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Abstract—We look at the use of cryptography to obfuscate
malware. Most surveys on malware obfuscation only discuss
simple encryption techniques (e.g., XOR encryption), which are
easy to defeat (in principle), since the decryption algorithm and
the key is shipped within the program. This SoK proposes a
principled definition of malware obfuscation, and categorises
instances of malware obfuscation that use cryptographic tools
into those which evade detection and those which are de-
tectable. The SoK first examines easily detectable schemes
such as string encryption, class encryption and XOR encoding,
found in most obfuscated malware. It then details schemes
that can be shown to be hard to break, such as the use of
environmental keying. We also analyse formal cryptographic
obfuscation, i.e., the notions of indistinguishability and virtual
black box obfuscation, from the lens of our proposed model
on malware obfuscation.

1. Introduction

Malware developers often obfuscate their programs in
the hope that the program goes undetected by malware
detectors, e.g., antivirus software. Many researchers have
documented obfuscation techniques used in malware in the
wild [1], [2], [3]. Of particular interest is the use of crypto-
graphic tools to obfuscate malware, e.g., encrypting parts
of the program via a block cipher. Use of cryptography
may give the impression that the said technique is provably
resistant to de-obfuscation. However, as we shall see shortly,
most use of cryptography by malware authors to obfuscate
their programs amounts to simple encoding. On the other
hand some techniques can be shown to require substantial
computing power to de-obfuscate [4]. A key question to ask
is how do we evaluate if a malware obfuscation technique is
resistant to de-obfuscation or not? In this survey, we propose
a definition of malware obfuscation, and then categorise
malware obfuscation techniques, used by malware in the
wild as well as proposed by malware analysts and computer

security researchers, under this framework into those that are
easily detectable versus those that avoid detection.

The reader may find some similarity of the topic to cryp-
tographic program obfuscation [5]. Although cryptographic
program obfuscation can be used in malware obfuscation,
it is helpful to distinguish between the goals of malware
obfuscation and that of program obfuscation in general. In
case of the latter, given a program P , the goal is to create an
obfuscated program P̂ which is functionally equivalent to P
but which is harder to reverse-engineer [6]. The programmer
therefore wishes to hide how the program is implemented.
On the other hand, the goal of malware obfuscation is to
avoid being detected, and therefore labelled as malware,
before it has run its functionality at least once on a target
machine. Thus, simply obfuscating the program will not
necessarily meet the goals of malware obfuscation, as the
resulting program, by virtue of being functionally equivalent
to the original program, can still be detected as malware
through its input/output behavior, e.g., via dynamic analysis.
Having said that, often times a malware author simply aims
to avoid detection via inspection of the program code, i.e.,
via static analysis only.

Perhaps the most common example of the use of cryp-
tography in obfuscation is string obfuscation [2]. Under
this type of obfuscation, strings such as URLs, paths and
constants are encrypted using a cryptographic cipher such
as AES or DES [2]. Through string obfuscation, the malware
author may wish to hide URLs which may have been
flagged as malicious by anti-malware programs. Note that
regardless of the security of the underlying cipher, e.g., DES
vs AES, such obfuscation can in principle be undone. This
is because the decryption logic of the program, including the
decryption key, has to be provided within the application [2],
[7]. Thus, such strings can be de-obfuscated by a sufficiently
sophisticated de-obfuscation tool or a skilled programmer
using, for example, dynamic analysis.

One of the goals of this paper is to decouple the use
of cryptographic tools in the manner exemplified in string



obfuscation, which essentially amounts to security by obscu-
rity, versus a more principled approach whereby robustness
against de-obfuscation is guaranteed not merely because
the detector was unable to locate the decryption/decoding
routine within the program. At the outset we need to be clear
about the opposing goals of malware obfuscation and detec-
tion. The goal of a malware author is to ensure that his/her
program runs on the target machine. For this to happen, the
malware should “trick” any anti-malware software running
on the target system to believe it is a benign program.
Obfuscation, then, is one of the techniques towards that
end. On the other hand, malware defense would like to avoid
such mistakes. On the precautionary side, we could label any
use of obfuscation in a program as indicative of malicious
intent. However, the fact that obfuscation is used by benign
programs as well [2], e.g., to protect intellectual property,
shows that this will inevitably block the execution of benign
programs. This shows that we cannot simply label a program
malware on the basis of obfuscation alone. A good detector
should be able to distinguish between an obfuscation of a
benign program versus that of a malware.

Our Contributions. We give a formal model of malware
obfuscation in Section 2, where we define obfuscation to
be successful if it degrades the combined false positive
and negative rates of a malware detector. Under this formal
model, we show that evasion is not possible if the obfuscated
program is functionally equivalent to the original program.
We then relax the requirement of functional equivalence to
requiring the obfuscated program to run on selected target
machines. We discuss few of the prominent techniques from
cryptography used in malware obfuscation, but which do not
evade detection under our model in Section 3. We then give
a description of an obfuscator which provably evades detec-
tion under our model in Section 4, but which is not useful in
the sense that the program’s functionality may not even run
on the target machine. We analyse a real-world alternative
of such a scheme based on environmental keying [8] from
the lens of our model in Section 5. In Section 6, we discuss
the use of deniable encryption in malware obfuscation and
its shortcomings. Section 7 discusses cryptographic notions
of obfuscation, such as indistinguishability obfuscation [5],
and its relation to malware obfuscation defined in this paper.
We analyse the prevalence of cryptographic malware obfus-
cation in the real-world in Section 8, and discuss related
work in Section 9. Finally, we discuss some limitations of
our treatise and avenues for future work in Section 10.

2. Formal Model and Implications

A program P is modelled as a probabilistic polyno-
mial time Turing (PPT) machine. We consider a set S of
programs with two disjoint subsets: Malware and Benign.
We assume the two subsets to be mutually exclusive. We
shall often use M to denote a generic malware, i.e., a
member of Malware. We assume that S is sampled from
a joint probability distribution D of programs and their
labels (malware or benign). We assume that the set S is

of polynomial size. Thus, the set is not supposed to capture
all possible benign and malicious programs, but rather a
representative sample, on which we can test the capabilities
of obfuscators and detectors. A malware detector D, is a
program, which takes as input a program P , and outputs
1 if it is malware and 0 otherwise. The type-I and type-
II errors (false positives and false negatives, respectively),
associated with D are defined as:

αD = Pr[D(P ) = 1 | P ∈ Benign],

βD = Pr[D(P ) = 0 | P ∈ Malware]. (1)

Here the probability is over the distribution D and any ran-
domness employed by the detector D.1 Note that probability
over the distribution D means that we sample a program
uniformly at random from S to calculate the two errors.
When we talk about the total error or simply the error of a
detector D, we mean the quantity αD+βD. Without loss of
generality, we can assume that αD + βD ≤ 1 [9]. Because
otherwise we have αD + βD > 1, and we can instead use
a detector which flips the output of D. The error of this
detector is given by:

1− αD + 1− βD = 2− (αD + βD) < 1.

We shall call D trivial if it makes its decisions independent
of the program, i.e., benign or malware.

Proposition 1. We have

1) If D is trivial then αD + βD = 1.
2) Conversely, if for any D, αD + βD = 1, then there

exists a trivial D′ such that αD′ = αD and βD′ =
βD.

Proof. For part (1), assume D is trivial. Let P ∈ S. Then:

1 = Pr[D(P ) = 1] + Pr[D(P ) = 0]

= Pr[D(P ) = 1 | P ∈ Benign] + Pr[D(P ) = 0 | P ∈ Malware]

= αD + βD.

For part (2), let D′ be a detector which with probability αD

outputs 1, else outputs 0. Then

αD′ = Pr[D′(P ) = 1 | P ∈ Benign] = Pr[D′(P ) = 1] = αD,

and

βD′ = Pr[D′(P ) = 0 | P ∈ Malware] = Pr[D′(P ) = 0]

= 1− αD = βD,

as required.

In light of the proposition, we shall call any D with
αD + βD = 1 as being trivial.

Corollary 1. If D is non-trivial then αD + βD < 1.

1. The notation D(P ) covers both static and dynamic analysis. In the
former, the detector only makes its decision based on taking the description
of the program P as a string. In the latter, the program can run P
as a subroutine, feeding it with required inputs. This engulfs sandboxed
environments.



In particular, any D is trivial if αD = 1 or βD = 1.
For instance, if S is a set of all programs that use an
encryption algorithm, and D is the malware detector that
outputs 1 if a program uses an encryption algorithm. Then
we have αD = 1, even though βD = 0. This is exactly the
example we highlighted in the preamble. The case when
αD = βD = 0 for all possible sets of programs S is not
possible since malware detection is undecidable [10], [11].
Thus, in practice, any D is expected to give a tradeoff. We
shall assume that there is at least one non-trivial detector
D for the set S of programs. Otherwise, obfuscation is
pointless.

Remark 1. As mentioned, the programs D and P are PPT
algorithms. This means that the size of P is bounded by a
polynomial. Also, if D simply runs P as a subroutine, it
can only evaluate P on polynomially many inputs from a
possibly larger space.

Functional Equivalence. We say that two programs P1 and
P2 are functionally equivalent if for all inputs x, we have
P1(x) = P2(x). Otherwise they are functionally inequiv-
alent. We assume that any benign program is functionally
inequivalent to a malware and vice versa. We also assume
that functional inequivalence can be checked in polynomial
time. That is, given a polynomial number of inputs, one can
check whether two programs are functionally equivalent or
not. In case of a pair of functionally inequivalent programs,
one obtains at least one input-output pair in polynomial
time in which their output differs. On the other hand, the
benign programs (resp., malware) in S may be functionally
equivalent to one another.

Malware Obfuscation. A program obfuscator O is a PPT
compiler that takes as input a program P and outputs a
program P ′. We call P ′ the obfuscation of P under O.

Definition 1. Let O be a non-trivial malware obfuscator.
Let D be a malware detector. Define:

βO
D = Pr[D(M ′) = 0 |M ′ ← O(M),M ∈ Malware]

and,

αO
D = Pr[D(P ′) = 1 | P ′ ← O(P ), P ∈ Benign]

We say that O evades detection from the malware detector
D, if αO

D ≤ αD implies βO
D > βD.

Trivial Obfuscators and Naive Detectors. The above def-
inition is lenient: it calls the obfuscator a successful one if
it evades detection, on average. Thus, for some subsets of
malware it might perform worse. If it performs worse for
all malware, then obviously the said technique is useless.
The definition weeds out the trivial “identity” obfuscator,
which simply prints out its input program as the output. This
obfuscator will necessarily have αO

D = αD and βO
D = βD,

and hence it does not evade detection. More importantly,
the definition penalises any brute-force or “dumb” way of
detecting malware, by stating that there will necessarily be
a tradeoff in the form of increased false positives. Consider

for instance the set S of all programs that do not use a
cryptographic library. Let O be an obfuscator, that encrypts
some components of the program. Let D2 be the following
malware detector that uses the (non-trivial) malware obfus-
cator D as a subroutine:

D2(P ):
if P imports a cryptographic library then

Output 1
else

D(P )
end if
Clearly, we have 0 = βO

D2
≤ βD2 . However, we also

have 1 = αO
D2

> αD2 , since D is non-trivial and before
obfuscation, none of the programs import a cryptographic
library. Thus, this obfuscator evades detection against D2

under our definition (as it should). Another detector in this
line of detectors is the one that flags any use of obfuscation
as an indicator that the program may be malicious. This may
very well be the case in the real-world: obfuscation may be
more prevalent in malware than benign programs. However,
since we are interested in the strength of the obfuscation
technique, and the capabilities of any detector against an
obfuscation technique, we have modelled our definition as
a challenge to the detector to distinguish the same technique
applied to a malware versus benign program. Furthermore,
benign programs also use obfuscation techniques for a vari-
ety of reasons such as protection of intellectual property [2],
[12]. Definition 1 is formed after the definition of the ideal
distinguisher in [13].

Utility and Functional Equivalence. From a malware
author’s point of view, the above definition does not say
anything about the utility of the obfuscated malware M ′. For
instance, the obsfuscator could simply remove all “malicious
functionality” in M , and therefore (rightfully) achieve a
higher error rate βO

D , saying nothing about the detection
capabilities of D. On the one extreme, we may have func-
tional equivalence. That is, M(x) = M ′(x) for all inputs x.
However, this requirement means that there is no obfuscator
which can evade detection from a malware detector which
predominantly bases its decision on blackbox input-output
behaviour (e.g., dynamic analysis). We prove this in the
following.

Proposition 2. Let O be an obfuscator that preserves func-
tionality. Then there exists a non-trivial detector such that
O does not evade detection from it.

Proof. Let D be a non-trivial detector for S guaranteed by
assumption. This means that αD + βD < 1. The idea is to
construct a detector D′ that runs D over the (unobfuscated)
programs in S, marks its decisions, and then creates input-
output fingerprints for each program in S. After obfuscation
is applied, since the programs remain functionally equiva-
lent, D′ will be able to identify them through the input-
output fingerprints, and hence retain the error rate of D
(as the labels are from D). The only subtlety is if some
programs in S are functionally equivalent, which we address
in the following.



We construct a detector D′ from the set S of programs
and labels, and the detector D as follows. For each program
in S, D′ runs D, and stores the label output by D. Next,
at each round, D′ chooses as input {0, 1}q, where q is a
polynomial. D′ then runs each program in S on this input,
storing the respective outputs.2 After at most polynomially
many inputs Q, the sequence of input-output pairs of each
program labelled as benign is different from the sequence of
input-output pairs of each program labelled as malware, ac-
cording to the assumption on functional inequivalence. How-
ever, as noted before there may be some benign programs
that are functionally equivalent to other benign programs.
The same goes for malware programs.

As long as D labels them uniformly, there is no issue.
However, if D labels a subset of programs with the same
input-output sequence differently, then D′ will not be able
to distinguish between their obfuscated versions given only
input-output sequences. Let S1, S2, . . . , St be subsets of
benign programs from S, such that each program in Si is
functionally equivalent, and for each i, not all programs in
Si have the same label under D. Take one such Si. Since
each program in Si is benign, let j(i) be the number of
programs in Si mislabelled by D as malware. Similarly
we have a collection of subsets of malware programs such
that within each subset they are functionally equivalent,
but D mislabels at least one of them as benign. Due to
symmetry, the ensuing analysis is applicable to this case
as well. Therefore, without loss of generality, we use the
benign case only. Let S(t) = S1 ∪ S2 ∪ · · · ∪ St.

After the programs in S are run through O, our detector
D′ does as follows. Given any program P , it runs the
program on the inputs from Q. If the input-output sequence
identifies it as a program not in S(t), D′ simply outputs the
label previously stored from D. Otherwise, it identifies the
set Si such that P ∈ Si. Note that the programs in different
Si’s have different input-output “fingerprints.” After this,
D′ returns the label 1 (malware) with probability j(i)/|Si|,
else it outputs the label 0 (benign). We now calculate the
type-I errors of the two detectors. Since D is run once by
D′ (before obfuscation), let us calculate its empirical type-I
error αEmp

D defined as:

αEmp
D =

|D(P ) = 1 | P ∈ Benign|
|Benign|

=
|D(P ) = 1 | P ∈ Benign, P /∈ S(t)|

|Benign|

+
|D(P ) = 1 | P ∈ Benign, P ∈ S(t)|

|Benign|

=
j +

∑t
i=1 j(i)

|Benign|
,

where j is the number of benign programs not in S(t),

2. If the programs are probabilistic, we assume that the input contains
the input to the random tape, i.e., coin tosses [14, §7.1].

mislabelled by D. Now, for D′ we have:

αO
D′ = Pr[D′(O(P )) = 1 | P ∈ Benign]

= Pr[D′(O(P )) = 1 | P ∈ Benign, P /∈ S(t)]

× Pr[P ∈ Benign, P /∈ S(t)]

+ Pr[D′(O(P )) = 1 | P ∈ Benign, P ∈ S(t)]

× Pr[P ∈ Benign, P ∈ S(t)]

=
|D(P ) = 1 | P ∈ Benign, P /∈ S(t)|

|Benign| − |S(t)|
· |Benign| − |S(t)|

|Benign|

+

t∑
i=1

|Si|
|Benign|

· j(i)
|Si|

=
j

|Benign|
+

∑t
i=1 j(i)

|Benign|
= αEmp

D

Thus, D′ reproduces D’s type-I error. A similar analysis
holds for type-II error, i.e., βO

D′ . Hence, we conclude that
D′ is non-trivial and hence O cannot evade detection from
it.

Note that the proof above uses the assumption of being
able to check functional inequivalence in polynomial time.
This is needed to check input-output behaviour on the same
set S of programs before and after obfuscation. If functional
inequivalence cannot be determined in polynomial time,
then it can also not be determined in polynomial time after
obfuscation is applied. In other words, the detector will
make the error anyway, on the first pass. In light of the above
proposition, we have a milder (and realistic) requirement
that there is some target subset X of inputs x, for which
we have M ′(x) = M(x). Given this we have the following
definition of utility.

Definition 2 (Utility). For a program P , let X(P ) denote
a target set of inputs; a subset of the domain of P . An
obfuscator is useful if for all programs P and target input
sets X(P ), we have P ′(x) = P (x) for all x ∈ X(P ). If
X(P ) is exactly the input domain of P , we say that the
obfuscator preserves functionality.

The above definition means that for some inputs (not
in the target set), the obfuscated malware M ′ might not
even behave maliciously. This naturally models the use
of environmental variables to identify target machines on
which the malware is supposed to run (as opposed to every
machine) [8]. We will discuss this technique in Section 5.

On the Obfuscator. The obfuscator itself is benign, in the
sense that if we run the obfuscator on any benign program,
the resulting obfuscation is not malicious (in the global
sense, irrespective of the point of view of any detector).
The utility aspect is important, because in principle we
could write a malware which evades detection against any
(polynomial-time) detector as we shall show in Section 4.
This essentially means that the malware may never run its
functionality on its target.



3. Non-Evasive Obfuscation Techniques

We first summarise some techniques that do not evade
detection in our model. The main reason being that the
decryption routine is shipped with the program. The obfus-
cation technique is simple: encrypt part(s) of the malware
using an encryption algorithm. The encrypted components
are decrypted on run-time. Thus, such obfuscation (in princi-
ple) is detectable both via static and dynamic analysis, since
detection amounts to finding the decryption routine within
the program. In our model, this would mean that the error of
the detector will remain the same after such obfuscation is
applied. Since these are the predominant techniques used by
real-world malware authors [3], we nonetheless enlist some
of them. Example usage of these techniques are in string
encryption [2], [7]. Here, only the string (such as a URL)
is encrypted. Once again, the decryption key is provided
within the program so that the string can be decrypted at
run-time. Similarly, they can be used in class encryption:
e.g., DEX file encryption [7]: this again suffers from the
same aforementioned problem. These techniques in essence
are similar to the use of “packing” in malware, which
uses compression to evade detection. Needless to say that
decompression is done at run-time.

3.1. Base-64 Encoding

Base64 encoding is an encoding scheme that converts
binary data into text. A non-malicious use of Base64 encod-
ing is sending images over email. Base64 encoding is also
frequently used to obfuscate malware, e.g., to obfuscate file
names and file content [15]. This is related to cryptography
only at a rudimentary level, as Base64 encoded text, once
detected, can readily be decoded. This is obvious, since
this is merely an encoding scheme and not an encryption
scheme. The following is an example of Base64 encoding
in JavaScript taken from [15]:

this.jdField_b_String
= a(b("L1RodW1icy5kYg=="));

Here, b() Base64 decodes the input string, and a() reads
the resource. The decoded string is Thumbs.db which
itself contains Base64 encoded malicious data [15].

3.2. XOR Obfuscation

The underlying idea behind XOR obfuscation is its use
in one-time pad. Given a plaintext represented in bits, if it is
XORed with a random key of equal length, then the resulting
encryption is perfectly secure. If the plaintext represents
a malware, then one can encrypt the malware by using a
key of equivalent length. However, this requires huge key
sizes. As a result, malware obfuscators normally reuse a
short key, e.g., a single byte, and encrypt equivalent sized
blocks. The use of a single byte is known as single-byte
XOR encoding [16, §13]. Due to short keys used in XOR
encoding based obfuscation, there are various tools that can
deobfuscate the program or find the key. These tools look

for expected text at a given location in the program, in an
attempt to find the key (e.g., PE files) [16, §13]. Finding
the key does not mean that these detectors necessarily try
to look for the decryption routine within the malware to find
the key [16, §13]. For a list of few other notable schemes
that belong to the this category of encryption using short
keys, we refer the reader to [16, §13].

3.3. Obfuscation with Stronger Encryption

Many obfuscation tools also offer obfuscation via block
ciphers such as AES, DES and TEA [1], [2]. However,
even though block ciphers such as AES in an appropriate
mode can provide strong encryption, their use in malware
obfuscation is rudimentary in our model. The decryption
routine together with the key is normally part of the code
which obfuscates the code [2], [17]. Note that these ciphers
are also employed to encrypt traffic between the malware
and a remote server (command and control traffic) [1]. But
once again since the decryption keys are hardcoded, the
traffic can be decrypted to see what information is being
exchanged [17]. One could also use asymmetric encryption
algorithms, e.g., RSA, to generate session keys to encrypt
communication as in the case of the Waledac malware
family [17]. The RSA public-private key is generated at
run-time by the malware, and hence the private key is also
readily available to the detector (via dynamic analysis). For
a detailed account of block ciphers used by commercial
obfuscation tools to obfuscate Android and Java apps in
the manner described above, please see [2].

3.4. Use of Hash Functions

At first glance, it is not clear how cryptographic hash
functions could be used in obfuscation, as their one-wayness
property implies that deobfucation would be impossible even
for the malware itself. The use of hash functions such
as MD5 and SHA in malware have been documented for
generating unique identities of command and control bots
such as in the Waledac malware family [1], [2]. This is
obviously not an application of obfuscation. However, as
we show next, one can use hash functions to construct a
scheme that provably evades detection in our model, albeit
with an unavoidable utility tradeoff.

4. Towards Evasive Techniques: The Hash-
then-Decrypt Construct

We now turn our attention to obfuscation techniques that
evade detection (under our model). The construct given in
this section is derived from a similar construct based on
environmental variables which first appears in [8]. Let Enc
and Dec be the encryption and decryption functions of a
semantically secure symmetric key encryption scheme. Let
H be a cryptographic hash function. Given the program P
and its block B, to be obfuscated, the obfuscator O does
the following:

k ← random key, JBK← Enck(B), hk ← H(k),



where the key is selected from the key space of the sym-
metric encryption scheme. The obfuscator then creates the
program P ′, which is the same as P except that B is
replaced by the block:

x← KeyFinder()
if H(x) = hk then

B′ ← Decx(JBK)
B′

end if
Here the routine KeyFinder() simply samples a random key
from the key space. We now discuss the security and utility
of this obfuscator.

Proposition 3. If the symmetric key cryptosystem is seman-
tically secure, then the random key-based hash-then-decrypt
obfuscator O evades detection against any detector D in the
random oracle model.

Proof. Let S be a set containing two programs: one benign
and other malware, denoted P and M , respectively. We
assume that P and M are identical except for the blocks
BP and BM in P and M , respectively. This implies that
M is benign if the block BM is replaced with BP . Let
D be a non-trivial detector achieving errors αD and βD,
respectively, with both strictly less than 1. Let O denote
the above obfuscator. Let A denote the semantic security
adversary. Adversary A chooses m0 = BP and m1 = BM

as its choices of the two messages.3 When A receives JmbK,
it inserts this as JBK in the program. Adversary A then gives
the resulting program P ′ to D. Whenever D makes a hash
query, the adversary samples a uniform random string and
gives it to D. For repeat hash queries, the adversary returns
the same random string as previously sent. Let b′ be the bit
returned by D. Adversary A outputs b′ as its guess. It is
clear that the adversary perfectly simulates the obfuscation
except for negligible probability (e.g., in case D finds a
collision). Now, assume that the obfuscator does not evade
detection against D. This means that from Definition 1, we
have simultaneously:

αO
D ≤ αD and βO

D ≤ βD.

Then, except for negligible probability, we have:

Pr[b′ = b] = Pr[b′ = 1 | b = 1]Pr[b = 1]

+ Pr[b′ = 0 | b = 0]Pr[b = 0]

= (1− αO
D) · 1

2
+ (1− βO

D) · 1
2

≥ (1− αD) · 1
2
+ (1− βD) · 1

2

= 1− 1

2
(αD + βD) >

1

2
,

where the last step follows due to the non-triviality of D, i.e.,
αD + βD < 1 (Corollary 1). This is clearly a contradiction,
as A breaks the semantic security of the cryptosystem.

3. We assume they are of the same length. Otherwise, we pad the shorter
program with more benign code, e.g., print statements.

Unfortunately (or fortunately), this obfuscator is not
useful.

Proposition 4. The random key-based hash-then-decrypt
obfuscator O is not useful.

Proof. Pick any input x ∈ X(M) in the target set of inputs.
On this input, necessarily (unobfuscated) M runs the mali-
cious block B (otherwise it is not the target set of inputs).
On the other hand, on the same input, the probability that the
obfuscated version M ′ will run the block B is negligible (in
the size of the key space). Through the union bound, over
polynomially many inputs in X(M), the probability that
M ′ will run the block B remains negligible. Hence with
overwhelming probability M ′(x) ̸= M(x) for all inputs in
X(M), and hence the malware obfuscator is not useful.

5. Environmental Keying

While the obfuscated malware construction in Section 4
is not useful (according to our definition), variants of it have
appeared in theory and practice. On the one extreme, we
have the cryptographic key uniformly at random selected
from a key space, which means that the decryption routine
cannot be run in feasible time, by the malware as well as
the detector. On the other extreme, the malware writer could
provide the key within the obfuscated program. However,
under our model, this technique is not secure, as it is a
matter of time before some detector will be able to detect
keys.4 In between these two extremes we have a spectrum
of difficulties:

1) Use of a random cryptographic key so that the
KeyFinder routine just takes long enough to
evade dynamic analysis [18]. This means use of
smaller key-sizes than is considered cryptograph-
ically secure. This also includes use of other
time-consuming options, e.g., hashing multiple
times [18]. However, for the obfuscated malware to
be useful, the KeyFinder should output the key in
feasible time. Hence, this technique does not evade
detection as the correct key will be found on all
machines (the obfuscated malware is functionally
equivalent).

2) Instead of embedding it in the hash, the key
can be retrieved from an external source, e.g., a
server [16], [18], [19]. However, the link to the
server itself may disclose maliciousness, e.g., a
known malicious domain. On the other hand, there
are examples of malware who retrieve keys from
trusted hosts, such as GitHub, Dropbox, and Google
Docs, thus evading such reputation-based detec-
tion [20], [21], [22]). Furthermore, a growing trend
in malware is communicating over TLS/SSL with
remote command-and-control hosts [21]. Encrypted
communication could also be used to download

4. This is one of the reasons why XOR-based obfuscation techniques
are easily detected and de-obfuscated by common program analysis tools.



part of the malware hosted on mainstream cloud
platforms, such as GitHub, which may not raise
suspicion [22]. However, if a trusted host is used
to host the key and the key is communicated to
the malware via an encrypted channel, the detector
will still be able to label the program as malware
using dynamic analysis, as it will fetch the key on
any machine. Thus, such techniques only delay the
inevitable.

3) By far the most resilient technique is environmental
keying [8]. Instead of brute-forcing the key, the
program constructs the key from the environment
variables (e.g., user name). The main point being
that the malware would run (after a mini-bruteforce
search) on target computers (whose environment
variable values are known beforehand). However,
on non-target machines, the KeyFinder routine may
not terminate as the environment variables never
take on the pre-determined values “hidden” within
the hash digest.

The technique of environmental keying has been known
at least since 1998 [8]. We present a detailed account of
this technique in the hash-then-decrypt construct in the
related work section (Section 9). Here we look at the use
of environmental keying with the help of an example.

5.1. The Ebowla Framework: Case Study

We consider the Ebowla framework [23] for encrypting
malware payloads via environmental keying which has been
presented at several white hat offensive security conferences.
As mentioned earlier, environmental keying uses values
stored in “environment variables” to derive the key. The
idea being that the attacker knows the values taken by these
environment variables in his/her target machines, and hence
reproducing the key will be faster on the target machines
versus other machines (including those employed by mal-
ware detectors as sandbox environments). The framework
describes the following environment variables, although it
leaves room for writers to define more variables:

• Environmental variables: e.g., username, user do-
main, computer name, and number of processors.

• Path variables: e.g., C:\Windows\temp. This in-
cludes a starting location, e.g., C:\Windows.

• External IP ranges, e.g., 100.0.0.0.
• System time range with the grarnualrity of year,

month or a particular day, e.g., 20210000, 20211200,
20211201.

One or more of these variables, called tokens, are then used
to create the key k in the hash-then-decrypt construct. An
important consideration here is how much logic is pre-built
in the hash checking part to ensure a reasonable tradeoff
between key reconstruction by the malware, versus by the
detector. For instance, if the key is derived by constructing
one variable each from the above mentioned variables, and
the hash checking routine constructs values for these tokens

in sequence, then this reduces the entropy of the key space,
versus if the hash checking routine needs to check all possi-
ble combinations (order of concatenation). We shall return to
the entropy of the key space in environmental keying shortly.
For now, we focus on the particular version of hash-then-
decrypt construct, employed in the Ebowla framework. The
obfuscation routine is as follows:

k ← H(environmental key), JBK← Enck(B), hB ← H(B),

where as before we assume that B is the malicious block
that needs to be obfuscated (the so-called payload). The
obfuscated program P ′ then contains the following block
instead of B:

x← KeyFinder(environment variables)
B′ ← Decx(JBK)
if H(B′) = hB then

B′

end if
where

KeyFinder(environment variables):
environmental key← Concatenate values of environment
variables
return H(environmental key)
Note that the above technique can be used both by a

malware (to obfuscate its malicious payload) or a benign
program, e.g., to check if only the rightful user is able
to run the protected part of the program [12]. Two main
differences between this hash-then-decrypt construct and the
one discussed in Section 4 are that (a) the key is obtained
as the hash of the constructed environmental variable string
– this is obviously done to increase entropy of the key, and
(b) the hash of the block B, i.e., hB , is also provided in
the program P ′. This second difference, however, means
that in our model the obfuscator does not evade detection.
The proof is simple: any non-trivial detector D on the
unobfuscated set of programs S can keep hashes of the
benign and malicious blocks. Thus, the detector retains its
advantage (type-I and type-II errors) over the obfuscated
variants of the two types of programs. In practice, what
this means is that any detector that keeps signatures of past
programs will be able to detect this obfuscation. To avoid
this, the authors suggest that not all of the block be used for
hashing (by using an offset, e.g., by discarding the last few
bytes before hashing). This can then evade pre-computed
signatures. However, the offset is part of the decryption
routine, and hence can be used by a detector to recompute
hashes for malware that have already been detected. This
“vulnerability” can be removed if instead we use the fol-
lowing routine based on the hash-then-decrypt construction
of Section 4. Namely, the obfuscator first constructs:

k ← H(environmental key), JBK← Enck(B), hk ← H(k),

and then replaces the block B with:
x← KeyFinder(environment variables)
if H(x) = hk then

B′ ← Decx(JBK)
B′



end if
Notice the double application of the hash function, so that
hk = H(k) = H(H(environmental key)). The program
does not store k. Only hk and the encrypted block JBK
are hardcoded into the program.

Remark. The construction from Ebowla shown above is
a simplification of the one shown in [23], as we ignore
compression and encoding of the encrypted block, which is
likely there to increase portability of the payload, rather than
for security reasons. One important aspect however is how
the environment key is derived and how it is reconstructed.

5.2. Finding the Environmental Key – Target vs
Non-Target Machines

The main idea behind environmental keying is that find-
ing the key should be easy on the target machines, but hard
if the detector does not know the target machines. There
is an implicit assumption that the environmental variables
used are sufficiently unique (high entropy) among different
machines. This problem makes more sense if the attacker’s
target is a much smaller set of machines than the total
pool of machines. Without knowing the identity of the
target machines (and hence the state of their environment
variables), a detector’s only choice may be to run a brute-
force search on the environment variables used.

Translated to our formal model, the detector D, given
the obfuscation P ′ of a program using the environmental-
key based hash-then-decrypt obfuscation technique of Sec-
tion 5.1, would like to flag it as a malware or benign
program. The detector has no advantage in classifying it as
one or the other without finding the environmental key. To
model environmental variables and their values taken up by
machines, we consider a universal set C of all environmental
values taken up by any machine. The set is bestowed with
a probability distribution, modeling the probability that a
given environmental variable can take on a specific value.
We assume this distribution to be public, and hence also
known to the detector. At each time step, we assume that
the detector can sample one profile at a time and hence
potentially run the given obfuscated program on this envi-
ronmental profile.5 Let T be the target set of profiles from
C. That is, those profiles, on which the environmental key
matches the hash, and therefore decryption is successful.
Let pT denote the probability of sampling such profiles. We
assume that these profiles are hardwired into O (via the
hash digest), and hence the same target profiles work for all
programs obfuscated by O.

We are interested in finding:

βO
D = Pr[D(M ′) = 0 |M ′ ← O(M),M ∈ Malware]

and,

αO
D = Pr[D(P ′) = 1 | P ′ ← O(P ), P ∈ Benign],

5. This can of course be generalized to polynomially many profiles.

where we assume that D is given access to C. Furthermore
by assumption, D is non-trivial, i.e., αD + βD < 1. The
observation is that if pT is a non-negligible function in the
size of the profiles, then the detector will find the key in
polynomially many samples.6 In this case, both error rates
are βO

D = βD and αO
D = αD, and hence the obfuscator does

not evade detection. On the other, hand, if pT is a negligible
function in the size of the profiles, then the detector cannot
find the key in polynomially many samples. The detector
then outputs 1 with some fixed probability p, else it outputs
0. This implies that αO

D+βO
D = (1−p)+p = 1, regardless of

p. Combining with αD + βD < 1, we see that if αO
D ≤ αD,

then necessarily βO
D > βD, and hence O evades detection

against D.
Thus, from the malware author’s point of view, the goal

is to ensure that pT is negligible. One way to achieve this
is to ensure that the set of profiles C has high entropy. That
is, there is a large number of possible values that can be
taken up by the accessed environmental variables across all
machines.

On the Key Finder Routine. The Key Finder routine takes
as input a set of environment variables and “extracts” a
string which is the purported key to be used in the hash-then-
decrypt construct. The use of the word extract is intentional,
as this may not be a simple concatenation of the environment
variables. For instance, in the Ebowla framework, the Key
Finder routine starts by loading the current value in the
PATH variable, and then traverses the file system from this
value (outputting the current value at each point). Note that
we are assuming that the key finding routine is itself not
obfuscated. We will return to the case when this routine may
be obfuscated as well in Section 7. For now, we assume it
to be in the clear. This means that the malware obfuscator
cannot hide the environmental variable(s) used to extract the
key, as well as the entire routine.

Environment Variables and Entropy. We can define envi-
ronment variables as showing the current state of the system.
They can be categorized into two main types:

1) Time invariant: These remain static over time. Ex-
amples include: USER, HOME, PATH, and IP ad-
dress.

2) Time variant: These change over time. A simple
example is current system time.

For entropy, an important consideration is how many com-
puters take on a particular value of an environment variable.
Consider a universe of n computers. Let A be an environ-
ment variable, and let N(A = a) denote the number of com-
puters having the state A = a (having their environmental
variable A set at a). Denote by PA(a) = N(A = a)/n as
the empirical probability of having the environment variable
A set to a. Then, we can see that if A is the system time,
and a is the current time, then PA(a) = 1. On the other
hand if A is the username (the variable USER) then PA(a)

6. We use the usual definition of a negligible function, i.e., one that
grows slower than the reciprocal of any polynomial.



is close to 0. A key difficulty is to have estimates of these
empirical probabilities in the real-world, as there is a lack
of datasets due to obvious privacy concerns. However, we
can guess the entropy through what is known about similar
variables via other means. For instance:

• User: In many organizations, computer login names
are a combination of the first and the last name to
ensure uniqueness across the organisation. In the
US alone, there were 6,299,033 unique surnames
according to the 2010 US Census [24]. A different
study curated a list of 4,250 unique first names [25].
The combination of these two alone gives a total
space of ≈ 235. This is arguably a crude lower
bound as it is only confined to the US. Furthermore,
computer names are more involved, as they may
include abbreviations and/or additional characters.
However, if the malware is targeting a group of
users with similar user names, then the search space
reduces drastically. As we have mentioned earilier,
the malware will not be able to hide the fact that it
is extracting a certain subset of user names.

• IP Addresses: There are a total of 232 IP addresses
under IPv4. The use of IPv6 will further increase
this space. Malware authors might be interested in a
certain IP prefix, in which case the space is reduced.

• System Time: Time-based activation may start based
on the granularity of a second, a minute, an hour, a
day, a week, or a year. This gives a granularity of
about 225 a year. Once again, broadening the range
of time when the malware is triggered reduces the
space.

Thus, a combination of all three increases the search space
for the detector. But this increase in entropy comes at a
tradeoff: the higher the entropy, the more targeted the attack,
and the less likely it will be detected by the detector. On the
other hand, the lower the entropy, the wider the net cast by
the malware, but the easier it is for the detector to identify
it as malware.

Time on Non-Target Machines. Given that the Key Finder
routine is in the clear, is it possible to make the routine
take longer on non-target machines without making it take
longer on the target machine regardless of the number of
targets? For instance, in the Ebowla framework described
above, the code traverses the file system to extract strings,
as well as tries all combinations of the different environment
variables. Obviously, this is done on both the target and
other machines, and hence the excess time also penalizes
the target machine. The answer to this question is mixed.
Consider the following construct:

1) Denote by a the string obtained by concatenating
the values of one or more environmental variables
in the target computer (denoted by A).

2) Let m be a large positive integer. Pick a small
number i from {1, 2, . . . ,m}.

3) The environmental key is H(a||i).

4) The Key Finder routine is then: concatenate the val-
ues of the environment variables A, and concatenate
it with j = 1, 2, . . . ,m until a hash match is found.

The idea here is that on any machine that does not
exhibit a as the concatenated value of the corresponding
environment variable, the Key Finder routine will likely run
through all values until m, by which time the detector will
discard the machine as not being the target. If m is large
enough, this can be substantial time. On the other hand, i can
be chosen to be small so that Key Finder returns the key after
only going till i on the target machine. A drawback of this
construct is that the detector might only run the Key Finder
for a feasible number of steps before discarding the current
machine as not being the target machine (as the intention of
the malware writer would not be to run indefinitely on the
target machine). Even if we make m exponentially large,
if the number of possible environmental values are small
(low entropy, or in other words, the size of profiles C is
polynomially bounded), then the detector can run the Key
Finder routine in parallel for several profiles at a time. In our
Turing machine language, this means using dovetailing [26]
to output the key in polynomial time.

Another possibility is to accept a certain trade-off. Find-
ing the key on the target machine may take time t, but this
will also increase the work of the detector by at least t-folds.
In the Ebowla framework, this is done by making the Key
Finder go through combinations of environmental variables,
or traversing through the file system without specifying
depth. However, a simpler construct based on hash puzzles
(from cryptocurrencies) may do the same trick [27]. In this
case, we can build the puzzle so that it takes “on-average”
a certain amount of time before the key is found on the
target machine. On the non-target machine, this will take
roughly the same amount of time per computer profile by
the detector before it can decide the search to be futile, as
the detector knows the possible number of combinations.
A benefit of this approach is that the program author does
need more environmental variables to increase search space
of the detector.

This argument also shows that it is not possible to devise
a Key Finder that will make the detector take exponential
time while running for polynomial time on the target ma-
chine. This follows from the dovetailing trick [26]. As long
as the detector has the target profile in its polynomially sized
set of profiles, the detector will eventually find the key by
running the same routine. Thus, the only possibility is to
ensure that the number of profiles is of exponential size.
This can be achieved only via increasing the entropy of the
environmental variables used.

6. Deniable Encryption

Environmental keying does raise suspicion in the sense
that a detector knows the presence of encrypted code, even
if the encrypted payload may not be decrypted by the



detector.7 But what if there are multiple possible decryptions
of the same encrypted payload, and only one of them
malicious? If the malware detector is only able to decrypt the
benign versions then it is likely to flag the resulting program
as benign. On the other hand, on the target computer, if it
is more likely that the malicious version will be decrypted,
then we have a malware that potentially avoids detection,
albeit in a more steganographic sense. An encryption system
that has such a property is called deniable encryption [29].

The possible use of deniable encryption in malware has
been discussed in [23], [30]. A simple XOR-based scheme
illustrates the concept. Suppose we have a benign program
P and a malware M . Abusing notation, we use P and M
to denote the corresponding strings. We also assume that
|P | = |M |; otherwise, one can use padding to make the
two equal. Then, one constructs a key K1 of length equal
to |P | = |M | and then computes:

C = M ⊕K1,

and further computes:

K2 = C ⊕ P.

By the property of XOR, we have

C = M ⊕K1 = P ⊕K2.

Thus, C could either be the encryption of M under the key
K1 or the encryption of P under the key K2. Note that,
since K1 is random, so too is K2 (without conditioning on
the other). The idea is to deny C being an encryption of a
malware, and presenting the key K2 if need be to show that
the underlying payload was P [30].

There are some issues with this approach:

• The key length needs to be the same as the mal-
ware program, which can be quite big. Alternative
deniable encryption techniques are presented in [29],
based on both public-key and shared-key cryptogra-
phy. However, they are rather inefficient in terms of
length of ciphertext per plaintext. One such example
is given below.

• How does the malware author guarantee that the
correct key is used in the target computer? One way
is to use an environmental key. But since the key K2

is dependent on the first key, this would make finding
the second key hard on non-target computers as well,
which defeats the purpose of deniable encryption.

• Another way of providing the two keys is to host
them on a server, which is then retrieved by the pro-
gram in runtime (e.g., HTTP keying). The malware
author initially only uploads the key K2, and later at
a specific time it posts K1. Thus, the detector will
not be able to decrypt the malware block until the
relevant key (K1) is uploaded.

• There is dependency between the two keys. Once
the key K2 is obtained, K1 is not random. An ideal

7. Indeed, presence of high entropy code can be flagged as indication of
malicious intent [28].

technique (from the malware author’s point of view)
should be where the two keys are independent.

• The scenario of deniable encryption is not entirely
suited to the obfuscation. Deniable encryption as-
sumes a sender and a receiver. The adversary can
coerce either one of them to reveal the key. There
are also sender-and-receiver deniability schemes, but
they assume some intermediaries through which the
encrypted communication is transmitted. In the ob-
fuscation scenario, the sender and receiver are both
the obfuscated program. Therefore, some public-key
encryption schemes described in [29] do not work
in this scenario as the trapdoor information has to
be in the code.

Another symmetric key encryption scheme from [29]
can be summarised as follows: the obfuscator encrypts a
benign program P and malware M separately with two
encryption keys. The obfuscated program contains a routine
to search for keys (say they are environmental keys). The
hash-then-decrypt construct matches both hashes, and if any
of them match, it decrypts the program matching the hash.
Given that in most computers, the benign routine is always
decrypted, the malware writer may use plausible deniability.
However, the unencrypted code will always raise suspicion.
And the detector would not hastily label this as benign.

7. Cryptographic Notions of Obfuscation

There are some key differences between the goal of
cryptographic obfuscation and real-world use of crypto-
graphic tools in malware obfuscation. The former considers
a program P , and requires its obfuscated version, P̂ , to be
functionally equivalent, while at the same time (informally)
nothing should be learned about P from the description
of P̂ . However, this does not directly translate to the goal
of malware obfuscation (as defined in this paper), which
aims to evade detection. In particular, since P̂ preserves
functionality, the detector D can still label it as malware
based on its input-output behaviour, as we shall see shortly.
The above informal description of cryptographic obfuscation
captures the concept of virtual black box (VBB) obfuscation,
defined as follows.

Definition 3 (VBB Obfuscation [5]). A program obfuscator
O is a virtual black box (VBB) obfuscator, if it preserves
functionality and for all PPT algorithms D, there exists a
PPT simulator R such that for all programs P∣∣Pr [D(P ′, 1λ) = 1

]
− Pr

[
RP (|P |, 1λ) = 1

]∣∣ < negl(λ)
(2)

where P ′ ← O(P, 1λ).
In the above, λ is the security parameter, and we require

any algorithm taking it as input to run in polynomial time
in its size as well. By now it is well-known that VBB
obfuscation is impossible in general [5]. As a result, al-
ternative “weaker” notions have been proposed of which
the notion of indistinguishability obfuscation (iO) shows the
most promise.



Definition 4 (iO [5]). A program obfuscator O is an indis-
tinguishability obfuscator if it preserves functionality, and
for all functionally equivalent programs P1 and P2 of equal
size∣∣Pr [D(P ′

1, 1
λ) = 1

]
− Pr

[
D(P ′

2, 1
λ) = 1

]∣∣ < negl(λ)
(3)

where P ′
i ← O(Pi, 1

λ), for i = 1, 2.

Note that functionally equivalent programs means that
P (x) = P ′(x) for all inputs in the domain of P (and P ′).
Our informal statement above can now be stated formally.

Proposition 5. Let O be a VBB or iO obfuscator. Then there
exists a detector D such that O does not evade detection
from D.

Proof. Let D be the detector of Proposition 2. Then, since
O preserves functionality, the result follows from Proposi-
tion 2.

We can get around this limitation if we let go of the
“functionality preserving” requirement of the obfuscated
program. Namely, we only want the program to act as a
malware on a limited (target) set of computers (see Def-
inition 2). In this case, one may devise a malware that
runs as a malware only if the current computer’s name
equals a predefined list of names (a use of environmental
keying). However, there does not seem to be much benefit of
obfuscation here over the hash-then-decrypt construct. If the
program reads the environmental variables, it is necessary
interacting with its environment, and hence we can learn
the variables accessed by it through dynamic analysis. This
brings us back to the same issue with environmental keying
and the hash-then-decrypt construct.

Obfuscating the Key Finder Routine. But the advantage
here is that the Key Finder routine itself can be obfuscated.
For instance, the Key Finder routine could read a bunch of
environment variables on the machine, and only use a small
subset of them to decide whether to trigger the malware
behavior or not. The remaining variables can be discarded.
In this case, since the Key Finder routine is obfuscated,
the detector will not know which environmental variable is
needed, and hence load a larger environmental profile than
is actually being used by the program.

On VBB and iO. Cryptographic obfuscation, both VBB
and iO, is a widely studied problem. There are works that
show that VBB obfuscation is still possible under idealized
models, e.g., the generic graded encoding model [31]. On the
iO end, various constructions have beep proposed via multi-
linear maps (or graded encoding schemes) including [32],
[33], [34]. Unfortunately, many of these schemes have been
broken, e.g., [34]. An account appears in [35]. There are
also constructions of iO schemes not based on multilinear
maps or graded encoding schemes, e.g., [36]. Finally, there
are also implementations of iO schemes [37] as reported
in [38], and [39]. Thus, while this is still a field with ongoing
research, a successful and practical scheme may have an

impact in terms of malware obfuscation, e.g., by obfuscating
the Key Finder routine in the hash-then-decrypt construct.

8. Obfuscation using Cryptographic Tools in
the Wild

Datasets showing the prevalence of cryptographic obfus-
cation in malware are few and far between, partly because
it is difficult to programmatically infer if a cryptographic li-
brary is being used for obfuscation or for other tasks such as
encrypting communication, or encrypting local files (in the
case of ransomware). In Section 9, we discuss some works
in literature that have surveyed obfuscation techniques in
the wild. However, since their coverage is not limited to
obfuscation via cryptographic techniques (evasive or other-
wise), we, therefore, run our own analysis to get an idea
of cryptographic malware obfuscation. As a first step, we
need to have a ground-truth dataset to identify malware that
use cryptographic obfuscation. For this, we leverage labelled
samples (binaries) from the Dike dataset.8 The labels for
this dataset are obtained by parsing the categories returned
by antivirus vendors aggregated by VirusTotal. Among the
categories is that of an “encryptor,” which corresponds to
programs that use obfuscation. Taking this smaller dataset
as ground truth, we extract EMBER features [40] to train
a machine learning model to predict cryptographic obfusca-
tion over the much larger SOREL dataset [41].

The specific label from the Dike dataset we use to char-
acterize programs using cryptographic obfuscation are 6,197
samples flagged as “encryptors” and not “ransomware.”
The remaining 3,735 samples are considered as not using
cryptographic obfuscation. Our decision to exclude ran-
somware from encryptors is due to the high likelihood that
ransomware will use encryption libraries for tasks other than
obfuscation. With a training/testing split of 80%/20%, a
random forest classifier with 100 trees is trained with the
EMBER features as inputs and the labels defined above.
The resulting classifier yields an AUC of 0.966 in distin-
guishing between the two defined classes: encryptors and
non-encryptors. The confusion matrix with the breakdown
of original classes and errors is provided in Figure 1. With
these results we are satisfied in the ability of the classifier to
infer the encryptor label on the unlabelled EMBER features
of the SOREL dataset. We sample 200,000 Malware labelled
samples, and 200,000 Benign labelled samples from the
SOREL dataset. The classifier identified 10.9% (21,834) of
the Malware samples as using encryption obfuscation. On
the other hand, 6.5% (13,087) of Benign samples were also
flagged as using encryption obfuscation.

To validate these predictions on the SOREL dataset,
we analyze a smaller sample of 1,000 samples each with
the highest and lowest confidence values labelled by the
classifier as using cryptographic obfuscation, from both
Malware and Benign samples as labelled in the SOREL
dataset. With these 4,000 samples, we obtain a VirusTotal
(VT) report detailing the sample’s behaviour and consider

8. Dike Dataset: https://github.com/iosifache/DikeDataset

https://github.com/iosifache/DikeDataset
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Figure 1. Confusion matrix for cryptographic obfuscation detection on the
test set from the Dike Dataset; AUC was 0.966, Accuracy was 92.4%.
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Figure 2. Cumulative distribution of SOREL samples with VT reports
demonstrating encryption keywords found in imported function names and
AV vendor reports. The four groups consist of 1000 samples of the Highest
and Lowest probability of using cryptographic obfuscation. The percentage
shown is proportion of samples containing a search term.

heuristics of their behaviour that may have warranted the
classification. VT is an anti-virus aggregator; when a user
submits a binary for analysis, VT scans the binary with
a selection of anti-virus vendors. If more than a threshold
number of these vendors flag the binary as malicious, VT
will report the sample as malicious. Within each sample’s
VT report, each vendor also reports a short indicator of what
sort of maliciousness exists. For example, Kaspersky may
report Packed.Win32.Krap.iu, which indicates that
the sample belongs to the family of malware which protects
against reverse engineering, i.e., obfuscation. Additionally,
the VT analysis extracts any imported functions from the
binary. From both these sources, we use a list of search
terms that may indicate obfuscation using encryption. This
is the same list used in Dike Dataset and includes: “crypt”,
“cryp”, “coder”, “pack”, and “krypt”.

The cumulative distribution of samples which contained
VT reports are depicted in Figure 2. More than 64% of
the Malware samples labelled as encryptors with high con-
fidence contain at least one vendor labelling it as using
cryptographic obfuscation, compared to 33% among the
malware samples labelled as such with low confidence. This
sits in contrast with benign samples; only 8.9 and 14%
were flagged as using cryptographic obfuscation by any
vendor. This discrepancy is likely due to the “safe” nature of
benign samples: AV vendors not detecting any concerning
behaviour, will not label them as belonging to any mal-
ware family; hence no “crypt” search term. In contrast,
our classifier operating on the EMBER features may have

captured encryption behaviour otherwise not flagged by the
AV vendors. Nevertheless we are confident that the classifier
correctly detects encryptors in malware, indicating that 10%
of them as using some form of cryptographic obfuscation.

9. Related Work

Enviromental Keying. The concept of environmental key-
ing was first proposed by Riordan and Schneier in [8]. Fur-
ther investigation of the topic in the academic circle appears
in [19] and the work on secure triggers [42]. A related con-
cept is used in the mesh design, hash-then-decrypt method
proposed by Nate Lawson [12]. This uses the same concept
of secure triggers albeit for different applications including
gaming (unlocking higher levels, if the user has collected
certain items), as well as protecting software. Glynos looks
into different ways in which environmental keys can be de-
rived [43]. Offensive security practitioners have also looked
into environmental keying [23], [44]. Most importantly, the
technique has been used in real-world malware to encrypt
part or whole of the payload.9 The most notable example
being the Gauss malware [45]. To the best of our knowledge,
the encrypted payload of this malware, detected in 2011,
has still not been decrypted [46]. The malware consisted
of a reconaissance component which would collect system
information. The system information was then used by at-
tackers to derive environmental keys [46]. As noted in [46],
the payload could only be decrypted by the unique target
in an air-gapped network, and therefore, researchers have
failed to decrypt it even after trying millions of combinations
and publicly releasing technical details. Such sophisticated
use of malware obfuscation can most likely be attributed to
state-based actors. In general, encryption may also be used
for other purposes, such as concealing the communication
with a remote server [22]. A report by CISCO states that an
analysis of 400,000 malware binaries revealed about 70%
of them as using some encryption in 2017 [20].

Theoretical Modeling. Some researchers have also looked
at formalising the concept of programs using environmental
keying and the properties they must satisfy. Futoransky et
al [42] proposed the notion of secure triggers, which is
similar to the environmental keying based hash-then-decrypt
construct first proposed in [8]. The difference being that
instead of using the hash function to check if the key
is valid, they use the encryption of the all 0 string as a
predicate. They show that the construct is secure under
the universal composability framework [47], in the sense
that the adversary (detector in our case) does not learn the
contents of the encrypted block if the predicate is from a
large enough space and under the semantic security of the
encryption scheme. Blackthorne et al. [4] define security
of environmental keying under an analyst (detector) with
different capabilities, such as not knowing the target versus
after the malware has infected its target. They also look
at malware that could change its behaviour after sensing

9. See for instance: https://attack.mitre.org/techniques/T1480/001/

https://attack.mitre.org/techniques/T1480/001/


if its environment has been altered by the analyst (e.g.,
sandboxed environments) [48]. The authors of [49] look
at malware that derives its environment keys not just from
the target but also from the nodes in the network in its
path. Decryption is only successful if the correct path order
is followed. In this paper, we have proposed a definition
independent of the cryptographic technique being used for
obfuscation. Our model defines the detector (variously, the
analyst or the adversary) in terms of its ability to distinguish
between malware and benign programs, instead of pinning
it to environmental keying.

Surveys on Malware Obfuscation. Several works have
studied the prevalence of obfuscation techniques used by
malware in the wild. You and Yim [50] give a brief tax-
onomy of malware obfuscation techniques, amongst which
they mention encrypted malware. Such malware consists of
an encrypted part and a decryptor. The drawback of such
malware from the authors’ point of view is that antivirus
scanners may detect such malware through the commonly
used decrypting routine. As mentioned in our paper, we also
consider this technique as non-evasive, but mainly due to the
fact that malware can be detected on run-time. Aligot [1] is
a tool that identifies malware samples that obfuscate the use
of block ciphers, hash functions and public key encryption.
The authors test their tool on a couple of known families of
malware that use cryptographic tools. However, their main
experiments are done on synthetically generated samples.
The tool may not be able to differentiate the use of crypto-
graphic functions for obfuscation versus for other purposes.
The authors in [2] propose the StringHound tool to detect
string obfuscation. They enlist some encryption algorithms
used for string encryption, e.g., XOR encoding and AES
encryption. As the name suggests, their survey is limited to
string obfuscation. Several obfuscation techniques for An-
droid malware are discussed in [3], of which string and class
encryption are related to the topic of this SoK. The goal of
their survey however is to show the affect of these obfusca-
tion techniques on the unobfuscated programs and whether
or not anti-malware engines are able to detect them. Wermke
et al look at different obfuscation techniques employed on
Android apps via popular obfuscation software [7]. Related
to cryptography are string and class obfuscation, which we
categorise as non-evasive techniques. A layered taxonomy
of obfuscation techniques is presented by Xu et al [38]
to help developers protect their software from intellectual
theft in a more systematic way. Among the techniques they
mention the hash-then-decrypt construct from [19] as well as
cryptographic obfuscation (indistinguishability obfuscation).
However, they do not view the techniques in light of their
efficacy in evading detection against a model such as the
one proposed in our paper.

Other Work Related. There are some other works worth
mentioning in the use of cryptographic tools in malware.
Some of these works are modifications of environmental
keying, and are therefore left out as they retain the basics
of that construct. For instance, the Bradley virus [30] uses
nested encryption, where the key for the first encryption is

derived from the environment variable. If the hash of this
derived key matches the hardcoded hash, then the program
continues to decrypt the next segment of the program.
Otherwise it deletes the whole malware. Perhaps, the most
notable area of work marrying cryptography and malware is
cryptovirology [51], which deals with the study of malware
that use cryptography to encrypt operations on the victim’s
computer. Ransomware are the most notable example of
such malware. However, note that the use of cryptography in
such programs is not meant for obfuscation, as encryption
is used mainly for denying access to files with only the
malware author having the means to decrypt them.

10. Limitations and Open Problems

• Our definition of malware detection does not take
distributional aspects into account. For instance,
cryptographic libraries may be used more by mal-
ware than benign programs. Thus, the definition does
not rule out detectors who base their decisions on
such distributions. Likewise, mere presence of any
obfuscation may indicate that the program is more
likely to be malware rather than benign. However,
our definition challenges the detector in being able
to differentiate the same obfuscation technique being
applied on malware and benign programs, which is
arguably more principled.

• The only obfuscation techniques using cryptographic
tools that are shown to be hard in this paper are hash-
then-decrypt construct and deniable encryption using
environmental keys. Both use environmental keys
and therefore can only evade detection if targeting
only a small subset of machines. This appears to be
a fundamental limitation of malware obfuscation. It
appears that any technique that runs the malicious
payload on a large number of machines after a
small amount of time can in principle be detected;
the detector only needs to wait for sufficiently long
before it is able to detect malware.

• On the experimental side, while we have shown
some results on the real-world use of cryptographic
obfuscation by malware programs, this needs to be
further validated and refined into different classes
of techniques for obfuscation. In particular, we do
not know how prevalent is the use of environmental
keying in malware obfuscation.

• Many real-world malware obfuscation techniques
are only used to avoid specific types of malware
analysis, e.g., use of packing to avoid static analy-
sis, or assessing the run-time environment to detect
whether a program is being dynamically analysed
in a virtual environment. In our paper, we have not
considered these specifics as these techniques do not
provide provable guarantees of evading detection.



Ethical Considerations

All instances of malware obfuscation detailed in this
paper are in the public domain. As such, we have not
introduced any malware obfuscation technique that may
jeopardize the security of systems. The aim of this paper is
to simply categorise them from the point of view of difficulty
of detection.
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