
More Efficient Adaptively Secure Lattice-based IBE with Equality
Test in the Standard Model ∗

Kyoichi Asano1, 2, Keita Emura2, and Atsushi Takayasu3

1The University of Electro-Communications, Japan.
2National Institute of Information and Communications Technology, Japan.

3The University of Tokyo, Japan.

November 28, 2022

Abstract

Identity-based encryption with equality test (IBEET) is a variant of identity-based encryp-
tion (IBE), where any users who have trapdoors can check whether two ciphertexts are encryp-
tion of the same plaintext. Although several lattice-based IBEET schemes have been proposed,
they have drawbacks in either security or efficiency. Specifically, most schemes satisfy only se-
lective security, while adaptively secure schemes in the standard model suffer from large master
public keys that consist of linear numbers of matrices. In other words, known lattice-based
IBEET schemes perform poorly compared to the state-of-the-art lattice-based IBE schemes
(without equality test). In this paper, we propose a semi-generic construction of CCA-secure
lattice-based IBEET from a certain class of lattice-based IBE schemes. As a result, we obtain
the first lattice-based IBEET schemes with adaptive security and CCA security in the standard
model. Furthermore, our semi-generic construction can use several state-of-the-art lattice-based
IBE schemes as underlying schemes. Then, we have adaptively secure lattice-based IBEET
schemes whose public keys have only poly-log matrices.

1 Introduction
Encryption is a fundamental tool for providing data confidentiality. On the other hand, it affects
several functions such as searching, comparing, partitioning, and so on. Yang et al. [YTH+10]
proposed public key encryption with equality test (PKEET) which allows us to check whether two
plaintexts of two ciphertexts are the same or not. This equality check allows us to provide a keyword
search on encrypted data, data partitioning on an encrypted database, and so on. Although anyone
can run the test algorithm in the Yang’s definition, a trapdoor for running the test algorithm is
introduced in subsequent works, e.g., [LSQ18, LLS+20]. Identity-based encryption with equality
test (IBEET) [Ma16] is an extension of PKEET that can simplify the certificate management of
PKEET. As in identity-based encryption (IBE), an identity id is used as a public key for generating
a ciphertext ctid. A secret key skid of an identity id can generate a trapdoor tdid. By using trapdoors
tdid0

and tdid1
, we can check whether ctid0

and ctid1
are encryptions of the same plaintexts.

Although several CCA-secure IBEET schemes have been proposed by assuming the hardness
of Diffie-Hellman-type assumptions, e.g., [LLS+16, Ma16], they are vulnerable against quantum

∗An extended abstract appeared at ISC 2022 [AET22]. This is the full version.

1

attacks. To achieve post-quantum security, several lattice-based IBEET schemes have been pro-
posed. There are two ways for constructing lattice-based IBEET schemes. One is instantiating
lattice-based schemes from generic constructions of IBEET and the other is direct constructions by
modifying known lattice-based IBE schemes.

At first, we review two known generic constructions of IBEET that can instantiate lattice-
based schemes. Lin et al. [LSQ18] proposed a generic construction of CCA-secure IBEET from
CCA-secure IBE in the random oracle model. Lee et al. [LLS+20] proposed a generic construction
of CCA-secure IBEET from three-level CPA-secure hierarchical identity-based encryption (HIBE)
and one-time signatures (OTSs) in the standard model, where OTSs are used for achieving CCA
security via the Canetti-Halevi-Katz (CHK) transformation [CHK04]. Lee et al.’s construction pro-
vides adaptively secure lattice-based schemes in the quantum random oracle model (QROM) based
on adaptively secure lattice-based HIBE schemes in the QROM [ABB10b, CHK+12, Zha12]. Lee
et al.’s construction also provides selectively secure lattice-based schemes in the standard model
based on selectively secure HIBE schemes in the standard model [ABB10a, CHK+12]. However,
their construction does not provide purely adaptively secure lattice-based IBEET schemes in the
standard model since there are no known adaptively secure lattice-based HIBE schemes in the
standard model. Although Singh et al. [SRB12] constructed an adaptively secure lattice-based
HIBE scheme in the standard model based on Agrawal et al.’s adaptively secure non-hierarchical
IBE scheme [ABB10a], the scheme achieves only bounded security in the sense that the size of
a modulus 𝑞 depends on the number of adversary’s key extraction queries. Thus, the instantia-
tion of the Lee et al.’s generic construction from the Singh et al.’s HIBE scheme does not satisfy
purely adaptive security. Next, we review four known direct constructions of lattice-based IBEET
schemes [DLR+19, NSD+20, SDL20, WWY+21], where all known schemes were studied in the stan-
dard model. Duong et al.’s IBEET scheme [DLR+19] and Nguyen et al.’s IBEET scheme [NSD+20]
are based on Agrawal et al.’s adaptively secure IBE scheme [ABB10a] achieving adaptive and CPA
security. Unfortunately, due to the nature of Agrawal et al.’s IBE scheme, these IBEET schemes
achieve only bounded security as the case of Singh et al.’s adaptively secure HIBE scheme [SRB12].
Susilo et al.’s IBEET scheme [SDL20] that is similar to Lee et al.’s generic construction [LLS+20]
is based on Agrawal et al.’s selectively secure IBE scheme [ABB10a] achieving selective and CCA
security. Wu et al.’s IBEET scheme [WWY+21] is based on Tsabary’s IBE scheme [Tsa19] achieving
adaptive and CPA security.

Summarizing the situation, almost all known lattice-based IBEET schemes in the standard
model achieve only selective and CCA security [LLS+20, SDL20] or adaptive and CPA secu-
rity [DLR+19, NSD+20, WWY+21] with the only exception that Lee et al.’s generic construc-
tion [LLS+20] instantiated by Singh et al.’s HIBE scheme [SRB12]. Moreover, almost all adap-
tively secure schemes achieve only bounded security with the only exception that Wu et al.’s CPA-
secure scheme [WWY+21]. Therefore, constructing purely adaptive and CCA-secure lattice-based
IBEET scheme is an interesting open problem. Moreover, known adaptively secure IBEET schemes
have a common bottleneck in terms of efficiency. Although there are adaptively secure lattice-
based IBE schemes such as Yamada’s IBE scheme [Yam17] and Jager-Kurek-Niehues’s (JKN) IBE
scheme [JKN21]1 whose public keys consist of poly-log matrices, public keys of known adaptively
secure lattice-based IBEET schemes [SRB12, DLR+19, NSD+20, WWY+21] consist of matrices
whose numbers are (almost) linear in the length of identities or the security parameter. Therefore,
it is desirable to construct adaptively secure lattice-based IBEET schemes whose public keys consist
of poly-log matrices.

1Although Yamada’s scheme is purely secure under the LWE assumption, JKN scheme enjoys smaller LWE
parameters at the expense of additionally employing near-collision resistance hash functions.

2

Table 1: Comparison of lattice-based IBEET schemes in the standard model.

Scheme |mpk| adaptive? CCA? Comment
LLS+20 [LLS+20]
+ABB10 [ABB10a]

𝑂(𝑛2 log 𝑛) selective CCA

LLS+20 [LLS+20]
+SRB12 [SRB12]

𝑂(𝐿𝑛2 log 𝑄) adaptive CCA 𝑄-bounded

DLRS19 [DLR+19] 𝑂(𝐿𝑛2 log 𝑄) adaptive CPA 𝑄-bounded
NSD+20 [NSD+20] 𝑂(𝐿𝑛2 log 𝑄) adaptive CPA 𝑄-bounded

SDL20 [SDL20] 𝑂(𝑛2 log 𝑛) selective CCA
WWY+21[WWY+21] 𝑂(𝜆𝑛2 log 𝑛) adaptive CPA

Ours [LLS+20]
+Yam17 [Yam17]

𝑂((log 𝜆)3𝑛2 log 𝑛) adaptive CCA

Ours [LLS+20]
+JKN21 [JKN21]

𝑂((log 𝜆)𝑛2 log 𝑛) adaptive CCA
Near collision resistant

hash function is required

1.1 Our Contribution

In this paper, we construct the first purely adaptive and CCA-secure lattice-based IBEET schemes
in the standard model. One promising way for constructing such a desirable scheme is constructing
adaptively secure lattice-based HIBE schemes based on known adaptively secure IBE schemes.
Specifically, as the Waters pairing-based HIBE scheme [Wat05], we can obtain such a HIBE scheme
by sacrificing reduction loss. However, we take another approach to resolve the problem without
sacrificing reduction loss very much. In particular, we propose a semi-generic construction of
CCA-secure lattice-based IBEET from CPA-secure lattice-based IBE whose structure is similar to
Agrawal-Boneh-Boyen (ABB)’s IBE scheme [ABB10a] which we call ABB-type IBE. The resulting
IBEET schemes achieve adaptive security if the underlying IBE schemes satisfy adaptive security.
Intuitively, a ciphertext and secret key for the same id of ABB-type IBE is associated with the same
publicly computable matrix. Thanks to the semi-generic construction, we propose the first purely
adaptive and CCA-secure lattice-based IBEET schemes. Moreover, since ABB-type IBE covers
Yamada’s IBE scheme [Yam17] and JKN IBE scheme [JKN21], we can obtain the first adaptive
lattice-based IBEET schemes whose public keys consist of poly-log matrices. See Table 1 for the
detailed comparison, where 𝑄 denotes the number of adversary’s secret key extraction queries and
𝐿 denotes the length of identities in [DLR+19, NSD+20].

The idea of our semi-generic construction is similar to Lee et al.’s generic construction [LLS+20]
from three-level CPA-secure HIBE.2 Recall that Lee et al. proved that adaptively secure three-
level CPA-secure HIBE is sufficient for constructing adaptively and CCA-secure IBEET. Basically,
ciphertexts of all IBEET schemes consist of two types of ciphertexts, one is responsible only for
decryption and the other is also responsible for equality test. Lee et al. utilized each three hierar-
chical levels for id, ciphertext type 0 or 1, and verification keys of OTSs for the CHK transforma-

2In this paper, we do not follow Lee et al.’s argument [LLS+20] in a security proof but follow Asano et al.’s
one [AET+22] which is an attribute-based extension of Lee et al.’s work with a refined proof.

3

tion [CHK04], respectively. Then, by using the CPA security of the underlying HIBE, Lee et al.
hide the challenge plaintext for both types of ciphertexts one by one. Let’s take a closer look at
this proof strategy. It is widely known that the CHK transformation can convert CPA-secure IBE
to CCA-secure public key encryption even when the underlying IBE satisfies only selective secu-
rity. In other words, Lee et al.’s generic construction does not require HIBE with adaptive security
for all hierarchical levels to construct adaptively secure and CCA-secure IBEET. In turn, a special
three-level HIBE scheme that satisfies adaptive security only for the first level and selective security
for the other levels is sufficient for our purpose. To this end, we construct such special three-level
HIBE schemes from ABB-type IBE such as Yamada’s scheme [Yam17] and JKN scheme [JKN21].
Briefly speaking, the first level and the other levels of our HIBE scheme are the same as those of the
underlying IBE scheme, i.e., Yamada’s scheme and the JKN scheme, and Agrawal-Boneh-Boyen’s
selectively secure HIBE scheme, respectively. Then, a slight modification of Agrawal et al.’s proof
technique is applicable to the special three-level HIBE. Moreover, since we employ a semi-generic
construction from ABB-type IBE, we do not need to make complex arguments to achieve adaptive
security such as [Yam17, JKN21].

2 Preliminaries

Notation. Throughout the paper, 𝜆 denotes a security parameter. For a finite set 𝑆, 𝑠 ←$ 𝑆
denotes a sampling of an element 𝑠 from 𝑆 uniformly at random and let |𝑆| denotes a cardinality
of 𝑆. We represent vectors by bold-face letters like u, and matrices by bold-face capital letters
like U. For an 𝑛 × 𝑚 matrix A1 and 𝑛 × 𝑚′ matrix A2, let [A1‖A2] denotes the 𝑛 × (𝑚 + 𝑚′)
matrix formed by concatenating A1 and A2. We use a similar notation for vectors. For a matrix
R, ‖R‖ denotes its norm. Let ≈ and ≈𝑐 denote statistical indistinguishability and computational
indistinguishability, respectively.

2.1 Lattices

A (full-rank) 𝑚-dimensional integer lattice Λ ⊆ ℤ𝑚 is a set of 𝑚-dimensional integer vectors with
the form {∑𝑖∈[𝑚] 𝑥𝑖b𝑖 ∣ 𝑥𝑖 ∈ ℤ}, where {b1, … , b𝑚} is called the basis of the lattice .

Gaussian Distributions. For an integer 𝑚 > 0, let 𝐷Λ,𝜏 be the discrete Gaussian distribution
over a 𝑚-dimensional integer lattice Λ with parameter 𝜏 > 0. Regarding the Gaussian distribution,
the following lemmas hold.

Lemma 2.1 ([Reg09], Lemma 2.5). We have Pr[‖x‖ > 𝜏
√

𝑚 ∶ x ← 𝐷ℤ𝑚,𝜏] ≤ 2−2𝑚.

Lemma 2.2 ([ABB10a], Lemma 15). Let R be a 𝑛×𝑚 matrix chosen at random from {−1, 1}𝑛×𝑚.
Then there is a universal constant 𝐶 such that

Pr[‖R‖ > 𝐶
√

𝑛 + 𝑚] < 𝑒−(𝑛+𝑚).

Gadget Matrix. Let 𝑛, 𝑞 ∈ ℤ and 𝑚 ≥ 𝑛⌈log 𝑞⌉. A gadget matrix G is defined as I𝑛 ⊗
(1, 2, … , 2⌈log 𝑞⌉−1) padded with 𝑚−𝑛⌈log 𝑞⌉ zero columns. For any t, there exists an efficient deter-
ministic algorithm G−1 ∶ ℤ𝑛×𝑡

𝑞 → {0, 1}𝑚×𝑡 that takes U ∈ ℤ𝑛×𝑡
𝑞 as input and outputs V ∈ {0, 1}𝑚×𝑡

such that GV = U.

Trapdoors. Here, we summarize the properties of lattice trapdoors based on the presentation by
Brakerski and Vaikuntanathan [BV16]. Let 𝑛, 𝑚, 𝑞 ∈ ℕ and consider a matrix A ∈ ℤ𝑛×𝑚

𝑞 . For all

4

V ∈ ℤ𝑛×𝑚′

𝑞 , we let A−1
𝜏 (V) denote the random variable whose distribution is a Gaussian (𝐷ℤ𝑚,𝜏)𝑚′

conditioned on A ⋅ A−1
𝜏 (V) = V. A 𝜏-trapdoor for A is a procedure that can sample from the

distribution A−1
𝜏 (V) in time poly(𝑛, 𝑚, 𝑚′, log 𝑞), for any V. We slightly overload the notation and

denote a 𝜏-trapdoor for A by A−1
𝜏 . We have the following:

Lemma 2.3 ([Ajt96, GPV08, ABB10a, ABB10b, CHK+12, BLP+13], Properties of Trapdoors).
Lattice trapdoors exhibit the following properties.

1. Given A−1
𝜏 , one can obtain A−1

𝜏′ , for any 𝜏 ′ ≥ 𝜏.

2. Given A−1
𝜏 , one can deterministically obtain [A‖B]−1

𝜏 for any B.

3. Given A ∈ ℤ𝑛×𝑚
𝑞 , R ∈ ℤ𝑚×𝑁 with 𝑁 > 𝑛⌈log 𝑞⌉, and a full-rank matrix H ∈ ℤ𝑛×𝑛

𝑞 , one can
obtain [A‖AR + HG]−1

𝜏 for 𝜏 = 𝑚 ⋅ ‖R‖ ⋅ 𝜔(
√

log 𝑚).

4. Given A−1
𝜏 , one can randomize it and obtain A−1

𝜏′ for 𝜏 ′ = 𝜏 ⋅ 𝜔(
√

𝑚).

5. There exists an efficient procedure TrapGen(1𝑛, 1𝑚, 𝑞) that outputs (A, A−1
𝜏0

) where A ∈ ℤ𝑛×𝑚
𝑞

for some 𝑚 = 𝑂(𝑛 log 𝑞) and is 2−𝑛-close to uniform, where 𝜏0 = 𝜔(
√

𝑛 log 𝑞 log 𝑛).

6. For A−1
𝜏 and u ∈ ℤ𝑛

𝑞 , it follows Pr[∥A−1
𝜏 (u)∥ > 𝜏

√
𝑚] = negl(𝑛).

Useful Facts. We will use the following facts.

Lemma 2.4 ([ABB10a], Leftover Hash Lemma). Let 𝑞 > 2 be a prime, 𝑚, 𝑛, 𝑘 be positive
integers such that 𝑚 > (𝑛 + 1) log 𝑞 + 𝜔(log 𝑛), 𝑘 = poly(𝑛). Then, if we sample A ←$ ℤ𝑛×𝑚

𝑞 ,
R ←$ {−1, 1}𝑚×𝑘, and B ←$ ℤ𝑛×𝑘

𝑞 , then the distribution of (A, AR, R⊤w) is statistically close to
the distribution of (A, B, R⊤w) for all vectors w ∈ ℤ𝑚

𝑞 .

Definition 2.1 ([ABB10a], Full Rank Difference Map). Let 𝑞 be a prime and 𝑛 be a positive
integer. We say that a function FRD ∶ ℐ𝒟 → ℤ𝑛×𝑛

𝑞 is an encoding with full-rank differences if: for
all distinct id, id′ ∈ ℐ𝒟, a matrix FRD(id) − FRD(id′) ∈ ℤ𝑛×𝑛

𝑞 is full rank, and FRD is computable
in polynomial time in 𝑛 log 𝑞.

Hardness Assumption. We will use the following LWE assumption to prove security of the
proposed scheme.

Definition 2.2 ([Reg09], Learning with Errors). For integers 𝑛, 𝑚, a prime 𝑞 > 2, a real number
𝛼 ∈ (0, 1), and a probabilistic polynomial-time (PPT) algorithm 𝒜, an advantage for the learning
with errors problem dLWE𝑛,𝑚,𝑞,𝛼 of 𝒜 is defined as follows:

AdvdLWE𝑛,𝑚,𝑞,𝛼
𝒜 (𝜆) ≔ ∣Pr[𝒜(A, s⊤A + x⊤) = 1] − Pr[𝒜(A, w⊤) = 1]∣,

where A ←$ ℤ𝑛×𝑚
𝑞 , s ←$ ℤ𝑛

𝑞 , x ← 𝐷ℤ𝑚,𝛼𝑞, w ←$ ℤ𝑚
𝑞 . We say that the dLWE𝑛,𝑚,𝑞,𝛼 assumption

holds if AdvdLWE𝑛,𝑚,𝑞,𝛼
𝒜 (𝜆) is negligible in 𝜆 for all 𝒜.

5

2.2 Identity-based Encryption

Syntax. An IBE scheme Π consists of the four algorithms (IBE.Setup, IBE.KeyGen, IBE.Enc,
IBE.Dec) as follows:

IBE.Setup(1𝜆) → (IBE.mpk, IBE.msk): On input the security parameter 1𝜆, it outputs a master
public key IBE.mpk and a master secret key IBE.msk. We assume that IBE.mpk contains a
description of a plaintext space and an identity space ℐ𝒟 that are determined only by the
security parameter 𝜆.

IBE.KeyGen(IBE.mpk, IBE.msk, id) → IBE.skid: On input a master public key IBE.mpk, a master
secret key IBE.msk, and an identity id ∈ ℐ𝒟, it outputs a secret key IBE.skid.

IBE.Enc(IBE.mpk, id, M) → IBE.ctid: On input a master public key IBE.mpk, an identity id ∈ ℐ𝒟,
and a plaintext M ∈ ℳ, it outputs a ciphertext IBE.ctid.

IBE.Dec(IBE.mpk, IBE.skid, IBE.ctid) → M or ⊥: On input a master public key IBE.mpk, a secret key
IBE.skid, and a ciphertext IBE.ctid, it outputs the decryption result M or ⊥.

Correctness. For all 𝜆 ∈ ℕ, all (IBE.mpk, IBE.msk) ← IBE.Setup(1𝜆), all M ∈ ℳ, all id ∈ ℐ𝒟, it is
required that M′ = M holds with overwhelming probability, where IBE.ctid ← IBE.Enc(IBE.mpk, id, M),
IBE.skid ← IBE.KeyGen(IBE.mpk, IBE.msk, id), and M′ ← IBE.Dec(IBE.mpk, IBE.skid, IBE.ctid).

Security. We consider adaptive IND-CPA security defined below.

Definition 2.3 (Adaptive IND-CPA Security). The adaptive IND-CPA security of an IBE scheme
Π is defined by a game between an adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (IBE.mpk, IBE.msk) ← IBE.Setup(1𝜆) and gives IBE.mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following type of query to 𝒞.

Key extraction query: 𝒜 is allowed to make the query on id ∈ ℐ𝒟. Upon the query, 𝒞
runs IBE.skid ← IBE.KeyGen(IBE.mpk, IBE.msk, id) and returns IBE.skid to 𝒜.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on (id∗, M∗) ∈
ℐ𝒟 × ℳ, where id∗ was not be queried on key extraction queries in Phase 1. Then, 𝒞 flips
a coin coin ←$ {0, 1} and runs IBE.ct∗

id∗ ← IBE.Enc(IBE.mpk, id∗, M∗) if coin = 0, otherwise
samples IBE.ct∗

id∗ from a ciphertext space uniformly at random. Finally, 𝒞 returns IBE.ct∗
id∗

to 𝒜.

Phase 2: 𝒜 is allowed to make key extraction queries as in Phase 1 except that 𝒜 cannot query
id∗.

Guess: 𝒜 outputs a ĉoin as a guess of coin.

The adversary 𝒜 wins in the above game if ĉoin = coin and the advantage is defined to

AdvIND-CPA
Π,𝒜 (𝜆) ≔ ∣Pr[ĉoin = coin] − 1

2
∣.

If AdvIND-CPA
Π,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an IBE scheme

Π is said to satisfy adaptive IND-CPA security.

6

2.3 One-time Signature

Syntax. An one-time signature (OTS) scheme Γ consists of three algorithms (Sig.Setup, Sig.Sign,
Sig.Vrfy) with a message space ℳ as follows:

Sig.Setup(1𝜆) → (verk, sigk): On input the security parameter 1𝜆, it outputs a verification key verk
and a signing key sigk.

Sig.Sign(sigk, M) → 𝜎: On input a signing key sigk and a message M ∈ ℳ, it outputs a signature
𝜎.

Sig.Vrfy(verk, M, 𝜎) → 1 or 0: On input a verification key verk, a message M ∈ ℳ, and its signature
𝜎, it outputs 1 if the signature is valid and 0 otherwise.

Correctness. For all 𝜆 ∈ ℕ, all (verk, sigk) ← Sig.Setup(1𝜆), and all M ∈ ℳ, it holds that
Sig.Vrfy(verk, M, Sig.Sign(sigk, M)) = 1 with overwhelming probability.

Security. We define a security notion for OTS. Let Γ be an OTS scheme, and we consider a
game between an adversary 𝒜 and the challenger 𝒞. The game is parameterized by the security
parameter 𝜆. The game proceeds as follows: 𝒞 first runs (verk, sigk) ← Sig.Setup(1𝜆) and gives verk
to 𝒜. 𝒜 is allowed to make the signature generation query only once: upon a query M ∈ {0, 1}∗

from 𝒜, 𝒞 returns 𝜎 ← Sig.Sign(sigk, M) to 𝒜. 𝒜 outputs (M̂, �̂�) and terminates. In this game, 𝒜’s
advantage is defined by

AdvOTS
Γ,𝒜 (𝜆) ≔ Pr[Sig.Vrfy(verk, M̂, �̂�) → 1 ∧ (M̂, �̂�) ≠ (M, 𝜎)].

Definition 2.4 (Strong Unforgeability). We say that an OTS scheme Γ satisfies strong unforge-
ability, if the advantage AdvOTS

Γ,𝒜 (𝜆) is negligible for all PPT adversaries 𝒜.

2.4 Hash Functions

Let H ∶ ℳ → ℳ be a hash function. We require the following properties of hash functions for our
schemes.

Definition 2.5 (One-wayness). We say that a hash function H is one-way (or preimage resistant)
if for all PPT adversaries 𝒜,

AdvOW
H,𝒜(𝜆) ≔ Pr[M∗ ←$ ℳ, M̂ ← 𝒜(H(M∗)) ∶ H(M̂) = H(M∗)]

is negligible in 𝜆.

Definition 2.6 (Collision Resistance). We say that a hash function H is collision resistant if for
all PPT adversaries 𝒜,

AdvCR
H,𝒜(𝜆) ≔ Pr[(M0, M1) ← 𝒜 ∶ M0 ≠ M1 ∧ H(M0) = H(M1)]

is negligible in 𝜆.

7

2.5 Identity-based Encryption with Equality Test

Syntax. An IBEET scheme Σ consists of the six algorithms (Setup, KeyGen, Enc, Dec, Trapdoor,
Test) as follows:

Setup(1𝜆) → (mpk, msk): On input the security parameter 1𝜆, it outputs a master public key mpk
and a master secret key msk. We assume that mpk contains a description of a plaintext space
ℳ and an identity space ℐ𝒟 that are determined only by the security parameter 𝜆.

KeyGen(mpk, msk, id) → skid: On input mpk, msk, and an identity id ∈ ℐ𝒟, it outputs a secret key
skid.

Enc(mpk, id, M) → ctid: On input mpk, id ∈ ℐ𝒟, and a plaintext M ∈ ℳ, it outputs a ciphertext
ctid.

Dec(mpk, skid, ctid) → M or ⊥: On input mpk, skid, and ctid, it outputs the decryption result M or
⊥.

Trapdoor(mpk, skid) → tdid: On input mpk and skid, it outputs the trapdoor tdid.

Test(mpk, tdid0
, ctid0

, tdid1
, ctid1

) → 1 or 0: On input mpk, two trapdoors tdid0
and tdid1

, and two
ciphertexts ctid0

and ctid1
, it outputs 1 or 0.

Correctness. In short, IBEET should satisfy three conditions for the correctness, i.e., (1) ctid can
be correctly decrypted by skid, (2) the Test algorithm outputs 1 if ctid0

and ctid1
are encryptions

of the same plaintext, (3) the Test algorithm outputs 0 if ctid0
and ctid1

are encryptions of distinct
plaintexts.3 Then, the three conditions are formally defined as follows:

(1) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all M ∈ ℳ, and all id ∈ ℐ𝒟, it is required
that M′ = M holds with overwhelming probability, where ctid ← Enc(mpk, id, M), skid ←
KeyGen(mpk, msk, id), and M′ ← Dec(mpk, ctid, skid).

(2) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all M ∈ ℳ, and all id0, id1 ∈ ℐ𝒟, it is required
that 1 ← Test(mpk, tdid0

, ctid1
, tdid1

, ctid1
) holds with overwhelming probability, where skid𝑖

←
KeyGen(mpk, msk, id𝑖), ctid𝑖

← Enc(mpk, id𝑖, M), and tdid𝑖
← Trapdoor(mpk, skid𝑖

) for 𝑖 = 0, 1.

(3) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all id0, id1 ∈ ℐ𝒟, and all PPT adversaries 𝒜 that
take mpk and msk as input and output two plaintexts M0 and M1, it is required that M0 ≠
M1 ∧1 ← Test(mpk, tdid0

, ctid0
, tdid1

, ctid1
) holds with negligible probability, where (M0, M1) ←

𝒜(mpk, msk), and for 𝑖 = 0, 1, skid𝑖
← KeyGen(mpk, msk, id𝑖), ctid𝑖

← Enc(mpk, id𝑖, M𝑖), and
tdid𝑖

← Trapdoor(mpk, skid𝑖
).

Security. Let ct∗
id∗ be the challenge ciphertext. For the security of IBEET, we consider two different

types of adversaries by whether one has a trapdoor for the target identity id∗ or not.

• Type-I adversary: Adversaries of this type have a trapdoor tdid∗ , and can perform the equality
test against ct∗

id∗ . Hence, we consider one-wayness.
3To the best of our knowledge, there are no IBEET schemes that satisfy the condition (3) unconditionally. Thus,

PPT adversaries 𝒜 appears in the formal condition of (3) by following [AET+22].

8

• Type-II adversary: Adversaries of this type do not have a trapdoor tdid∗ , and cannot perform
the equality test against ct∗

id∗ . Hence, we consider indistinguishability.

Then, security against adversaries of these types are formally defined as follows.

Definition 2.7 (Adaptive OW-CCA2 Security against Type-I Adversaries). The adaptive OW-
CCA2 security against Type-I adversaries of an IBEET scheme Σ is defined by a game between an
adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (mpk, msk) ← Setup(1𝜆) and gives mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following three types of queries to 𝒞:

Key extraction query: Upon 𝒜’s query on id, 𝒞 runs skid ← KeyGen(mpk, msk, id) and
returns skid to 𝒜.

Decryption query: Upon 𝒜’s query on (id, ctid), 𝒞 runs skid ← KeyGen(mpk, msk, id) and
M ← Dec(mpk, skid, ctid), and returns M to 𝒜.

Trapdoor query: Upon 𝒜’s query on id, 𝒞 runs skid ← KeyGen(mpk, msk, id) and tdid ←
Trapdoor(mpk, skid), and returns tdid to 𝒞.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on id∗ ∈ ℐ𝒟,
where id∗ was not queried on key extraction queries in Phase 1, 𝒞 chooses M∗ ←$ ℳ and
runs ct∗

id∗ ← Enc(mpk, id∗, M∗). Finally, 𝒞 returns ct∗
id∗ to 𝒜.

Phase 2: 𝒜 is allowed to make the key extraction queries, decryption queries, and trapdoor queries
as in Phase 1 with the following exceptions:

Key extraction query: Upon 𝒜’s query on id ∈ ℐ𝒟, id = id∗ does not hold.
Decryption query: Upon 𝒜’s query on (id, ctid), (id, ctid) = (id∗, ct∗

id∗) does not hold.

Guess: 𝒜 outputs M̂ as a guess of M∗.

The adversary 𝒜 wins in the above game if M̂ = M∗ and the advantage is defined to

AdvOW­CCA2
Σ,𝒜 (𝜆) ≔ ∣Pr[M̂ = M∗] − 1

|ℳ|
∣.

If AdvOW­CCA2
Σ,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an IBEET

scheme Σ is said to satisfy adaptive OW-CCA2 security against Type-I adversaries.

Definition 2.8 (Adaptive IND-CCA2 Security against Type-II Adversaries). The adaptive IND-
CCA2 security against Type-II adversaries of an IBEET scheme Σ is defined by a game between an
adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (mpk, msk) ← Setup(1𝜆) and gives mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following three types of queries to 𝒞:

Key extraction query: 𝒜 is allowed to make the query on id ∈ ℐ𝒟 to 𝒞. Upon the query,
𝒞 runs skid ← KeyGen(mpk, msk, id) and returns skid to 𝒜.

Decryption query: 𝒜 is allowed to make the query on (id, ctid) to 𝒞. Upon the query, 𝒞
runs skid ← KeyGen(mpk, msk, id) and M ← Dec(mpk, skid, ctid), and returns M to 𝒜.

9

Trapdoor query: 𝒜 is allowed to make the query on id ∈ ℐ𝒟 to 𝒞. Upon the query, 𝒞 runs
skid ← KeyGen(mpk, msk, id) and tdid ← Trapdoor(mpk, skid), and returns tdid to 𝒞.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on (id∗, M∗
0, M∗

1) ∈
ℐ𝒟 × ℳ2, where M∗

0 and M∗
1 have the same length and id∗ was not queried on key extraction

queries and trapdoor queries in Phase 1. Then, 𝒞 flips a coin coin ←$ {0, 1} and runs
ct∗

id∗ ← Enc(mpk, id∗, M∗
coin). Finally, 𝒞 returns ct∗

id∗ to 𝒜.

Phase 2: 𝒜 is allowed to make the key extraction queries, decryption queries, and trapdoor queries
as in Phase 1 with the following exceptions:

Key extraction query: Upon 𝒜’s query on id ∈ ℐ𝒟, id = id∗ does not hold.
Decryption query: Upon 𝒜’s query on (id, ctid), (id, ctid) = (id∗, ct∗

id∗) does not hold.
Trapdoor query: Upon 𝒜’s query on id ∈ ℐ𝒟, id = id∗ does not hold.

Guess: 𝒜 outputs ĉoin as a guess of coin.

The adversary 𝒜 wins in the above game if ĉoin = coin and the advantage is defined to

AdvIND-CCA2
Σ,𝒜 (𝜆) ≔ ∣Pr[ĉoin = coin] − 1

2
∣.

If AdvIND-CCA2
Σ,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an IBEET

scheme Σ is said to satisfy adaptive IND-CCA2 security against Type-II adversaries.

3 Construction
In this section, we give our semi-generic construction of IBEET from ABB-type IBE. At first, we
define the ABB-type IBE in Section 3.1. Then, we show our semi-generic construction in Section 3.2.
In Section 3.3, we prove the correctness of our construction.

3.1 ABB-type Identity-based Encryption

At first, we briefly recall a multi-bit variant of the Agrawal-Boneh-Boyen selectively secure IBE
scheme [ABB10a], where the plaintext is an ℓ-bit binary string. The IBE scheme has a master
public key (A, B, U) ∈ (ℤ𝑛×𝑚

𝑞)2 × ℤ𝑛×ℓ
𝑞 and master secret key A−1

𝜏0
. A ciphertext for id consists of

three vectors c0, c1, c2 such that

c⊤
0 = s⊤U + e⊤

0 + M ⋅ ⌈𝑞/2⌉ ∈ ℤℓ
𝑞,

c⊤
1 = s⊤A + e⊤

1 ∈ ℤ𝑚
𝑞 , c⊤

2 = s⊤[B + FRD(id)G] + e⊤
2 ∈ ℤ𝑚

𝑞 ,

where s is a uniformly random vector and e0, e1, e2 are short vectors, e.g., sampled according to
discrete Gaussian vectors. A secret key for id is [A‖B + FRD(id)G]−1

𝜏 (U) and decryption succeeds
by using the relation

c⊤
0 − [c⊤

1 ‖c⊤
2] ⋅ [A‖B + FRD(id)G]−1

𝜏 (U) = M ⋅ ⌈𝑞/2⌉ + noise.

Several improved variants which we call ABB-type IBE have been proposed to achieve adaptive
security. To capture ABB-type IBE, we use the following auxiliary algorithm:

10

• PubEval({B𝑖}𝑖∈[𝑢], id) → Bid: On input matrices {B𝑖}𝑖∈[𝑢] and an identity id ∈ ℐ𝒟, it outputs
Bid ∈ ℤ𝑛×𝑚

𝑞 .

Intuitively, Agrawal et al.’s selectively secure IBE scheme uses a matrix B in a master public key
to compute a matrix Bid = B + FRD(id)G that is associated with both ciphertext and secret key.
To achieve adaptive security, we use 𝑢 matrices {B𝑖}𝑖∈[𝑢] in a master public key and compute a
matrix Bid by using the PubEval algorithm. Although the first (𝑄-bounded) adaptively secure IBE
scheme of Agrawal et al. [ABB10a] uses 𝑢 = 𝑂(𝜆) matrices, there are a series of works to reduce
𝑢. Yamada’s adaptively secure scheme [Yam17] that is purely secure under the LWE assumption
uses 𝑢 = 𝑂(log3 𝜆) matrices, while JKN’s scheme [JKN21] utilizes a near collision resistant hash
function and further reduces 𝑢 to be 𝑂(log 𝜆).

Then, we formally define ABB-type IBE as follows.

IBE.Setup(1𝜆) → (IBE.mpk, IBE.msk): On input the security parameter 1𝜆, it chooses parameters
𝑛, 𝑚, 𝑞, 𝜏0, 𝜏1, 𝛼, 𝛼′, ℓ, runs (A, A−1

𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞), and chooses random matrices

{B𝑖}𝑖∈[𝑢] ←$ (ℤ𝑛×𝑚
𝑞)𝑢 and U ←$ ℤ𝑛×ℓ

𝑞 . Finally, it outputs IBE.mpk ≔ (A, {B𝑖}𝑖∈[𝑢], U) and
IBE.msk ≔ A−1

𝜏0
.

IBE.Enc(IBE.mpk, id, M) → IBE.ctid: Parse IBE.mpk = (A, {B𝑖}𝑖∈[𝑢], U). It samples s ←$ ℤ𝑛
𝑞 , e0 ←

𝐷ℤℓ,𝛼𝑞 and e1, e2 ← 𝐷ℤ𝑚,𝛼′𝑞, runs Bid ← PubEval({B𝑖}𝑖∈[𝑢], id), and sets

c⊤
0 = s⊤U + e⊤

0 + M ⋅ ⌈𝑞/2⌉ ∈ ℤℓ
𝑞,

c⊤
1 = s⊤A + e⊤

1 ∈ ℤ𝑚
𝑞 , c⊤

2 = s⊤Bid + e⊤
2 ∈ ℤ𝑚

𝑞 .

Finally, it outputs IBE.ctid = (c0, c1, c2).

IBE.KeyGen(IBE.mpk, IBE.msk, id) → IBE.skid: Parse IBE.mpk = (A, {B𝑖}𝑖∈[𝑢], U) and IBE.msk =
A−1

𝜏0
. For an identity id ∈ ℐ𝒟, it runs Bid ← PubEval({B𝑖}𝑖∈[𝑢], id), obtains trapdoor

[A‖Bid]−1
𝜏1

by using the trapdoor A−1
𝜏0

and Items 1 and 4 of Lemma 2.3, and outputs skid ≔
[A‖Bid]−1

𝜏1
.

IBE.Dec(IBE.mpk, IBE.skid, IBE.ctid) → M or ⊥: Parse IBE.mpk = (A, {B𝑖}𝑖∈[𝑢], U), IBE.skid = [A‖Bid]−1
𝜏1

,
and IBE.ctid = (c0, c1, c2). It samples E ← [A‖Bid]−1

𝜏1
(U), computes m⊤ = c⊤

0 − [c⊤
1 ‖c⊤

2]E ∈
ℤℓ

𝑞, and sets 𝑖-th bit of ℓ bit string M as 1 if |m𝑖 − ⌈𝑞/2⌉| < ⌈𝑞/4⌉ and 0 otherwise. Finally,
it outputs M.

Remark 1. The definition of the PubEval algorithm and the role of Bid are slightly different from
those of Yamada [Yam17] and Jager et al. [JKN21]. In their IBE schemes, there are 𝑢 + 1 matrices
(B0, {B𝑖}𝑖∈[𝑢]) in IBE.mpk. The PubEval algorithm takes {B𝑖}𝑖∈[𝑢] as input and outputs Bid. Then,
not Bid itself but B0 + Bid is associated with c2 and IBE.skid. Their definition is effective to prove
adaptive security of their schemes. However, we do not use their proof techniques directly in this
paper. Thus, our simplified definition makes the notation simpler.

Remark 2. To be precise, IBE.skid of [Yam17, JKN21] is not skid = [A‖Bid]−1
𝜏1

but E that is created
during IBE.Dec in the above description. In this paper, we use skid = [A‖Bid]−1

𝜏1
since it makes the

discussion of our generic construction simpler. We note that the modification does not violate the
security proofs of [Yam17, JKN21] since we apply Item 4 of Lemma 2.3 during IBE.KeyGen.

11

3.2 Constructions of IBEET schemes from ABB-type IBE

We use ABB-type IBE to construct a lattice-based IBEET scheme. In addition to IBE.mpk =
(A, {B𝑖}𝑖∈[𝑢], U), mpk has two random matrices C1, C2 ∈ ℤ𝑛×𝑚

𝑞 . Before presenting our scheme, we
introduce two auxiliary algorithms.

• Ênc(mpk, (id, 𝑏, verk), M) → ctid,𝑏: It runs IBE.Enc(IBE.mpk, id, M) to compute c0, c1, c2, sam-
ples R ←$ {−1, 1}𝑚×2𝑚 and computes

c⊤
3 = s⊤[C1 + 𝑏G‖C2 + FRD(verk)G] + e⊤

1 R ∈ ℤ2𝑚
𝑞 ,

where s, e1 are sampled during IBE.Enc and 𝑏 ∈ {0, 1}. Finally, it outputs ctid,𝑏 ≔ (c0, c1, c2, c3).

• D̂ec(mpk, E𝑏, ctid,𝑏) → M′: It computes m⊤ = c⊤
0 − [c⊤

1 ‖c⊤
2 ‖c⊤

3]E𝑏 and recovers M′ from m in
the same way as IBE.Dec.

Then, we show our IBEET scheme.

Setup(1𝜆) → (mpk, msk): It runs (IBE.mpk, IBE.msk) ← IBE.Setup(1𝜆), sample C1, C2 ←$ ℤ𝑛×𝑚
𝑞 ,

selects a OTS scheme Γ = (Sig.Setup, Sig.Sign, Sig.Vrfy) and a hash function H, and outputs
mpk ≔ (IBE.mpk, C1, C2, Γ, H) and msk ≔ IBE.msk.

Enc(mpk, id, M) → ctid: Parse mpk = (IBE.mpk, C1, C2, Γ, H). It runs

• (verk, sigk) ← Sig.Setup(1𝜆),
• ctid,0 ← Ênc(mpk, (id, 0, verk), M),

• ctid,1 ← Ênc(mpk, (id, 1, verk), H(M)),
• 𝜎 ← Sig.Sign(sigk, [ctid,0‖ctid,1]).

Output ctid ≔ (verk, ctid,0, ctid,1, 𝜎).

KeyGen(mpk, msk, id) → skid: Parse mpk = (IBE.mpk, C1, C2, Γ, H) and msk = IBE.msk. It runs
IBE.skid = [A‖Bid]−1

𝜏1
← IBE.KeyGen(IBE.mpk, IBE.msk, id) and outputs skid ≔ IBE.skid.

Dec(mpk, skid, ctid) → M or ⊥: Parse mpk = (IBE.mpk, C1, C2, Γ, H), ctid = (verk, cid,0, cid,1, 𝜎), and
skid = [A‖Bid]−1

𝜏1
. If 0 ← Sig.Vrfy(verk, [cid,0‖cid,1], 𝜎), it outputs ⊥. Otherwise, it computes

E𝑏 ← [A‖Bid‖C1 + 𝑏G‖C2 + FRD(verk)G]−1
𝜏1

(U) for 𝑏 ∈ {0, 1} from [A‖Bid]−1
𝜏1

by using Item

2 of Lemma 2.3. It runs M ← D̂ec(mpk, E0, ctid,0) and ℎ ← D̂ec(mpk, E1, ctid,1). It outputs
M if H(M) = ℎ and ⊥ otherwise.

Trapdoor(mpk, skid) → tdid: Parse mpk = (IBE.mpk, C1, C2, Γ, H) and skid = [A‖Bid]−1
𝜏1

. It com-
putes tdid ≔ E ← [A‖Bid‖C1 + G]−1

𝜏1
(U) from [A‖Bid]−1

𝜏1
by using Item 2 of Lemma 2.3. It

outputs tdid.

Test(mpk, tdid, ctid, tdid′ , ctid′) → 1 or 0: Parse tdid = Eid ∈ ℤ3𝑚×ℓ
𝑞 , tdid′ = Eid′ ∈ ℤ3𝑚×ℓ

𝑞 , ctid =
(verk, ctid,0, ctid,1, 𝜎), and ctid′ = (verk′, ctid′,0, ctid′,1, 𝜎′). If 0 ← Sig.Vrfy(verk, [ctid,0‖ctid,1], 𝜎)∨
0 ← Sig.Vrfy(verk′, [ctid′,0‖ctid′,1], 𝜎′), it outputs 0. Otherwise, it runs ℎ ← D̂ec(mpk, [E⊤

id‖Oℓ,𝑚]⊤,
ctid,1) and ℎ′ ← D̂ec(mpk, [E⊤

id′‖Oℓ,𝑚]⊤, ctid′,1), where Oℓ,𝑚 is an ℓ×𝑚 zero matrix. It outputs
1 if ℎ = ℎ′ and 0 otherwise.

12

3.3 Correctness

First, we show that a ciphertext encrypted by Ênc is correctly decrypted by D̂ec with overwhelm-
ing probability. When we run ctid,𝑏 = (c0, c1, c2, c3) ← Ênc(mpk, (id, 𝑏, verk), M) and D̂ec(mpk,
E𝑏, ctid,𝑏), we have

m⊤ = c⊤
0 − [c⊤

1 ‖c⊤
2 ‖c⊤

3]E𝑏 = M ⋅ ⌈𝑞/2⌉ + e⊤
0 − [e⊤

1 ‖e⊤
2 ‖e⊤

1 R]E𝑏⏟⏟⏟⏟⏟⏟⏟⏟⏟
error term

∈ ℤℓ
𝑞.

Lemma 3.1. Assuming 𝛼′ > 𝛼, the error term is bounded by 𝛼𝑞
√

ℓ + 𝑂(𝛼′𝑞𝜏1𝑚3/2) with over-
whelming probability.

Proof. Let e𝑏,𝑖 = [e𝑏,𝑖,1‖e𝑏,𝑖,2] and 𝑒0,𝑖 denote the 𝑖-th column of E𝑏 and the 𝑖-th element of e0,
respectively, where e𝑏,𝑖,1 ∈ ℤ2𝑚

𝑞 , e𝑏,𝑖,2 ∈ ℤ2𝑚
𝑞 . Then, the 𝑖-th element of the error term is bounded

as follows with overwhelming probability.

∣𝑒0,𝑖 − [e⊤
1 ‖e⊤

2 ‖e⊤
1 R]e𝑏,𝑖∣ ≤ ∣𝑒0,𝑖∣ + ‖[e1‖e2]‖ ⋅ ∥e𝑏,𝑖,1∥ + ∥R⊤e1∥ ⋅ ∥e𝑏,𝑖,2∥

≤ 𝛼𝑞
√

ℓ + 2𝛼′𝑞𝜏1𝑚 + 𝑂(𝛼′𝑞𝜏1𝑚3/2)

≤ 𝛼𝑞
√

ℓ + 𝑂(𝛼′𝑞𝜏1𝑚3/2)

The first inequality above follows from Cauchy-Schwartz and second inequality follows from Lemma 2.1
and 2.2, and Lemma 2.3.

Parameter selection. To satisfy the correctness conditions (1)–(3) and the security proof works
for our IBEET scheme, it is required that

• each element of the error term is less than 𝑞/5 with overwhelming probability (i.e., 𝑞 >
Ω(𝛼𝑞

√
ℓ + 𝛼′𝑞𝜏1𝑚3/2)),

• that TrapGen can operate (i.e., 𝑚 ≥ 6𝑛⌈log 𝑞⌉),

• that the leftover hash lemma (Lemma 2.4) can be applied in the security proof (i.e., 𝑚 >
(𝑛 + 1) log 𝑞 + 𝜔(log 𝑛)),

• that 𝜏1 is sufficiently large compared with 𝜏0 = 𝜔(
√

𝑛 log 𝑞 log 𝑛) so that we can apply Items 4
and 3 of Lemma 2.3 in the real scheme and security proof, respectively (i.e., 𝜏1 > 𝜏0 ⋅ 𝜔(

√
𝑚),

𝜏1 > 𝑚 ⋅ ‖R‖ ⋅ 𝜔(
√

log 𝑚)),

• that ℓ is sufficiently large so that a hash function H satisfies one-wayness and collision resis-
tance (i.e., ℓ = 𝜔(𝑛)).

For ABB-type IBE to be correct, there are other restrictions. For example, although we omit the
detail, Yamada’s IBE scheme [Yam17] additionally requires that

• 𝜏1 > 𝑚 ⋅ (1 + 𝛿) ⋅ 𝜔(
√

𝑚 log 𝑚),4

• 𝛼′/2𝛼 >
√

2 ⋅ 𝑚(1 + 𝛿) and 𝛼𝑞 > 𝜔(
√

log 𝑚),

• 𝛼𝑞 > 2
√

2𝑛,
4The condition is slightly worse than Yamada’s original IBE scheme since we have to apply Item 4 of Lemma 2.3.

13

where 𝛿 = 𝑚3 ⋅ 𝑂(log2 𝜆) ⋅ (𝑂(𝜆) + 1). Therefore, we can set the following parameter if we use
Yamada’s scheme as the underlying ABB-type IBE:

𝑚 = 𝑂(𝑛 log 𝑞), 𝑞 = 𝑛9/2 ⋅ 𝛿2 ⋅ 𝜔(log9/2 𝑛), 𝜏1 = 𝑚3/2 ⋅ 𝛿 ⋅ 𝜔(√log 𝑚)
𝛼𝑞 = 3

√
𝑛, 𝛼′𝑞 = 5

√
𝑛 ⋅ 𝑚 ⋅ 𝛿, ℓ = Θ(𝑛).

Theorem 3.1. Our IBEET scheme Σ satisfies correctness if the underlying IBE scheme Π and the
OTS scheme Γ satisfy correctness, and the hash function H satisfies collision resistance.

Proof. We prove the three conditions (1)–(3) one by one.
We can prove the condition (1) by using Lemma 3.1 and the underlying OTS scheme Γ. For all

𝜆 ∈ ℕ, all (IBE.mpk, IBE.msk) ← IBE.Setup(1𝜆) and Γ, all M ∈ ℳ, and all id ∈ ℐ𝒟, it is required
that

Sig.Vrfy(verk, [ctid,0‖ctid,1], 𝜎) → 1 ∧ M′ = M ∧ ℎ = H(M)

holds with overwhelming probability, where

• (verk, sigk) ← Sig.Setup(1𝜆),

• ctid,0 ← Ênc(mpk, (id, 0, verk), M),

• ctid,1 ← Ênc(mpk, (id, 1, verk), H(M)),

• 𝜎 ← Sig.Sign(sigk, [ctid,0‖ctid,1]),

• [A‖Bid]−1
𝜏1

← IBE.KeyGen(IBE.mpk, IBE.msk, id),

• obtain E0 ← [A‖Bid‖C1‖C2 + FRD(verk)G]−1
𝜏1

(U) from [A‖Bid]−1
𝜏1

,

• obtain E1 ← [A‖Bid‖C1 + G‖C2 + FRD(verk)G]−1
𝜏1

(U) from [A‖Bid]−1
𝜏1

,

• M′ ← D̂ec(mpk, E0, ctid,0),

• ℎ ← D̂ec(mpk, E1, ctid,1).

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk, [ctid,0‖ctid,1], 𝜎) → 1 holds with
overwhelming probability. Moreover, Lemma 3.1 ensures that M = M′ ∧ ℎ = H(M) holds with
overwhelming probability. Therefore, the condition (1) holds.

We can prove the condition (2) by using the Lemma 3.1 and the correctness of the underlying
OTS scheme Γ. For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆) and Γ, all M ∈ ℳ, and all id0, id1 ∈ ℐ𝒟,
it is required that

(∧𝑖∈{0,1}Sig.Vrfy(verk𝑖, [ctid𝑖,0‖ctid𝑖,1], 𝜎𝑖) → 1) ∧ ℎ0 = ℎ1

holds with overwhelming probability, where for 𝑖 ∈ {0, 1},

• (verk𝑖, sigk𝑖) ← Sig.Setup(1𝜆),

• ctid𝑖,0 ← Ênc(mpk, (id𝑖, 0, verk𝑖), M),

• ctid𝑖,1 ← Ênc(mpk, (id𝑖, 1, verk𝑖), H(M)),

14

• 𝜎𝑖 ← Sig.Sign(sigk𝑖, [ctid𝑖,0‖ctid𝑖,1]),

• [A‖Bid𝑖
]

−1

𝜏1
← IBE.KeyGen(IBE.mpk, IBE.msk, id𝑖),

• obtain E ← [A‖Bid𝑖
‖C1 + G‖C2 + FRD(verk𝑖)G]

−1

𝜏1
(U) from [A‖Bid𝑖

]
−1

𝜏1
,

• ℎ𝑖 ← D̂ec(mpk, E, ctid𝑖,1).

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk𝑖, [ctid𝑖,0‖ctid𝑖,1], 𝜎𝑖) → 1 holds for
𝑖 ∈ {0, 1} with overwhelming probability. Moreover, the Lemma 3.1 ensures that ℎ𝑖 = H(M) for
𝑖 ∈ {0, 1}, i.e., ℎ0 = ℎ1, holds with overwhelming probability. Therefore, the condition (2) holds.

We can prove the condition (3) by using the Lemma 3.1 and collision resistance of the underlying
hash function H. For this purpose, we use an adversary 𝒜 for breaking the condition (3) to
construct a PPT adversary ℬ that breaks the collision resistance of H. Here, we say that 𝒜
breaks the condition (3) if it holds that M0 ≠ M1 ∧ Test(mpk, tdid0

, ctid0
, tdid1

, ctid1
) → 1, where

(M0, M1) ← 𝒜(mpk, msk), and for 𝑖 = 0, 1, ctid𝑖
← Enc(mpk, id𝑖, M𝑖), skid𝑖

← KeyGen(mpk, msk, id𝑖)
and tdid𝑖

← Trapdoor(mpk, skid𝑖
). For all 𝜆 ∈ ℕ, all (IBE.mpk, IBE.msk) ← IBE.Setup(1𝜆) and (Γ, H),

all PPT adversaries 𝒜, all (id0, id1) ∈ ℐ𝒟2, after 𝒜 outputs (M0, M1), ℬ also outputs the same
(M0, M1). If 𝒜 breaks the condition (3), it holds that M0 ≠ M1 ∧ ℎ0 = ℎ1, where for 𝑖 ∈ {0, 1},

• (verk𝑖, sigk𝑖) ← Sig.Setup(1𝜆),

• ctid𝑖,1 ← Ênc(mpk, (id𝑖, 1, verk𝑖), H(M𝑖)),

• [A‖Bid𝑖
]

−1

𝜏1
← IBE.KeyGen(IBE.mpk, IBE.msk, id𝑖),

• obtain E = [A‖Bid𝑖
‖C1 + G‖C2 + FRD(verk𝑖)G]

−1

𝜏1
(U) from [A‖Bid𝑖

]
−1

𝜏1
,

• ℎ𝑖 ← D̂ec(mpk, E, ctid𝑖,1).

The Lemma 3.1 ensures that ℎ𝑖 = H(M𝑖) holds for 𝑖 ∈ {0, 1} with overwhelming probability.
Therefore, if 𝒜 breaks condition (3), it holds that H(M0) = H(M1) and ℬ breaks the collision
resistance of H with overwhelming probability since it holds that M0 ≠ M1 ∧ H(M0) = H(M1).
Therefore, the condition (3) holds.

From the above, it is proved that our proposed construction is correct.

4 Security
In this section, we discuss the security of our proposed IBEET scheme.

4.1 OW-CCA2 Security against Type-I Adversaries

In this subsection, we prove the following theorem.

15

Theorem 4.1 (OW-CCA2 Security against Type-I Adversaries). If the underlying IBE scheme Π
satisfies adaptive IND-CPA security, OTS scheme Γ satisfies strong unforgeability, and H satisfies
one-wayness, then our proposed IBEET scheme Σ satisfies adaptive OW-CCA2 security against
Type-I adversaries. In particular, there are PPT algorithms ℱ, ℬ1, and 𝒟 such that

AdvOW­CCA2
Σ,𝒜 (𝜆) ≤ AdvOTS

Γ,ℱ(𝜆) + 2AdvIBE
Π,ℬ1

(𝜆) + AdvOW
H,𝒟(𝜆) + negl(𝜆).

Proof. Let ct∗
id∗ = (verk∗, ct∗

id∗,0, ct∗
id∗,1, 𝜎∗) be the challenge ciphertext for the target identity id∗.

We prove the theorem via game sequence from Game0 to Game4. Let 𝑊𝑖 denote an event that
𝒜 wins in Game𝑖 for 𝑖 ∈ {0, … , 4}.

Game0: This game is the same as the original adaptive OW-CCA2 security game in Definition 2.7
between the challenger 𝒞 and the adversary 𝒜.

Game1: This game is the same as Game0 except that 𝒞 runs (verk∗, sigk∗) ← Sig.Setup(1𝜆)
that will be used for creating the challenge ciphertext immediately after Init phase instead of
running in challenge query and if 𝒜 makes the decryption queries on (id, ctid) = (id, (verk, ctid,0,
ctid,1, 𝜎)) such that

verk = verk∗ ∧ Sig.Vrfy(verk, [ctid,0‖ctid,1], 𝜎) → 1 ∧ (ctid,0, ctid,1, 𝜎) ≠ (ct∗
id∗,0, ctid∗,1, 𝜎∗)

then 𝒞 aborts the game and returns M ←$ ℳ.

Game2: This game is the same as Game1 except the way 𝒞 generates (C1, C2) ∈ mpk and
ct∗

id∗,0 ∈ ct∗
id∗ , where the creation of ct∗

id∗,1 ∈ ct∗
id∗ is unchanged. In Init phase of Game2,

𝒞 samples R∗
1, R∗

2 ←$ ℤ𝑚×𝑚
𝑞 and sets C1 = AR∗

1, C2 = AR∗
2 − FRD(verk∗)G. Upon 𝒜’s

challenge query on id⋆, 𝒞 creates (c0, c1, c2) in the same way as the real scheme by running
IBE.Enc(IBE.mpk, id∗, M∗) and creates c3 by computing

c⊤
3 = c⊤

1 [R∗
1‖R∗

2] = (s⊤A + e⊤
1)[R∗

1‖R∗
2]

= s⊤[C1‖C2 + FRD(verk∗)G] + e⊤
1 [R∗

1‖R∗
2].

Then, 𝒞 sets ctid∗,0 = (c0, c1, c2, c3).

Game3: This game is the same as Game2 except that the way 𝒞 generates E0, E1 and tdid = E
without using msk for answering decryption queries and trapdoor queries, respectively. In
Game2, 𝒞 uses skid to generate E0, E1 and tdid = E, but in Game3, 𝒞 uses R∗

1, R∗
2 and the

property of the gadget matrix (Lemma 2.3, Item 3) to generate E0, E1, and E. In particular,
𝒞 generates E0, E1 and tdid = E in Game3 as follows.

• Upon 𝒜’s decryption query on (id, ctid) = (id, (verk, ctid,0, ctid,1, 𝜎)), 𝒞 first computes
[A‖C2 + FRD(verk)G]−1

𝜏1
= [A‖AR∗

2 + (FRD(verk) − FRD(verk∗))G]−1
𝜏1

by using Item 3
of Lemma 2.3, where FRD(verk) − FRD(verk∗) is full-rank since verk ≠ verk∗ holds due
to the modification in Game1. Next, 𝒞 creates [A‖Bid‖C1‖C2 + FRD(verk)G]−1

𝜏 and
[A‖Bid‖C1 + G‖C2 + FRD(verk)G]−1

𝜏 by using Item 2 of Lemma 2.3. Then, 𝒞 creates
E0, E1 in the same way as the real scheme.

• Upon 𝒜’s trapdoor query on id, 𝒞 first computes [A‖C1 + G]−1
𝜏 by using Item 3 of

Lemma 2.3. Next, 𝒞 creates [A‖Bid‖C1 + G]−1
𝜏 by using Item 2 of Lemma 2.3. Then, 𝒞

creates E in the same way as the real scheme.

16

Game4: This game is the same as Game3 except the way 𝒞 creates the challenge ciphertext
ct∗

id∗ = (verk∗, ct∗
id∗,0, ct∗

id∗,1, 𝜎∗). In short, ctid∗,0 is an encryption of the challenge plaintext M∗

in Game3. In contrast, ctid∗,0 is a uniformly random element over ℤℓ+4𝑚
𝑞 in Game4. We

note that ctid∗,1 is an encryption H(M∗) in both Game3 and Game4.

It holds that Game0 ≈𝑐 Game1 from 𝒜’s view based on the unforgeability of the OTS scheme
Γ, where the standard argument of the CHK transformation [CHK04] is sufficient for the proof. It
holds that Game1 ≈ Game2 from 𝒜’s view due to Lemma 2.4. It holds that Game2 ≈ Game3
from 𝒜’s view due to the Item 3 of Lemma 2.3. It is computationally infeasible for 𝒜 to win in
Game4 based on the one-wayness of the hash function.

All we have to show is Game3 ≈𝑐 Game4 based on the IND-CPA security of the IBE scheme
Π. For this purpose, we use 𝒜 to construct a PPT adversary ℬ1 that breaks IND-CPA security of
Π. Let IBE.𝒞 denote a challenger of the IND-CPA security game of Π. After ℬ1 receives IBE.mpk
and begins the IND-CPA security game with IBE.𝒞, ℬ1 runs (verk∗, sigk∗) ← Sig.Setup(1𝜆) as we
modified in Game1, samples R∗

1, R∗
2 ←$ ℤ𝑚×𝑚

𝑞 and computes C1, C2 as we modified in Game2.
Then, ℬ1 select a OTS scheme Γ and a hash function H, and begins the OW-CCA2 security game
with 𝒜 by giving mpk = (IBE.mpk, C1, C2, Γ, H) to 𝒜.

In the Phase 1, ℬ1 answers decryption queries and trapdoor queries as we modified in Game1
and Game3. Upon 𝒜’s key extraction query on id, ℬ1 makes a key extraction query on id to IBE.𝒞
and receives IBE.skid. Then, ℬ1 sends skid ≔ IBE.skid to 𝒜

Upon 𝒜’s challenge query on id∗, ℬ1 chooses M∗ ←$ ℳ as the challenge plaintext of OW-
CCA security game. Then, ℬ1 makes the challenge query on (id∗, M∗) to IBE.𝒞 and receives
IBE.ct∗

id∗ = (c∗
0, c∗

1, c∗
2). ℬ1 retrieves R∗

1, R∗
2, computes (c∗

3)⊤ = (c∗
1)⊤[R∗

1‖R∗
2] as we modified in

Game2, and sets ct∗
id∗,0 = (c∗

0, c∗
1, c∗

2, c∗
3). ℬ1 runs ct∗

id∗,1 ← Ênc(mpk, (id∗, 1, verk∗), H(M∗)), 𝜎∗ ←
Sig.Sign(sigk∗, [ct∗

id∗,0‖ct∗
id∗,1]), and gives ct∗

id∗ = (verk∗, ctid∗,0, ctid∗,1, 𝜎∗) to 𝒜. In the Phase 2, ℬ1

can answer all three types of queries essentially in the same way as in Phase 1. After 𝒜 outputs M̂
as a guess of M∗, ℬ1 outputs ĉoin = 0 if M̂ = M∗ and ĉoin = 1 otherwise as a guess of coin flipped
by IBE.𝒞.

We check that ℬ1’s behavior in the security game of IBE is correct. ℬ1 makes key extraction
queries on id to IBE.𝒞 only for answering 𝒜’s key extraction queries. Since the security game of
IBEET ensures that all id on which 𝒜 makes key extraction queries satisfy id ≠ id∗, ℬ1 does not
make key extraction queries on id∗ to IBE.𝒞. Next, we check ℬ1’s behavior in the security game of
IBEET is correct. Due to the modification in Game2, mpk distributes in the same way as the real
scheme. Due to the modifications in Game1, Game2, and Game3, ℬ1 can answer all 𝒜’s queries
so that the distributions are statistically close to those of the real scheme. Due to the modification
in Game2, ct∗

id∗,0 is a valid encryption of M∗ and a uniformly random element over Zℓ+4𝑚
𝑞 if 𝛽 = 0

and 1, respectively, based on the standard leftover hash lemma, e.g., Theorem 8.38 of [Sho05]. In
other words, the challenge ciphertext ct∗

id∗ distributes according to Game3 and Game4 if 𝛽 = 0
and 1, respectively. Therefore, it holds that Game3 ≈𝑐 Game4 as required.

4.2 IND-CCA2 Security against Type-II Adversaries

In this subsection, we prove the following theorem.

Theorem 4.2 (IND-CCA2 Security against Type-II Adversaries). If the underlying IBE scheme
Π satisfies adaptive IND-CPA security, OTS scheme Γ satisfies strong unforgeability, then our

17

proposed IBEET scheme Σ satisfies adaptive IND-CCA2 security against Type-II adversaries. In
particular, there are PPT algorithms ℱ, ℬ1, and ℬ2 such that

AdvIND­CCA2
Σ,𝒜 (𝜆) ≤ AdvOTS

Γ,ℱ(𝜆) + 2AdvIBE
Π,ℬ1

(𝜆) + AdvIBE
Π,ℬ2

(𝜆) + negl(𝜆).

Proof. Let ct∗
id∗ = (verk∗, ct∗

id∗,0, ct∗
id∗,1, 𝜎∗) be the challenge ciphertext for the target identity id∗.

We prove the theorem via game sequence from Game0 to Game7, where Game0 to Game4 are
almost the same5 as in the proof of Theorem 4.1.

Game5: This game is the same as Game4 except that 𝒞 generates tdid = E in the same way as
Game3 by using msk.

Game6: This game is the same as Game5 except the way 𝒞 generates C1 ∈ mpk and ct∗
id∗,1 ∈ ct∗

id∗ ,
where the creations of C2 ∈ mpk and ct∗

id∗,0 ∈ ct∗
id∗ are unchanged. In Init phase of Game5,

𝒞 samples R∗
1 ←$ ℤ𝑚×𝑚

𝑞 and sets C1 = AR∗
1. In contrast, in Init phase of Game6, 𝒞

samples R∗
1 ←$ ℤ𝑚×𝑚

𝑞 and sets C1 = AR∗
1 − G. Upon 𝒜’s challenge query on id∗, 𝒞 runs

(c0, c1, c2) ← IBE.Enc(IBE.mpk, id∗, M∗
coin) and creates c3 by computing

c⊤
3 = c⊤

1 [R∗
1‖R∗

2] = (s⊤A + e⊤
1)[R∗

1‖R∗
2]

= s⊤[C1 + G‖C2 + FRD(verk∗)G] + e⊤
1 [R∗

1‖R∗
2].

Then, 𝒞 sets ctid∗,1 = (c0, c1, c2, c3).

Game7: This game is the same as Game6 except the way 𝒞 creates ct∗
id∗,1 ∈ ct∗

id∗ . In short, ct∗
id∗,1

is an encryption of the challenge plaintext M∗
coin in Game6. In contrast, ct∗

id∗,1 is a uniformly
random element over ℤℓ+4𝑚

𝑞 in Game7.

It holds that Game0 ≈𝑐 Game4 as we proved in the proof of Theorem 4.1. It holds that
Game4 ≈ Game5 by following the same argument as in Game2 ≈𝑐 Game3. It holds that
Game5 ≈ Game6 by following the same argument as in Game1 ≈ Game2. In Game7, 𝒜’s
advantage is exactly zero since both ct∗

id∗,0 and ct∗
id∗,1 are independent of M∗

coin.
All we have to show is Game6 ≈𝑐 Game7 based on the IND-CPA security of the IBE scheme Π.

For this purpose, we use 𝒜 to construct a PPT adversary ℬ2 that breaks IND-CPA security of Π,
where ℬ2’s behavior is similar to ℬ1 in the proof of Game3 ≈𝑐 Game4. After ℬ2 receives IBE.mpk
and begins the IND-CPA security game with IBE.𝒞, ℬ gives mpk = (IBE.mpk, C1, C2, Γ, H) to 𝒜.
ℬ2 creates mpk in the same way as ℬ1 except that C1 = AR∗

1 − G as we modified in Game6.
In the Phase 1, ℬ2 answers 𝒜’s key extraction queries and decryption queries in the same way

as ℬ1. Upon 𝒜’s trapdoor query on id, ℬ2 makes a key extraction query on id to IBE.𝒞 and receives
IBE.skid. Then, ℬ2 creates tdid = E in the same way as the real scheme and gives it to 𝒜.

Upon 𝒜’s challenge query on (id∗, M∗
0, M∗

1), ℬ2 flips a coin coin ←$ {0, 1} and makes the chal-
lenge query on (id∗, M∗

coin) to IBE.𝒞 and receives IBE.ct∗
id∗ = (c∗

0, c∗
1, c∗

2). ℬ2 retrieves R∗
1, R∗

2, com-
putes (c∗

3)⊤ = (c∗
1)⊤[R∗

1‖R∗
2] as we modified in Game2 and Game6, and sets ct∗

id∗,1 = (c∗
0, c∗

1, c∗
2, c∗

3).
ℬ2 creaetes ct∗

id∗,0 ←$ ℤℓ+4𝑚
𝑞 , 𝜎∗ ← Sig.Sign(sigk∗, [ct∗

id∗,0‖ct∗
id∗,1]), and gives ct∗

id∗ = (verk∗, ct∗
id∗,0,

ct∗
id∗,1, 𝜎∗) to 𝒜. In the Phase 2, ℬ2 can answer all three types of queries essentially in the same

way as in Phase 1. After 𝒜 outputs ĉoin as a guess of coin, ℬ2 outputs ̂𝛽 = 0 if ĉoin = coin and
̂𝛽 = 1 otherwise as a guess of 𝛽 flipped by IBE.𝒞.

We check that ℬ2’s behavior in the security game of IBE is correct. ℬ makes key extraction
queries on id to IBE.𝒞 only for answering 𝒜’s key extraction queries and trapdoor queries. Since

5In Game1, if 𝒞 aborts the game, it outputs ĉoin ←$ {0, 1}.

18

the security game of IBEET against Type-II adversary ensures that all id on which 𝒜 makes key
extraction queries or trapdoor queries satisfy id ≠ id∗, ℬ2 does not make key extraction queries on
id∗ to IBE.𝒞. Next, we check ℬ2’s behavior in the security game of IBEET is correct. Due to the
modification in Game2 and Game6, mpk distributes in the same way as the real scheme. Due
to the modifications in Game1, Game2, Game3, and Game6, ℬ2 can answer all 𝒜’s queries so
that the distributions are statistically close to those of the real scheme. Due to the modification in
Game6, ct∗

id∗,0 is a valid encryption of M∗
coin and a uniformly random element over Zℓ+4𝑚

𝑞 if 𝛽 = 0
and 1, respectively, based on the standard leftover hash lemma, e.g., Theorem 8.38 of [Sho05]. In
other words, the challenge ciphertext ct∗

id∗ distributes according to Game6 and Game7 if 𝛽 = 0
and 1, respectively. Therefore, it holds that Game6 ≈𝑐 Game7 as required.

5 Conclusion
In this paper, we construct the first purely adaptive and CCA-secure lattice-based IBEET schemes
in the standard model. We pointed out that a special three-level schemes HIBE satisfying adaptive
security only for the first level and selective security for the other levels is sufficient for constructing
adaptively and CCA-secure IBEET, and we construct such HIBE schemes from ABB-type IBE. How
to employ our technique to construct an attribute-based encryption with equality test (ABEET)
having the same properties of semi-adaptively secure lattice-based ABE scheme for circuits [BV16]
and adaptively secure lattice-based inner-product encryption [KNY+20] is left as a future work of
this paper.

References
[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. “Efficient Lattice (H)IBE in the

Standard Model.” In: EUROCRYPT. 2010, pp. 553–572.
[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. “Lattice Basis Delegation in Fixed

Dimension and Shorter-Ciphertext Hierarchical IBE.” In: CRYPTO. 2010, pp. 98–
115.

[AET+22] Kyoichi Asano, Keita Emura, Atsushi Takayasu, and Yohei Watanabe. “A Generic
Construction of CCA-secure Attribute-based Encryption with Equality Test.” In:
ProvSec. 2022, pp. 3–19.

[AET22] Kyoichi Asano, Keita Emura, and Atsushi Takayasu. “More Efficient Adaptively Se-
cure Lattice-based IBE with Equality Test in the Standard Model.” ISC 2022, to
appear.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Abstract).”
In: 28th ACM STOC. ACM, 1996, pp. 99–108.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical hardness of learning with errors.” In: 45th ACM STOC. ACM, 2013,
pp. 575–584.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. “Circuit-ABE from LWE: Unbounded
Attributes and Semi-adaptive Security.” In: CRYPTO. 2016, pp. 363–384.

[CHK+12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. “Bonsai Trees, or How
to Delegate a Lattice Basis.” In: J. Cryptol. 25.4 (2012), pp. 601–639.

19

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. “Chosen-Ciphertext Security from
Identity-Based Encryption.” In: EUROCRYPT. 2004, pp. 207–222.

[DLR+19] Dung Hoang Duong, Huy Quoc Le, Partha Sarathi Roy, and Willy Susilo. “Lattice-
Based IBE with Equality Test in Standard Model.” In: Provable Security. 2019,
pp. 19–40.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard lattices
and new cryptographic constructions.” In: 40th ACM STOC. ACM, 2008, pp. 197–
206.

[JKN21] Tibor Jager, Rafael Kurek, and David Niehues. “Efficient Adaptively-Secure IB-
KEMs and VRFs via Near-Collision Resistance.” In: Public-Key Cryptography. 2021,
pp. 596–626.

[KNY+20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. “Adap-
tively Secure Inner Product Encryption from LWE.” In: ASIACRYPT. 2020, pp. 375–
404.

[LLS+16] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. “Semi-generic con-
struction of public key encryption and identity-based encryption with equality test.”
In: Information Sciences 373 (2016), pp. 419–440.

[LLS+20] Hyung Tae Lee, San Ling, Jae Hong Seo, Huaxiong Wang, and Taek-Young Youn.
“Public key encryption with equality test in the standard model.” In: Information
Sciences 516 (2020), pp. 89–108.

[LSQ18] Xi Jun Lin, Lin Sun, and Haipeng Qu. “Generic construction of public key encryp-
tion, identity-based encryption and signcryption with equality test.” In: Information
Sciences 453 (2018), pp. 111–126.

[Ma16] Sha Ma. “Identity-based encryption with outsourced equality test in cloud comput-
ing.” In: Information Sciences 328 (2016), pp. 389–402.

[NSD+20] Giang Linh Duc Nguyen, Willy Susilo, Dung Hoang Duong, Huy Quoc Le, and Fuchun
Guo. “Lattice-Based IBE with Equality Test Supporting Flexible Authorization in
the Standard Model.” In: INDOCRYPT. 2020, pp. 624–643.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptogra-
phy.” In: J. ACM 56.6 (2009), 34:1–34:40.

[SDL20] Willy Susilo, Dung Hoang Duong, and Huy Quoc Le. “Efficient Post-quantum Identity-
based Encryption with Equality Test.” In: IEEE ICPADS. 2020, pp. 633–640.

[Sho05] Victor Shoup. “A Computational Introduction to Number Theory and Algebra.”
Cambridge University Press, 2005.

[SRB12] Kunwar Singh, C. Pandu Rangan, and A. K. Banerjee. “Adaptively Secure Efficient
Lattice (H)IBE in Standard Model with Short Public Parameters.” In: SPACE. 2012,
pp. 153–172.

[Tsa19] Rotem Tsabary. “Fully Secure Attribute-Based Encryption for t-CNF from LWE.”
In: CRYPTO. 2019, pp. 62–85.

[Wat05] Brent Waters. “Efficient Identity-Based Encryption Without Random Oracles.” In:
EUROCRYPT. 2005, pp. 114–127.

20

[WWY+21] Zhenghao Wu, Jian Weng, Anjia Yang, Lisha Yao, Xiaojian Liang, Zike Jiang, and
Jinghang Wen. “Efficient and Fully Secure Lattice-Based IBE with Equality Test.”
In: ICICS. 2021, pp. 301–318.

[Yam17] Shota Yamada. “Asymptotically Compact Adaptively Secure Lattice IBEs and Ver-
ifiable Random Functions via Generalized Partitioning Techniques.” In: CRYPTO.
2017, pp. 161–193.

[YTH+10] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. “Probabilistic
Public Key Encryption with Equality Test.” In: CT-RSA. 2010, pp. 119–131.

[Zha12] Mark Zhandry. “Secure Identity-Based Encryption in the Quantum Random Oracle
Model.” In: CRYPTO. Ed. by Reihaneh Safavi-Naini and Ran Canetti. 2012, pp. 758–
775.

21

	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Lattices
	2.2 Identity-based Encryption
	2.3 One-time Signature
	2.4 Hash Functions
	2.5 Identity-based Encryption with Equality Test

	3 Construction
	3.1 ABB-type Identity-based Encryption
	3.2 Constructions of IBEET schemes from ABB-type IBE
	3.3 Correctness

	4 Security
	4.1 OW-CCA2 Security against Type-I Adversaries
	4.2 IND-CCA2 Security against Type-II Adversaries

	5 Conclusion

