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Abstract

This paper presents a new method for quantum
identity authentication (QIA) protocols. The logic
of classical zero-knowledge proofs (ZKPs) due to
Schnorr [9] is applied in quantum circuits and al-
gorithms. This novel approach gives an exact way
with which a prover P can prove they know some
secret by encapsulating it in a quantum state be-
fore sending to a verifier V by means of a quantum
channel - allowing for a ZKP wherein an eaves-
dropper or manipulation can be detected with a
fail-safe design. This is achieved by moving away
from the hardness of the Discrete Logarithm Prob-
lem towards the hardness of estimating quantum
states. This paper presents a method with which
this can be achieved and some bounds for the secu-
rity of the protocol provided. With the anticipated
advent of a ‘quantum internet’, such protocols and
ideas may soon have utility and execution in the
real world.

1 Introduction

With the advent of Quantum Computing comes
with it the idea of the Quantum Internet - the
ability to transfer a quantum state |Ψ⟩ from one
quantum computer/device to another. There are
many challenges with this kind of networking [2],
as well as many benefits. As Cacciapuoti [2] points
out, with a quantum internet we get Quantum Key
Distribution ‘for free’, a major benefit to quantum
communications infrastructure. There are many
existing Quantum Identity Authentication (QIA)
protocols [5] and this paper adds a new approach
to the collection.

Existing approaches make use of various fea-
tures of QKD, quantum teleportation techniques,
Physically Unclonable Functions (PUFs), dis-
tributed Bell states, quantum private queries,
quantum secure direct communications, etc.
Many of these details may be found in [5].

Schnorr introduced in [9] the idea of efficient

identification signatures, initially designed for use
with smart cards. This method of ‘proving’ your
identity without disclosing a secret became known
as ‘zero-knowledge proofs’ and have recently found
much use in many cryptographic protocols [6].

The benefits of ZKPs over other past approaches
are that there needs be no prior exchange or other
pre-sharing, nor any explicit statement of what the
hidden information is. The proof system itself car-
ries the correctness and soundness that guarantees
the validity of a proof presented by the prover to
the verifier, and that the claim by the prover to
know such a secret is ‘true’.

ZKPs have been used to create quantum proof
systems that have also been shown to be possi-
ble in a quantum setting [11]. These make use of
graph isomorphism problems, which this approach
does not. The method herein takes advantage of a
quantum communications network to reduce the
number of quantum and classical transmissions
down to four and three respectively.

The work presented here aims to demonstrate
how a quantum ZKP protocol might look by cod-
ing Schnorr’s original method into quantum states.
Some benefits and restrictions of this approach are
included.

2 Schnorr ZKP Protocol

In its simplest form, a zero-knowledge proof is a
method for a prover P to provide a way of showing
that they know some secret x to a verifier V , but
without exposing the secret at any point, hence
‘zero-knowledge’.

The following algorithm is the usual presenta-
tion of Schnorr’s work. P wants to prove that
they know x such that Y = gx mod p, for prime
p and generator g, with g, p, and Y public. The
following method is presented:

1. P → V : P chooses some r and sends
t = gr mod p to V .

2. V → P : V sends a random c to P .
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3. P → V : P sends s = r + cx to V

4. V checks that gs ≡ t× Y c mod p.

This works as

t× Y c ≡ gr × (gx)c mod p

≡ gr+cx mod p

≡ gs mod p

(1)

This very neat scheme was a very important
development in authentication schemes, and will
form the basis for the quantum protocol presented
next.

3 Quantum Preliminaries

This protocol utilises a single qubit, and only
two quantum gates. Qubits are assumed to be
initialised in |0⟩ = ( 10 ) with our target state
|1⟩ = ( 01 ). With α, β ∈ C, |ψ⟩ = ( αβ ), such that
|α|2+ |β|2 = 1. Quantum circuits are formed from
products and tensor products of 2×2 unitary ma-
trices, referred to as quantum gates (analogous to
binary gates), preserving the unitary property [7].
Define the Rx gate as [7]:

Rx(θ) = eiθX/2

= cos (θ/2)I + i sin (θ/2)X

=

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

) (2)

where I = ( 1 0
0 1 ) and X = ( 0 1

1 0 ). With the repre-
sentation of the Bloch sphere, this gate is usually
interpreted as a rotation along the x axis.
The following gates Gp(a) and Hp(a) shall be

utilised, defined as follows:

Gp(a) = Rx

(
(a mod p)× π

p

)
(3)

Hp(a) = Rx

(
(a mod 2p)× π

p

)
(4)

Intuitively, we split the π rotation about the x
axis on the Bloch sphere into p many steps, and
then apply a rotation on our qubit, moving that
number of steps around. The important thing to
note here is that Gp(a)Gp(b) = Hp(a + b), which
can be made Gp(a + b) by applying X if (a + b
mod 2p) > p. This will be useful later.
Let kp(n) be defined as

kp(n) =

{
0 if (n mod 2p) < p

1 otherwise
(5)

and let Cm = X gate if m = 1, else Cm = I.

4 Quantum Internet ZKPs

This section brings these two domains together
to propose an authentication scheme that makes
use of a quantum internet with additional classical
channel.

4.1 Q-ZKP Protocol

The Quantum Internet, loosely defined, is a quan-
tum communications protocol that permits the
transfer of some quantum state |Ψ⟩ from one quan-
tum computer/device to another. Utilising this
property, the following zero-knowledge proof can
be constructed.

As before, P wishes to prove they know x to
V , in this case such that they can create a state
Gp(x) |0⟩. Both the gate Gp and value of p are
known publicly.

1. V selects random values c and n.

2. V → P : Let V have |x⟩ = Gp(x) |0⟩, but no
knowledge of x. V sends to P

|x+ (c− 1)n⟩ = Gp((c− 1)n) |x⟩ (6)

3. P → V P selects some random r and sends
the state:

|A⟩ = Gp(r) |x+ (c− 1)n⟩ (7)

4. V → P : V sends c over a classical channel and
sends the state

|S1⟩ = Gp(n) |A⟩

5. P computes s = r + cx. Let b = kp(t) where

t =
(
(x mod p) + (r mod p)

+ (x(c− 1) mod p)
)

6. P → V : P sends s and b and then sends the
state:

|S2⟩ = Gp(x(c− 1)) |S1⟩

7. V constructs

|B⟩ = Gp(−cn) |S2⟩ (8)

and calculates

a = kp

(
((c− 1)n mod p)+

(n mod p) + (−cn mod p)
) (9)

8. V checks that

Gp(p− s)Ca⊕b |B⟩ = |1⟩

by seeking a 1 under the normal z axis mea-
surement.
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4.1.1 Note on Notation

It should be made clear that the various states
are applied successively to received states. Whilst
combining rotations from distinct states is hard,
applying rotations to received states is straight-
forward theoretically, especially for commutative
gates that are in use here. Following, for example,
a quantum teleportation operation receiving state
|Ψ⟩, we apply gateG1 thenG2 to obtainG2G1 |Ψ⟩.

4.2 Correctness and Completeness

Lemma 4.1.

Rx(b)Rx(a) |0⟩ = Rx(a+ b) |0⟩ (10)

Proof.

Rx(a) |0⟩ =
(

cos(a2 )
−isin(a2 )

)
= |a⟩

Rx(b) |a⟩ =
(

cos(a2 )cos(
b
2 )− sin(

a
2 )sin(

b
2 )

−i(cos(a2 )sin(
b
2 ) + sin(a2 )cos(

b
2 ))

)
=

(
cos(a+b

2 )
−isin(a+b

2 )

)
= Rx(a+ b)

From this follows also the commutativity of sin-
gle axis rotations

Rx(a)Rx(b) = Rx(b)Rx(a) (11)

It then further follows that in equation (8)

Gp(x(c− 1)) |A⟩ = Gp(r)Hp(xc) |0⟩ (12)

Next we need to take Hp(r+xc) which is formed
from full rotations about the x axis, and restrict
it down to half-axis rotations. This is where Cb

comes in to play.
Note that if some

(a mod 2p) > p

then

(a+ p mod 2p) < p

Given our X gate effectively fulfils this function,
it is conditional on P ’s assessment in witness b
whether it is applied or not. As such if

(r + xc mod 2p) > p

then

XHp(xc)Gp(r) = Gp(xc)Gp(r) (13)

This gives us, given a correct choice of Cb

BCb = Gp(xc+ r) = Gp(s) (14)

We use this for the cn construction also, noting
that if both overflow then we need do nothing,
and so use the XOR of our two evaluations as two
overflows do not need correcting.

We then need the following theorem to complete
our proof’s validity:

Theorem 4.2. Let Ca⊕b be chosen appropriately
as above. When V implements the protocol as out-
lined above the output will always be a |1⟩ if and
only if V agrees that P has a valid proof that they
know x.

Proof. (←) Start by re-asserting the interpreta-
tion of equation (1) in this scheme, namely that
for a valid proof it follows that

s ≡ r + xc mod p

By Lemma 4.1 and equation (13),

CaGp(−cn)Gp(n)Gp((c− 1)n) = Gp(0)

It then follows that, equations (7) and (14):

Gp(p− s)CbGp(x(c− 1))Gp(x+ r) |0⟩
= Gp(p− (r + xc))Gp(r + xc) |0⟩
= Gp(p) = Rx(π) |0⟩ = |1⟩

(15)

Given the protocol only divides a half, not a full,
qubit rotation by p this completion should always
send the qubit to be in state |1⟩.
Therefore have a 1 measurement, modulo some

error ϵ.
(→) If the measurement output is (almost) al-

ways 1 modulo some noise, then the states received
from P by V matches the |1⟩ state expected by V .
By equation (15) a |1⟩ state, and subsequent 1

measurement means that everything required to
line up in this scheme has done so, and P ’s proof
is correct.

4.3 Security

If we paraphrase Shannon [10], a perfectly secure
zero-knowledge proof is one in which the informa-
tion disclosed about x in a proof P is null, essen-
tially

I(x;P ) = 0

Whilst it may be correct for V to arrive at a |1⟩
state, there are several considerations that make
sure that only a party P who can generate a valid
state |x⟩ = Gp(x) |0⟩ can successfully complete a
proof and satisfy verifier V , and that some attack-
er/eavesdropper cannot either discern the value
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of x nor impersonate P maliciously by inserting
themselves midway through a ZKP sequence.
With the advent of Shor’s algorithm (see [7, Ap-

pendix 4]) it is clear that for the classical scheme
due to Schnorr, if Y = gx mod p is public along-
side g and p, then x may be recovered by means of
this algorithm. As such, a way of sharing quantum
states that encode x and the subsequent proof is
needed, which this protocol attempts to provide.
To do this we substitute exponents over some g

for rotations about the x axis on a qubit, relying
on the hardness of decoding quantum states rather
than the discrete logarithm problem.
There are two sides to this proof scheme’s secu-

rity; a classical side and a quantum one. Let E
denote some attacker/eavesdropper.

4.3.1 Classical Security

The classical security concerns the classical chan-
nels, and we assume some eavesdropper on these.
The variables c and s can be publicly disclosed,
as knowing c does not help you in discerning the
secret x given the additive r that is used.

Theorem 4.3. The classical security of the vari-
ables x, r, and n is that an attacker E has at most
a 1/p chance to provide a malicious proof.

Proof. There are three options classically for an
attacker to try and pursue when attacking this
protocol:

1. Guess x - this would be the most direct
method, and would correctly compromise any
proof from P . Given p is prime, there are p
many options for both values but they can be
checked against s given c is public. There-
fore the probability of this occurring would
be 1/p.

2. Guess n - Focusing again on a PitM attack
taking place after the initial state |A⟩ was sent
from P ; E does not know n as it is multplied
by c, and so cannot simply subtract the value.
E could guess the value for n, then apply the
following attack to defeat the proof:

(a) The attacker knows c and correctly
guesses n, chooses some t and then sends
to V :

|S2⟩ = Gp(t)Gp(cn) |0⟩

(b) Set s = t and b = 0, which completes a
valid proof.

There is a 1/p chance that this works.

3. Guess r - An unlikely attack, this would com-
promise the proof but only for one instance,
and is only effective if the attacker graduates
from eavesdropper to an active person-in-the-
middle attack (PitM). As above, the likeli-
hood this works is 1/p.

By this argument, E has at best a 1/p chance
to guess a value that could allow them to provide
a valid malicious proof.

4.3.2 Quantum Security

Next follows the analysis of the security of this
system over noisy quantum channels - both error
corrected and not.

I. Error Corrected Case
If we first assume an error corrected channel

(e.g. using a scheme found in Calderbank and
Shor [3]) then the security relies upon the fact that
states are only transmitted once. As such, an at-
tacker having to measure say |A⟩ multiple times
in order to produce any kind of valid amplitude
estimation, e.g. in [1], becomes a very difficult at-
tack vector. Given each value is only transmitted
at most once in its original state such an attack is
not viable, and so E would likely not attempt to
carry it out.

Therefore the security in this case falls back to
the classical case above.

II. The Noisy Case
For a given quantum channel that has noise, the

probability that a qubit is successfully transmitted
is 1 − ϵ, for some (hopefully) small error term ϵ.
Whilst an attacker E listening in on the channel
will raise the noise by means of incorrect guesses
and interference, these may be detected by com-
paring the number of 0 measurements with an ac-
cepted bound given by the error. If we let Pvalid

represent a valid proof from the protocol in sec-
tion 4, the fidelity of the protocol with noise can
be characterised as the expectation

E ⟨1|Pvalid |0⟩ = 1− ϵ

Note that the usual convention of talking about
bit errors in our rotations does not apply neces-
sarily to our axis rotation inputs x, r, n, or s.
This is because an error of Gp(a ± 2w+1) would
be considerably more noticeable from Gp(a± 2w)
for most choices of w. Therefore we can assume
that any channel noise will largely only affect the
least significant bits of our single qubit rotation
parameters.

Theorem 4.4. Let p be given, and let the quan-
tum channel error term ϵ = 1/e, then there is at
best a

1

p
+

2p

e2
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chance that an attacker E can successfully pass an
incorrect proof as a valid one to V in the scheme
above.

Proof. To begin with let

1

e
≥ 1

p

Taking the most likely attack scenario in theorem
4.3, we may reason as follows; Suppose an attacker
makes a close guess cnguess = cn±1, the resulting
error in the final sum in equation 15 with noise ϵ
will give measurement expectations of

E ⟨1|Gp(p) |0⟩ = 1− ϵ
≡ E ⟨1|Rx((p± 1)π/p) |0⟩

(16)

With the error in the channel as above then this
would not be distinguishable from the value of cn
transmitted with noise.
Therefore the likelihood that the attacker

chooses nguess that is close enough to n to be
masked by noise and thereby have a successful at-
tack to give a malicious valid proof Pvalid is the
same as choosing n with no error (1/p) or making
one of two valid choices from {cn−1, cn+1} with
noise masking it:

Pr(Pvalid|cnguess) =
1

p
+

2

e
=

2p+ e

pe

For e close to p, this would be around 3/p, which
is what should be expected.
However, in general we may find that e > p.

Thereby this 2/e term decomposes as two in-
stances of the proportion of p to e over e, or p

e2 ;
one for the likelihood of E guessing n+1 and one
for guessing n − 1. This gives a combined upper
bound of

Pr(Pvalid|nguess) =
(1
p
+

2p

e2

)
(17)

Note that because the ‘guess n’ attack only af-
fects one quantum transmission, we only need to
consider the error once.

4.3.3 Considerations Within the Protocol

There are a number of security considerations
within the protocol that we will state here.
With the communications being hybrid classi-

cal and quantum, so is our ‘challenge’. Thereby
we have to values, c and n that are both used in
tandem to provide the challenge to P that can only
be resolved if P knows x. To prevent P disregard-
ing the |x⟩ that V has, this challenge is commited

to at the start of the protocol, and unwound fully
at the end.

The choice of r is never transmitted classically,
and so is totally unknown to V . Likewise, n is
totally unknown to P , and even if P is malicious
they cannot unwind Gp(cn) as P is unaware how
many times to apply Gp(−c) as they do not know
n.

Therefore by delivering Gp((c − 1)n) at first,
P cannot simply prove they know any x, just
specifically the one that V has in |x⟩ at the start.
Thereby, whilst r creates a lock on this particu-
lar proof for P , c and n create a hybrid quantum-
classical zero-knowledge challenge for P to provide
a resolution to.

It should be noted that if V has some gate Ux

such that, without knowing x, V may obtain

Ux |0⟩ = Gp(x) |0⟩

then some steps in the protocol become unneces-
sary, as V can just construct Gp(xc) themselves -
they only need to receive state |A⟩ and s. The
author is, however, unaware of how this could
be achieved without falling afoul to a protracted
quantum amplitude estimation attack, for exam-
ple.

4.3.4 Overall Security

The attack likelihood given in theorem (4.4) is
the combined ‘worst-case’ scenario for the protocol
presented in this paper.

By theorem (4.4) as p increases and/or ϵ de-
creases then the number of repetitions required
to validate a proof decreases according to the re-
quired confidence level.

For a 5σ confidence, with an additive noise error
of ϵ as defined in theorem 4.4 we would need N -
many iterations such that(1

p
+

2p

e2

)N

< 5.733× 10−7

This would give us the highest confidence that P
was both honest and knew a value for x.

By analysing the effects of noise and how an
attacker may leverage these, we can see the ex-
tent to which an attacker can ‘hide’ in noise. Any
other interference in the quantum transmissions
will raise the noise floor sufficiently that it goes
above some calibrated value for ϵ, which would
invalidate the proof for V .

The argument presented here is congruous with
how QKD protocols add security using quantum
states. The quantum channel, as with other quan-
tum communications protocols [2], offers some sig-
nificant added protection along with the classical
security.
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Note, because the security relies on the statisti-
cal likelihood of zero measurements, the protocol
is fail safe for sufficiently high values of ϵ above
a predetermined noise value from the communica-
tion channel.

4.4 Soundness and ZK

There are two conditions that ZKPs must aspire
to:

• soundness - that P can only convince V if
they really do know a given x and behave hon-
estly, except for some small probability.

• zero-knowledge - that an neither V nor an
eavesdropper E can learn anything about the
secret x.

Both of these follow naturally from the details in
section 4.3.
Soundness follows directly from the limits given

in theorems 4.3 and 4.4, specifically that the only
reliable way to attain the correct measurements
within error tolerances is for P to provide an hon-
est proof.
Similarly, owing to the structure of s in relation

to p and the minimal number of quantum com-
munications from which any value of x could be
estimated, the zero-knowledge condition is satis-
fied.

4.5 Remarks

4.5.1 Mutual ZKP

Future developments may involve developing the
protocol and extending it slightly such that both
parties can verify each other - take the challenge
committed to in n by V . With the addition of
another c2 term from P , P could also validate V
concurrently for the potential of mutual authenti-
cation.

4.5.2 Hardware

There are several constraints on current hardware
that would preclude this from being immediately
practical. Namely, the need for a very high pre-
cision on the qubit in use, and a likewise minimal
amount of noise required to not skew the results.
Error corrected qubits and quantum communi-

cation channels are required to deal with the sec-
ond part of these issues [8]. The resolution of the
qubits and their longevity is taken into account by
some benchmarks, such as ‘Quantum Volume’ [4].
Therefore, as quantum computers grow in reliabil-
ity and complexity, and quantum networks begin
to be tested and deployed and improve, we might

consider such high enough resolutions, error cor-
rection, and reliability to one day be attainable.

5 Conclusion

This paper hopes to have shown that there is
another possibility for performing zero-knowledge
proofs using quantum algorithms over quantum
communications networks. The protocol in this
paper has shown a method to swap out the use
of a generator g in Schnorr’s scheme for a qubit
rotation, and the extra steps required to make a
zero-knowledge proof work with currently avail-
able algorithms. This system has been shown to
have some additional benefits over purely classical
approaches, despite its classical origins.

This work thereby adds to the collection of
proposals for QIA and quantum zero-knowledge
proofs that might help shape future quantum com-
munications.
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