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Abstract

E-voting o↵ers significant potential savings in time and money compared to current voting systems.

Unfortunately, many current e-voting schemes are susceptible to quantum attacks. In this paper, we

expand upon EVOLVE, an existing lattice-based quantum-secure election scheme introduced by Pino et

al. We are able to make these expansions by extending the dimensions of the voter’s ballot and creating

additional proofs, allowing for applicability to realistic election schemes. Thus, we present our system of

schemes, called EVOLVED (Electronic Voting from Lattices with Verification and Extended Dimensions).

We present schemes for numerous di↵erent types of elections including Single-Choice Voting, Borda

Count, and Instant Runo↵.

Key Words: E-Voting, Post-Quantum Cryptography, Lattice-Based Cryptography

1 Introduction

The importance of a secure e-voting scheme in the context of modern technology cannot be exaggerated;
however, few extensive e-voting schemes exist (especially those of lattice-based construction) and fewer still
have practical applications. Existing voting systems often utilize primitive pen and paper voting, and those
that do utilize e-voting are often discovered to posses numerous security risks. Vote security is an ongoing
project in many countries, and e-voting still needs significant development for wide-scale usage.

Most current e-voting schemes rely on the hardness of factoring discrete logarithms, which will lack
security in a post-quantum world. The e-voting developed in [3] and extended in this paper are based
on di�cult Lattice problems. Lattice-based cryptography is currently a promising field for post-quantum
cryptographic schemes, and a likely candidate for the security of widespread e-voting in the future.

In [3], researchers developed a lattice-based e-voting scheme for binary elections called EVOLVE (Elec-
tronic Voting from Lattices with Verification) theorized to be quantum-safe and e�cient enough for practical
use. In this paper we introduce extensions of EVOLVE that allow the cryptographic tools to be used to a
greater number of election applications.

2 Preliminaries

2.1 Notation

We will denote matrices with bold uppercase letters, and vectors with bold lowercase letters. We let R :=
Z[x]/hxn + 1i, and Rq := Zq[x]/hxn + 1i. Values in modulus q will be represented as values between �b q2c
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and b q2c. We will write d  D to denote that an element d was sampled from a set D. Similarly, d
$ � D

denotes that d is sampled uniformly at random from D.
Throughout this paper, we will represent a voter’s ballot as a message m. The number of candidates in

an election will be denoted as k, and the total tally of an election will be t. In each scheme, w represents
the number of candidates that a voter is allowed to vote for (w  k) in a given ballot. In addition, NV and
NA represents the number of voters and authorities, respectively, in a given election.

2.2 Hard Lattice Problems

We define the following hard problems based on lattices. These problems are assumed to be di�cult for
classical and quantum computers. We will define the search and decision type of the Learning with Errors
(LWE problem), along with the Short Integer Solution (SIS) problem.

Definition 1 (Decision LWE). Let n, q be positive integers, � be a probability distribution on Z with standard

deviation �, and s be a secret vector in Zn
q
. Choose a 2 Zn

q
uniformly at random, e 2 Zq according to �,

and return (a, b) = (a, ha, si + e) 2 Zn
q
⇥ Zq. Given a number of samples (a, b), and samples (a, u), where

u 2 Zqis chosen uniformly at random, the distributions are computationally indistinguishable.

Definition 2 (Search LWE). Let n, q be positive integers, � be a probability distribution on Z with standard

deviation �, and s be a secret vector in Zn
q
. Choose a 2 Zn

q
uniformly at random, e 2 Zq according to �, and

return (a, b) = (a, ha, si+ e) 2 Zn
q
⇥ Zq. Given a number of samples (a, b), try to recover s.

Definition 3 (SIS). Given A Zn
q
, find z 2 Zn

q
, 0 < ||z||  �, such that Az = 0.

Ring-LWE (R-LWE), and the related Modulo LWE (M-LWE), are both variations of the LWE problem
in which the group Zn

q
is replaced with the ring Zq[x]/hxn+1i. Our scheme uses the M-LWE problem, which

is said to have the same hardness as the LWE problem [5]. The short integer solution problem also has ring
and modulo variants with the same level of hardness.

2.3 Outline of Cryptographic Voting Scheme

Each cryptographic voting scheme will be comprised of two groups of people: voters and authorities. Voters
will cast a ballot, and authorities will tally the results. To cast a ballot, voters will take a valid vote of 0 or
1 and break their vote into partial components before encryption. The number of partial components will
be equal to NA, the total number of authorities present. Each authority will then receive their respective
encrypted partial components from each voter in the total voting pool. Each authority will add all of the
partial sums received from each voter into one encrypted value. Lastly, all the authorities will share their one
encrypted sum with each other, add them all together, and decrypt to create a final total tally. Unless every
authority were to collude to discover a particular voter’s response, each voter’s vote would remain secret.

3 Algorithms and Analysis from Practical Quantum-Safe Voting
from Lattices, [3]

In this section, we outline the algorithms and proofs presented in [3]. We start by considering an election
where each voter can submit either a 0 or a 1 as their vote.

3.1 Cryptographic Primitives

3.1.1 Commitment Scheme

The goal of a commitment scheme is to allow an individual to commit to a specific message m using a
commitment c, while keeping the message m hidden. There are three stages to a commitment scheme: key
generation, a committing stage (where the individual commits to their value), and an opening stage (where
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the message is revealed). A commitment scheme should satisfy the properties of correctness (opening the
commitment c will give you the message m), hiding (a commitment c will hide the value of the message m),
and binding (the commitment c can only be opened to the message m). We let d 2 N, � 2 R, and Br 2 R+

be a positive bound. In this scheme m is the vote, r is a randomness vector, and c is the commitment.

Keygen(1�)

Step 1. A0 $ � Rd⇥(d+1)
q

Step 2. A =
⇥
A0 Id

⇤
2 Rd⇥(2d+1)

q

Step 3. B
$ � R1⇥(2d+1)

q

Step 4. Output C :=


A
B

�
2 R(d+1)⇥(2d+1)

q

Figure 1

Commit (m 2 {0, 1})
Step 1. r Dn(2d+1)

�

Step 2. Output c = Com(m; r) := Cr+


0
m

�
2 Rd+1

q

Figure 2

Open(c 2 Rd+1
q

, r 2 R2d+1
q

)

Step 1. If there exists m0 2 Rq such that c�Cr =


0
m0

�
and

||r||  Br, output m0.
Step 2. Else, output ? (error)

Figure 3

Section 3.1 of [3] proves that this commitment scheme is computationally hiding, binding, and correct.

Proof of Binding Property A scheme is defined as being computationally binding if it is su�ciently
secure such that a commitment cannot be opened to two di↵erent messages. It should be computationally
hard for an adversary to generate information capable of opening two unique messages. It is shown in [3]
that the binding property is equivalent to the M-SIS problem.

Proof of Hiding Property A scheme is defined as being computationally hiding if a commitment success-
fully hides the hidden message. An adversary should not, without significant di�culty, be able to distinguish
between real commitments and useless commitments of the same distribution. An adversary capable of
distinguishing valid commitments in a uniform distribution would be capable of solving the LWE problem,
which is known to be computationally hard. The proof of hiding was originally shown in [3] and shows that
the hiding property is equivalent to M-LWE.

Proof of Correctness A scheme is defined as having correctness if when given a message m, performing
the opening algorithm on the commitment of m returns m with overwhelming probability. The correctness
of this commitment scheme is guaranteed by Lemma 2.4 in [3].
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3.1.2 OR Proofs and Amortized Proof

Other important components of the voting scheme are the OR proofs and Amortized proofs. The goal of
these algorithms is to prove that a commitment c opens to an allowed value m without revealing the actual
value of m. If m must be in {0, 1} to be valid, its validity can be proven by showing that “either m = 1
or m = 0” is true. Secrecy is maintained by not showing which statement is true, but instead proving that
the union of statements is true. The proof should satisfy the properties of correctness, zero knowledge,
and soundness (refer to [3] for a demonstration of each). Amortized proofs can be visualized as OR proofs
performed in batches. Because the OR proofs are approximate, when showing a proof of knowledge of r

such that c = Cr +


0
m

�
, one is actually showing that fc = Cr +


0
fm

�
for some polynomial f that

fits certain parameters (detailed in [3]). By setting f equal to a constant, such as 2, one can prove in zero
knowledge that they have information about a certain randomness r for a sum of commitments. Authorities
use this method to show that all the votes they received are valid in a single amortized OR proof.

3.2 The Scheme

Here we present the general scheme presented in [3]. The first step is to generate public parameters n, q, d,�

and public key C  KeyGen(1�), C 2 R(d+1)⇥(2d+1)
q . We consider (KeyGen(1�), Enc, Dec) to be a

CCA-Secure public key encryption scheme which authorities use to obtain the shares of the randomness of
each voter. The key pair (pkj , skj)  KeyGen(1�) is chosen for each authority and the jth authority is
given skj . Each pkj is published, while only Authority j knows skj .

3.2.1 Casting a Vote

Votei Voter i splits their vote m into NA parts, {v(1)
i

, · · · , v(NA)
i

}, where v(j)
i

$ � Zq for j 2 {1, · · · , NA�1},
and vNA

i
is chosen so that vi =

P
NA

j=1 v
(j)
i

. Voter i chooses a random vector r(j)
i
 Dn(2d+1)

� for each authority

j and uses the commitment key described above to compute c(j)
i

:= Com(v(j)
i

; r(j)
i

) for each authority j.

We denote Voter i’s total randomness vector as ri :=
P

NA

1 r(j)
i

and Voter i’s total commitment vector

ci :=
P

NA

1 c(j)
i

.
Voter i proves that their message is a valid vote using the OR proof ⇡V

i
= ⇧OR(ci, ri). Voter i also

encrypts each randomness vector skj using authority j’s respective public key s.t. e(j)
i

= Enc(r(j)
i

, pkj)

Voter i signs and posts bi = (idi,⇡V

i
, (c(j)

i
, e(j)

i
)
j2[NA]) to the bulletin board where idi is the voter ID.

Testing the Ballot Each voter will publish their ballot (idi,⇡V

i
, c(1)

i
, e(1)

i
, · · · , c(NA)

i
, e(NA)

i
) := bi to the

bulletin board. In order to verify the ballot, an authority would first check that bi was signed by the
appropriate voter ID idi and then verify the OR proof ⇡V

i
. Authority j would then decrypt each randomness

vector using their private key to get r(j)
i

:= Dec(e(j)
i

, skj). Finally the authority will verify that r(j)
i

is an
acceptable randomness vector, i.e. that it is less than or equal to the parameter 2

p
n(2d+ 1)�.

3.2.2 Tallying

Tally the votes (authorities) For each bi, authority j use the secret key skj to decrypt e(j)
i

to re-

cover randomness r(j)
i

:= Dec(e(j)
i

, skj). Authority j then proves that r(j)
i

is a valid opening of c(j)
i

for each voter i. These proofs are amortized to increase e�ciency. ⇡A,(j) = (⇡A

i
, ...⇡A

Nv
) =

Q
AMO,A

=

(a(j)
i

, · · · ,a(j)
NV

, r(j)
i

, · · · r(j)
NV

). Authority j then computes r(j) =
NVP
i=1

r(j)
i

and will sign and publish ⇡A,(j), r(j).
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Tally the votes (anyone) Anyone can then compute c(j) :=
P

NV

i=1 c
(j)
i

for each authority j. Using these

partial commitments c(j)
i

we can remove the randomness r(j) to obtain the partial tallies t(j) as follows:


0
t(j)

�
= c(j) �Cr(j).

We can then compute and publish the final tally

t =
NAX

j=1

t(j).

Verify (anyone) This voting scheme satisfies universal verifiability, meaning anyone can check that all
honest votes were counted correctly. This proof can be found in Section 1.3 of [3].

3.3 Lattice-Based Voting Schemes with Multiple Candidates

In Appendix B of [3], the authors expanded their scheme from a simple yes-no vote into multiple simultaneous
yes-no elections. They achieved this by changing the votes from being m 2 {0, 1} to m 2 {0, 1}k, changing
the dimensions of the public key C to (d+k)⇥ (2d+k) with A 2 Rd⇥(2d+k)

q and B 2 Rk⇥(2d+k)
q , and letting

each r(j)
i

be a vector of length 2d+ k.
Importantly, the authors of [3] proved that the scheme and all of their described algorithms and proofs are

still secure in this case. However, these changes alone creates a scheme for which voters have no limit on the
number of candidates they choose to vote for, which is rarely the case in practice. In order to transition to a
multi-candidate election with a restriction on the number of votes each Voter can cast, we add a Hamming
Weight Proof. This will allow for restrictions on the allowed number of nonzero votes cast by each voter.

4 EVOLVED: Hamming Weight Proof

The Hamming Weight Proof allows us to extend the algorithms of EVOLVE to the extension EVOLVED.
The Hamming Weight Proof is designed to reveal the weight (or number of nonzero entries) of the vote
vector m while maintaining voter privacy. The point of this proof is to be able to guarantee that a voter i
votes for exactly w candidates.

We consider a vote of the form mi = [mi,1, . . . ,mi,k] 2 {0, 1}k, where k is the number of candidates.
Each candidate will be assigned a placement z 2 {1, . . . , k}. Placing a 1 in the zth coordinate of mi denotes
a vote for candidate z. To perform the Hamming Weight proof, voter i splits each element of their vote into

NA components, denoted v(j)
i

, as previously described. In addition to the information previously published

by the authorities, Authority j will now also publish ⌧ (j)
i

for each Voter i where ⌧ (j)
i

=
P

k

z=1 v
(j)
i,z

. We can

then see that ⌧i =
P

NA

j=1 ⌧
(j)
i

represents the number of votes cast by voter i. This allows us to require a
specific number of votes (i.e., nonzero entries in m) that voter i can cast. We denote w as the number of
allowed votes.

Figure 4 illustrates an example of the Hamming Weight Proof when w = 1. For this illustration we
consider the plaintext of the partial votes sent to each authority, instead of the commitment and the encrypted
randomness vector.

We do not currently have the same level of universal verifiability of the partial sums as we do with the
total tally of votes because we cannot publish ri in the same way that we publish r(j) since that would betray
each voter’s ballot. But, we can publicly verify that the total number of votes are correct.
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j = 1 j = 2 j = 3
NVP
j=1

v(j)
i

2

4
3
1
1

3

5

2

4
�4
0
2

3

5

2

4
1
�1
�2

3

5

2

4
0
0
1

3

5

⌧ (j)
i

5 -2 -2 1

Figure 4: Because the authorities’ partial sums add up to 1 (5� 2� 2 = 1), we can confirm the voter voted
exactly once.

Consider the following notation. Given the public matrix B,

B =

2

6664

B1,1 · · · B1,2d+k

B2,1 · · · B2,2d+k

...
...

...
Bk,1 · · · · · ·Bk,2d+k

3

7775
,

and the vote vector v(j)
i

, we denote bBj =
P

k

i=1 Bi,j and bv(j)
i

=
P

k

z=1 v
(j)
i,z

. Let bC :=


A
bB

�
2 R(d+1)⇥(2d+k)

q

where bB =
h

bB1 · · · bB2d+k

i
.

Given the definition of the commitment vector c(j)
i

, we define the corresponding bc(j)
i

vector as follows:

2

66666666666664

A1,1 · · · A1,d+k 1 0 · · · 0
A2,1 · · · A2,d+k 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Ad,1 · · · Ad,d+k 0 0 · · · 1
B1,1 · · · B1,d+k · · · · · · · · · B1,2d+k

B2,1 · · · B2,d+k · · · · · · · · · B2,2d+k

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Bk,1 · · · Bk,d+k · · · · · · · · · Bk,2d+k

3

77777777777775

2

6666666664

r
(j)
i,1

.

.

.

r
(j)
i,d+k

.

.

.

r
(j)
i,2d+k

3

7777777775

+

2

66666666664

0
.
.
.
0

v
(j)
i,1

.

.

.

v
(j)
i,k

3

77777777775

=

2

666666666666664

r
(j)
i,1A1,1 + · · · + r

(j)
i,d+kA1,d+k + r

(j)
i,d+k+1

r
(j)
i,1A2,1 + · · · + r

(j)
i,d+kA2,d+k + r

(j)
i,d+k+2

.

.

.

r
(j)
i,1Ad,1 + · · · + r

(j)
i,d+kAd,d+k + r

(j)
i,2d+k

r
(j)
i,1B1,1 + · · · + r

(j)
1,2d+kB1,2d+k + v

(j)
i,1

.

.

.

r
(j)
i,1Bk,1 + · · · + r

(j)
2d+kBk,2d+k + v

(j)
i,k

3

777777777777775

= c(j)
i

2

666664

A1,1 · · · A1,d+k 1 0 · · · 0
A2,1 · · · A2,d+k 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Ad,1 · · · Ad,d+k 0 0 · · · 1
bB1 · · · bBd+k · · · · · · · · · bB2d+k

3

777775

2

6666666664

r
(j)
i,1

.

.

.

r
(j)
i,d+k

.

.

.

r
(j)
i,2d+k

3

7777777775

+

2

66664

0
.
.
.
0

bv(j)
i

3

77775
=

2

666666666666664

r
(j)
i,1A1,1 + · · · + r

(j)
i,d+kA1,d+k + r

(j)
i,d+k+1

r
(j)
i,1A2,1 + · · · + r

(j)
i,d+kA2,d+k + r

(j)
i,d+k+2

.

.

.

r
(j)
i,1Ad,1 + · · · + r

(j)
i,d+kAd,d+k + r

(j)
i,2d+k

r
(j)
i,1B1,1 + · · · + r

(j)
1,2d+kB1,2d+k + v

(j)
i,1

.

.

.

r
(j)
i,1

bBk,1 + · · · + r
(j)
2d+k

bBk,2d+k + v
(j)
i,k

3

777777777777775

= bc(j)
i

Note that

bc(j)
i

=

2

6666664

c(j)
i,1
...

c(j)
i,2d

kP
`=2d+1

c(j)
i,`

3

7777775
.

We can verify ⌧ (j) =
P

NV

i=1 ⌧
(j)
i

for each authority j by computing
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bCr(j) � bc(j) =


0
⌧ (j)

�
.

We can also verify that the total number of votes are correct by verifying

bCr� bc =


0

NV · w

�
.

5 Using EVOLVED for Non-Ranked Elections

As the name suggests, EVOLVED is a modification of the EVOLVE scheme that allows us to apply the
original scheme to multiple election types. In order for EVOLVE to become EVOLVED, we must extend the
secret message (0 or 1) into some other data structure (such as vector or matrix) of a set size determined by
the type of election with each component being a 0 or 1. We must also use the Hamming Weight Proof to
verify that a voter did not over-vote by marking too many entries with 1.

The first umbrella of elections we consider are “non-ranked” elections, meaning voters may vote for
multiple candidates without ranking the candidate choices. These elections consist of k candidates, and the
voter can vote for w of these candidates.

5.1 EVOLVED scheme for single-choice, multiple-candidate

When EVOLVED is used in a single-choice, multiple-candidate election, each voter’s ballot mi 2 {0, 1}k
and w = 1. A nonzero entry in the zth coordinate of mi represents a vote for candidate z. Two proofs are
needed in order to verify each ballot is valid under our voting scheme: Multiple OR proofs, which proves
that every element in mi is in {0, 1}, and the Hamming weight proof. The Hamming Weight proof is used
to determine whether there is only one nonzero entry in mi. The commitment process here is the same

described in Appendix B of [3]. Recall that in this case the public commitment key is C 2 R(d+k)⇥(2d+k)
q

withA 2 Rd⇥(2d+k)
q andB 2 Rk⇥(2d+k)

q . In addition to the information previously included in an Authority’s

post, each Authority will also post {⌧ (j)1 , . . . , ⌧ (j)
NV

}.
The tallying process is similar to that of a binary voting system, just with k tallies. Each authority

receives commitments c(j)
i,1 , . . . , c

(j)
i,k

and the corresponding encrypted randomness values from each voter

instead of just one c(j)
i

. Authority A(j) first decrypts the associated randomness vector to each commitment

using their private key. Authority A(j) can then compute and post r(j) =
P

NV

i=1 r
(j)
i

and compute t(j) as


0
t(j)

�
= c(j) �Cr(j).

The final tally t =
P

NA

j=1 t
(j) = [t1, . . . , tk]> is a vector of length k. Candidate z is the winner when

tz = max(t1, . . . , tk). Anyone can compute


0
t

�
= c(j) �Cr and verify that


0
NV

�
= ĉ�Cr̂.

5.2 EVOLVED scheme for multiple-choice, multiple-candidate: Block Voting

Block Voting, also known as plurality-at-large voting, is a voting system in which first-past-the-post elections
are adopted to allow multiple candidates to be elected from the same district. Block Voting allows voters to
vote for up to w candidates. We want to be able to set up the ballot in such a way that a voter could vote
for any number w0, where 0  w0  w, candidates without revealing how many votes they actually placed.

In a Block Voting election the vote mi will be an element of Fk+w

2 . The first k positions correspond to
the k candidates, and the next w positions are “reject slots.” A voter votes for any number w0 candidates,
then fills in any w � w0 of the reject slots. This ensures that the Hamming weight for every voter’s vote is
w while the actual the number of candidates that any voter approves of is kept private.

7



The voting process is the same as described in Section 5.1, just adapted to contain the appropriate
dimensions. When tallying, only the first k positions of a ballot are considered. The remaining “reject slots”
are only used for verification and do not a↵ect the tally at all. These k positions are tallied as described in
Section 5.1. The number of total votes computed by the Hamming Weight Proof should equal wNV .

6 Using EVOLVED for Ranked Voting Elections: Borda Count

A Borda Count election system allows voters to rank the candidates in order of preference. Di↵erent weights
are assigned to each rankings, and the candidate with the highest number of weighted points is declared the
winner. We consider the case with k candidates and each voter is allowed to rank up to w of them. We
denote each vote as a (w + 1) ⇥ (k + 1) matrix, which in this section we will denote as Mi. Each column
represents a candidate and each row represents a desired positioning or ranking (1st, 2nd, 3rd, etc.). In
addition, one “dummy row/ranking” is added to the bottom and one “dummy column/candidate” is added
on the right. A voter fills out a ballot Mi by placing a 1 in each row/column pair that is desired, and a 0 in
all others. If a voter decides to undervote, i.e. to choose to rank fewer than w candidates, they would place
a 1 in the dummy column under every rank for which they didn’t choose a candidate. Additionally, a voter
would place a 1 in the dummy row under every candidate that the voter did not rank (see Appendix A for
example). If desired, a slightly more e�cient scheme is possible by removing dummy rows/columns. In that
case, undervoting would be prohibited and by necessity k = w.

The Borda Count Scheme is very similar to the scheme outlined in Section 5.2, the main di↵erence being
the size of the matrices and the vote. A vote matrix, Mi, described above, creates the vote vector mi used
for the commitment algorithm by concatenating the columns of Mi into one large column vector. Once

authorities receive the partial vote vectors v(j)
i
2 Z(w+1)(k+1)

q , the authorities will “un-concatenate” the

vector to get the (w + 1)⇥ (k + 1) matrix V(j)
i

.
An OR proof is computed on each element and a Hamming weight proof is run on each row and column,

except the dummy row and column, to ensure that every voter only ranked each candidate once and only
chose one candidate for each ranking. This proof is not done on row w + 1 or column k + 1 in an e↵ort to
maintain voter privacy. The Hamming weights of either of these would reveal whether a voter undervoted,
and if so, how many candidates that voter ranked.

Once these verification proofs are completed we can compute the tally matrix T by computing the tally
vector t as described previously, and then writing the vector as a matrix as described above. Let tn denote
the nth row vector of T,

T =

2

64
t1
...

tw+1

3

75 .

We compute the final number of points each candidate received by computing the row vector

t =
wX

n=1

(w � n+ 1)tn.

7 Using EVOLVED for Ranked Voting Elections: Instant Runo↵

Instant Runo↵ is a type of ranked-choice voting in which a candidate will only be declared the winner if he
or she has a majority (i.e. more than half) of the votes. In Instant Runo↵, voters have one transferable
vote, which often changes round-to-round. After every voter has cast their ranked vote, the authorities tally
up first-choice votes and determine whether a candidate has a majority of all first place votes cast. If a
candidate has a majority, they are declared the winner. If not, the authorities remove the candidate with
the lowest tally from all of the ballots. The first place votes originally cast for the eliminated candidate are
redistributed to those voters’ second-place choices (or in future rounds, to the voter’s highest ranked choice
that remains in the election). This process repeats until one candidate has a majority of the first place votes.
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Adopting Instant Runo↵ to secure elections is di�cult due to the large number of possible voting com-
binations, k! possible rankings, which creates challenges related to time and size constraints. Furthermore,
Instant Runo↵ requires that the authorities be able to connect the di↵erent rankings between candidates on
a ballot. This threatens to harm voter security.

Our scheme utilizes a single voter ballot as a tree of votes Mi (see Figure 5). The top level in the tree
consists of a single vector representing the initial vote, comparing all candidates. Each subsequent level acts
as the possible combinations of vote rankings with each possible pattern of candidate removal. Therefore,
the subsequent vectors are opened only if the authorities need to verify and tally the necessary combination,
and discarded if the pattern of candidate elimination leaves them irrelevant.

7.1 The Scheme

An Instant Runo↵ scheme requires some sort of ordering of candidates to determine a ranked ballot, which is
an obstacle under voting schemes attempting to protect vote privacy. Our scheme achieves private rankings
by employing a tree of possible elimination combinations for k candidates. Voter i will choose their rankings
and then will create the corresponding tree, denoted Mi, as illustrated in Figure 5. We then define a vote
vector mi by the concatenating many vectors emr,i . Each vector emr,i is derived from round r of Mi. Figure 5
illustrates how to go from a voter’s ranking, to the tree Mi, to vectors emr,i, and finally end up with a vote
vector mi

Voter time is greatly increased by sending many vectors, however, we substantially minimize authorities’
time by only opening the vectors that must be used (as candidates are eliminated). Because the initial
scheme is more demanding on authority time, we prefer to place the burden on voter time. This is further
explained in Section 8.

7.1.1 Casting a Vote

As described above, a voter’s ballot can by represented as a tree Mi of di↵erent vectors representing the
voter’s first choice candidate, given any possible arrangement of candidates still in the running. The actual
ballot mi is a concatenation of vectors that create the tree Mi. This tree consists of levels or rounds of
elimination, r 2 {0, 1, 2, ..., k � 2}. Each level r contains

�
k

k�r

�
vectors, each in {0, 1}k�r. The tree will

continue until round r = k � 2. Once only 2 candidates are remaining, one must be a majority.

Similarly to the above schemes, concatenated vectors forming the ballots will be split into vectors v(j)
i

where mi =
P

NA

j=1 v
(j)
i

and the commitment of v(j)
i

is sent to Authority j.

7.1.2 Verification and Tallying

The tally vector will have

N :=
k�2X

n=0

(k � n)

✓
k

k � n

◆

elements, i.e. t = [t1, . . . , tN ]>. To determine the winner from the tally vector t, we will use a sliding
window technique. We first consider the round with all of the candidates, which we will denote as round
0. We determine the winner by viewing [t1, . . . , tk]>. If the winner from round 0 has more than half of the
votes, they are declared the winner and we are done. Otherwise, we eliminate the candidate with the lowest
number of votes and move to round 1.

If we let N↵ :=
P

↵

n=0(k� n)
�

k

k�n

�
, then generally speaking in round r we consider windows of size k� r

within the set [tNr , . . . , tNr+1 ]. The specific subset of size k � r within [tNr , . . . , tNr+1 ] is dependent upon
which r candidates have been eliminated. For example, if candidate z was eliminated after round 0, then in
round 1 we will consider the tally from elements [tzk�(z�2), . . . , t(z+1)k�z].

Voters’ ballots should only have elements in {0, 1}, and in each vector node of the tree only one vote is
allowed. Therefore, the Hamming weight of each node on the tree should equal exactly 1, and the hamming
weight of emr,i =

�
k

k�r

�
. Voters will set up OR proofs and Hamming Weight proofs for every portion of
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Figure 5: We consider an example with candidates A, B, C, and D, which voter i has ranked as C,A,D,B.
Each vector in the tree holds the voter’s top choice of the remaining candidates.Note that we do not need to
repeat the same rankings under multiple branches. For example, we write [AB] under [ABD] but not again
under [ABC].

Voter i’s Ranking: C, A, D, B
Voter i’s tree, Mi:

[ 0 0 1 0 ]
A B C D

[ 0 1 0 ]
B C D

[ 0 1 0 ]
A C D

[ 1 0 0 ]
A B D

[ 0 0 1 ]
A B C

[ 1 0 ]
C D

[ 0 1 ]
B D

[ 0 1 ]
B C

[ 1 0 ]
A D

[ 0 1 ]
A C

[ 1 0 ]
A B

emr,i vectors:

em0,i =
⇥
0 0 1 0

⇤>

em1,i =
⇥
0 1 0 0 1 0 1 0 0 0 0 1

⇤>

em2,i =
⇥
1 0 0 1 0 1 1 0 0 1 1 0

⇤>

Final vote vector:

mi =
⇥
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

⇤>

mi that represents a node in M, but authorities will only amortize and run the OR and Hamming weight

proofs of the elements of v(j)
i

used in the tallying process. By only running proofs on the sub-vectors that
are actually utilized, the authorities’ time is significantly reduced.

8 E�ciency and Security

8.1 E↵eciency

8.1.1 Non-Ranked Elections

The e�ciency of the multi-candidate scheme is comparable to that of the binary scheme in [3], but instead of
a single OR proof, k OR proofs would be necessary (one for each candidate). The scheme in [3] had a voting
time of 8.5ms per voter and a post-election verification time of 0.15s per voter. As a result, this scheme is
easily scalable to any realistic number of candidates.
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8.1.2 Borda Count Elections

We can compare our scheme to the e�ciency of [3]. The major change in e�ciency is that our scheme needs
` = (w+1)(k+1) OR-proofs, whereas the scheme in [3] only requires one. As a result, much of our e�ciency
is determined by changes in `. Assuming w is constant, the time and space demands of our scheme would
increase linearly with k. Should w increase with k, the demands of our scheme would increase quadratically
with k.

We use the implementation speeds presented in [3] to estimate how fast our scheme would be in a mock
election. The authors of [3] construct an election with 11,000 voters and three authorities. We will keep these
parameters and expand the election to five candidates in which the top three candidates are ranked. Our
scheme would take about 23 times as long as the binary election for a total running time of approximately
15.72 hours.

This is a significant increase in the running time. However, it should be noted that the voting step
still requires less than one fifth of a second per voter. Consequently, almost all of the increased time can
be attributed to the verification and tallying steps. These steps occur after the election has happened and
are thus less time sensitive. In addition, authorities are more likely to have access to powerful hardware,
speeding up the verification and tallying processes.

An important note about this scheme is that e�ciency greatly depends on whether w remains constant
or increases linearly with k. If w remains constant, size and time increase roughly linearly with k. If w
increases with k, size and time increase quadradically with k. This is a significant di↵erence, as shown in
Figure 6. If w = 3 and remains constant, the scheme is fairly practical even up to k = 15. The biggest
limitation is that the election would take 43 hours to tally, but since this is only done by authorities after
all ballots are in, it is probably reasonable to allow two days before results are announced. If w increases
linearly and holds its maximum value of w = k, both size and time increase much more quickly. With k = 15
candidates, tallying takes over a week, which is impractical. In this case, the practical limit of k is probably
around or under k  10 (tallying takes about 3.5 days).

Figure 6: E�ciency of Borda Count with 11,000 voters

w and k values w = 3 w = 3 w = 3 w = 5 w = 10 w = 15
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

Voter ballot size (MB) 0.46 0.86 1.26 0.70 2.40 5.10
Ballot size (GB) 5.06 9.46 13.8 7.70 26.40 56.10

Voter time (seconds) 0.20 0.37 0.54 0.298 1.02 2.17
Total time (hours) 15.72 29.38 43.05 23.92 82.00 174.25

These values are based o↵ of EVOLVE e�ciency, scaled based on the number of OR proofs needed for each set of

parameters.

8.1.3 Instant Runo↵ Elections

The voter’s time and size requirements increase with respect to the number of candidates k using the

following formula:
kP

i=2

�
k

i

�
. Although this is a high rate of growth, casting a ballot in a single binary election

is extremely fast (taking only 8.5ms)[3]. Thus our scheme remains relatively fast for as many as seven or
eight candidates.

The authorities’ time requirements grow quadratically based on the equation
kP

i=1
i = n(n+1)

2 . This is

because the authority is only required to open and tally some of the ballots. The above equation is based on
the assumption that no candidate will receive a majority until the very last round. In reality, a candidate will
frequently win outright or after a few rounds, significantly reducing the time constraints on the authorities.
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The authority’s space constraint is relatively high. Because the authorities must store the ballots
of every voter, their space requirements are proportional to voters. That is Space RequirementsA =
Space RequirementV ⇤NV .

As shown in Figure 7, our scheme remains viable with as many as eight candidates.
Although the system still has considerable issues with scalability, it is an improvement on many current

Instant Runo↵ schemes, which represent every possible voting option as a candidate. Although these schemes
can work immediately in existing voting systems, such a scheme requires k! di↵erent voting options [1]. This
ine�ciency is acceptable in elliptical curve cryptography, where keys sizes are tiny. However, in lattice-based
cryptography such a scheme would become impractical very quickly. For seven candidates, our scheme is
over 10 times as fast for voters 1. Our scheme provides even more advantages to authorities. Whereas their
scheme increases authority time factorially with respect to the number of candidates, our scheme increases
authority time quadratically.

Altogether, our scheme presents considerable savings compared to current lattice-based election schemes.
However, more research is necessary to develop a scheme capable of handling large election with high numbers
of candidates.

Figure 7: This shows the e�ciency of the scheme based on various numbers of candidates assuming 11,000
voters. The numbers in this graph are based o↵ of the e�ciency presented in [3], scaled to our demands.

k = 7 k = 8
Voter ballot size (MB) 8.4 19.8
Total ballot size (GB) 92.4 217.0
Voter time (seconds) 3.6 8.4
Total time (hours) 19 25

8.2 Concrete Security

8.2.1 Concrete Security of Hiding Property

All of the above schemes depend on the security of the LWE problem in order to ensure the security of the
hiding property. That is, the LWE problem is responsible for providing concrete security ensuring that the
submitted vote commitments are hidden and secure.

We use the estimator in [4] to give the bits of security for each scheme. Because the assumption for this
scheme is M-LWE, our dimension n will be the length of our secret vector multiplied by the ring dimension.
We have decided to keep the ring dimension of 256 from the original EVOLVE scheme. Additionally, we
retain the same module size of 7 as in [3]. The dimension of the secret vector is always the length of m+ 7.
The parameters that we used to create our estimates found in the below figures are as follows:

• d = 7 +m; d is the dimension of the secret vector (which varies among schemes)

• n = 256 ⇤ d; n is the LWE dimension

• � = 1; � is the standard deviation

• q = 231 � 27 � 25 + 1; q is the congruence modulo

• ↵ =
p
2⇡ ⇤ �/RR(q)

• LWE secret distribution is (0, 1)

• � is block size used in BKZ algorithm

1
Our scheme requires only 420 entries vs. 5040 entries
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In [4], the estimator gives the security for di↵erent BKZ cost models. For the sake of simplicity, we have
only included three cost models for each scheme, as listed in the first row of the tables. However, one could
use the code in [4] and our parameters to estimate the security for the other BKZ cost models.

LWE dimension (n) 0.265� 0.368� 0.000784�2 + 0.366� � 0.9 + log(8d)
Single-candidate 2048 172.2 239.2 585.1

Multi-candidate, single-choice 4352 439.9 610.9 2785.8
Block Voting 5120 534.8 742.6 3949.8
Borda Count 13056 1595.8 2216.1 30648.1

Instant Runo↵ (k = 7) 32512 4468.2 6204.8 229148.5

Figure 8: Sample security values (log base 2 of ring operation values) for primal attacks, k = 10 & w = 3
where relevant.

LWE dimension (n) 0.265� 0.368� 0.000784�2 + 0.366� � 0.9 + log(8d)
Single-candidate 2048 188.7 257.2 597.7

Multi-candidate, single-choice 4352 474.6 659.1 2794.7
Block Voting 5120 573.2 780.2 4233.7
Borda Count 13056 1899.3 2596.2 33355.8

Instant Runo↵ (k = 7) 32512 5288.9 7190.7 261064.6

Figure 9: Sample security values (log base 2 of ring operation values) for dual attacks, k = 10 & w = 3
where relevant.

8.2.2 The SIS Assumption

In addition to the security of the hiding property of the commitment scheme, we must also address the
security of the binding property. As shown in Section 3.1.1, the security of the binding property is based on
the hardness of the Short Integer Solution (SIS) problem.

The Decision-LWE problem is reducible to the search SIS problem. If we can find a short vector c then
we can distinguish between samples of the form (a, ha, ci + e) and uniformly random (a, b), thus solving
Decision-LWE . Dual attacks solve the Decision-LWE by reducing the problem to SIS problem, as explained
in [2], so the SIS security can be estimated by our LWE estimator for dual attacks table, as shown in Figure
9.

9 Conclusion

In this paper we introduce a family of extensions of EVOLVE, which we call EVOLVED (Electronic Voting
from Lattices with Verification ExtendeD). EVOLVED includes schemes for a single-choice multi-candidate
election (with possible extensions to Approval Voting and Block Voting), Borda Count voting, and Instant
Runo↵ voting. Each of these schemes is based on the scheme and proofs in [3], but we develop additional
proofs and designs in order to allow the lattice based construction to be both applicable to reasonable voting
expectations and remain secure. Specifically, we develop a so-called Hamming Weight Proof and alter the
dimensions of a ballot.

Our biggest success in this paper was in utilizing these developments to discover working schemes for both
Borda Count and Instant Runo↵ voting elections. However, while these schemes allow for more complexity
and variety in election systems, they also decrease e�ciency in both storage and time. Therefore, we
expect these schemes to be stepping stones towards practical implementations, rather than usable schemes
themselves.
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Appendices

A Toy Example of Borda Count

In this toy example, we demonstrate our Hamming weight proof. The OR-proofs are not demonstrated
here out of simplicity. Additionally, we did not include encrypted commitments, but rather assumed the
authorities were able to use their decryption keys to access the partial votes. We will consider 3 candidates
(k = 3) where voters can rank their top 2 choices (w = 2) and let q = 2.

A.1 Casting Votes

• M1 =

2

4
0 1 0 0
1 0 0 0
0 0 1 0

3

5 Voter 1 ranks candidate B first and candidate A second.

• M2 =

2

4
0 0 1 0
0 0 0 1
1 1 0 0

3

5 Voter 2 ranks candidate C first and chose not to rank A or B.

Note, these votes are private and not shared with authorities directly. Voters will split these votes amongst

the authorities and commit to the partial votes and post their commitments c(j)
i

, encrypted randomness e(j)
i

,
and sum of each row and column of M.
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A.2 Verifying Votes

The authorities will receive the following information from each voter:

Authority 1:

Voter 1:

2

4
�1 0 �1 1
1 1 �1 1
�1 �1 1 �1

3

5

Voter 2:

2

4
�1 1 0 1
0 �1 0 0
0 1 1 �1

3

5

Authority 2:

Voter 1:

2

4
1 1 1 �1
0 �1 1 �1
1 1 0 1

3

5

Voter 2:

2

4
1 �1 1 �1
0 1 0 1
1 0 �1 1

3

5

The verification process then continues as follows. Each authority begins by adding each row and column
of each vote they receive to verify the Hamming weight proof. The partial sums of each row and column
(excluding dummies) are shared among the authorities. The authorities then sum the partial tallies for each
row and column, all of which should sum to 1.

Authority 1:

Voter 1:

Row 1 = �1 + 0 +�1 + 1 = �1
Row 2 = 1 + 1 +�1 + 1 = 2
Column 1 = �1 + 1 +�1 = �1
Column 2 = 0 + 1 +�1 = 0
Column 3 = �1 +�1 + 1 = �1

Voter 2:

Row 1 = �1 + 1 + 0 + 1 = 1
Row 2 = 0 +�1 + 0 + 0 = �1
Column 1 = �1 + 0 + 0 = �1
Column 2 = 1 +�1 + 1 = 1
Column 3 = 0 + 0 + 1 = 1

Authority 2:

Voter 1:

Row 1 = 1 + 1 + 1 +�1 = 2
Row 2 = 0 +�1 + 1 +�1 = �1
Column 1 = 1 + 0 + 1 = 2
Column 2 = 1 +�1 + 1 = 1
Column 3 = 1 + 1 + 0 = 2

Voter 2:

Row 1 = 1 +�1 + 1 +�1 = 0
Row 2 = 0 + 1 + 0 + 1 = 2
Column 1 = 1 + 0 + 1 = 2
Column 2 = �1 + 1 + 0 = 0
Column 3 = 1 + 0 +�1 = 0

In this example, we see that after Authorities 1 and 2 post their column and row totals, each voter can be
individually verified. First we consider Voter 1. The Row 1 partial sums for Authorities 1 and 2 are -1 and
2, respectively. Added together, this verifies that Voter 1 only ranked one candidate as their first choice. In
an iterative process, the authorities verify all the columns and rows for V1, proving V1 submitted a correct
ballot. Authorities do this for each voter, validating all ballots. In this example, all ballots are correct. Note
that even though Voter 2 undervoted in this example, the dummy candidate and dummy column prevent
this knowledge from being shared among the authorities

A.3 Tallying Votes

Each authority must start by tallying their partial votes. The entries corresponding to either a dummy row
or column are not tallied- their purpose is to assist in verification.

For authority #1 we have v(1) =


(�1) + (�1) 0 + 1 (�1) + 0
1 + 0 1 + (�1) (�1) + 0

�
=


�2 1 �1
1 0 �1

�

For authority #2 we have v(2) =


1 + 1 1 + (�1) 1 + 1
0 + 0 1 + (�1) 1 + 0

�
=


2 0 2
0 0 1

�
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Combining the two tallies gives us our final vote tally: v =


0 1 1
1 0 0

�

At this point, we must weight the 1st and 2nd choice votes to receive the total number of points for each
candidate. We will use a weight of 2 points for 1st choice and 1 point for 2nd choice. It is easy to see that
Candidate A receives 1 point while Candidates B & C each receive 2 points. The end result is a tie.
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