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Abstract. In this paper, we provide new quantum cryptanalysis results
on 5 rounds (balanced) Feistel schemes and on Benes schemes. More
precisely, we give an attack on 5 rounds Feistel schemes in Θ(22n/3)
quantum complexity and an attack on Benes schemes in Θ(22n/3) quantum
complexity, where n is the number of bits of the internal random functions.
This improves the best known attack in Θ(2n) (before our attack).
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1 Introduction

There exist several methods to build pseudo-random permutations and pseudo-
random functions.

A random Feistel cipher also known as Luby–Rackoff block cipher is a symmet-
ric structure used in the construction of block ciphers. The benefit of the Feistel
network is that the same structure can be used for encryption and decryption,
and both consist of iteratively running a function called a “round function" a
fixed number of times. The most studied way to build pseudo-random permu-
tations from random functions or random permutations is the r-round Feistel
construction. The Feistel construction is important from a practical point of
view since it is used to develop many block ciphers such as DES [2], 3DES [2].
We study generic attacks on Feistel schemes where we assume that the internal
round functions f1, . . . , fr are randomly chosen.

The plaintext message of a Feistel scheme is denoted by [L, R] that stands for
Left and Right, and the ciphertext message after applying r rounds is denoted
by [S, T ]. A round of a Feistel scheme takes as input [L, R] and it outputs
[R, L ⊕ f(R)] with f a secret function from n bits to n bits.

A Benes scheme is a composition of two schemes called “Butterflies”. It
allows to construct, from random functions from n bits to n bits, a pseudorandom
function from 2 n bits to 2 n bits. For many cryptographic primitives, e.g., hashing
and pseudorandom functions, doubling the output length is useful even if the
doubling transformation is not reversible.
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The plaintext message of a Benes scheme is denoted by [L, R] that stands for
Left and Right, and the ciphertext message is denoted by [S, T ].

Our Contribution. In this paper, we describe a non-adaptive quantum chosen
plaintext attack (QCPA) against 5-round balanced Feistel schemes. This attack
allows to distinguish Feistel network from random permutations with quantum
complexity of Θ(22n/3) instead of Θ(2n) for the best known attack (before our
attack). We also describe a QCPA against the Benes schemes. This attack allows
to distinguish a Benes scheme from random functions with quantum complexity
of Θ(22n/3) instead of Θ(2n) for the best known attack (before our attack).
An originality of our results is the fact that we will use Zhandry’s quantum
algorithm (unlike the quantum attacks on the Feistel scheme with 3 and 4
rounds where Simon’s algorithm [7] was used). In this way, we simply improve
the exponent of the exponential complexity, unlike Simon’s algorithm where a
quantum polynomial attack was obtained. However, we will be able to attack
Feistel with 5 rounds (unlike only 3 or 4 rounds).

Organization. Section 2 recalls the Feistel and Benes schemes. Section 3 gives an
overview of previous works and the new results provided in this paper. Section 4
recall Zhandry’s quantum algorithm. Finally, in Section 5 and Section 6, we
present our QCPA against the Feistel shemes with 5 rounds and our QCPA
against the Benes schemes.

2 Feistel and Benes constructions

In this section, we recall the definition of a classical (aka balanced) Feistel scheme
and the definition of a Benes scheme. Let Fm,n be the set of all functions from
{0, 1}m to {0, 1}n. When m = n, the set of all functions from {0, 1}n to {0, 1}n

will be denoted by Fn.

2.1 Feistel scheme

First round Feistel scheme. Let f ∈ Fn. The first round balanced Feistel
scheme associated with f , denoted by Ψ(f), is the function in F2n defined by:

∀(L, R) ∈ ({0, 1}n)2, Ψ(f)
(

[L, R]
)

= [S, T ] ⇐⇒

{
S = R,

T = L ⊕ f(R).

For any function f , Ψ(f) is a permutation of {0, 1}2n.
The figure of the Feistel scheme for the first round is given in Figure 1.

r−round Feistel scheme. Let f1, f2, . . . , fr be r functions in Fn. The r−round
balanced Fesitel network associated with f1, . . . , fr, denoted by Ψr (f1, . . . , fr),
is the function in F2n defined by:

Ψr (f1, . . . , fr) = Ψr(fr) ◦ · · · ◦ Ψ1(f1).
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Fig. 1: First round of Feistel scheme

5−round Feistel scheme. We describe now in detail the equations of the
Feistel network for the first five rounds.

1 round:
{

S = R

T = L ⊕ f1(R) = X1 4 rounds:
{

S = X3

T = X2 ⊕ f4(X3) = X4

2 rounds:
{

S = X1

T = R ⊕ f2(X1) = X2 5 rounds:
{

S = X4

T = X3 ⊕ f5(X4) = X5

3 rounds:
{

S = X2

T = X1 ⊕ f3(X2) = X3

2.2 Benes scheme
To give a definition of the Benes transformation, we need to recall first the
definition of a butterfly transformation.

Butterfly transformation. Let f1, . . . , f4 be four functions in Fn. A Butterfly
transformation is the function in F2n which takes as input (Li, Ri) ∈ ({0, 1}n)2

and gives as output (Xi, Yi) where,{
Xi = f1 (Li) ⊕ f2 (Ri) ,

Yi = f3 (Li) ⊕ f4 (Ri) .

The figure of the Butterfly scheme is given in Figure 2.

Benes transformation. Let f1, . . . , f8 be functions in Fn. A Benes transfor-
mation (back to back Butterfly) is the function in F2n which takes as input
(Li, Ri) ∈ ({0, 1}n)2 and gives as output (Si, Ti) where,

Si = f5(f1 (Li) ⊕ f2 (Ri)︸ ︷︷ ︸
Xi

) ⊕ f6(f3 (Li) ⊕ f4 (Ri)︸ ︷︷ ︸
Yi

) = f5(Xi) ⊕ f6(Yi),

Ti = f7(f1 (Li) ⊕ f2 (Ri)) ⊕ f8(f3 (Li) ⊕ f4 (Ri)) = f7(Xi) ⊕ f8(Yi).
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Fig. 2: Butterfly scheme

The figure of the Benes scheme is given in Figure 3.
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Fig. 3: Benes scheme

3 Overview of cryptanalysis on Feistel schemes

In this section, we review the best known cryptanalysis results of the state of
the art on the Feistel schemes and we point out the new results provided in this
paper.

In Figure 4, we summarize the cryptanalysis results on few rounds of Feistel
schemes based on the distinguishing attacks presented in [3] and in [5] together
with our new contributions.

We have not found a better attack for QCCA (quantum chosen ciphertext
attack) than the one of the QCPA. Notice that any QCPA can also be seen as a
special case of QCCA.

4 Quantum Collision

In this section, we recall the results of the quantum algorithm that we use in our
quantum cryptanalysis. Theorem 1 below is Theorem 1.1 of [8] page 3.
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KPA CPA CCA QCPA QCCA
Ψ1 1 1 1 1 1
Ψ2 2n/2 2 2 2 2
Ψ3 2n/2 2n/2 3 n 3
Ψ4 2n 2n/2 2n/2 2n/2 n

Ψ5 23n/2 2n 2n This paper: This paper:
22n/3 22n/3

Fig. 4: Number of computations to distinguish Feistel schemes (with 1, 2, 3, 4
and 5 rounds) from random permutations (best known attacks)

Theorem 1. Let f be a random function with domain size M and codomain
size N . Assume M = Ω(N1/2). Then the quantum query complexity of finding a
collision with constant probability is Θ(N1/3).

Proof. The proof is given in [8] page 4. Essentially, it is based on a result of
Ambainis on the element distinctness problem [1].

Notice that:

1. If M = o(N1/2) then there are no collisions with probability approaching 1,
so the collision problem becomes meaningless. Thus, Theorem 1 completely
characterizes the quantum query complexity of the collision problem for all
sensible parameters.

2. M ≥ Ω(N1/2) is the same as M = Ω(N1/2).
3. For a classical (i.e. non-quantum) birthday attack, we would get a complexity

of Θ(N1/2) instead of Θ(N1/3) in the Theorem 1.

5 Quantum cryptanalysis on Feistel network

In this section, we first describe a non quantum attack that distinguishes a
5-round Feistel scheme from a 2 n bits random function with a complexity of 2n

presented in [5]. Then, we describe our quantum chosen plaintext attack that
distinguishes a 5-round Feistel scheme from a 2 n bits random function with a
complexity of 22n/3.

Classical attack. We can choose messages [Li, Ri] and [Lj , Rj ] such that
Ri = Rj , ∀i, j. Then, we can check whether Si is equal to Sj and Li ⊕ Lj is equal
to Ti ⊕ Tj , i.e., we count the number of (i, j) such that:{

Si = Sj ,

Li ⊕ Lj = Ti ⊕ Tj .
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For a 5-round Feistel scheme, we have two times more such collision than for
truly random permutations. Indeed, for a truly random permutation if Ri = Rj ,
the numbers of (i, j), 1 ≤ i < j ≤ m, where m ≃ 2n, such that Si = Sj and

Ti ⊕ Tj = Li ⊕ Lj is approximately m (m − 1)
2

1
22n

·

However, for a 5-round Feistel scheme we have:{
Ti = Li ⊕ f1(Ri) ⊕ f3 (Ri ⊕ f2(Li ⊕ f1(Ri))) ⊕ f5(Si),
Tj = Lj ⊕ f1(Rj) ⊕ f3 (Rj ⊕ f2(Lj ⊕ f1(Rj))) ⊕ f5(Sj).

Let us suppose that Ri = Rj and Si = Sj , hence, Ti ⊕ Tj = Li ⊕ Lj is
equivalent to

f3 (Ri ⊕ f2(Li ⊕ f1(Ri))) = f3 (Rj ⊕ f2(Lj ⊕ f1(Rj))) ,

which can occur either if f2 (Li ⊕ f1(Ri)) = f2 (Lj ⊕ f1(Rj)) with an approximate
probability of 1

2n
or if these values are distinct but when XORed with R, they

have the same images by f3 with an approximate probability of 1
2n

·
Hence, ∀(i, j), i < j, the probability that Si = Sj and Ti ⊕ Tj = Li ⊕ Lj when

Ri = Rj is approximately m (m − 1)
2

2
22n

·
Thus we have two times more such collision for a 5-round Feistel scheme

compared to a truly random permutation. (This can also be demonstrated with
the H-coefficient technique, see [4] page 148, value of h5).

Therefore, we will be able to distinguish the 5-round Feistel scheme from truly
random permutations when m (m − 1)

2
2

22n
≥ 1, i.e. when m is about greater or

equal to 2n. We see that here the complexity is in 2n by searching for collision of
the form of Si || Li ⊕ Ti (birthday paradox).

Note that there are several attacks on Ψ5 with the same complexity but we
choose this one to be able to detect collisions in quantum.

Quantum attack. In quantum we detect collisions, when they exist, faster than
on classical computers. In fact, we use the same attack in quantum to detect
these collisions.

We apply Theorem 1 with M = 2n and N = 22n (M = Ω(N1/2)). Hence, the
quantum complexity to detect such a collision is in N1/3 = 22n/3 (unlike 2n as
seen before). Therefore, we can distinguish 5-round Feistel schemes from truly
random permutations with a quantum complexity of 22n/3.

6 Quantum distinguishing attack on Benes scheme

In this section, we first describe a non quantum attack that distinguishes a Benes
scheme from a random function with a complexity of 2n presented in [6]. Then,
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we describe a quantum chosen plaintext attack that distinguishes a Benes scheme
from a random function with a complexity of 22n/3.

Classical attack. We can choose messages [Li, Ri], then, we check wether Si is
equal to Sj and Ti is equal to Tj .

For a truly random permuation, the numbers (i, j), 1 ≤ i < j ≤ m such that

Si = Sj and Ti = Tj is approximately m (m − 1)
2

1
22n

.

However, for Benes scheme we have{
Si = f5(Xi) ⊕ f6(Yi),
Ti = f7(Xi) ⊕ f8(Yi).

Hence, Si = Sj and Ti = Tj is equivalent to f5(Xi) ⊕ f6(Yi) = f5(Xj) ⊕ f6(Yj)
and f7(Xi) ⊕ f8(Yi) = f7(Xj) ⊕ f8(Yj). This can occur either if Xi = Xj and

Yi = Yj (probability m (m − 1)
2

1
22n

) or if these values are distinct but Si = Sj

and Ti = Tj (probability m (m − 1)
2

1
22n

).
Thus, ∀(i, j), i < j, the probability that Si = Sj and Ti = Tj is approximately

m (m − 1)
2

2
22n

so we have two times more such collision for a Benes scheme
compared to a random function. More details can be found in [6].

Therefore, we will be able to distinguish a Benes schemes from truly ran-
dom functions when m (m − 1)

2
2

22n
≥ 1, i.e. when m ≥ 2n. The number of

computations needed for this attack is thus about 2n from the birthday paradox.

Quantum attack. We use the same attack in quantum to detect these collisions
faster.

We apply Theorem 1 with M = 22n and N = 22n (M = Ω(N1/2). Hence, the
quantum complexity to detect such a collision is in N1/3 = 22n/3 (unlike 2n as
seen before). Therefore, we can distinguish Benes schemes from truly random
functions with a quantum complexity of 22n/3.
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