2004.

59. Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental
security from number theoretic assumptions. In Shai Halevi and Tal Rabin, editors,

35



TCC 2006, volume 3876 of LNCS, pages 343–359. Springer, Heidelberg, March
2006.

60. Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation.
In 47th FOCS, pages 367–378. IEEE Computer Society Press, October 2006.

61. Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 629–658. Springer, Heidelberg, August 2016.

62. Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way func-
tions and applications. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 57–74. Springer, Heidelberg, August 2008.

63. Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 160–176. Springer, Heidelberg, May 2003.

64. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In László Babai, editor, 36th ACM STOC, pages 232–241. ACM Press,
June 2004.

65. Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for UC from only OT. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 699–717. Springer, Heidelberg,
December 2012.

66. Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th
FOCS, pages 563–572. IEEE Computer Society Press, October 2005.

67. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer,
Heidelberg, August 2014.

68. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999.

69. Fang Song. A note on quantum security for post-quantum cryptography. In
Michele Mosca, editor, Post-Quantum Cryptography - 6th International Workshop,
PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, volume
8772 of Lecture Notes in Computer Science, pages 246–265. Springer, 2014.

70. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sam-
pling. Cryptology ePrint Archive, Report 2020/1042, 2020. https://eprint.iacr.
org/2020/1042.

A Preliminaries, Continued

A.1 Garbled Circuits

A garbled circuit scheme consists of a tuple of PPT algorithms (Garble,Eval,SimGarble),
which work as follows.

– Garble(1λ, C; r) → (C̃, lab) takes as input the security parameter 1λ and a
circuit C with λ input bits, and produces a garbled version C̃ along with the
list lab := {labi,b}i∈[λ],b∈{0,1} of two labels per input position, corresponding
to each bit.

36

https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042


We denote by labx the list {labi,xi} corresponding to some input string x ∈
{0, 1}λ.

– Eval(C̃, labx) this is a deterministic algorithm that takes a garbled circuit C̃
and a list labx = {labi,xi

} of labels corresponding to input x, and outputs

the evaluation of C̃ on the input corresponding to the labels.

Definition 7. A tuple (Garble,Eval,SimGarble) is a (T, ϵ)-garbled circuit scheme
if the following properties hold:

– Correctness. For all λ, C, and x ∈ {0, 1}λ,

Pr
[
Eval(C̃, labx) = C(x)

∣∣∣(C̃, lab)← Garble(1λ, C)
]
= 1.

(Recall that labx is defined to be {labi,xi}i∈[λ].)
– (T, ϵ)-Privacy. There exists a PPT algorithm SimGarble which takes as input

(1λ, |C|, y), where 1λ is the security parameter and y = C(x) is some output
of C, such that the following holds. For all ensembles {Cλ, xλ}λ and time-
T (λ) distinguishers D,∣∣∣Pr [D(1λ, C̃λ, labxλ

) = 1
]
− Pr

[
D(1λ, Ĉλ, ˆlabxλ

) = 1
]∣∣∣ < ϵ(λ),

where (C̃λ, lab)← Garble(1λ, Cλ) and (Ĉλ, ˆlab)← SimGarble(1
λ, |Cλ|, Cλ(xλ)).

A.2 Two-Round Non-Malleable Commitments

A two-round simultaneous-message non-malleable commitment scheme consists
of a tuple of PPT algorithms (NMCsend

1 ,NMCrecv
1 ,NMCsend

2 ), which work as fol-
lows.

– NMCsend
1 (1λ, v; rsend) → c takes as input the security parameter 1λ and the

message v and produces the sender’s first message committing to v.
– NMCrecv

1 (1λ; rrecv) → m takes as input the security parameter 1λ and pro-
duces the receiver’s (simultaneous) first round message m.

– NMCsend
2 (1λ, v,m, rsend)→ c2 is a deterministic algorithm that takes as input

the security parameter 1λ, the message v, the receiver’s first-round message
m, and the randomness rsend used to generate the first round message c, and
produces the sender’s second message c2.

– NMCverify(1
λ, τ, rrecv) → 0 or 1 is a deterministic algorithm that takes as

input a transcript τ = (c,m, c2) along with the receiver’s randomness rrecv

and outputs 1 if and only if the the transcript is a valid NMC transcript.

In addition, we assume there exists an (unbounded-time) algorithm NMCextract(τ)
which takes as input a transcript of the commitment scheme and outputs a value
v or ⊥, such that no opening exists for any value other than v. Thus NMCextract

defines the unique value committed to by τ .
The definition in this section is taken with small modifications from [51].

37



We follow the definition of non-malleable commitments introduced by Pass
and Rosen [66] and further refined by Lin et al. [55] and Goyal [41] (which in
turn build on the original definition of [31]). In the real interaction, there is
a man-in-the-middle adversary MIM interacting with a committer C (where C
commits to value v) in the left session, and interacting with receiver R in the
right session. Prior to the interaction, the value v ∈ {0, 1}n is given to C as
local input. MIM receives an auxiliary input z, which might contain a-priori
information about v. Then the commit phase is executed. Let MIM⟨C,R⟩(1

λ, v, z)
denote a random variable that describes the value ṽ committed by the MIM in
the right session, jointly with the view of the MIM in the full experiment. In the
simulated experiment, a PPT simulator Sim directly interacts with the R. Let
Sim⟨C,R⟩(1

λ, n, z) denote the random variable describing the value ṽ committed
to by Sim and the output view of Sim. If the tags in the left and right interaction
are equal, the value ṽ committed in the right interaction is defined to be ⊥ in
both experiments.

Concurrent non-malleable commitment schemes consider a setting where the
MIM interacts with committers in polynomially many (a-priori unbounded) left
sessions, and interacts with receiver(s) in up to ℓ(n) right sessons. If any of the
tags used by MIM (in any right session) are equal to any of the tags in any
left session, we set the value committed by the MIM to be ⊥ for that session.
Then we let MIM⟨C,R⟩(1

λ, v, z)many denote the joint distribution of all the values
committed to by the MIM in all right sessions, together with the view of the MIM
in the full experiment, and Sim⟨C,R⟩(1

λ, n, z)many denote the joint distribution
of all values committed to by the simulator Sim (with access to the MIM) in all
right sessions together with the simulated view of MIM.

Definition 8 ((T, ϵ)-Non-Malleable Commitments w.r.t. Commitment.).
A commitment scheme ⟨C,R⟩ is said to be (T, ϵ)-non-malleable if for every

probabilistic time-T MIM there exists a time-poly(T ) simulator Sim such that for
every ensemble {(vλ, zλ)}λ of polynomial-length strings vλ and zλ, the following
ensembles are ϵ-indistinguishable by any time-T (λ) adversary:

{MIM⟨C,R⟩(vλ, zλ)}λ and {Sim⟨C,R⟩(1
λ, |vλ|, zλ)}λ

Definition 9 ((ℓ, T, ϵ)-Concurrent Non-Malleable Commitments w.r.t.
Commitment.).

A commitment scheme ⟨C,R⟩ is said to be (ℓ, T, ϵ)-concurrent non-malleable
if for every probabilistic time-T MIM there exists a time-poly(T ) simulator Sim
such that for every ensemble {(vλ, zλ)}λ of polynomial-length strings vλ and zλ,
the following ensembles are ϵ-indistinguishable by any time-T (λ) adversary:

{MIM⟨C,R⟩(vλ, zλ)
many}λ and {Sim⟨C,R⟩(1

λ, |vλ|, zλ)many}λ

We say that a commitment scheme is fully concurrent with respect to com-
mitment if it is concurrent for any a-priori unbounded polynomial ℓ(n).

In our construction, we will require that the particular two-round simultaneous-
message non-malleable commitment we use is binding with respect to the first

38



round, meaning that it is impossible to open any transcript starting with NMCsend
1 (1n, v)

to any value other than v. This is easy to achieve; in particular, we can modify
the non-malleable commitment scheme so that the committer additionally sends
a non-interactive perfectly-binding commitment to v in the first round, and in-
cludes the opening to this commitment as part of its message which it commits
to in the non-malleable commitment.

B Two-Round PAKE in the Plain Model

We show how our concurrent two-party computation in Section 3.2 enables us to
construct Password-Authenticated Key-Exchange (PAKE) in the plain model.
Briefly in a PAKE protocol, each user Ui∈{1,2} owns a password xi in a certain
language Li. If the two passwords match (x1 = x2), then the users must learn
a common high-entropy secret, otherwise they learn nothing about the other
user’s values.

We observe that our concurrent 2PC in in Section 3.2 directly yields a two-
round concurrently secure PAKE construction in the plain model. More precisely,
let each party Pi in the concurrent 2PC in Section 3.2 plays the role as the user
U (described above) for a functionality f defined as follows:

– Inputs: (x1, k1) from P1 and (x2, k2) from P2.
– Check if x1 = x2 and return k1 ⊕ k2 if this is the case.
– Otherwise output ⊥.

The parties can then feed as input to this functionality their passwords (x1,x2)
along with two keys (k1, k2) which are uniformly and freshly sampled for each run
of the protocol. Next, we argue that this simple protocol achieves the standard
security of PAKE.

Security of PAKEs. In the cryptography literature there are the following two
leading paradigms for rigorously defining the above intuition: (i) Simulation-
based security, in which it works in the framework of universal composability
(UC) [25]. This approach works by first defining an appropriate ideal functional-
ity for PAKE; a PAKE protocol is then considered secure if it realizes that func-
tionality. Canetti et al. [26] pursued this approach, and defined a PAKE func-
tionality that explicitly allows an adversary to make password guesses;in their
work, a random session key is generated unless the adversary’s password guess
is correct. (ii) Game-based security, that is introduced by Bellare-Pointcheval-
Rogaway (BPR) [16], which we will proof our PAKE construction in this model.
In the following we recall the BPR model in more details.

Game-based security. In the game-based security (the BPR model) [16] defini-
tion, a password is chosen from a distribution with min-entropy k, and the secu-
rity experiment considers interactions of an adversary with multiple instances of
the PAKE protocol using that password. A PAKE protocol is considered secure
if no probabilistic polynomial time adversary can distinguish a real session key

39



from a random session key with an advantage better than Q ·2k+negl(λ), where
Q is the number of online attacks by the adversary i.e., actively interfering in Q
sessions of the protocol and can make at most Q password guesses.

We briefly recall the formal security model for password key exchange pro-
tocols as presented in Bellare et al. [16]. The text here is lifted almost verbatim
from [40].

– Initialization phase. Before any execution of the protocol, there is an initial-
ization phase during which public parameters are established. We assume a
fixed set User of all the users participating in the protocol. For every distinct
U, Û ∈ User, we assume U and Û share a password x := pw. We make the
simplifying assumption that each pw is chosen independently and uniformly
at random from the set {1, · · · , Dλ} for some integer Dλ that may depend
on λ.

– Execution of the protocol. In the real world, a protocol determines how prin-
cipals behave in response to input from their environment. In the formal
model, these inputs are provided by the adversary A. Each principal can
execute the protocol multiple times (possibly concurrently) with different
partners; this is modeled by allowing each principal to have an unlimited
number of instances with which to execute the protocol. We denote instance
i of user U as instanceU,i. Each instance may be used only once. The ad-
versary is given oracle access to these different instances; furthermore, each
instance maintains (local) state which is updated during the course of the
experiment. In particular, each instance instanceU,i maintains local state that
includes the following variables:
• sidU,i, pidU,i, and skU,i denote the session id, partner id, and session key,
respectively. The session id is simply a way to keep track of different
executions; we let sidU,i be the (ordered) concatenation of all messages
sent and received by instanceU,i. The partner id denotes the user with
whom instanceU,i believes it is interacting; we require pidU,i ̸= U .

• accU,i and termU,i are flags denoting acceptance and termination, respec-
tively.

The adversary’s interaction with various instances is modeled via access to
the following oracles:

– Send(U, i,M). This sends message M to instance instanceU,i. This instance
runs according to the protocol specification, updating state as appropriate.
The output of instanceU,i (i.e., the message sent by the instance) is given to
the adversary.

– Execute(U, i, Û , j). If instanceU,i and instanceÛ,j have not yet been used, this
oracle executes the protocol between these instances and gives the resulting
transcript to the adversary. This models passive eavesdropping of a protocol
execution.

– Reveal(U, i). This outputs the session key skU,i, modeling leakage of session
keys due to, e.g., improper erasure of session keys after use, compromise of
a host computer, or cryptanalysis.

40



– Test(U, i). This oracle does not model any real-world capability of the adver-
sary, but is instead used to define security. A random bit b is chosen; if b = 1
the adversary is given skU,i, and if b = 0 the adversary is given a session key
chosen uniformly from the appropriate space.

The security of key exchange protocols is composed of two components: cor-
rectness and privacy.
Partnering. Let U , Û ∈ User, where User is the set of the users. Instances
instanceU,i and instanceÛ,j are partnered if: (i) skU,i = skÛ,j ̸= Null; and (ii)

pidU,i = Û and pidÛ,j = U .
Correctness. To be viable, a PAKE protocol must satisfy the following notion of
correctness: if instanceU,i and instanceÛ,j are partnered then accU,i = accÛ,j =
true and skU,i = skÛ,j , i.e., they both accept and conclude with the same session
key.
Privacy. Intuitively, a protocol achieves privacy if the adversary cannot distin-
guish real session keys from random ones. Formally, we say that the adversary
succeeds if it correctly guesses the bit determining whether it received the real
session key or a random session key in the Test oracle query. Of course, the
adversary can always correctly guess the bit in a Test(U, i) query if it queried
Reveal(U, i) when U and Û are partnered. Therefore, A is only said to have
succeeded if these oracles were not queried. Now, the adversary’s advantage is
formally defined by:

advA,i(λ) = |2 · Pr[A succeeds]− 1|

We reiterate that an adversary is only considered to have succeeded if it correctly
guesses the bit used by the Test(U, i) oracle and it did not query Reveal(U, i) or
Reveal(Û , J) when U and Û are partnered.

Security of our concurrent-secure PAKE. Now, in Theorem 4 we analyze
security of our concurrent-secure PAKE in the BPR [16] security model with
super-polynomial simulation.

Theorem 4. Let the concurrent-secure 2PC in Section 3.2 be secure against
malicious adversaries in the plain model. Then the PAKE protocol PAKE based
on the concurrent-secure 2PC is complete and private in the plain model.

Proof. (i: Completeness). This is straightforward from the construction and
follows directly from the correctness of the concurrent 2PC in Section 3.2.

(ii: Privacy).We now proceed to prove the privacy requirement through a series
of hybrid experiments. Fix a PPT adversary A attacking the protocol. We use
a hybrid argument to bound the advantage of the adversary A. Let hybrid H0

represent the initial experiment, in which A interacts with the real protocol. We
define a sequence of experiments H1, · · · , and denote the advantage of adversary
A in experiment Hi as:

advA,i(λ) = |2 · Pr[A succeeds]− 1|.

41



We bound the difference between the adversary’s advantage in successive exper-
iments, and then bound the adversary’s advantage in the final experiment; this
gives the desired bound on adv0(λ), the adversary’s advantage when attacking
the real protocol. We recall that the adversary can only statistically corrupt
users, i.e., it can corrupt a password or password hash when no instance of
the associated players is involved in an execution of the protocol. Let c2PC.M1

and Let c2PC.M2 be the first and the second message of the c2PC scheme in
Section 3.2, respectively. We separate Send queries in three types:

– Send1(P1, start, P2) queries which enable an adversary to ask a client P1 to
initiate the protocol with a server P2 and which return the first flow for P1

and P2.
– Send2(P1, P2,M) queries which enable an adversary to send the first flow for

P1 and P2 and which return the second flow answered back by P2.
– Send3(P1, P2,M) queries which enable an adversary to send the second flow

for P1 and P2 and which return nothing but set the session key f of P2.

Hybrid H1: In this hybrid, we modify the way Execute queries are handled.
Namely, in response to a query Execute we act in the same way as in H0

except that, it runs the simulator of the c2PC and simulates the protocol.
Assuming the security (the privacy property) of the c2PC of the proof of theo-
rem 2,H0 andH1 are computationally indistinguishable. Thus, |advA,H1

(λ)−
advA,H0(λ)| ≤ negl(λ).

Hybrid H2: In this experiment we begin to modify the Send oracle. We now,
in response to the query Send2(P1, P2,M) (when a second flow is sent, in
the name of some client instance P1 and to some server instance P2) we
proceed as follows: if the password of P2 is corrupted, we answer honestly
and compute the session key honestly. Otherwise, three cases can appear:
– if pidP1,i ̸= P2 then aborts instanceP1,i as it would in H1. From here on

we assume this is not the case.
– If M is not previously-used, then we run the extraction phase of c2PC on

P1, the receiver message, to obtain the commit ed values) and if they are
well-formed, the adversary is declared successful and the experiment ends
(in other words we choose the session key f = ⊥; if later the adversary
asks the session key via a Test-query, we stop the simulation and let it
win). Otherwise, we choose the session key f at random;

– If the second flow M was output by a previous query Send1 then we say
that the message M is previously-used and the experiment continues as
in the last H. More precisely, if it is a replay of a previous flow sent by
the simulator, then, in particular, we know the secret values associated
with M , and we compute the session key f using them.

The change in the first case can only increase the advantage of the ad-
versary, while the change second change is indistinguishable under the pri-
vacy reservation of c2PC protocol and thus only increases the advantage of
the adversary by a negligible term. The change in the last case does not
change the advantage of the adversary. Therefore, we have: advA,H1(λ) ≤
advA,H2

(λ) + negl(λ).

42



Hybrid H3: Now, we modify the way of Send3(P1, P2,M) queries are answered,
similarly to what we have done for the queries in H2. More precisely, when
a second flow M is sent, in the name of some server instance P2 and to some
client instance P1, if the password of P1 has been corrupted, we answer
honestly and compute the session key honestly. Otherwise, this case can
appear that the message is not a message generated by P2 (via a Send2
query) after receiving the first flow sent by P1 (via a Send1 query), then
we first run the extraction phase of c2PC on P2 to obtain the commit ed
values) and if they are well-formed, the adversary is declared successful and
the experiment ends (in other words we choose the session key f = ⊥; if later
the adversary ask the session key via a Test-query, we stop the simulation
and let it win). Otherwise, we choose the session key f at random.
The change in the first case can only increase the advantage of the adversary,
while the changes in the later case are indistinguishable under privacy reser-
vation of c2PC scheme, and thus only increase the advantage of the adversary
by a negligible term. Thus, advA,H2

(λ) ≤ advA,H3
(λ) + negl(λ).

Hybrid H4: In this experiment we modify the Send1(P1, start, P2) oracle. In re-
sponse to a Send1 query, when the password of the client P1 is not corrupted,
we send the simulated c2PC.M2 message.
This is indistinguishable under the chooser’s security of c2PC scheme, thus,
|advA,H4

(λ)− advA,H3
(λ)| ≤ negl(λ).

Hybrid H5: We now modify the way we answer to Send2 queries for replayed
messages. When a first message is replayed by the adversary, we choose
the session key at random (except when the password of client P1 was cor-
rupted, in which case the flow is honestly generated and the session key too).
This is indistinguishable, thanks to privacy preservation of c2PC scheme:
|advA,H5

(λ)− advA,H4
(λ)| ≤ negl(λ).

We remark that, in this game, all session keys returned by the Test queries
are completely independent and random.
In this last game, the simulator does not use the passwords, and so no infor-
mation leaks except in case of corruption. We also remark that the adversary
wins only:
– if it sends a flow to a server P2 (with non corrupted password), from

which the simulator (c2PC’s simulator) extracts a valid secret values
of the client P1’s message, such that they are well-formed; and if the
adversary makes a Test-query for that session,

– or if it sends a flow to a client P1, from which the simulator extracts a
valid secret values of the server P2’s message, such that they are well-
formed; and if the adversary makes a Test-query for that session.

If passwords are chosen independently at random from a distribution D of
min-entropy β (i.e., not in the related- password model), and if no corruption
occurs, then, for each flow, the events happen with probability at most 2−β+
negl(λ) thanks to the entropy preservation.
So finally, with no corruption and independently chosen passwords, the prob-
ability of the adversary to win this last game (and also the original game) is

43



at most Qs ·2−β+negl(λ), where Qs is the number of active sessions (sessions
for which the adversary has sent a non-honestly-generated flow).

44


	Two-Round Concurrent 2PC from Sub-Exponential LWE

