
Breaking a Fifth-Order Masked Implementation
of CRYSTALS-Kyber by Copy-Paste

Elena Dubrova, Kalle Ngo, and Joel Gärtner

KTH Royal Institute of Technology, Stockholm, Sweden
{dubrova,kngo,jgartner}@kth.se

Abstract. CRYSTALS-Kyber has been selected by the NIST as a public-
key encryption and key encapsulation mechanism to be standardized.
It is also included in the NSA’s suite of cryptographic algorithms rec-
ommended for national security systems. This makes it important to
evaluate the resistance of CRYSTALS-Kyber’s implementations to side-
channel attacks. The unprotected and first-order masked software imple-
mentations have been already analysed. In this paper, we present deep
learning-based message recovery attacks on the ω-order masked imple-
mentations of CRYSTALS-Kyber in ARM Cortex-M4 CPU for ω ≤ 5.
The main contribution is a new neural network training method called
recursive learning. In the attack on an ω-order masked implementation,
we start training from an artificially constructed neural network Mω

whose weights are partly copied from a model Mω−1 trained on the
(ω − 1)-order masked implementation, and then extended to one more
share. Such a method allows us to train neural networks that can recover
a message bit with the probability above 99% from high-order masked
implementations.

1 Introduction

Public-key cryptographic schemes used today depend on the intractability of
certain mathematical problems such as integer factorization, or the discrete log-
arithm. However, if large-scale quantum computers become a reality, it will be
possible to solve these problems in polynomial time using Shor’s algorithm [33].
Therefore current public-key cryptographic schemes will no longer be secure.

To address this issue, the National Institute of Standards and Technology
(NIST) launched a process for standardization of post-quantum cryptographic
primitives, NIST PQC, in 2016. Candidate primitives rely on problems that are
believed to be difficult for quantum computers, such as lattices and decoding in
a linear error correcting code. The PQC process is currently in its fourth round.
One of the finalists, IND-CCA2 secure public key encryption (PKE) and key
encapsulation mechanism (KEM) CRYSTALS-Kyber [3], is already selected to
be standardized [23]. It is also included in the National Security Agency (NSA)
suite of cryptographic algorithms recommended for national security systems [1].

This makes it important to assess the resistance of CRYSTALS-Kyber im-
plementations to side-channel attacks. Side-channel attacks exploit information

2 Elena Dubrova, Kalle Ngo, and Joel Gärtner

obtained from physically measurable, non-primary channels such as timing or
power consumption of a device running the implementation. The first break-
through in the area was differential side-channel analysis pioneered by Kocher et
al. [20]. The second breakthrough was the introduction of deep learning-based
side-channel analysis. Apart from improving the differential attacks’ effectiveness
(e.g. four instead of 400 power traces are required to extract the secret key from
a commercial USIM card [10]), the latter enabled attacks of true random num-
ber generators [26], physical unclonable functions [42], and non-differential mes-
sage and secret key recovery attacks on NIST PQC candidates. Deep learning-
based side-channel attacks can overcome conventional countermeasures such as
masking [27], shuffling [28], random delays insertion [13], constant-weight encod-
ing [22], code polymorphism [7], and randomized clock [11]. The third important
contribution is the error injection method of Wang et al. [38] which converts a
non-differential attack into a differential. It allows for breaking difficult targets
such as a hardware implementation of CRYSTALS-Kyber [19].
Our contributions: The unprotected and first-order masked software imple-
mentations of CRYSTALS-Kyber have been already analysed [31,31,34,8,24,40]
[36,37,38,41]. That contributed to strengthening the resistance of its subse-
quently released versions [9,18] and promoted stronger mitigation techniques
against side-channel attacks, e.g. [4,35,17]. Side-channel attacks on the second-
and third-order masked software implementations of Saber, which is similar to
CRYSTALS-Kyber in many aspects, have also been presented [29,30]. In this
paper, we demonstrate side-channel attacks on up to the fifth-order masked im-
plementations of CRYSTALS-Kyber in ARM Cortex-M4 CPU.

The first contribution of the paper is a new neural network training method
which we call recursive learning. In the attack on an ω-order masked imple-
mentation, we start training from an artificially constructed neural network Mω

whose weights are partly copied from a neural network Mω−1 trained on the
(ω − 1)-order masked implementation, and then extended to include one more
share. Such a method allows us to effortlessly train neural networks that can re-
cover a message bit with the probability above 99%. For higher masking orders,
the likelihood of finding such a model without recursive learning is very small.

Another novel contribution is a message recovery method using cyclic rota-
tions. In the procedure that is our attack point, the first bit of each message byte
leak considerably stronger than the last one. We negacyclically rotate the mes-
sage to shift its bits from “less leaky” positions to “more leaky” ones. This allow
us to increase the success rate of message recovery. The messages are rotated by
manipulating the corresponding ciphertexts.

In CRYSTALS-Kyber, a successful message recovery implies the shared ses-
sion key recovery, as the session key is derived from the message using hash
functions. Furthermore, by recovering messages contained in a set of chosen
ciphertexts constructed used known methods, e.g. [5,32], one can extract the
long-term secret key of CRYSTALS-Kyber.

The rest of the paper is organized as follows. Section 2 describes previous
work. Section 3 gives a background on CRYSTALS-Kyber and masking. Sec-

2. PREVIOUS WORK 3

tion 4 presents the equipment and target implementations. Sections 5 and 6
describe the profiling and attack stages, respectively. Section 7 summarizes the
experimental results. Section 8 concludes the paper and discusses open problems.

2 Previous work

This section describes previous side-channel attacks on protected implementa-
tions of CRYSTALS-Kyber and related schemes based on module lattices.

In [31], a two-step message recovery attack on masked software implemen-
tations of LWE/LWR PKE/KEMs is described. At the first step, each share is
recovered using templates created on traces with known masks. At the second
step, the message is computed from the shares.

In [27], a one-step message recovery method is introduced in which the mes-
sage is recovered directly, without recovering the shares explicitly. This is done
using a neural network which is trained at the profiling stage on traces con-
taining both shares labelled by the value of the corresponding message bit. A
great advantage of the one-step method is that it allows for the profiling on
traces captured from the device under attack. This helps maximize the neu-
ral network prediction accuracy, since neither intra-device variability, nor de-
vice aging, degrade the models. In [27], the one-step method is applied to the
first-order masked software implementation of Saber from [6] using poly_A2A()
and POL2MSG() procedures as the attack points. In [29], it is extended to the
second- and third-order masked software implementations of Saber from [21]
using A2B_bitsliced_msg() procedure as the attack point. In [30] it is applied
to the second-order masked software implementation of Saber from [21] using
POL2MSG() as the attack point and the error-injection method [38] as the attack
strategy. In both attacks, [29] and [30], neural networks trained at the profiling
stage have no trouble recovering the value of a specific message bit from traces
that contain all shares corresponding to this bit. However, our experiments show
that difficulties begin to appear at higher masking orders.

The one-step message recovery method [27] is utilized in the side-channel
attacks on a first-order masked and shuffled software implementation of Saber
presented in [28] and [5]. These attacks require 61,680 and 4,608 traces to extract
the secret key by deep learning-based power analysis, respectively. The former
attack is based on message Hamming weight extraction and bit flipping, while
the later on shuffling index recovery and cyclic rotations. In [5], a successful
secret key recovery attack on a first-order masked and shuffled software imple-
mentation of CRYSTALS-Kyber is also demonstrated. The implementation is
built on the top of the first-order masked implementation from [15]. The attack
uses masked_poly_tomsg() procedure as the attack point.

In [37], the one-step method [27] is applied to the first-order masked imple-
mentation of CRYSTALS-Kyber, targeting the message encoding vulnerability
found in [34]. In [8], side-channel attacks on two implementations of masked
polynomial comparison are shown on the example of CRYSTALS-Kyber.

4 Elena Dubrova, Kalle Ngo, and Joel Gärtner

CPAPKE.KeyGen()

1: seedA ← U({0, 1}256)
2: A← U(Rk×k

q ; seedA)
3: s← Bη1(R

k×1
q)

4: e← Bη1(R
k×1
q)

5: b = As+ ep1

6: pk = (seedA,b), sk = s
7: return (pk, sk)

CPAPKE.Dec(s, c = (u, v))

1: y =
⌊
v · q/2dv

⌉
− s

⌊
u · q/2du

⌉
2: m′ = decode(y)
3: return m′

CPAPKE.Enc(pk = (seedA,b),m, r)
1: A← U(Rk×k

q ; seedA)
2: s′ ← Bη1(R

k×1
q ; r)

3: e′ ← Bη2(R
k×1
q ; r)

4: e′′ ← Bη2(R
1×1
q ; r)

5: u =
⌊
(As′ + e′) · 2du/q

⌉
6: v =

⌊
(b · s′ + e′′ + encode(m)) · 2dv/q

⌉
7: return c = (u, v)

Fig. 1: Pseudocode of CCAPKE algorithms [5].

Kyber.KeyGen()

1: z ← U({0, 1}256)
2: (pk,s)=CPAPKE.KeyGen()
3: sk = (s, pk,H(pk), z)
4: return (pk, sk)

Kyber.Encaps(pk)
1: m← U({0, 1}256)
2: (K̂, r) = G(m,H(pk))
3: c=CPAPKE.Enc(pk,m, r)
4: K = KDF(K̂,H(c))
5: return (c,K)

Kyber.Decaps(sk=(s, pk,H(pk), z), c)
1: m′ = CPAPKE.Dec(s, c)
2: (K̂′, r′) = G(m′,H(pk))
3: c′=CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K = KDF(K̂,H(c))
6: else
7: return K = KDF(z,H(c))
8: end if

Fig. 2: Pseudocode of CCAKEM algorithms [5].

Apart from the one-step message recovery method, an error-correcting code-
based chosen ciphertext construction approach is introduced in [27]. The secret
key of Saber is recovered from messages extracted from these ciphertexts. In [27],
an extended Hamming code with the code distance four is used. It can correct
single-bit errors and detect one additional error in each secret key coefficient.
More powerful codes with the code distance up to six for Saber and up to eight for
CRYSTALS-Kyber are utilized in [5]. The secret key is recovered using k·l chosen
ciphertexts, where k is the rank of the module and l is the length of the code. An-
other code-based chosen ciphertext construction method for CRYSTALS-Kyber
is described in [32]. While the non-code-based secret key recovery method pre-
sented earlier in [31] uses less ciphertexts than the code-based methods [27,5,32],
its drawback is the perfect message recovery requirement.

3 Background

This section provides background information on CRYSTALS-Kyber [3] and
masking countermeasure against side-channel attacks.

4. EXPERIMENTAL SETUP 5

3.1 CRYSTALS-Kyber

Fig. 1 and 2 show pseudocodes of CPAPKE and CCAKEM algorithms, respec-
tively. We follow the notation of [5]. CPAPKE consists of key generation, CPAPKE.
KeyGen(); encryption, CPAPKE.Enc(); and decryption, CPAPKE.Dec(), parts.
CPAKEM contains key generation, CCAKEM.KeyGen(); encapsulation, CCAKEM.
Encaps(); and decapsulation, CCAKEM.Decaps(), parts.

The ring Rq in CPAPKE is the quotient ring Zq[X]/(X256 + 1), where Zq

is the ring of integers modulo a positive integer q = 3329. Sampling v from a
distribution χi over a set S is denoted by v ← χi(S) while v ← χi(S; r) denotes
deterministic sampling from χi using seed r. The centered binomial distributions
is denoted by Bηi

and the uniform distribution is denoted by U .
The security level of CRYSTALS-Kyber is defined by the rank k of the mod-

ule. In this paper, we focus on k = 3, Kyber768. Other cases can be handled
similarly.

3.2 Masking

Masking is a well-known countermeasure against power/EM side-channel analy-
sis [12]. A ω-order masking partitions any sensitive variable x into ω+1 shares,
x1, x2, . . . , xω+1, such that x = x1 ◦x2 ◦ . . .◦xω+1, and performs es all operations
separately on the shares. The operator “◦” depends on the type of masking, e.g.
in arithmetic masking “◦” is equal to “+” and in Boolean masking “◦” is “⊕” .

Since computations do not involve x directly, carrying out operations sep-
arately on the shares x1, x2, . . . , xω+1 should in theory prevent the leakage of
side-channel information related to x. Instead, the shares x1, x2, . . . , xω+1 are
linked to the leakage. Since the shares are randomized at each execution, they
are not expected to contain any exploitable information about x. Typically,
the randomization is performed by assigning random masks ϕ1, ϕ2, . . . , ϕω to ω
shares and deriving the last share as x − (ϕ1 + ϕ2 + . . . + ϕω) for arithmetic
masking or x⊕ ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕω for Boolean masking.

4 Experimental setup

In this section, we describe the equipment and target implementation.

4.1 Target implementation

To the best of our knowledge, there are no publicly available higher-order masked
implementations of CRYSTALS-Kyber1. All experiments presented in this paper
are performed on the C implementation of the first-order masked CRYSTALS-
Kyber from [16] which we modified to extend masked_poly_frommsg() procedure
to a higher-order masking. We extended the part of the code required for proving
1 The higher-order masked software implementation of CRYSTALS-Kyber presented

in [9] is not publicly available.

6 Elena Dubrova, Kalle Ngo, and Joel Gärtner

void masked_poly_frommsg(uint16 poly[2][256], uint8
msg[2][32])
uint16 c[2];

1: for (i = 0; i < 32; i++) do
2: for (j = 0; j < 8; j++) do
3: mask = -((msg[0][i] » j) & 1);
4: poly[0][8*i+j] += (mask&((KYBER_Q+1)/2));
5: end for
6: end for
7: for (i = 0; i < 32; i++) do
8: for (j = 0; j < 8; j++) do
9: mask = -((msg[1][i] » j) & 1);

10: poly[1][8*i+j] += (mask&((KYBER_Q+1)/2));
11: end for
12: end for
13: ...

Fig. 3: C code of masked_poly_frommsg() procedure of CRYSTALS-Kyber [16].

the attack’s concept only, not the complete CRYSTALS-Kyber package. We
verified that power traces captured from the extended implementation for ω = 1
are similar to the traces of the original implementation [16]. We also verified that
both implementations have a similar type of side-channel leakage by performing
message recovery attacks on both. The resulting empirical mean message bit
recovery probabilities were similar in both cases.

Our attack point is the procedure masked_poly_frommsg() shown in Fig. 3.
This procedure is called during the re-encryption step of decapsulation (line 3 of
CCAKEM.Decaps() in Fig. 2). It performs the encoding of message shares from
the Boolean domain into the polynomial domain (line 6 of CPAPKE.Enc() in
Fig. 1). The red lines in Fig. 3 show the location of the vulnerability exploited
in the attack. Such types of vulnerabilities are known as the determiner-leakage
in previous works [2,34,31].

4.2 Equipment

For trace acquisition, we use a Chipwhisperer-lite board [25], a CW308 UFO
board, and a CW308T-STM32F4 target board. CW308T-STM32F4 contains
an ARM Cortex-M4 CPU with STM32F415-RGT6 device. The STM32F415-
RGT6 is programmed to a C implementation of CRYSTALS-Kyber compiled
with arm-none-eabi-gcc with the optimization level -O3 (recommended de-
fault). The target board is run and sampled at 24 MHz.

5 Profiling stage

In this section, we describe our profiling strategy. The main difference from pre-
vious work is the new neural network training method which we call recursive

5. PROFILING STAGE 7

Fig. 4: (a,b) Power traces given as input to neural networks for attacks on 4th-
and 5th-order masked implementations, respectively; (c) Weights of input Batch
Normalization layer after training for 4th-order; (d) Batch Normalization ex-
tended to 5th-order; (e) Batch Normalization after training for 5th-order.

learning. The key idea is to use a neural network model Mω−1, capable of break-
ing a (ω− 1)-order masked implementation, as a stepping stone in the attack on
the ω-order masked implementation.

5.1 Recursive learning method

The attack presented in [27] has shown that neural networks are capable to:

8 Elena Dubrova, Kalle Ngo, and Joel Gärtner

1. Identify trace segments corresponding to two message shares in a first-order
masked software implementation of an LWE/LWR PKE/KEM scheme, and

2. XOR values of the shares to obtain the ground truth label.

The fact that neural networks are capable of learning the two-argument XOR
operation was previously known [14, p. 166]. The results of [27] confirmed that
the neural networks can combine the steps (1) and (2). In [29] it was further
hypothesized that the complexity of learning the n-argument XOR grows linearly
in the number of arguments n. Indeed, neural networks for message recovery from
the second- and third-order masked software implementations of LWE/LWR
PKE/KEMs can be trained directly [29,30], as in the attack of [27].

However, we found that, for higher masking orders, neural networks need help
in order to learn. To help, we start training from an artificially constructed neural
network, rather than a network with a standard random weight distribution. For
an attack on an ω-order masked implementation, the starting network Mω is
constructed by copying the weights of the input Batch Normalization layer of
a model Mω−1 trained on the (ω − 1)-order masked implementation, and then
extending the input Batch Normalization layer of Mω to include one more share,
as shown in Fig. 4. In this way, we assist Mω in locating the traces’ segments
corresponding to the processing of ω + 1 shares. The weights of all other layers
of Mω are assigned at random.

Recall that a Batch Normalization layer first standardizes the input val-
ues x of the layer using their respective mean, µ, and standard deviation, σ,
xnorm = (x − µ)/σ, and then applies the scaling, γ (gamma) and offset, β
(beta), parameters to the result, x′ = (γ ∗ xnorm) + β. The parameters γ and
β are learned by the model during the training process by adjusting the back-
propagation algorithm to operate on the transformed inputs, and using the error
to update the new scaling and offset parameters learned by the model. Thus,
a higher value of γ indicates the higher importance of the corresponding input
feature in the decision taken by the model.

In our case, a neural network Mω−1 takes input values x = x1||x2|| . . . ||xω

of ω concatenated share segments. Let γj
i , β

j
i , µ

j
i , and σj

i denote scaling param-
eters, offset parameters, mean and standard deviation of xi of the input Batch
Normalization layer of M j , for i ∈ {1, 2, . . . , j + 1} and j > 0.

The input Batch Normalization layer of Mω, which takes input values x =
x1||x2|| . . . ||xω+1, is constructed based on the weights of the input Batch Nor-
malization layer of Mω−1 as follows:

γω
i = γω−1

i for all i ∈ {1, 2, . . . , ω}, γω
ω+1 = γω−1

ω ,

βω
i = βω−1

i for all i ∈ {1, 2, . . . , ω}, βω
ω+1 = βω−1

ω ,

µω
i = µω−1

i for all i ∈ {1, 2, . . . , ω}, µω
ω+1 = µω−1

ω ,

σω
i = σω−1

i for all i ∈ {1, 2, . . . , ω}, σω
ω+1 = σω−1

ω .

In other words, we copy all parameters corresponding to ω shares and then
extend by repeating the parameters of the last share one more time. Note that
any other share of Mω−1 can be repeated instead of the last one.

5. PROFILING STAGE 9

Fig. 5: (top) Full power trace representing the execution of masked_poly_
frommsg() in the first-order masked implementation; (bottom) Weights of in-
put Batch Normalization layer of a neural network trained on full traces with
the 1st message bit values as labels. The peaks reveal the positions of two shares.

The recursive learning method allows us to easily train good neural network
models for message recovery attacks on high-order masked implementations. For
masking orders ω > 4, the probability of finding such a model without recursive
learning is very small.

The recursive learning method might be viewed as related to transfer learn-
ing [39]. Different types of iterative re-training methods were used in side-channel
attacks in the past, e.g. in [26,29]. Note, however, that we do not only transfer
a model, but also extend it. We construct the initial weights of a larger neural
network based on the weights of a smaller neural network. We could not find an
analog of such a technique among known transfer learning methods.

5.2 Neural network type

As in the previous deep learning-based message recovery attacks on masked
software implementations of LWE/LWR PKE/KEMs [27,28], we train neural
networks to recover messages directly, without explicitly extracting the random
masks at each execution. Message bits values ‘0’ and ‘1’ are used as labels.

Let R be the set of real numbers and let I := {x ∈ R | 0 ≤ x ≤ 1}. Let
m = (m[0],m[1], . . . ,m[255]) be a message of CRYSTALS-Kyber to be recovered,
where m[i] is the ith message bit, and c = (u, v) be a ciphertext generated by
CPAPKE.Enc() for m.

10 Elena Dubrova, Kalle Ngo, and Joel Gärtner

To train a neural network Mi : R|T| → I which predicts m[i], each trace T
in the training set T is labeled by m[i], where m is the message encrypted in c
which is given as input to the device when T is captured. Mi maps each T into
a score s = Mi(T) ∈ I representing the probability that m[i] = 1 in T .

5.3 Input data selection

For the first-order masked implementation, we locate the segments of traces
corresponding to the processing of shares by masked_poly_frommsg() by training
neural networks on full traces and examining the weights of the input Batch
Normalization layer after training, as shown in Fig. 5. The p-point intervals
containing the peaks of γ parameters are extracted and concatenated to obtain
the input data for to neural networks. In our experiments, we use p = 32.

First we determine to location of shares for each message bit i ∈ {0, 1, . . . , 255}
and estimate the distance between two adjacent bits. This is done by training
neural networks M1

i and M1
i+1 for several bits i and i + 1 on full traces from

the first-order masked implementation and measuring the distance between the
peaks of γ parameters of their input Batch Normalization layers after training.

In the same way we determine the distance between of shares x1 and x2, d,
by measuring the distance between the peaks of γ parameters of the input Batch
Normalization layers of M1

i after training.
Once d for x1 and x2 is determined for the first-order masked implementation,

an approximate location of each share xj in an ω-order masked implementation
can be found by shifting the first share’s interval by (j − 1) ∗ d points, for
j ∈ {2, . . . , ω+1}. For example, if the p-point interval of trace corresponding to
x1 share is [s : s+p], then the interval corresponding to xω+1 share is [s+ω ∗ d :
s+ω ∗ d+p].

To summarize, for an ω-order masked implementation, the input data given
to Mω

i is a concatenation of ω + 1 p-point trace intervals [s+(j − 1) ∗ d :
s+(j − 1) ∗ d+p], for j ∈ {1, . . . , ω + 1} corresponding to the ith bit of shares
x1, . . . , xω+1. Fig. 4 (a) and (b) show examples for the fourth- and fifth-order
masked implementations, respectively. The black dashed lines show the borders
where the shares are concatenated.

5.4 Leakage analysis

We found that the leakage of message bits in masked_poly_frommsg() procedure
is non-uniform. The first bit of each message byte leaks considerably stronger
than the last one. This is apparent from the difference in the success rate of
neural network models which recover these bits. For example, for the first-order
masked implementation, the difference between the mean empirical probabilities
to recover the bit 0 and the bit 7 is 9%.

We address this issue by applying cyclic rotations to shift the bits which leak
less to the bit positions which leak more. The method is described in Section 6.1.

6. ATTACK STAGE 11

Table 1: MLP architecture for message bits recovery from an ω-order masked
implementation of CRYSTALS-Kyber. The neural network input size is 32(ω+1).

Layer type Output shape
Batch Normalization 1 32(ω + 1)
Dense 1 32(ω + 1)
Batch Normalization 2 32(ω + 1)
ReLU 32(ω + 1)
Dense 2 2ω+4

Batch Normalization 3 2ω+4

ReLU 2ω+4

Dense 3 2ω+3

Batch Normalization 4 2ω+3

ReLU 2ω+3

Dense 4 1
Softmax 1

5.5 Architecture and training parameters

To recover messages from an ω-order masked implementation, we use multilayer
perceptron (MLP) neural networks with the architecture shown in Table 1. For
the attacks on implementations with masking orders ω ≤ 3, we start training
from a network with a standard random weight distribution. For ω > 3, the
recursive learning method is used.

We cut-and-join training traces byte-wise using the technique of [27]. The
resulting extended by a factor of 32 set is used to train two universal models,
Mω

0 and Mω
1 , which recover the first and the second bit of each message byte

(bits with the strongest leakage). For the first-order masked implementation, we
also train the models M1

i for bits i ∈ {2, 3, 4, 5, 6, 7}, in order to quantify the
difference between approaches with and without cyclic rotations.

The neural networks are trained with a batch size of 1024 for a maximum of
100 epochs using early stopping with patience 20. We use Nadam optimizer with
a learning rate of 0.01 and a numerical stability constant epsilon = 1e-08. Binary
cross-entropy is used as a loss function to evaluate the network classification
error. 70% of the training set is used for training and 30% is left for validation.
Only the model with the highest validation accuracy is saved.

6 Attack stage

This section describes our attack strategy. The main difference from previous
attacks of masked implementations of LWE/LWR PEK/KEMs [27,28,30] is the
cyclic rotation method which we use to compensate for the non-uniformity of
leakage in masked_poly_frommsg() procedure.

12 Elena Dubrova, Kalle Ngo, and Joel Gärtner

6.1 Cyclic rotation method

It is known that a message of a ring-based LWE/LWR can be cyclically ro-
tated by manipulating the corresponding ciphertext. Such a possibility was first
described in [31] where it was hypothesised that rotations may be useful in side-
channel attacks. Since then two attacks utilizing cyclic rotations were presented.

The first is the template side-channel attack on an unprotected software
implementation of CRYSTAL-Kyber presented in [41]. It uses cyclic message
rotations to construct ciphertexts which are used during profiling to create tem-
plates for the intermediate states of the message decoding operation based on
the Hamming weight model. At the attack stage, the templates are applied to
recover messages during the encapsulation.

The second is the deep learning-based attack on the first-order masked and
shuffled software implementations of CRYSTAL-Kyber and Saber presented in [5].
It recovers a message m contained in a given ciphertext c by modifying c to ne-
gacyclically rotate m 128 times by two bits. At each rotation, two message bits
with the shuffling indexes 0 and 255 are extracted using a neural network for
bits recovery. Another neural network is used for recovering shuffling indexes of
the bits.

In the attacks presented in this paper, we negacyclically rotate a message
three times by two bits to subsequently shift the last six bits of each byte to
the positions of the two first bits. In this way, we make use of “more leaky” bit
positions to extract the bit values with a higher probability. This allows us to
increase the attack success rate.

The rotation of a message is performed by manipulating the corresponding
ciphertext. In CRYSTALS-Kyber, a ciphertext c = (u, v) consists of polynomials
in the ring Zq[X]/(X256 + 1). If c is properly generated, a negacyclic rotation
of the message can be performed by multiplying both u and v by indeterminate
X [31]. However, as pointed out in [5], for chosen ciphertexts which are used in
secret key recovery attacks, such a method may cause errors because decode(−y)
and decode(y) can evaluate to different values. A method customized to specific
chosen ciphertexts is presented in [5] as a solution to this problem.

7 Experimental results

At the profiling stage, for each ω-order masked implementation of CRYSTAL-
Kyber, ω ∈ {1, 2, . . . , 5}, we capture from the device under attack 30K traces for
the training of neural networks. The traces are captured during the execution
of CCAKEM.Decaps() with input ciphertexts encrypting messages selected at
random. Since CRYSTAL-Kyber is a public-key algorithm, the encryption is
performed using the public key of the device under attack. Hence, the attacker
can apply CPAPKE.Enc() to generate a proper ciphertext c for any message,
and then use the device under attack to decrypt c. The training set is expanded
to 960K using the byte-wise cut-and-join technique of [27].

7. EXPERIMENTAL RESULTS 13

Table 2: Empirical probability (mean over 10K tests) to recover a message bit
from a single trace of a first-order masked implementation w/o cyclic rotations.

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9973 0.9977 0.9854 0.9621 0.9697 0.9546 0.9260 0.8958 0.9611
1 0.9995 0.9989 0.9930 0.9732 0.9841 0.9766 0.9501 0.9070 0.9728
2 0.9997 0.9993 0.9939 0.9809 0.9803 0.9794 0.9466 0.9157 0.9745
3 0.9996 0.9992 0.9945 0.9860 0.9868 0.9828 0.9481 0.9204 0.9772
4 0.9996 0.9995 0.9945 0.9881 0.9881 0.9838 0.9479 0.9166 0.9773
5 0.9996 0.9990 0.9962 0.9863 0.9904 0.9834 0.9448 0.9121 0.9765
6 0.9994 0.9990 0.9967 0.9851 0.9898 0.9859 0.9452 0.9044 0.9757
7 0.9990 0.9993 0.9954 0.9860 0.9885 0.9866 0.9442 0.9106 0.9762
8 0.9997 0.9993 0.9972 0.9834 0.9877 0.9835 0.9454 0.9006 0.9746
9 0.9992 0.9990 0.9948 0.9873 0.9902 0.9876 0.9488 0.9113 0.9773
10 0.9995 0.9984 0.9955 0.9824 0.9879 0.9838 0.9395 0.9128 0.9750
11 0.9994 0.9987 0.9961 0.9847 0.9894 0.9854 0.9453 0.9080 0.9759
12 0.9989 0.9993 0.9960 0.9842 0.9883 0.9848 0.9437 0.9066 0.9752
13 0.9992 0.9987 0.9972 0.9845 0.9890 0.9846 0.9358 0.9016 0.9738
14 0.9995 0.9990 0.9953 0.9849 0.9888 0.9847 0.9412 0.9041 0.9747
15 0.9988 0.9988 0.9955 0.9838 0.9897 0.9855 0.9454 0.9090 0.9758
16 0.9993 0.9985 0.9958 0.9866 0.9896 0.9848 0.9349 0.9045 0.9742
17 0.9993 0.9994 0.9957 0.9866 0.9894 0.9825 0.9370 0.9054 0.9744
18 0.9996 0.9988 0.9957 0.9869 0.9884 0.9865 0.9377 0.9118 0.9757
19 0.9989 0.9988 0.9954 0.9849 0.9894 0.9831 0.9410 0.9034 0.9744
20 0.9992 0.9994 0.9952 0.9862 0.9871 0.9877 0.9392 0.9120 0.9758
21 0.9992 0.9988 0.9946 0.9855 0.9868 0.9836 0.9369 0.9036 0.9736
22 0.9990 0.9989 0.9959 0.9836 0.9880 0.9856 0.9303 0.9049 0.9733
23 0.9993 0.9993 0.9967 0.9863 0.9888 0.9849 0.9375 0.9057 0.9748
24 0.9990 0.9990 0.9953 0.9840 0.9885 0.9842 0.9291 0.8905 0.9712
25 0.9991 0.9989 0.9966 0.9864 0.9880 0.9855 0.9368 0.9064 0.9747
26 0.9992 0.9994 0.9962 0.9834 0.9901 0.9866 0.9351 0.9101 0.9750
27 0.9990 0.9991 0.9953 0.9822 0.9869 0.9844 0.9374 0.9111 0.9744
28 0.9986 0.9987 0.9963 0.9855 0.9877 0.9852 0.9342 0.9046 0.9738
29 0.9992 0.9988 0.9955 0.9857 0.9882 0.9863 0.9360 0.9026 0.9740
30 0.9992 0.9987 0.9964 0.9871 0.9891 0.9857 0.9296 0.8987 0.9731
31 0.9993 0.9988 0.9958 0.9859 0.9890 0.9835 0.9282 0.9021 0.9728

avg 0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.974338

At the attack stage, for each ω-order masked implementation, we capture
10K traces during the execution of CCAKEM.Decaps(). The attack traces are
captured with three two-bit negacyclic rotations for each message. Thus, 2.5K
messages, selected at random, are tested in total. For the fifth-order masked
implementation, we capture the attack set five times to evaluate the effect of
repetitions on the success rate of message recovery.

For the first-order masked implementations, we train eight models, M1
i , one

for each bit position in a byte, for all i ∈ {0, 1, . . . , 7}. Table 2 shows that
the resulting empirical probability of successful message bit recovery is too low,
pbit = 0.97434, on average. This gives us only pmessage = p256bit = 0.00127 average
message recovery probability. One can see that the prediction accuracy decreases
towards the last bit of a byte.

Then we apply cyclic rotations. For each test message, we capture traces
with i two-bit cyclic rotations, for i ∈ {0, 1, 2, 3}. The bits 2i and 2i+ 1 of each
byte are recovered using the models M1

0 and M1
1 , respectively. As Table 3 shows,

14 Elena Dubrova, Kalle Ngo, and Joel Gärtner

Table 3: Empirical probability (mean over 2.5K tests) to recover a message bit
from a single trace of a first-order masked implementation with cyclic rotations.

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9968 0.9984 0.9976 0.9972 0.9980 0.9964 0.9968 0.9988 0.9975
1 0.9996 0.9992 0.9992 0.9988 0.9996 0.9988 0.9996 0.9988 0.9992
2 0.9996 1.0000 1.0000 0.9988 0.9992 0.9988 1.0000 0.9996 0.9995
3 0.9996 0.9992 0.9988 0.9988 1.0000 0.9992 1.0000 0.9996 0.9994
4 0.9996 0.9996 1.0000 0.9996 0.9992 0.9992 0.9996 0.9996 0.9996
5 1.0000 0.9984 0.9992 0.9992 0.9992 0.9992 1.0000 0.9992 0.9993
6 0.9992 0.9992 0.9996 0.9984 0.9996 0.9992 0.9992 0.9992 0.9992
7 0.9992 0.9996 0.9992 0.9992 0.9988 0.9996 0.9988 0.9988 0.9992
8 1.0000 0.9996 0.9996 0.9984 0.9992 1.0000 1.0000 0.9992 0.9995
9 0.9992 0.9988 0.9992 0.9988 0.9988 0.9984 0.9996 1.0000 0.9991
10 0.9992 0.9992 0.9996 0.9992 0.9996 0.9976 0.9996 0.9976 0.9990
11 0.9996 1.0000 0.9992 0.9988 0.9988 0.9976 1.0000 0.9984 0.9991
12 0.9988 0.9996 0.9984 0.9996 0.9988 0.9984 0.9996 0.9996 0.9991
13 0.9996 0.9996 0.9992 0.9988 0.9984 0.9976 0.9996 0.9988 0.9990
14 0.9996 0.9988 0.9992 0.9996 0.9992 0.9984 1.0000 0.9992 0.9993
15 0.9996 0.9984 0.9988 0.9992 0.9980 0.9988 0.9988 0.9988 0.9988
16 0.9996 0.9988 0.9996 0.9980 0.9984 0.9976 0.9996 0.9996 0.9989
17 0.9992 0.9988 0.9996 1.0000 0.9988 0.9992 0.9996 0.9996 0.9994
18 1.0000 0.9988 0.9996 0.9984 0.9992 0.9988 0.9996 0.9992 0.9992
19 0.9992 0.9992 0.9996 1.0000 0.9976 0.9972 0.9992 0.9988 0.9989
20 0.9992 0.9996 0.9996 0.9996 0.9988 0.9988 0.9992 0.9996 0.9993
21 0.9992 0.9984 0.9992 0.9996 0.9984 0.9980 1.0000 0.9992 0.9990
22 0.9996 0.9996 0.9996 1.0000 0.9984 0.9968 0.9984 0.9992 0.9990
23 1.0000 0.9988 0.9992 0.9996 0.9984 0.9988 0.9996 1.0000 0.9993
24 0.9988 0.9988 0.9992 0.9996 0.9988 0.9988 0.9992 0.9988 0.9990
25 0.9992 0.9992 1.0000 0.9984 0.9984 0.9988 0.9988 0.9992 0.9990
26 0.9996 0.9996 0.9984 0.9992 0.9992 0.9988 0.9996 1.0000 0.9993
27 0.9996 0.9984 0.9992 0.9992 0.9972 0.9988 1.0000 1.0000 0.9990
28 0.9992 0.9988 0.9992 0.9980 0.9984 0.9992 0.9976 0.9988 0.9987
29 1.0000 0.9988 0.9996 0.9988 0.9980 0.9984 0.9992 0.9992 0.9990
30 0.9996 0.9984 0.9992 0.9992 0.9992 0.9984 0.9988 0.9988 0.9990
31 1.0000 0.9984 0.9992 0.9992 0.9988 0.9984 0.9992 0.9992 0.9990

avg 0.9994 0.9991 0.9993 0.9990 0.9988 0.9985 0.9993 0.9992 0.99907

Table 4: Empirical probability (mean over 2.5K tests) to recover a message from
a single trace of an ω-order masked implementation with cyclic rotations.

ω 1 2 3 4 5

pbit 0.99907 0.99829 0.99639 0.98582 0.97995

pmessage 0.78866 0.68567 0.39641 0.02585 0.00560

empirical probability of successful message bit recovery improves considerably,
to pbit = 0.99907 on average.

We repeat the attack with cyclic rotations on ω-order masked implementa-
tions for ω ∈ {2, 3, 4, 5}. The resulting bit and message recovery probabilities as
summarized in Table 4. The full tables are shown in the Appendix.

Finally, we check if repeating the same measurement multiple times and
applying majority voting to the predictions can further improve the success rate.

7. EXPERIMENTAL RESULTS 15

Table 5: Empirical probability (mean over 2.5K tests) to recover a message bit
from five traces of a fifth-order masked implementation with cyclic rotations .

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 1.0000 0.9764 1.0000 0.9788 1.0000 0.9868 1.0000 0.9760 0.9897
1 1.0000 0.9920 1.0000 0.9924 1.0000 0.9940 1.0000 0.9892 0.9960
2 1.0000 0.9980 1.0000 0.9996 1.0000 0.9972 1.0000 1.0000 0.9994
3 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
4 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 0.9996 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 0.9998
6 1.0000 0.9996 1.0000 0.9988 1.0000 1.0000 1.0000 1.0000 0.9998
7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000 0.9992 0.9999
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 0.9996 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000
16 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 0.9999
18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 0.9988 0.9998
21 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9999
22 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
23 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 0.9999
24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
26 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
29 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000 0.9999
31 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

avg 1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.99946

Table 6: Empirical probability (mean over 2.5K tests) to recover a message from
N traces of a fifth-order masked implementation with cyclic rotations.

N 1 3 5

pbit 0.97995 0.99763 0.99946

pmessage 0.00560 0.54530 0.87085

Using the fifth-order masked implementation, we capture test traces with five
repetitions. As Tables 5 and 6 show, the repetitions boost the message recovery
probability from 0.56% to 87%. We believe that such a significant increase is due
to the fact that random masks are updated at each execution. This contributes
to the independence of errors in the repeated measurements. Thus, ironically,
something that is intended to make the attack harder actually makes it easier.

16 Elena Dubrova, Kalle Ngo, and Joel Gärtner

8 Conclusion

We demonstrated side-channel attacks on up to the fifth-order masked software
implementations of CRYSTALS-Kyber exploiting a vulnerability in the proce-
dure masked_poly_frommsg() which is called during the re-encryption phase of
decapsulation.

The success of the attacks is due to the recursive learning neural network
training method and cyclic rotation-based message recovery method introduced
in this paper. To the best of our knowledge, no side-channel attack on a higher
than the third order masked implementation of any LWE/LWR PKE/KEM
scheme has been demonstrated until now. The presented approach is not spe-
cific for CRYSTALS-Kyber and can potentially be applied to other LWE/LWR
PKE/KEM schemes. The recursive learning technique might have significance
beyond side-channel attacks context.

We are currently working on developing countermeasures against side-channel
attacks on LWE/LWR PKE/KEM schemes.

9 Acknowledgments

This work was supported in part by the Swedish Civil Contingencies Agency
(Grant No. 2020-11632) and the Swedish Research Council (Grant No. 2018-
04482).

References

1. Announcing the commercial national security algorithm suite 2.0. National Security
Agency, U.S Department of Defense (Sep 2022), https://media.defense.gov/
2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with
a single trace. In: Int. Conference on Post-Quantum Cryptography. pp. 189–205.
Springer (2020). https://doi.org/10.1109/ICDSP.2018.8631824

3. Avanzi, R., Bos, J., Léo Ducas, E.K., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber algorithm specifica-
tions and supporting documentation (2020), https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions

4. Azouaoui, M., Kuzovkova, Y., Schneider, T., van Vredendaal, C.: Post-quantum
authenticated encryption against chosen-ciphertext side-channel attacks. Cryptol-
ogy ePrint Archive, Paper 2022/916 (2022), https://eprint.iacr.org/2022/916

5. Backlund, L., Ngo, K., Gartner, J., Dubrova, E.: Secret key recovery attacks on
masked and shuffled implementations of CRYSTALS-Kyber and Saber. Cryptology
ePrint Archive, Paper 2022/1692 (2022), https://eprint.iacr.org/2022/1692

6. Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.:
A side-channel-resistant implementation of SABER. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 17(2), 1–26 (2021)

7. Belleville, N., Courousse, D., Heydemann, K., Charles, H.P.: Automated software
protection for the masses against side-channel attacks. ACM Trans. Archit. Code
Optim. 16(4) (2018)

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1109/ICDSP.2018.8631824
https://doi.org/10.1109/ICDSP.2018.8631824
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/916
https://eprint.iacr.org/2022/1692

9. ACKNOWLEDGMENTS 17

8. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
Cryptology ePrint Archive, Paper 2021/104 (2021), https://eprint.iacr.org/
2021/104

9. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: First- and higher-order implementations. IACR Trans. on Cryptographic
Hardware and Embedded Systems 2021(4), 173–214 (Aug 2021). https://doi.
org/10.46586/tches.v2021.i4.173-214

10. Brisfors, M., Forsmark, S., Dubrova, E.: How deep learning helps compromising
USIM. In: Proc. of the 19th Smart Card Research and Advanced Application Con-
ference (CARDIS’2020) (Nov 2020)

11. Brisfors, M., Moraitis, M., Dubrova, E.: Side-channel attack countermeasures based
on clock randomization have a fundamental flaw. Cryptology ePrint Archive, Paper
2022/1416 (2022), https://eprint.iacr.org/2022/1416, https://eprint.iacr.
org/2022/1416

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Advances in Cryptology - CRYPTO ’99. vol. 1666,
pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-48405-1_26

13. Coron, J.S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Crypt. Hardware and Embedded Systems. pp. 156–170.
Springer Berlin Heidelberg (2009)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

15. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive,
Paper 2022/058 (2022), https://eprint.iacr.org/2022/058

16. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive,
Paper 2022/058 (2022), https://eprint.iacr.org/2022/058

17. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.X.: Towards leakage-
resistant post-quantum CCA-secure public key encryption. Cryptology ePrint
Archive, Paper 2022/873 (2022), https://eprint.iacr.org/2022/873

18. Jan-Pieter D’Anvers et al.: Revisiting higher-order masked comparison for lattice-
based cryptography: Algorithms and bit-sliced implementations. Cryptology ePrint
Archive, Paper 2022/110 (2022), https://eprint.iacr.org/2022/110

19. Ji, Y., Wang, R., Ngo, K., Dubrova, E., Backlund, L.: A side-channel attack on a
hardware implementation of CRYSTALS-Kyber. Cryptology ePrint Archive, Paper
2022/1452 (2022), https://eprint.iacr.org/2022/1452, https://eprint.iacr.
org/2022/1452

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual international
cryptology conference. pp. 388–397. Springer (1999)

21. Kundu, S., D’Anvers, J.P., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.:
Higher-order masked Saber. Cryptology ePrint Archive, Paper 2022/389 (2022),
https://eprint.iacr.org/2022/389

22. Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harnessing the strengths
of your enemy: Customized encoding to thwart side-channel attacks. In: Fast Soft-
ware Encryption. pp. 223–243 (2016)

23. Moody, D.: Status Report on the Third Round of the NIST Post-Quantum Cryp-
tography Standardization Process. Nistir 8309 pp. 1–27 (2022), https://nvlpubs.
nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2021/104
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://eprint.iacr.org/2022/1416
https://eprint.iacr.org/2022/1416
https://eprint.iacr.org/2022/1416
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/873
https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/1452
https://eprint.iacr.org/2022/1452
https://eprint.iacr.org/2022/1452
https://eprint.iacr.org/2022/389
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

18 Elena Dubrova, Kalle Ngo, and Joel Gärtner

24. Mujdei, C., Beckers, A., Mera, J.M.B., Karmakar, A., Wouters, L., Verbauwhede,
I.: Side-channel analysis of lattice-based post-quantum cryptography: Exploiting
polynomial multiplication. Cryptology ePrint Archive, Paper 2022/474 (2022),
https://eprint.iacr.org/2022/474

25. NewAE Technology: Chipwhisperer, https://newae.com/tools/chipwhisperer
26. Ngo, K., Dubrova, E.: Side-channel analysis of the random number generator in

STM32 MCUs. In: Proc. of the Great Lakes Symposium on VLSI (GLSVLSI ’22)
(2022), https://doi.org/10.1145/3526241.3530324

27. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure Saber KEM implementation. IACR Trans. on Cryptographic
Hardware and Embedded Systems pp. 676–707 (2021)

28. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
Saber KEM by power analysis. In: Proc. of the 5th Workshop on Attacks and
Solutions in Hardware Security. pp. 51–61 (2021)

29. Ngo, K., Wang, R., Dubrova, E., Paulsrud, N.: Side-channel attacks on lattice-based
KEMs are not prevented by higher-order masking. Cryptology ePrint Archive,
Paper 2022/919 (2022), https://eprint.iacr.org/2022/919, https://eprint.
iacr.org/2022/919

30. Paulsrud, N.: A Side Channel Attack on a Higher-Order Masked Software Imple-
mentation of Saber. Master’s thesis, School of Electrical Engineering and Computer
Science, KTH (2022)

31. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leakage
in (few) NIST PQC candidates for practical message recovery and key recovery
attacks. Cryptology ePrint Archive, Paper 2020/1559 (2020), https://eprint.
iacr.org/2020/1559

32. Shen, M., Cheng, C., Zhang, X., Guo, Q., Jiang, T.: Find the bad apples: An
efficient method for perfect key recovery under imperfect sca oracles – a case study
of kyber. Cryptology ePrint Archive, Paper 2022/563 (2022), https://eprint.
iacr.org/2022/563, https://eprint.iacr.org/2022/563

33. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

34. Sim, B.Y., Kwon, J., Lee, J., Kim, I.J., Lee, T., Han, J., Yoon, H., Cho, J., Han,
D.G.: Single-trace attacks on the message encoding of lattice-based KEMs. Cryptol-
ogy ePrint Archive, Paper 2020/992 (2020), https://eprint.iacr.org/2020/992

35. Tsai, T.T., Huang, S.S., Tseng, Y.M., Chuang, Y.H., Hung, Y.H.: Leakage-resilient
certificate-based authenticated key exchange protocol. IEEE Open Journal of
the Computer Society 3, 137–148 (2022). https://doi.org/10.1109/OJCS.2022.
3198073

36. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/EM analysis on post-quantum KEMs. IACR Tran. on
Cryptographic Hardware and Embedded Systems 2022(1), 296–322 (Nov 2021).
https://doi.org/10.46586/tches.v2022.i1.296-322

37. Wang, J., Cao, W., Chen, H., Li, H.: Practical side-channel attack on masked mes-
sage encoding in latticed-based KEM. Cryptology ePrint Archive, Paper 2022/859
(2022), https://eprint.iacr.org/2022/859

38. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on LWE/LWR-based
PKE/KEMs using amplitude-modulated EM emanations. In: Proc. of 25th Annual
Int. Conf. on Information Security and Cryptology (2022), https://eprint.iacr.
org/2022/852

39. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. Journal
of Big Data 2021(3) (May 2016). https://doi.org/10.1186/s40537-016-0043-6

https://eprint.iacr.org/2022/474
https://newae.com/tools/chipwhisperer
https://doi.org/10.1145/3526241.3530324
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2020/1559
https://eprint.iacr.org/2020/1559
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2020/992
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/852
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6

10. APPENDIX 19

40. Xu, Z., Pemberton, O.M., Sinha Roy, S., Oswald, D., Yao, W., Zheng, Z.: Mag-
nifying side-channel leakage of lattice-based cryptosystems with chosen cipher-
texts: The case study of Kyber. IEEE Transactions on Computers pp. 1–1 (2021).
https://doi.org/10.1109/TC.2021.3122997

41. Yajing, C., Yan, Y., Zhu, C., Guo, P.: Template attack of LWE/LWR-based
schemes with cyclic message rotation. Entropy 24(10) (2022)

42. Yu, Y., Moraitis, M., Dubrova, E.: Why deep learning makes it difficult to keep
secrets in FPGAs. In: Proc. Workshop on DYnamic and Novel Advances in Machine
Learning and Intelligent Cyber Security (DYNAMICS ’20) (2020), https://doi.
org/10.1145/3477997.3478001

10 Appendix

This appendix presents full tables of empirical probabilities (mean over 2.5K
tests) to recover a message bit from a single trace of a second-, third-, fourth, and
fifth-order masked implementation of CRYSTALS-Kyber using the presented
attack method with cyclic rotations.

Second-order masked implementation with cyclic rotations

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9988 0.9972 0.9988 0.9944 0.9992 0.9948 0.9988 0.9940 0.9970
1 0.9972 0.9976 0.9976 0.9980 0.9996 0.9984 0.9976 0.9972 0.9979
2 0.9984 0.9972 0.9992 0.9972 0.9988 0.9976 0.9992 0.9960 0.9980
3 0.9984 0.9976 0.9984 0.9976 0.9996 0.9980 0.9996 0.9984 0.9985
4 0.9980 0.9984 0.9984 0.9980 1.0000 0.9988 0.9984 0.9976 0.9985
5 0.9984 0.9992 0.9984 0.9992 0.9980 0.9984 0.9980 0.9988 0.9986
6 0.9984 0.9972 0.9980 0.9988 0.9996 0.9980 0.9984 0.9972 0.9982
7 0.9988 0.9972 0.9984 0.9992 0.9988 0.9984 0.9984 0.9980 0.9984
8 0.9992 0.9984 0.9988 0.9964 0.9988 0.9984 0.9992 0.9980 0.9984
9 0.9984 0.9976 0.9992 0.9988 1.0000 0.9988 0.9980 0.9984 0.9987
10 0.9992 0.9976 0.9988 0.9984 0.9996 0.9980 0.9992 0.9960 0.9984
11 0.9972 0.9980 0.9988 0.9992 0.9992 0.9980 0.9988 0.9976 0.9984
12 0.9980 0.9968 0.9988 0.9992 0.9992 0.9992 0.9988 0.9980 0.9985
13 0.9988 0.9980 0.9992 0.9988 1.0000 0.9984 0.9984 0.9972 0.9986
14 0.9984 0.9992 0.9992 0.9972 1.0000 1.0000 0.9980 0.9968 0.9986
15 0.9976 0.9976 0.9988 0.9968 0.9988 0.9984 0.9972 0.9980 0.9979
16 0.9980 0.9976 0.9980 0.9964 0.9988 0.9980 0.9980 0.9984 0.9979
17 0.9984 0.9984 0.9988 0.9984 0.9996 0.9984 0.9980 0.9968 0.9984
18 0.9984 0.9968 0.9992 0.9988 0.9984 0.9984 0.9984 0.9968 0.9982
19 1.0000 0.9996 0.9980 0.9968 0.9996 0.9976 0.9968 0.9972 0.9982
20 0.9988 0.9988 0.9980 0.9972 0.9988 0.9988 0.9988 0.9988 0.9985
21 0.9988 0.9972 0.9988 0.9992 0.9996 0.9988 0.9980 0.9972 0.9985
22 0.9976 0.9992 0.9984 0.9984 0.9992 0.9976 0.9980 0.9980 0.9983
23 0.9984 0.9976 0.9988 0.9992 0.9996 0.9984 0.9988 0.9980 0.9986
24 0.9968 0.9976 0.9984 0.9984 0.9992 0.9964 0.9996 0.9980 0.9981
25 0.9984 0.9964 0.9980 0.9980 0.9980 0.9976 0.9996 0.9996 0.9982
26 0.9988 0.9988 0.9980 0.9980 0.9992 0.9980 0.9992 0.9996 0.9987
27 0.9984 0.9976 0.9988 0.9972 0.9988 0.9996 0.9984 0.9976 0.9983
28 0.9984 0.9972 0.9988 0.9972 0.9992 0.9992 0.9988 0.9980 0.9984
29 0.9976 0.9956 0.9984 0.9988 0.9984 0.9980 0.9988 0.9980 0.9980
30 0.9972 0.9988 0.9984 0.9992 0.9988 0.9988 0.9988 0.9968 0.9984
31 0.9984 0.9988 0.9992 0.9984 0.9992 0.9984 0.9988 0.9980 0.9987

avg 0.9983 0.9978 0.9986 0.9980 0.9992 0.9982 0.9985 0.9976 0.99829

https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1145/3477997.3478001
https://doi.org/10.1145/3477997.3478001

20 Elena Dubrova, Kalle Ngo, and Joel Gärtner

Third-order masked implementation with cyclic rotations

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9968 0.9820 0.9964 0.9816 0.9976 0.9800 0.9984 0.9808 0.9892
1 0.9940 0.9924 0.9904 0.9892 0.9960 0.9908 0.9924 0.9912 0.9920
2 0.9952 0.9952 0.9960 0.9940 0.9960 0.9928 0.9984 0.9928 0.9950
3 0.9980 0.9944 0.9976 0.9924 0.9956 0.9936 0.9980 0.9960 0.9957
4 0.9984 0.9980 0.9968 0.9940 0.9968 0.9960 0.9980 0.9940 0.9965
5 0.9992 0.9952 0.9976 0.9976 0.9984 0.9952 0.9992 0.9964 0.9973
6 0.9972 0.9976 0.9976 0.9964 0.9980 0.9968 0.9984 0.9956 0.9972
7 0.9984 0.9948 0.9960 0.9956 0.9968 0.9956 0.9984 0.9976 0.9967
8 0.9988 0.9948 0.9976 0.9964 0.9996 0.9948 0.9988 0.9976 0.9973
9 0.9984 0.9932 0.9972 0.9968 0.9968 0.9960 0.9984 0.9952 0.9965
10 0.9984 0.9948 0.9980 0.9960 0.9972 0.9964 0.9988 0.9972 0.9971
11 0.9980 0.9972 0.9972 0.9980 0.9976 0.9964 0.9996 0.9972 0.9977
12 0.9976 0.9960 0.9968 0.9980 0.9968 0.9964 0.9992 0.9944 0.9969
13 0.9968 0.9956 0.9992 0.9960 0.9984 0.9936 0.9984 0.9972 0.9969
14 0.9980 0.9968 0.9984 0.9960 0.9972 0.9960 0.9980 0.9976 0.9973
15 0.9988 0.9964 0.9976 0.9964 0.9976 0.9944 0.9984 0.9980 0.9972
16 0.9984 0.9964 0.9980 0.9960 0.9960 0.9944 0.9980 0.9960 0.9967
17 0.9980 0.9964 0.9984 0.9940 0.9968 0.9980 0.9964 0.9972 0.9969
18 0.9972 0.9952 0.9964 0.9964 0.9976 0.9944 0.9984 0.9964 0.9965
19 0.9984 0.9984 0.9980 0.9956 0.9968 0.9960 0.9984 0.9972 0.9974
20 0.9988 0.9972 0.9968 0.9968 0.9968 0.9908 0.9984 0.9976 0.9967
21 0.9980 0.9980 0.9968 0.9940 0.9964 0.9976 0.9976 0.9972 0.9970
22 0.9988 0.9972 0.9960 0.9948 0.9944 0.9960 0.9976 0.9948 0.9962
23 0.9976 0.9960 0.9960 0.9944 0.9972 0.9948 0.9976 0.9964 0.9963
24 0.9976 0.9984 0.9984 0.9964 0.9980 0.9948 0.9964 0.9968 0.9971
25 0.9992 0.9968 0.9980 0.9964 0.9980 0.9948 0.9984 0.9972 0.9973
26 0.9972 0.9976 0.9968 0.9972 0.9972 0.9920 0.9980 0.9968 0.9966
27 0.9984 0.9944 0.9980 0.9952 0.9964 0.9948 0.9984 0.9972 0.9966
28 0.9988 0.9984 0.9976 0.9952 0.9980 0.9960 0.9976 0.9952 0.9971
29 0.9968 0.9976 0.9972 0.9956 0.9968 0.9948 0.9960 0.9984 0.9967
30 0.9980 0.9976 0.9972 0.9948 0.9968 0.9944 0.9976 0.9980 0.9968
31 0.9976 0.9952 0.9968 0.9968 0.9968 0.9944 0.9988 0.9948 0.9964

avg 0.9978 0.9958 0.9971 0.9951 0.9971 0.9945 0.9979 0.9958 0.99639

10. APPENDIX 21

Fourth-order masked implementation with cyclic rotations

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9844 0.9164 0.9856 0.9060 0.9804 0.9152 0.9812 0.9196 0.9486
1 0.9936 0.9516 0.9920 0.9516 0.9956 0.9416 0.9960 0.9496 0.9714
2 0.9976 0.9776 0.9956 0.9784 0.9948 0.9792 0.9956 0.9744 0.9866
3 0.9968 0.9708 0.9952 0.9744 0.9944 0.9692 0.9936 0.9696 0.9830
4 0.9944 0.9776 0.9932 0.9788 0.9952 0.9808 0.9932 0.9748 0.9860
5 0.9940 0.9808 0.9960 0.9808 0.9940 0.9840 0.9956 0.9772 0.9878
6 0.9948 0.9736 0.9952 0.9808 0.9936 0.9804 0.9936 0.9808 0.9866
7 0.9944 0.9796 0.9960 0.9788 0.9964 0.9824 0.9960 0.9828 0.9883
8 0.9936 0.9864 0.9964 0.9792 0.9948 0.9780 0.9976 0.9816 0.9885
9 0.9960 0.9796 0.9956 0.9812 0.9964 0.9776 0.9952 0.9820 0.9879
10 0.9956 0.9796 0.9960 0.9792 0.9960 0.9788 0.9928 0.9820 0.9875
11 0.9944 0.9804 0.9972 0.9808 0.9948 0.9848 0.9952 0.9752 0.9878
12 0.9952 0.9816 0.9948 0.9732 0.9968 0.9784 0.9928 0.9796 0.9866
13 0.9948 0.9804 0.9968 0.9816 0.9948 0.9792 0.9964 0.9796 0.9879
14 0.9964 0.9812 0.9964 0.9816 0.9944 0.9756 0.9944 0.9844 0.9880
15 0.9964 0.9812 0.9944 0.9756 0.9932 0.9776 0.9952 0.9784 0.9865
16 0.9960 0.9800 0.9972 0.9832 0.9960 0.9752 0.9924 0.9800 0.9875
17 0.9944 0.9844 0.9948 0.9868 0.9940 0.9772 0.9940 0.9836 0.9887
18 0.9948 0.9800 0.9944 0.9812 0.9968 0.9756 0.9952 0.9796 0.9872
19 0.9972 0.9828 0.9964 0.9764 0.9968 0.9800 0.9956 0.9756 0.9876
20 0.9948 0.9840 0.9956 0.9844 0.9944 0.9792 0.9956 0.9816 0.9887
21 0.9944 0.9824 0.9948 0.9764 0.9956 0.9792 0.9968 0.9812 0.9876
22 0.9960 0.9784 0.9932 0.9848 0.9928 0.9788 0.9972 0.9788 0.9875
23 0.9956 0.9788 0.9944 0.9796 0.9956 0.9816 0.9980 0.9792 0.9879
24 0.9964 0.9824 0.9956 0.9828 0.9960 0.9748 0.9952 0.9812 0.9881
25 0.9944 0.9824 0.9952 0.9788 0.9980 0.9836 0.9948 0.9824 0.9887
26 0.9928 0.9856 0.9956 0.9760 0.9936 0.9828 0.9968 0.9776 0.9876
27 0.9928 0.9800 0.9968 0.9812 0.9956 0.9816 0.9972 0.9804 0.9882
28 0.9940 0.9804 0.9940 0.9772 0.9944 0.9856 0.9956 0.9840 0.9881
29 0.9956 0.9792 0.9960 0.9760 0.9956 0.9860 0.9952 0.9832 0.9883
30 0.9948 0.9792 0.9960 0.9784 0.9936 0.9796 0.9924 0.9868 0.9876
31 0.9952 0.9820 0.9968 0.9780 0.9964 0.9780 0.9952 0.9812 0.9878

avg 0.9947 0.9775 0.9951 0.9764 0.9947 0.9763 0.9947 0.9771 0.98582

22 Elena Dubrova, Kalle Ngo, and Joel Gärtner

Fifth-order masked implementation with cyclic rotations

Byte Bit position in byte avg
0 1 2 3 4 5 6 7

0 0.9864 0.8524 0.9836 0.8488 0.9840 0.8672 0.9856 0.8520 0.9200
1 0.9816 0.9160 0.9832 0.9152 0.9824 0.9252 0.9828 0.9216 0.9510
2 0.9900 0.9520 0.9916 0.9608 0.9892 0.9572 0.9912 0.9524 0.9731
3 0.9956 0.9684 0.9952 0.9640 0.9916 0.9700 0.9952 0.9696 0.9812
4 0.9912 0.9740 0.9904 0.9708 0.9932 0.9676 0.9940 0.9756 0.9821
5 0.9924 0.9708 0.9924 0.9720 0.9928 0.9684 0.9904 0.9728 0.9815
6 0.9912 0.9752 0.9916 0.9692 0.9892 0.9740 0.9908 0.9732 0.9818
7 0.9920 0.9740 0.9888 0.9720 0.9916 0.9744 0.9932 0.9772 0.9829
8 0.9960 0.9828 0.9916 0.9684 0.9920 0.9720 0.9944 0.9732 0.9838
9 0.9924 0.9688 0.9892 0.9732 0.9932 0.9692 0.9932 0.9724 0.9814
10 0.9936 0.9736 0.9932 0.9732 0.9940 0.9744 0.9960 0.9708 0.9836
11 0.9924 0.9792 0.9956 0.9692 0.9936 0.9740 0.9952 0.9720 0.9839
12 0.9932 0.9760 0.9900 0.9716 0.9964 0.9752 0.9956 0.9724 0.9838
13 0.9924 0.9720 0.9932 0.9756 0.9944 0.9764 0.9932 0.9692 0.9833
14 0.9944 0.9760 0.9940 0.9720 0.9908 0.9720 0.9944 0.9672 0.9826
15 0.9912 0.9716 0.9876 0.9744 0.9928 0.9792 0.9964 0.9720 0.9831
16 0.9924 0.9772 0.9916 0.9740 0.9924 0.9740 0.9976 0.9736 0.9841
17 0.9904 0.9732 0.9936 0.9676 0.9948 0.9736 0.9944 0.9772 0.9831
18 0.9912 0.9724 0.9908 0.9760 0.9916 0.9724 0.9956 0.9752 0.9832
19 0.9936 0.9736 0.9920 0.9672 0.9908 0.9736 0.9936 0.9788 0.9829
20 0.9932 0.9764 0.9948 0.9756 0.9952 0.9676 0.9952 0.9728 0.9839
21 0.9932 0.9736 0.9944 0.9772 0.9952 0.9692 0.9960 0.9756 0.9843
22 0.9940 0.9780 0.9936 0.9704 0.9928 0.9720 0.9944 0.9740 0.9837
23 0.9952 0.9740 0.9912 0.9724 0.9944 0.9748 0.9940 0.9728 0.9836
24 0.9932 0.9744 0.9928 0.9716 0.9920 0.9744 0.9960 0.9752 0.9837
25 0.9920 0.9736 0.9928 0.9720 0.9940 0.9768 0.9960 0.9736 0.9839
26 0.9932 0.9764 0.9944 0.9696 0.9920 0.9712 0.9940 0.9780 0.9836
27 0.9928 0.9772 0.9940 0.9760 0.9940 0.9716 0.9956 0.9728 0.9842
28 0.9960 0.9768 0.9920 0.9756 0.9920 0.9736 0.9944 0.9716 0.9840
29 0.9944 0.9744 0.9924 0.9768 0.9932 0.9800 0.9916 0.9748 0.9847
30 0.9952 0.9748 0.9920 0.9720 0.9944 0.9736 0.9948 0.9768 0.9842
31 0.9920 0.9728 0.9952 0.9720 0.9932 0.9704 0.9948 0.9680 0.9823

avg 0.9924 0.9682 0.9918 0.9661 0.9923 0.9677 0.9937 0.9673 0.97995

	Breaking a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-Paste

