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Abstract—The security of modern cryptography depends on
multiple factors, from sound hardness assumptions to correct
implementations that resist side-channel cryptanalysis. Curve-
based cryptography is not different in this regard, and substantial
progress in the last few decades has been achieved in both se-
lecting parameters and devising secure implementation strategies.
In this context, the security of implementations of field inversion
is sometimes overlooked in the research literature, because (i)
the approach based on Fermat’s Little Theorem (FLT) suffices
performance-wise for many parameters used in practice; (ii) it
is typically invoked only at the very end of a cryptographic
computation, with a small impact on performance; (iii) it is
challenging to implement securely for general parameters without
a significant performance penalty. However, field inversion can
process sensitive information and must be protected with side-
channel countermeasures like any other cryptographic operation,
as illustrated by recent attacks [1]–[3]. In this work, we focus on
implementing field inversion for primes of cryptographic interest
with security against timing attacks, irrespective of whether the
FLT-based inversion can be efficiently implemented. We extend
the Fiat-Crypto framework, which synthesizes provably correct-
by-construction implementations, to implement the Bernstein-
Yang inversion algorithm as a step towards this goal. This
allows a correct implementation of prime field inversion to be
synthesized for any prime. We benchmark the implementations
across a range of primes for curve-based cryptography and
they outperform traditional FLT-based approaches in most cases,
with observed speedups up to 2 for the largest parameters. Our
work is already used in production in the MirageOS unikernel
operating system, zig programming language, and the ECCKiila
framework [4].

Index Terms—Field arithmetic, Constant-time execution, Im-
plementation security, Formal verification

I. INTRODUCTION

Finite field arithmetic is pervasive in number-theoretic
public-key cryptography, and an essential ingredient of Elliptic
Curve Cryptography (ECC) and Pairing-based Cryptography
(PBC). In many cases, its implementation dictates how ef-
ficiently and securely the overall cryptosystem behaves in
practice. The field inversion operation is a peculiar case,
since it is rarely among the performance-critical portions
of the implementation, and most efficient algorithms for
the general case are hard to implement securely without a
high performance penalty [5]. For this reason, field inversion
is often implemented using Fermat’s Little Theorem (FLT)
approach of exponentiating by p − 2 in Fp for prime p.
This is efficient for ECC implementations relying on special

primes with fast modular reduction, especially when the ex-
ponent allows a short addition chain as in Curve25519 [6].
When performance is more pressing or parameters are not
friendly to FLT inversion, implementers typically resort to
an aggressively optimized version of the Extended Euclidean
Algorithm (EEA). However, bugs and side-channel leakage in
the EEA implementation can lead to attacks against RSA [2]
and ECC [1], [3]. These are not just threats of research interest,
as illustrated by a vulnerability recently discovered in the EEA
implementation in Windows that could be exploited to mount
denial of service attacks1.

Field arithmetic in Montgomery representation, as com-
monly found in PBC, is a particularly challenging case for
field inversion. The FLT approach is not favored by the
dense prime moduli in popular families of pairing-friendly
of curves [7], [8] that employ the slower modular reduction
in Montgomery arithmetic [9]. In the context of PBC, the
performance of field inversion matters during exponentia-
tion in pairing groups, and it also unlocks an optimization
called compressed squarings in the final exponentiation of
the pairing [10]. With pairings being increasingly deployed
as a fundamental building block for zero-knowledge proofs
and privacy-preserving cryptocurrencies (for example in short
signature schemes [11] and zkSNARKs [12]), the threat of
implementation bugs becomes more important, as they can
allow attacks which may compromise the security and privacy
guarantees of these cryptographic systems [13]2. A survey
of implementation bugs in cryptographic libraries is collected
in [14], [15].

In order to satisfy performance constraints, current efficient
software implementations of ECC and PBC rely on hand-
optimized architecture-specific assembly code for the underly-
ing field arithmetic and a great deal of manual tuning to unlock
the best performance across a range of architectures [16], [17].
This introduces low-level code which is both hard to audit and
to verify as correct. Moreover, implementations need at least
to be constant-time, in the sense that execution time does not
depend on input, and protection against timing attacks is pro-
vided given some performance penalty. As an illustrating case

1https://bugs.chromium.org/p/project-zero/issues/detail?id=1804
2https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryp

tonote-based-currencies.html
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using the popular BLS12-381 curve for motivation, the cost of
one scalar multiplication required for computing short Boneh-
Lynn-Schacham signatures [11] is reported to be around
400,000 cycles on Intel Skylake [18], [19] using variable-
time inversion. According to our benchmarking in Table III,
a constant-time field inversion using publicly available code
would add at least 200,000 cycles to that figure for the two
required conversions to affine coordinates (one for the table
of precomputed points, the other for the result). This impact
is significant and motivates the need for our more efficient
alternatives.

Recent progress in the literature allows this problem to
be solved elegantly. Bernstein and Yang proposed in 2019
a constant-time Euclidean algorithm based on division steps
that can be generalized for polynomial arithmetic, comes with
a mathematical proof and is surprisingly efficient for field
inversion [20]. In that same year, an alternative path for im-
plementing cryptographic libraries was demonstrated as viable
in the Fiat-Crypto framework [14]. By combining correct-
by-construction optimized low-level code with automatically
generated and formally verified high-level code, it became
possible to develop libraries which are both efficient and
formally verified. Simultaneously, the generated code stays
within a small imperative language, thus avoiding notorious
memory safety issues which cause many vulnerabilities [15].
Unfortunately, Fiat-Crypto does not provide an inversion op-
eration and the implementer must build its own approach
based on the other field operations, creating the same risk
of insufficient post-hoc analysis.

Our contributions. We extend the Fiat-Crypto framework
with a constant-time implementation of field inversion based
on the Bernstein-Yang approach of iterating division steps.
We implement the original version of the algorithm (with
the jumpdivstep optimization) and the “half-delta” variant,
recently developed to optimize inversion within ECDSA sign-
ing over the curve secp256k1 adopted in Bitcoin [21].
This variant requires a lower number of division steps to be
evaluated, which immediately translates to better performance.

Our work completes the set of finite field operations which
Fiat-Crypto supports, and consists in the first efficient verified
implementation of field inversion for several primes, including
those needed for PBC. Moreover, it allows to conveniently syn-
thesize a correct and portable implementation of the algorithm
for any prime using the two main representations supported
in Fiat-Crypto (unsaturated Solinas and Montgomery). This
comes in contrast with previous work, which consisted of
implementing the FLT approach on top of a verified multiplier,
instead of a dedicated specialized inversion algorithm [22].
Our formulation of the algorithm maximally relies on what
is provided by Fiat-Crypto, taking advantage of the field
operations provided by the framework whenever possible
instead of introducing new ones. In the context of Montgomery
arithmetic, this introduces some expensive multiplications to
update the algorithm’s matrix coefficients, the effects of which
we mitigate by employing the lazy reduction optimization and
adjusting the precomputed constant.

According to our benchmarks, we achieve a performance
penalty of up to 5.3 in comparison to our own unverified
constant-time assembly-accelerated implementations of inver-
sion for a range of parameters in both ECC and PBC settings
from 254 to 575 bits. The slowdown is tolerable if correctness
is of critical importance or if inversion performance is less
critical. For the PBC primes, our implementation consistently
outperforms the FLT approach accelerated with finite field
arithmetic in unverified assembly, with speedups ranging from
1.6 to 2 for different sizes. For the ECC primes, we outperform
the FLT approaches in the two largest parameters and improve
performance up to 40% against an implementation based on
Fiat-Crypto and 14% against handwritten assembly.

Our slowest implementation is already used in production
the MirageOS unikernel3 and zig language 4 and the EC-
CKiila framework [4], showing that it is fast enough for
engineering projects with a focus on correctness.

Outline of the paper. We briefly explain the necessary pre-
liminaries of Fiat-Crypto and the inversion algorithm in Sec-
tions II and III. Sections IV to VI describe our implemen-
tation/formalization of the algorithm and our formalization
of the correctness proof, respectively. The two final sections
conclude with related and future work.

II. THE FIAT-CRYPTO FRAMEWORK

Fiat Cryptography [14] (or just Fiat-Crypto) is a frame-
work for generating verified finite field arithmetic which is
correct by design. The approach was illustrated through the
implementation of field arithmetic for several standardized
elliptic curves using an extensible code generation framework,
capable of producing code competitive in performance with
popular hand-optimized multi-precision libraries. It provides
a simple CLI which takes a prime and a machine word
size and generates C source files implementing most finite
field operations necessary to implement e.g. elliptic curve
cryptography. Java, Go and Rust are also supported. Code
generated by Fiat-Crypto is currently being used in production
in Firefox5, BoringSSL6 and the WireGuard VPN7.

In Fiat-Crypto there are separate binaries to generate code
for each style of multi-precision arithmetic: Montgomery, sat-
urated and unsaturated representations. Although, there is no
formal proof that the code is of constant time, only “straight-
line code” is generated, i.e. code without branching that should
run in constant-time after it is processed by an optimizing
compiler. Fiat-Crypto consists of a verified compiler written
in the Coq proof assistant [23]. It compiles from a subset
of Coq to a simple language embedded in Coq containing
only bitwise and machine-integer operations. From here, the
generated terms can be pretty-printed to the programming
languages mentioned above.

3https://github.com/mirage/mirage-crypto/tree/main/ec/native
4https://github.com/ziglang/zig/blob/master/lib/std/crypto/pcurves/common.zig
5https://blog.mozilla.org/security/2020/07/06/performance-improvements-

via-formally-verified-cryptography-in-firefox/
6https://boringssl.googlesource.com/boringssl/+/master/third party/fiat/
7https://www.wireguard.com/formal-verification/
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Correct-by-construction vs. verifying existing code. Fiat-
Crypto differs significantly from other verification projects:
Instead of verifying an existing implementation against a
specification, it provides a pipeline for generating verified
implementations. This has the advantage of only requiring a
single formalization effort. Verification of complex software is
a laborious procedure, so in many cases it will not be deemed
important enough. Having auto-generated code allows verified
code to be used in such cases. Another advantage is the multi-
language support: in general each implementation in a different
language would present a separate formalization effort.

Coq. Coq is a state-of-the-art interactive proof assistant
based on dependent type theory [23]. Coq reduces all proofs
to a small kernel — it is thus foundational in that it reduces
everything to the axioms of mathematics. Next to its built-in
functional programming language, Coq also has a more ad-
hoc scripting language for tactics. Users write tactics to direct
Coq to construct, or search for, proofs. When, after a list of
such tactic instructions, the proof is fully completed and it is
finally checked by the kernel for correctness.

We will use the Coq standard library throughout this paper.
In particular, we use the standard implementations of (unary)
naturals nat and (binary and infinite precision) integers Z.

Multi-precision arithmetic. In cryptography, it is common
to compute on numbers much larger than a single machine
word. These are usually represented using arrays of digits and
interpreted as a number in some large radix size (e.g. a full
word size). We will refer to the entries of these arrays as limbs
and numbers represented as such as multi-limb numbers.

In Fiat-Crypto multi-limb integers are represented as lists
of integers, i.e. as the type list Z. Such a list of numbers,
say [1;12;123], corresponds to the sum of its elements up to
some weighing of the indices, e.g. 1 ·2weight 0 +12 ·2weight 1+
123 ·2weight 2, where weight is some map from nat to Z. Note
that the representation is little-endian. When reasoning about
multi-limb numbers, one uses the function eval to evaluate the
number as an integer by adding together its limbs (multiplied
by their respective weights).

We will refer to representations using a full-word radix
as saturated. When computing on such a representation, one
has to take care of propagating carries, as additions do not
fit within one register. Conversely, we will refer to a radix
smaller than a full word size as unsaturated. We will refer to
arithmetic on these numbers as multi-precision arithmetic, as
opposed to single-precision arithmetic, which we will assume
is implemented natively in the platform.

There are a variety of optimizations and algorithms for
multi-precision arithmetic, and more precisely for multi-
precision modular arithmetic modulo some large number, as
used in cryptography. One of the more expensive operations
in modular arithmetic is reduction, as it generally requires a
multi-precision division. Reduction is necessary after a multi-
precision multiplication or squaring. We will briefly describe
two specialized approaches, both used in our implementations.

For integers a, b and c we write a ≡ b (mod c) when
c divides the difference between a and b. For integers a, c

we write a mod c for the unique integer b between 0 and c
satisfying a ≡ b (mod c).

Generalized Mersenne Reduction. If the modulus M is
of the form 2k + c12

k−1 + · · · + ck for some integers k and
ci (which satisfies some constraints [24]), then M is said to
be a generalized Mersenne number (or Solinas number). In
that case there is an improved algorithm for reduction which
replaces division with a linear number of additions and shifting
operations. The efficiency depends on the coefficients and
exponents of the integral polynomial. A notable example of a
generalized Mersenne number which is used in cryptographic
implementations is the prime 2255−19 over which the elliptic
curve Curve25519 is defined [6].

Montgomery Reduction. In addition to Generalized
Mersenne Reduction, Fiat-Crypto supports Montgomery arith-
metic [9]. If R is a number coprime to the modulus M ,
then the Montgomery reduction modulo M of a number a
is the number aR−1 modM . Montgomery reduction can be
computed more efficiently than generic reduction when R is
chosen appropriately. The algorithm performs divisions by R
instead of M , so R can be chosen as a power of 2 such that
divisions become cheap and simple shifts.

The factor R−1 might look out of place, but Montgomery
reduction can be used when computing multiplications by
working in the “Montgomery domain”, which simply means
operations are performed on numbers multiplied by R. That
is, to compute ab modM we instead compute (aR mod
M)(bR modM) and compute a Montgomery reduction. We
obtain (aR modM)(bR modM)R−1 modM = abR mod
M , the product in the Montgomery domain. This achieves
modular multiplication without divisions.

Multiplying with R modM every time might seem expen-
sive, but if multiple arithmetic operations can be performed
before converting back again, then this cost becomes negligi-
ble. One can also add naturally in the Montgomery domain:

(aR modM + bR modM) modM = (a+ b)R modM.

Because Montgomery reduction has the same complexity as
a multi-precision multiplication, another popular optimization
in Montgomery arithmetic is lazy reduction, which adds unre-
duced multiplication results (up to M × R) before a full
reduction is needed.

III. BERNSTEIN-YANG INVERSION

The Bernstein-Yang (BY) inversion algorithm [20] is a new
and efficient constant-time algorithm for inverting in finite
fields. In this paper we will only be using the algorithm over a
field Fp, for prime p. The algorithm is a constant-time variant
of the classical Extended Euclidean Algorithm (EEA). We
implement the BY algorithm in Fiat-Crypto (Section IV), and
formalize its proof of correctness (Section V).



A. Specification and correctness

The algorithm uses a division step (divstep), which we
define for all integers δ, g and odd integers f as

divstep(δ, f, g) =
(
1− δ, g, g−f2

)
if δ > 0 and g odd(

1 + δ, f, g+(g mod 2)f
2

)
otherwise.

The requirement that f is odd makes divstep an endofunction
on Z × Z × (2Z + 1). The branch can be implemented in
constant time and thus so can the divstep function.

We will also use the following transition matrices

T (δ, f, g) =



(
0 2

−1 1

)
if δ > 0 and g odd

(
2 0

g mod 2 1

)
otherwise.

These are transition matrices in the sense that multiplication
corresponds to applying divstep once (up to a factor; see also
Theorem 9.1 in [20]). Note that this definition differs slightly
from the one in [20] (it is scaled by a factor).

To compute the inverse of g modulo f we will need
to iterate the divstep, compute the transition matrix of the
resulting values and sequentially multiply these matrices. This
procedure is depicted in Algorithm 1.

Note that while Algorithm 1 as described is not constant
time, the branch can be implemented as a conditional swap
(which can be implemented in constant time). This is also
how it is implemented in [20].

For integers δ, f and g we write (δn, fn, gn) =
divstepn(δ, f, g) and Tn = T (δn, fn, gn).

Algorithm 1: DIVSTEPS

Input : Integers n, δ, f and g such that f is odd
Output: The integers δn, fn and gn and the matrix

product TnTn−1 · · · T0
1 u← 1, v ← 0, q ← 0, r ← 1 ;
2 for i← 1 to n do
3 if 0 < δ and g odd then
4 δ ← −δ, f ← g, g ← −f , u← q, v ← r,

q ← −u, r ← −v ;

5 g0 ← g mod 2 ;
6 δ ← δ + 1 ;
7 g ← g+g0f

2 ;
8 q ← q + g0u ;
9 r ← r + g0v ;

10 u← 2u ;
11 v ← 2v ;

12 return δ, f, g, ( u v
q r )

The DIVSTEPS procedure can then be used to implement
modular inversion as described in Algorithm 2. To implement

field inversion for a fixed modulus, we can precompute d,m
and e in the algorithm. The algorithm does precomputations
(lines 1-7), iterates division steps a constant number of times
(line 8) and combines the two (line 9); where sgn(·) computes
the sign of an integer.

Algorithm 2: BY-INVERSION

Input : Integers f and g such that f is odd and
gcd(f, g) = 1

Output: Integer g−1 such that gg−1 = 1 (mod f)
1 d← max(log2 f, log2 g) ;
2 if d < 46 then
3 m← b(49d+ 80)/17c ;
4 else
5 m← b(49d+ 57)/17c ;

6 e← ((f + 1)/2)m mod f ;
7 δ ← 1 ;
8 δ, f, g, ( u v

q r )← DIVSTEPS(m, δ, f, g) ;
9 g−1 ← e · v · sgn(f) ;

The correctness of this algorithm is summarized in the
following theorem:

Theorem 1 (Theorem 11.2 in [20]). Let f and g be integers
with f odd. Let d be a real number such that f2+4g2 ≤ 5·22d.
Let m be an integer such that m ≥ b(49d+80)/17c if d < 46
and m ≥ b(49d+ 57)/17c if d ≥ 46.

For i = 1, 2, . . . ,m, let (δi, fi, gi) = divstepi(1, f, g) and

Ti = T (δi, fi, gi) and
(
ui vi
qi ri

)
= Ti−1Ti−2 · · · T0. Then

gm = 0, fm = ± gcd(f, g) and vmg = 2mfm (mod f).

The correctness of Algorithm 2 follows from Theorem 1
since f and g are assumed to be coprime, the final values of
f and v are respectively fm and vm, and p is the inverse of
2m modulo f , so the following holds:

p ·v · sgn(f) ·g = (2−m)v(±1)g = (±1)(±1) = 1 (mod f).

The theorem as stated here differs slightly from the one
in [20] since our definition of T is scaled by a factor to avoid
having to reason about rational numbers.

B. Outline of proof

The proof of Theorem 1, as given in [20], is in 4 parts:
• Specification of a related algorithm for computing the gcd

of two numbers.
• Complexity analysis of the related algorithm; in particular

giving a worst-case bound.
• Establishing the relation between divsteps and the related

algorithm.
• Proving that reaching a fixed point of divstep yields the

modular inverse.
These are described in Appendix E, F, G and Section 11
in [20], respectively.

We will expand on how each part was formalized in
Section V. For the proofs we need the definition of 2-adic



valuation. If g is an integer and p is a prime, then the p-adic
valuation of g is the highest power of p which divides g. We
will denote it by ordp g or valp g (in the literature νp is also
common). We will also write splitp g for g divided by this
maximal power of p, i.e. splitp g = g/pordp g .

While the proof in the paper uses 2-adic integers, we only
use the corresponding statements for integers. This facilitates
the formalization and suffices to prove Theorem 1.

C. The jumpdivstep optimization

Algorithm 1 can be optimized by observing that computing
the k first iterations of DIVSTEPS only depends on the k first
bits in f and g. This allows working on smaller numbers and
“jumping” through the DIVSTEPS computations in larger steps.
This optimized version is depicted in Algorithm 3 (see section
10 in [20] for details).

Algorithm 3: JUMPDIVSTEPS

Input : Integers n, k, b, δ, f and g such that f is odd
and k | n and k ≤ b

Output: The integers δn, fn and gn and the matrix
product TnTn−1 · · · T0

1 T ← ( 1 0
0 1 ) ;

2 for i← 1 to n/k do
3 f ′ ← f mod 2b, g′ ← g mod 2b ;
4 δ, f ′, g′, T ′ ← DIVSTEPS(k, δ, f ′, g′) ;
5

(
f
g

)
← T

(
f
g

)
/2k ;

6 T ← T ′ · T ;

7 return δ, f, g, T

One way to see that Algorithm 3 is correct is to note that
one run through the loop corresponds to k runs through the
loop in Algorithm 1 (where the matrix T corresponds to the
four variables u, v, q and r). Indeed, which branch is chosen
in DIVSTEPS for the first k iterations only depends on the
first k bits of f and g, since the k − 1 first bits in (g − f)/2
and (g+ (g mod 2)f)/2 (the two possibilities for subsequent
g-values) only depend on the k first bits of g and f .

The concrete values of f and g have no influence on u, v, q
and r, so the matrix we get in line 4 of Algorithm 3 is indeed
correct, and we multiply with the current product in line 6 as
required. Now, to see that the updated values of f and g are
correct, simply note that for integers i ≤ j,

2j−i
(
fj
gj

)
= Tj−1Tj−2 · · · Ti

(
fi
gi

)
This follows from the fact that 2

(
fi+1

gi+1

)
= Ti

(
fi
gi

)
(by

definition) and induction (see also theorem 9.1 in [20]). We
already established that T ′ is equal to the intermediate matrix
product, so f ′ and g′ are equal to fik and gik (in the ith
iteration).

IV. VERIFIED AND EFFICIENT FIELD INVERSION IN
FIAT-CRYPTO

We will now shift gears and focus on the technical details
of our formalization. Our contributions can be found in our
fork of Fiat-Crypto at https://github.com/bshvass/fiat-crypto/t
ree/main. The generated code for the programming language
lang can be found in the folder fiat-lang, and standalone
testing/benchmarking programs for illustration can be found
in the folder inversion/c together with a Makefile. All file
paths in this section will be relative to this folder.

To implement the Bernstein-Yang algorithm in Fiat-Crypto
we needed to add several primitives to the framework. The
implementation is verified by relating it to the algorithm
formalized in Section V. The majority of our contribution to
Fiat-Crypto is in the src/Arithmetic/BYInv folder and in the
present section all file paths will be relative to this root.

A major part of specifying and implementing the al-
gorithm was implementing and formalizing signed multi-
precision arithmetic for the types of f and g in Algorithm 1,
since this was absent from the framework. In the following,
machine_wordsize : Z or mw : Z will refer to the machine
word size for which the implementation is parameterized. We
will use m : Z to refer to the prime underlying the modular
arithmetic and wrt. which we are trying to invert; f g : list

Z will usually refer to bound multi-limb numbers and a b : Z

to word-sized integers. The function eval : list Z -> Z will
refer to evaluation of multi-limb numbers wrt. some weight
function. In the context of Montgomery arithmetic this will
be a uniform (or saturated) weight function and in the context
of unsaturated Solinas it will be unsaturated.

When programming in Fiat-Crypto, one has to use the
supported low-level language, i.e. the language whose terms
can be compiled into the embedded C-like language and
consequently generate C code. Notable supported operations
are bitwise operations on integers: >> for right shifts, |' for
bitwise OR and &' for bitwise AND. Furthermore, there is
Z.lnot_modulo n which interprets a number to be of bit-
length n and then flips all bits in its binary representation
(bitwise negation).

A. Representing signed word-sized integers

We use the following definition to represent the numbers
from −2mw to 2mw − 1

Definition twos_complement (mw a : Z) :=
if (a mod 2 ˆ mw) <? 2 ˆ (mw - 1)
then a mod 2 ˆ mw
else a mod 2 ˆ mw - 2 ˆ mw.

Then, e.g. twos_complement mw (2 ˆ mw - 1) = -1 as usual
for a two’s-complement representation. We will usually
shorten twos_complement to tc and omit the bitwidth if
it is implicit. We implement several operations working on
these representations. They are all found at the bottom of
the file src/Util/ZUtil/Definitions.v and have separate
files in the same folder for their properties. In particular, we
provide implementations of arithmetic shifts, addition in two’s
complement and multiplication in two’s complement. These

https://github.com/bshvass/fiat-crypto/tree/main
https://github.com/bshvass/fiat-crypto/tree/main


were all needed for the implementation, for the DIVSTEPS over
words in JUMPDIVSTEPS. The correctness statements about
these implementations prove how interpreting their results in
two’s complement corresponds to operations on their inputs
in two’s complement. For example, the correctness of shifting
can be expressed by the lemma below.

Lemma arithmetic_shiftr_spec (mw a k : Z)
(Hm : 0 < mw)
(Ha : 0 <= a < 2 ˆ mw)
(Hk : 0 <= k) :

tc mw (arithmetic_shiftr mw a k)
= (tc mw a) / 2 ˆ k.

B. Representing signed multi-limb integers

We extend Fiat-Crypto with signed multi-limb arithmetic.
These numbers will be represented using lists of integers and
evaluated as a multi-limb number in saturated representation
interpreted in two’s complement. In Coq this is defined as

Definition tc_eval (n : nat) (f : list Z) :=
tc (mw * n) (eval n f).

where eval is evaluation of multi-limb numbeers in saturated
representation (wrt. mw). The variable n is the amount of limbs
needed, i.e. the length of f , and the evaluation is interpreted in
two’s complement at bitwidth bw * n. We will usually omit the
mw and n parameters for brevity. All operations we support for
multi-limb signed arithmetic can be found in Definitions.v.
We will summarize a few of them here.

Arithmetic right shift. As for word-sized integers, we will
need to divide multi-limb numbers by powers of two. We do
this in the obvious way by shifting each limb and xor’ing
the underflow with the shift of the next limb. Additionally,
the most significant limb has to be arithmetically shifted to
preserve the sign (here we can reuse our implementation for
word-sized integers). The function arithmetic_shiftr does
not fit Fiat-Crypto’s DSL (since shifting by a non-constant is
not supported), so we cannot synthesize its implementation
for general k. However, we can do so for each specific k; we
only need to instantiate k before generating. In the case of
jumpdivstep, we instantiate k to b−2, where b is the machine
word length. The correctness theorem is as follows

Lemma tc_eval_arithmetic_shiftr (f : list Z) (k : Z) (...) :
tc_eval (arithmetic_shiftr f k)
= tc_eval f / (2 ˆ k).

where k is the shift amount and f is a multi-limb integer.
Addition, negation and subtraction. Addition is already

implemented in Fiat-Crypto (signed addition is the same as
unsigned addition in two’s complement), so we simply wrap
this implementation in the function tc_add. To negate we flip
all bits of all limbs in the list and then use tc_add to add one.
Subtraction is defined by combining addition and negation.

C. Implementing DIVSTEPS

We provide implementations of a single divstep, i.e. the
body of the for loop in Algorithm 1.

Definition divstep_aux data :=
let '(d,f,g,v,r) := data in
let cond := land (pos d) (mod2 g) in
let d' := zselect cond d (opp d) in
let f' := select cond f g in
let g' := select cond g (tc_opp f) in
let v' := select cond v r in
let v'':= addmod v' v' in
let r' := select cond r (oppmod v) in
let g0 := mod2 g' in
let d'' := (d' + 1) mod 2 ˆ mw in
let f'' := select g0 tc_zero f' in
let g'' := arithmetic_shiftr1 (tc_add g' f'') in
let v''' := select g0 mont_zero v' in
let r'' := addmod r' v''' in

(d'',f',g'',v'',r'').

Definition divstep (d : Z) (f g v r : list Z) :=
divstep_aux (d, f, g, v, r).

Listing 1: Implementation of a divstep in Fiat-Crypto

The implementations are in the file Definitions.v and
properties about the implementations are proven in Divstep.v.
There are implementations for Montgomery arithmetic, un-
saturated Solinas and for word-sized divsteps (needed for
JUMPDIVSTEPS). We have included the implementation using
Montgomery arithmetic in Listing 1.

The implementation uses modular arithmetic for variables
u, v, q and r since these would otherwise grow much larger
than necessary (by Theorem 1 we only need these numbers
modulo f ), regular signed multiple-precision arithmetic for f
and g and word-sized arithmetic for δ.

We utilize the zselect and select functions provided by
the library, which implement constant-time selection of values
depending on a condition. The functions addmod and oppmod

are multi-limb modular addition and negation, respectively;
these were also implemented in Fiat-Crypto. The functions
which we have implemented and verified are pos, which
checks positivity of a word-sized integer in two’s complement,
mod2, which checks the parity of a multi-limb integer, and
arithmetic_shiftr1 which is a singular arithmetic right shift
of multi-limb numbers. We did not have to implement tc_add,
but we had to specify how it is computed in two’s complement.
Note also that the implementation differs slightly from the
specification in Algorithm 1, in that we do not compute
the u and q quantities. This is simply because they are not
necessary in Algorithm 2 (they are however used in the proof
of correctness of Algorithm 2).

We prove that executing divstep and then evaluating cor-
responds to the reference Coq function

Definition divstep_vr_mod m '(d, f, g, v, r) :=
if Z.odd g
then if 0 <? d

then (1 - d, g, (g - f) / 2,
(2 * r) mod m, (r - v) mod m)

else (1 + d, f, (g + f) / 2,
(2 * v) mod m, (r + v) mod m)

else (1 + d, f, g / 2,
(2 * v) mod m, r mod m).

which is simply defined over the Z type of integers in Coq,
i.e. it does not compute over lists of numbers.



Concretely, we prove the theorem

Lemma divstep_correct (d : Z) (f g v r : list Z) (...) :
let '(d1,f1,g1,v1,r1) := (divstep_aux (d, f, g, v, r)) in
(tc d1, tc_eval f1, tc_eval g1,

eval v1 mod m, eval r1 mod m) =
divstep_vr_mod m (tc d, tc_eval f, tc_eval g,

eval v mod m, eval r mod m).

which states that for a given input d, f, g, v, r to divstep
computing the Fiat-Crypto implementation Listing 1 and in-
terpreting the output in two’s complement, corresponds to in-
terpreting d in two’s complement, f, g as multi-limb numbers
in two’s complement, and r, v as multi-limb numbers modulo
m, and computing divstep_vr_mod_m of the interpretations.

The proof is straightforward, in that we simply have to
propagate the correctness theorems of each function that is
called (addmod, tc_add, etc.). The correctness of the mod-
ular operations are provided by Fiat-Crypto, but others we
have to prove ourselves. Most functions have a separate file
dedicated to their correctness and properties, e.g. TCAdd.v,
ArithmeticShiftr.v, Mod2.v, etc.

Note that the theorem has several assumptions not depicted
here. Most notably, f and g must be less than half the
maximum integer, since otherwise the first tc_add might
overflow. Also, f have to be assumed odd, but recall that this
is simply by the definition of divstep (see Section III).

D. Implementing BY-INVERSION using DIVSTEPS

We provide implementations of Algorithm 2 using DI-
VSTEPS. The implementations are in the file Definitions.v

and properties about the implementations are proven in
BYInv.v. There are implementations for Montgomery arith-
metic and unsaturated Solinas. We have included the imple-
mentation using Montgomery arithmetic here in Listing 3.

In the implementation, we use the function partition,
which simply takes an integer and represents it as a multi-
limb number (as a list) according to some weight function.
Obviously, the arguments to this has to be known a compile
time and is a way to get Coq to compute constants and
translate them to multi-limb numbers. We use it to get the
representation of m, the prime wrt. which we are inverting,
and divstep_precomp, which is the e from Algorithm 2. The
fold in Listing 3 computes the for loop from Algorithm 2 and
the function iterations computes

Definition iterations (b : Z) :=
if b <? 46 then (49 * b + 80) / 17
else (49 * b + 57) / 17.

as expected by Algorithm 2. Note that iterations is in Ref.v.
We prove that our implementation is equivalent to a ref-

erence Coq implementation, which we will prove correct
in Section V. The reference, by_inv_ref, is in Ref.v. The
correctness theorem (for the Unsaturated Solinas case) is
depicted in Listing 2. The assumptions are rather natural:
g_length requires that g has the appropriate amount of limbs,
g_in_bounded requires that each limb of g is within a word
size and g_bounds requires that g is less than half the absolute
max value representable in two’s complement. We ensure that

Theorem eval_by_inv (g : list Z)
(g_length : length g = tc_limbs)
(g_in_bounded : in_bounded g)
(g_bounds :
- 2 ˆ (mw * tc_limbs - 2) <
tc_eval g < 2 ˆ (mw * tc_limbs - 2)) :

eval (by_inv g) mod m = by_inv_ref m (tc_eval g).

Listing 2: Correctness of by_inv

Definition by_inv (g : list Z) :=
let bits := (Z.log2 m) + 1 in
let msat := partition m in
let its := iterations bits in
let pc := partition divstep_precomp in
let '(_, fm, _, vm, _) :=
fold_left (fun data i => divstep_aux data)

(seq 0 (Z.to_nat its))
(1,msat,g,zero,one) in

let sign := tc_sign_bit fm in
let inv := mulmod pc vm in
let inv := select sign inv (oppmod inv) in
inv.

Listing 3: Implementation of a BY-INVERSION in Fiat-Crypto
using Montgomery arithmetic

this is true when g is a number mod m, by choosing the
quantity tc_limbs such that m < 2machine wordsize·tc limbs−2.

The proof of theorem required us to prove several invari-
ants of divstep. Fiat-Crypto provided sufficient machinery
to make this fairly simple; see e.g. divstep_iter_bounds in
Divstep.v. The only potential “overflow” we have to worry
about, is d, since it can in practice grow unboundedly if one
iterates divstep sufficiently many times; this shows up in the
lemma divstep_iter_correct where you have to bound d
depending on how many times you iterate. The other quantities
cannot overflow, since f, g are decreasing for each divstep
and v, r are computed using modular arithmetic. Only in the
very first iteration, when you add f and g, do you risk to
overflow: this is exactly why we need to have 2 spare bits
when representing the prime in two’s complement (1 for this
potential overflow and 1 for the sign).

Montgomery inversion. Inverting in Montgomery arith-
metic needs additional care to compute the inverse wrt. Mont-
gomery multiplication, not regular modular multiplication.
This amounts to computing the regular inverse multiplied by
R2. This works since,

(aR modM)((aR)−1 ·R2 mod M)R−1 modM

= 1 ·R modM

which indeed is 1 in the Montgomery domain. Accordingly,
the theorem eval_by_inv_jump contains this factor in the
Montgomery case.

E. Implementing JUMPDIVSTEPS

We provide implementations of a single jumpdivstep, i.e.
the body of the for loop in Algorithm 3. The implementations
are in the file Definitions.v and properties about them are
proven in JumpDivstep.v. There are implementations for both
the Montgomery arithmetic and unsaturated Solinas. We have



Definition jump_divstep_aux '(d, f, g, v, r) :=
let '(d1,f1,g1,u1,v1,q1,r1) :=

fold_right word_divstep
(d,nth_default 0 f 0,nth_default 0 g 0,1,0,0,1)
(seq 0 (machine_wordsize - 2)) in

let f2 := word_tc_mul u1 f in
let f3 := word_tc_mul v1 g in
let g2 := word_tc_mul q1 f in
let g3 := word_tc_mul r1 g in
let f4 := tc_add word_tc_mul_limbs f2 f3 in
let g4 := tc_add word_tc_mul_limbs g2 g3 in
let f5 := arithmetic_shiftr f4 (machine_wordsize - 2) in
let g5 := arithmetic_shiftr g4 (machine_wordsize - 2) in
let f6 := firstn tc_limbs f5 in
let g6 := firstn tc_limbs g5 in
let u2 := twosc_word_mod_m u1 in
let v02 := twosc_word_mod_m v1 in
let q2 := twosc_word_mod_m q1 in
let r02 := twosc_word_mod_m r1 in
let v2 := mulmod u2 v in
let v3 := mulmod v02 r in
let r2 := mulmod q2 v in
let r3 := mulmod r02 r in
let v4 := addmod v2 v3 in
let r4 := addmod r2 r3 in

(d1,f6, g6, v4, r4).

Listing 4: Implementation of jumpdivstep using Montgomery
arithmetic.

included the implementation in Montgomery arithmetic here
in Listing 4.

For JUMPDIVSTEPS we need a couple of additional meth-
ods. The idea of JUMPDIVSTEPS is computing DIVSTEPS (line
4) on word-sized integers (we use k = mw − 2 such that all
intermediate values in divstep fit in a word). This however also
means that the entries of the result matrix T ′ are word-sized
integers and thus we have to multiply word-sized and multi-
limb numbers when computing the matrix-vector product in
line 5. This functionality was already implemented in Fiat-
Crypto, but we wrapped it in word_sat_mul.

Also, the numbers in T have to be modular reduced
(otherwise they grow too large), so when we have to compute
the matrix product in line 6, we have to reduce the entries
of T modulo f (they might for instance be negative). This is
what twosc_word_mod_m does (the corresponding function for
Solinas is word_to_solina), by computing the negation and
then choosing based on sign (recall that it has to compute the
negation always otherwise a branch is introduced).

Proving jump_divstep correct is similar to proving by_inv,
in that we have to prove invariants about (word-sized) divsteps.
As we did for the other algorithms, we prove it correct wrt. a
reference, namely the function

Definition jump_divstep_vr
(n : nat) (mw m : Z) '(d, f, g, v, r) :=
let '(d1, f1, g1, u1, v1, q1, r1) :=
iter n divstep_uvqr

(d, f mod 2 ˆ mw, g mod 2 ˆ mw, 1, 0, 0, 1) in
let f1' := (u1 * f + v1 * g) / 2 ˆ n in
let g1' := (q1 * f + r1 * g) / 2 ˆ n in
let v1' := (u1 * v + v1 * r) mod m in
let r1' := (q1 * v + r1 * r) mod m in
(d1, f1', g1', v1', r1').

Here, iter is just an iterator applying the second argument
to itself n times, initialized with the third argument to iter.
The function divstep_uvqr is similar to divstep_vr_mod from

Theorem eval_by_inv_jump g
(g_length : length g = tc_limbs)
(g_in_bounded : in_bounded g)
(g_bounds :
- 2 ˆ (mw * tc_limbs - 2) <
tc_eval g < 2 ˆ (mw * tc_limbs - 2)) :

eval (by_inv_jump g) mod m = by_inv_jump_ref (tc_eval g).

Listing 5: Correctness of by_inv_jump

earlier, but it also computes the q and r quantities; these are
needed in JUMPDIVSTEPS to update the values f, g, v and r.

The correctness of jump_divstep states that

Theorem jump_divstep_correct d f g v r (...) :
let '(d1, f1,g1,v1,r1) :=
jump_divstep_aux (d, f, g, v, r) in

(tc d1, tc_eval f1, tc_eval g1,
eval v1 mod m, eval r1 mod m)

= jump_divstep_vr (mw - 2) mw m
(tc d, tc_eval f, tc_eval g,

eval v mod m, eval r mod m).

Note that the argument mw - 2 corresponds to k in Algo-
rithm 3, i.e. how many times we iterate divstep on word-
sized integers, and the argument mw corresponds to where
we truncate (truncating at mw is easy: simply take the first
limb). This correctness theorem is for unsaturated Solinas
arithmetic. We have omitted the preconditions to this theorem
here for clarity, but they are all natural (and necessary). E.g.,
d has to have a distance of mw - 2 to the lowest and highest
value representable in two’s complement (otherwise iterating
divsteps mw - 2 times might overflow).

a) Lazy Montgomery reduction: When we translate
words to multi-limb numbers in the Montgomery arithmetic
setting, we ought to multiply with R, such that we get the
representations in the Montgomery domain; we can however
just propagate these factors through the execution and include
them in the final recomputed constant. Note that this means
that these factors show up in the correctness theorem in the
Montgomery setting (see the WordByWordMontgomery section
in JumpDivstep.v).

F. Implementing BY-INVERSION using JUMPDIVSTEPS

We provide implementations of Algorithm 2 using JUMPDI-
VSTEPS. The implementations are in the file Definitions.v

and properties about the implementations are proven in
BYInvJump.v. There are implementations for Montgomery
arithmetic and Unsaturated Solinas. We have included the im-
plementation using Montgomery arithmetic here in Listing 6.

The implementation is very close to BY-INVERSION using
DIVSTEPS – the only changes are the number of iterations and
(consequently) the precomputed value to multiply at the end.

To prove correctness of by_inv_jump as specified in List-
ing 5 we need to prove that jump_divstep preserves several
invariants. Here we utilize that we have the reference Coq
implementation and instead prove the invariants about this
function and then transport them from the Coq function
defined over Z to the one defined over list Z (jump_divstep).

We do this e.g. in jump_divstep_invariants2 in
JumpDivstep.v and in the Montgomery version of



Definition by_inv_jump g :=
let bits := (Z.log2 m) + 1 in
let msat := partition m in
let jump_its := jump_iterations bits in
let pc := partition jumpdivstep_precomp in
let '(_, fm, _, vm, _) :=
fold_left (fun data i => jump_divstep_aux data)

(seq 0 (Z.to_nat jump_its))
(1,msat,g,zero,one) in

let sign := tc_sign_bit fm in
let inv := mulmod pc vm in
let inv := select sign inv (oppmod inv) in
inv.

Listing 6: Implementation of BY-INVERSION using JUMPDI-
VSTEPS and Montgomery arithmetic

jump_divstep_iter_correct in JumpDvstep. In the first
one we use jump_divstep_vr_invariants, proven in Ref.v,
which asserts how the bounds of the outputs of an iterated
jumpdivstep depend on the bounds of the inputs. In the
second one, we use that a multiplication on inputs propagates
through and corresponds to a multiplication on the outputs
(used to propagate R-factors through the computation). This
is lemma nat_iter_jump_divstep_vr_mul proven at Ref.v.

Differences from [20]. In Section 12 of [20], the authors
compute the matrix product in Algorithm 3 by recursively
dividing it into halves, resulting in a total of n − 1 matrix
multiplications. This allows them to keep the precision of the
entries as low as possible.

We compute the product iteratively, because we attempt
to minimize the new code introduced to Fiat-Crypto. This
requires 4n modular multiplications; and since only the top
right entry of the final matrix is needed, it suffices to do
matrix-vector multiplications (note that this is not possible
when recursively dividing the product). However, by using this
method one cannot keep the precision low for as many multi-
plications. This was fine for our implementation, since keeping
track of different precision (and using appropriate multiplica-
tion implementations) in Fiat-Crypto would be difficult. Our
unverified implementation of the jumpdivstep approach keeps
track of how these coefficients grow (one limb with every
iteration of the outer loop), making it possible to delay the
expensive modular reduction until it is strictly necessary (lazy
reduction).

G. Generating Fiat-Crypto code

Thus far we have not explained how to turn our Fiat-Crypto
implementation into efficient low-level code, which is not
so straightforward. Even though the implementations by_inv

(Listing 3) and by_inv_jump (Listing 6) are reifiable into Fiat-
Crypto’s internal language, they are both too large for this to
be feasible. The reason is that (1) the folds used are unrolled by
Fiat-Crypto, and there is currently no way to get Fiat-Crypto to
generate a proper loop, and (2) each function is fully inlined,
since Fiat-Crypto does support function calls. As a result, the
generated code would be many thousands of lines long and
the code generation would slow down prohibitively.

It is unclear if these limitations will be fixed in Fiat-
Crypto, in particular supporting function calls would require a

void inverse(WORD out[LIMBS], WORD g[SAT_LIMBS]) {

WORD precomp[LIMBS], h[LIMBS];
WORD f1[SAT_LIMBS], f[SAT_LIMBS], g1[SAT_LIMBS];
WORD v1[LIMBS], v[LIMBS];
WORD r1[LIMBS], r[LIMBS];
WORD d, d1, its;
uint8_t s;

MSAT(f);
ITERATIONS(&its);
PRECOMP(precomp);

for (int j = 0; j < LIMBS; j++) {
v[j] = 0;
r[j] = 0;

}
r[0] = 1;
d = 1;

for (int i = 0; i < its - (its % 2); i += 2) {
DIVSTEP(&d1, f1, g1, v1, r1, d, f, g, v, r);
DIVSTEP(&d, f, g, v, r, d1, f1, g1, v1, r1);

}
if (its % 2) {
DIVSTEP(&d1, f1, g1, v1, r1, d, f, g, v, r);
for (int k = 0; k < LIMBS; k++)
v[k] = v1[k];

for (int k = 0; k < SAT_LIMBS; k++)
f[k] = f1[k];

}

SIGN(&s, f);
MUL(out, v, precomp);

OPP(h, out);
SZNZ(out, s, out, h);

return;
}

Listing 7: handwritten reassembly of the Fiat-Crypto imple-
mentation of BY-INVERSION in Listing 3

richer internal language. On the other hand, these are also not
functions which Fiat-Crypto claims to be able to generate, so
we are probably pushing the limit for how large programs
should be synthesized. One way to fix this, would be to
export Fiat-Crypto implementations along with their proofs
of correctness to a richer language. Work in this direction has
started using bedrock2 [25].

We manage to generate code by splitting our implementa-
tion into two parts: The body of fold (i.e., a single divstep and
a single jumpdivstep respectively) and the functions outside
the loop. For the jumpdivstep version, we unfortunately also
had to split the body of the loop into three parts to make
reification and code generation succeed.As a result, one has
to reassemble the code manually in C; as depicted in Listing 7
and Listing 8. When doing this, one should be very careful
to replicate the structure of Fiat-Crypto implementation; as
depicted in Listing 3 and Listing 6. Then the correctness
theorem about the assembled program should still hold, though
you cannot prove this formally. That this has been done
correctly should be manually verified.

H. Implementing BY-INVERSION using half-delta JUMPDI-
VSTEPS

We also provide an implementation of a faster variant
of BY-INVERSION proposed by Wuille et al. [21]. It is



void inverse(WORD out[LIMBS], WORD g[SAT_LIMBS]) {

WORD precomp[LIMBS], h[LIMBS];
WORD f1[SAT_LIMBS], f[SAT_LIMBS], g1[SAT_LIMBS];
WORD v1[LIMBS], v[LIMBS];
WORD r1[LIMBS], r[LIMBS];
WORD d, d1, un, vn, qn, rn, its;
uint8_t s;

MSAT(f);
ITERATIONS(&its);
PRECOMP(precomp);

for (int j = 0; j < LIMBS; j++) {
v[j] = 0;
r[j] = 0;

}
r[0] = 1;
d = 1;

for (int i = 0; i < its - (its % 2); i += 2) {
FN_INNER_LOOP(&d1, &un, &vn, &qn, &rn, d, f, g);
UPDATE_FG(f1, g1, f, g, un, vn, qn, rn);
UPDATE_VR(v1, r1, v, r, un, vn, qn, rn);

FN_INNER_LOOP(&d, &un, &vn, &qn, &rn, d1, f1, g1);
UPDATE_FG(f, g, f1, g1, un, vn, qn, rn);
UPDATE_VR(v, r, v1, r1, un, vn, qn, rn);

}
if (its % 2) {
FN_INNER_LOOP(&d1, &un, &vn, &qn, &rn, d, f, g);
UPDATE_FG(f1, g1, f, g, un, vn, qn, rn);
UPDATE_VR(v1, r1, v, r, un, vn, qn, rn);

for (int k = 0; k < LIMBS; k++)
v[k] = v1[k];

for (int k = 0; k < SAT_LIMBS; k++)
f[k] = f1[k];

}

SIGN(&s, f);
MUL(out, v, precomp);

OPP(h, out);
SZNZ(out, s, out, h);

return;
}

Listing 8: handwritten reassembly of the Fiat-Crypto imple-
mentation of BY-INVERSION in Listing 6

the same as by_inv_jump but with slightly different con-
stants, see jump_divstep_hd and jump_divstep_precomp_hd

in Definitions.v. This variant starts with the value δ =
1/2 and runs for around 18% fewer iterations, as given by
the closed formula b(45907 log2(M) + 26313)/19929c for
inversion modulo M . While the authors provide a formal
correctness proof in the latest version of the repository for
the result, we understand this has neither been peer-reviewed
nor formalized. So, we take the extra precaution of validating
the lower number of iterations. We adapted their 256-bit Coq
proofs for our various parameter sizes and executed them with
two optimizations: using the native_compute reduction
machine in Coq, which cut execution time to 32 hours from
the initially reported 2.5 days; and extracted the proofs using
Coq’s built-in extraction mechanism [26] to OCaml native
binaries for another 2-factor reduction in time. Table I reports
on the time for running all proofs. At the moment, there is no
connection between our implementation in Fiat-Crypto and
this formalized proof. We would merely get an equivalence

between the Fiat-Crypto implementation and a reference Coq
implementation.

We do not prove properties about the half-delta BY-
INVERSION implementation, though one could easily adapt the
proofs of correctness of the other implementations to this one.
The reason we did not do this, is that in the end we would not
get an end-to-end proof, since the method we use to formalize
the reference implementation in Section V is not capable of
proving this lower bound of iterations, see [20] section 8.

TABLE I
TIME TAKEN TO RUN COMPUTATIONAL PROOFS TO VALIDATE THE

NUMBER OF ITERATIONS FOR VARIOUS PRIME MODULI SIZES IN THE
HALF-DELTA OPTIMIZATION USING DIFFERENT STRATEGIES.

Size (bits) Iterations Coq-native Coq-ExtOCaml
256 590 32.1 hours 14.7 hours
381 878 213.0 hours 100.5 hours
448 1033 634.3 hours 281.1 hours
521 1201 1226.7 hours 557.6 hours
575 1325 2671.5 hours 906.7 hours

I. Experimental results

We have generated and benchmarked field inversion in C
for primes commonly used in both ECC and PBC settings
of curve-based cryptography. For ECC, we chose the well-
known primes 2255 − 19, 2448 − 2224 − 1 and 2521 − 1
labeled by their named curves Curve25519, Curve448 and
NIST-P521 at respectively the 128-, 224- and 256-bit security
levels. For PBC, we took the base fields for Barreto-Naehrig
(BN) [7] and Barreto-Lynn-Scott (BLS) curves [27] at three
different security levels. These are the 254-bit prime used in
the now legacy 110-bit secure BN curves [10], [28], the 381-bit
prime for BLS curves with embedding degree 12 undergoing
standardization at 128-bit security [28], and the 575-bit prime
for BLS curves with embedding degree 48 proposed for 256-
bit security [29].

The generated code was integrated in the RELIC
toolkit [30], a cryptographic library containing several state-of-
the-art implementations of pairings. RELIC uses a combina-
tion of handwritten assembly (ASM) with higher-level C-code
and has set speed records for several of the PBC parameters.
Integrating the code within RELIC allowed convenient com-
parison between the efficiency of our approach and other field
inversion algorithms already implemented in the library. We
benchmarked the implementations on an Intel Skylake Core i7-
6700K CPU running at 4.00GHz, using GCC version 12.1 and
clang from LLVM 13. Numbers were obtained by computing
the average of 104 consecutive executions measured using the
cycle counter. TurboBoost and HyperThreading were disabled
for benchmarking stability.

We present our results in Table II and Table III. In both
tables, the first part has baseline implementations from the
GMP 6.2.1 library [31] used for reference. With the excep-
tion of Variable-time GMP, all operations are implemented



in constant-time. These timings set a lower bound (aggres-
sively optimized variable-time code) and upper bound (generic
constant-time approach) that illustrate how challenging im-
plementing efficient field inversion in constant-time can be
for general fields. The next part has timings for the FLT
approaches using exponentiation by p−2. For the ECC primes,
we took state-of-the-art timings from the literature in the
ASM case [32], [33] (FLT+ASM) and benchmarked the same
addition chains over field arithmetic generated by Fiat-Crypto
(FLT+Fiat). For PBC, we built and benchmarked RELIC
using both the existing ASM backends and field arithmetic
code generated by Fiat-Crypto. Since the same number of
multiplications are executed in FLT, the timings illustrate the
penalty of going from handwritten ASM to Fiat-Crypto for
the different parameters: an approximate slowdown of 1.2–3.0
when compiling using either clang or GCC.

The remaining rows in the tables show the performance
of our various implementations of BY-INVERSION. The most
interesting entries performance-wise are jumpdivstep and hd-
jumpdivstep, respectively the jumpdivstep implementation that
we generate automatically from Fiat-Crypto; and the half-deta
variant proposed later. These are also benchmarked in RELIC
in the PBC case using the provided ASM backends.

We compare performance against FLT due to its generality,
and acknowledge that performance speedups are due in part
to choice of algorithms. For ECC, the hdjumpdivstep imple-
mentations outperform the FLT implementations in the two
largest primes, showing that FLT approaches do not scale
well for larger parameters, with speedups over unverified
assembly (FLT+ASM) of 14% for Curve448 and 13% for
P521. For PBC, the speedup over FLT+ASM is visible in all
fields and grows to the range between 39%–49%. We also
outperform FLT over a verified multiplier (FLT+Fiat) by up to
a 2-factor in all cases, except Curve25519. When comparing
the fastest verified implementations of BY-INVERSION with
our implementation within RELIC using its unverified ASM
backends (RELIC+ASM), the performance difference ranges
from 2 to 5.3, a tolerable trade-off considering the correctness
guarantees provided by the Fiat-Crypto version.

Timings for Curve25519. We report detailed timings for
the prime 2255−19 generated in the unsaturated representation.
There are many applications for such an implementation, due
to the widespread adoption of Curve25519 and Ed25519 as
key exchange and digital signature algorithms [6], [34]. The
Bernstein-Yang paper reports 8,778 Skylake cycles for inver-
sion, later improved to 3,900 cycles8. An alternative approach
by Thomas Pornin [35] was benchmarked at 6,200 cycles in
our Skylake processor. In comparison, the performance degra-
dation of our best implementation is around 3.8 in comparison
to those results, but we note that these faster implementations
are not verified beyond exhaustive testing and/or they employ
handwritten assembly optimizations including vector instruc-
tions. We benchmarked inversion from the C+ASM verified
implementation of Curve25519 in EverCrypt [36] at 12,728

8https://gcd.cr.yp.to/software.html

Definition iterations b :=
if b <? 46 then (49 * b + 80) / 17
else (49 * b + 57) / 17.

Definition jump_iterations b mw :=
((iterations b) / (mw - 2)) + 1.

Definition by_inv_ref (f g : Z) :=
let bits := Z.log2 f + 1 in
let i := iterations bits in
let k := (f + 1) / 2 in
let pc := (k ˆ i) mod f in
let '(_, fm, _, vm, _) :=
iter its (divstep_vr_mod f) (1, f, g, 0, 1) in

let sign := if fm <? 0 then (-1) else 1 in
sign * pc * vm mod f.

Definition by_inv_jump_ref mw f g :=
let bits := (log2 f) + 1 in
let its := jump_iterations bits mw in
let total_iterations := its * (mw - 2) in
let k := (f + 1) / 2 in
let pc := (k ˆ total_iterations) mod f in
let '(_, fm, _, vm, _) := iter its (jump_divstep n mw f)

(1, f, g, 0, 1) in↪→
let sign := if fm <? 0 then (-1) else 1 in
sign * pc * vm mod f.

Listing 9: Implementation of BY-INVERSION in Coq

Theorem by_inv_spec f g
(f_bound : (21 < log2 f))
(g_bound : 0 < g <= f)
(fg_rel_prime : gcd f g = 1)
(f_odd : odd f = true) :

by_inv_ref f g * g mod f = 1.

Theorem by_inv_jump_spec mw f g
(f_bound : (21 < log2 f))
(g_bound : 0 < g <= f)
(mw_bound : 2 < mw)
(fg_rel_prime : gcd f g = 1)
(f_odd : odd f = true) :

by_inv_jump_ref mw f g * g mod f = 1.

Listing 10: Correctness of BY-INVERSION in Coq

cycles in the same machine, which gives us a small 15%
difference in latency. For reference, Fiat-Crypto is 21% slower
than Evercrypt according to the original benchmarks.

V. FORMALIZATION OF BERNSTEIN-YANG INVERSION

This section presents the formalization of Theorem 1, which
proves the correctness of the BY-INVERSION algorithm (Al-
gorithm 2). The development is available at https://github.com
/bshvass/by-inversion and paths in this section will be relative
to by-inversion/src/.

The two Coq versions of the algorithm are in Listing 9
(using DIVSTEPS and JUMPDIVSTEPS respectively) and the
main theorems of the development, which state that the Coq
algorithms are correct, are in Listing 10.

A. p-adic valuations

Since some theory of p-adic valuations was required for
the proof, we developed a small library for the basics of this
theory. This is in the file PadicVal.v. We implemented the
p-adic valuation by simply counting the number of times a
number is divisible by p and proved the following specification

Lemma pval_spec p a: a <> 0 -> 1 < p ->
(p ˆ+ (pval p a) | a) /\ ˜ (p ˆ+ (S (pval p a)) | a).

https://gcd.cr.yp.to/software.html
https://github.com/bshvass/by-inversion
https://github.com/bshvass/by-inversion


TABLE II
BENCHMARKS OF DIFFERENT APPROACHES FOR FIELD INVERSION OVER ECC FIELDS. NUMBERS IN BOLD ARE THE FASTEST FOR GROUP OF

IMPLEMENTATIONS IN THIS WORK OR RELATED WORK AMONG THE DIFFERENT COMPILERS FOR A CERTAIN CHOICE OF PRIME.

Curve25519 Curve448 NIST-P521
Verified clang gcc clang gcc clang gcc

Variable-time GMP No 3,098 3,314 4,724 5,799 6,814 7,128
Constant-time GMP No 75,895 76,300 186,637 186,186 257,935 270,085
FLT+ASM No – 9,301 ∗41,400 – – 53,828
FLT+Fiat Partially 13,638 11,778 49,867 46,103 78,565 55,139
This work+Fiat (divstep) Yes 69,942 72,583 189,542 248,685 230,221 308,478
This work+Fiat (jumpdivstep) Yes 17,797 20,394 43,529 53,186 57,894 67,928
This work+Fiat (hdjumpdivstep) Yes 14,652 17,166 35,549 43,401 46,747 54,708

(∗) The authors also report 35,000 for an AVX2 implementation, but we consider the 64-bit ASM implementation more fair for comparison.

TABLE III
BENCHMARKS OF DIFFERENT APPROACHES FOR FIELD INVERSION OVER PBC FIELDS. NUMBERS IN BOLD ARE THE FASTEST FOR GROUP OF

IMPLEMENTATIONS IN THIS WORK OR RELATED WORK AMONG THE DIFFERENT COMPILERS FOR A CERTAIN CHOICE OF PRIME.

BN-254 BLS12-381 BLS48-575
Verified clang gcc clang gcc clang gcc

Variable-time GMP No 3,291 3,270 4,724 4,716 7,495 7,504
Constant-time GMP No 75,639 76,168 146,157 146,083 270,631 271,168
FLT+ASM No 31,452 31,492 104,513 103,361 288,719 288,109
FLT+Fiat Partially 57,748 75,283 182,825 262,919 577,626 856,437
RELIC+ASM (divstep) No 87,456 87,584 167,724 164,459 335,864 337,641
RELIC+ASM (jumpdivstep) No 14,382 14,383 23,820 23,810 43,941 43,989
RELIC+ASM (hdjumpdivstep) No 9,777 9,873 16,377 16,183 31,963 27,911
This work+Fiat (divstep) Yes 80,018 120,486 172,497 296,065 390,773 671,370
This work+Fiat (jumpdivstep) Yes 23,406 30,572 62,555 75,412 180,023 220,852
This work+Fiat (hdjumpdivstep) Yes 19,733 25,836 52,628 63,237 147,402 180,530

i.e. that pval p a is the maximal power of p which divides
a. We also prove uniqueness such that the full specification
becomes

Lemma pval_full_spec p a v: a <> 0 -> 1 < p ->
pval p a = v <-> (p ˆ+ v | a) /\ ˜ (p ˆ+ (S v) | a).

We also define split p, which divides a number by the maximal
power of p which divides it evenly. We prove the specification

Lemma psplit_spec p a: a <> 0 -> 1 < p ->
a = (p ˆ+ (pval p a)) * psplit p a /\ ˜ (p | psplit p a).

B. The gcd algorithm

The formalization of the gcd algorithm using divsteps
(described in Appendix E in [20]) is in AppendixE.v. We prove
two main results:

1) The existence and specification of q(f, g) (Theorem E.1
in [20])

2) The correctness of the gcd algorithm assuming termina-
tion (Theorem E.3 in [20])

We implemented a function computing q(f, g) instead of
proving its existence abstractly. This allows us to use it in
the recursive definition of Ri (see Theorem E.2 in [20]). One

minor issue here is that to construct q(f, g) one needs to
compute the inverse of split2 g as a 2-adic number. Recall
that in the paper most theorems are stated over this larger ring.
This inverse is not necessarily an integer (e.g. 2 does not have
a multiplicative inverse in Z), but when constructing q(f, g)
one only needs the inverse to a finite precision. This is done
by computing the inverse of split2 g modulo 2i. We recall that
Coq’s default logic and type theory are constructive. This has
the advantage that all definable functions are actually computer
programs, and allows us to carry out proofs by computation. It
is possible to consistently add the axiom of excluded middle,
but as a result the computation may get stuck. We have decided
to use such non-computable real numbers. This allows us to
carry out all operations in the same type (R), as opposed to
silently coercing (embedding) rational numbers into the real
numbers. For example, the expression f div2 g is rational, but
we give it type R:

Definition div_2 f g : R := IZR (q f g) / IZR (2 ˆ+ ord2 g).

where IZR is the embedding from the Z to R (see also Theorem
E.1 in [20]).

A constructive solution could have been to use a library of
algebraic, or constructive, real numbers.



C. Complexity analysis

The formalization of the termination proof of the gcd
algorithm is in AppendixF.v. This part of the proof is the
content of Appendix F in [20]. Here, their proof becomes
more complicated and one theorem from [20] depends on the
termination of a SAGE program (see theorem F.22 and figure
F.23 in [20]).

The mathematical community is ambivalent about such
‘computer proofs’; see, for example, the discussions around
the 4-color theorem [37] and Kepler’s conjecture [38]. A
popular solution is to carry out the computation inside a proof
assistant. Although Coq has become much faster in recent
years, e.g. due to addition of native compilation [39], this
computation is still beyond the scope of what can be done
in Coq in reasonable time. Instead, we use Coq’s extraction
mechanism [26] to translate the Coq program to a related
program in OCaml. This slightly extends the trusted computing
base. That is, to trust formalization of the proof is correct, one
also has to trust the unverified extraction mechanism. However,
possible bugs in extraction are likely to be orthogonal to
possible issues in [20].

The operator norm. To prove termination of the gcd algo-
rithm, we need to prove that the operator norm of products of
transition matrices is bounded by an exponentially decreasing
sequence of numbers. In particular, we have to introduce the
operator norm of matrices; we only define it for 2 by 2 matrices
since this suffices for the proof. To this end, we use the
following formula

Definition mat_norm (m : mat) :=
let '(m11, m12, m21, m22) := m in
let a := (m11 ˆ 2 + m12 ˆ 2)%R in
let b := (m11 * m21 + m12 * m22)%R in
let c := (m11 * m21 + m12 * m22)%R in
let d := (m21 ˆ 2 + m22 ˆ 2)%R in
sqrt ((a + d + sqrt ((a - d) ˆ 2 + 4 * b ˆ 2)) / 2).

To prove that this definition enjoys properties such as |Mv|2 ≤
|M ||v|2 and |MN |2 ≤ |M |2|N |2, we prove and use the
spectral theorem for 2 by 2 real matrices. This is the content
of Spectral.v. See also theorem F.11 in [20] (note that by
taking this formula as our definition, we do not need to prove
theorem F.11).

The file Spectral.v only contains lemmas pertaining to
the spectral theorem and the norm of matrices over reals.
Our formalization of 2 by 2 matrices over general rings is
in Matrix.v. This theory is built on top of a small theory
of algebraic structures, which is the content of Hierarchy/.
This library is in the style of math-classes [40], although in
the interest of simplicity we do not depend on it. For similar
reasons, we did not reuse [41]. We used automation in this
development to avoid tedious algebraic proofs. The tactics
auto_mat and inversion_mat use the decision procedure ring

over types declared as algebraic rings to solve most equational
proofs about matrix operations.

Bounding the operator norm. Next, the proof proceeds
by computing a bound on the operator norm of products of
matrices of a particular form, namely

Definition M (e : nat) (q : Z) :=
[ 0 , 1 / (2 ˆ e) ; - 1 / (2 ˆ e) , q / (2 ˆ (2 * e)) ].

The bound is given by theorem F.16 in [20], which is
formalized in AppendixF.v. The formalized proof is a little
laborious, since we did not find any simple tactics for manip-
ulating expressions involving square roots (sqrt). Our general
strategy is to reduce an expression to an expression without
square roots by isolating and squaring appropriately. These
two methods do not, however, suffice in general (consider
e.g.
√
5 ≤ 1 +

√
2 +
√
3). A general solution would be to

construct the ring of integers extended with square roots as a
subring of the real closed field extending the rationals and use
advanced decision procedures there [42].

The bounding sequence. Next, we define the number
sequence αn which will bound the operator norms. Using this
we prove three main facts
• If a particular subset of the matrices M(e, q) are bounded

by αn, then all such matrices are bounded by αn (The-
orem F.21 in [20]).

• That all matrices in this particular subset are bounded by
αn (Theorem F.22 in [20]).

• That the gcd algorithm terminates (Theorem F.26 in [20]).
Now we use Coq’s extraction mechanism to prove Theorem
F.22, as discussed at the beginning of this section. The
development of this computational proof is the contents of
Comp1. The file Comp1/Mem.v contains the program to be
extracted (depth_first_verify) which utilizes memoization
to achieve performance. Memoization complicated the formal-
ization quite a bit, and we split the proof as follows:

1) Proving that the memoized program terminates (using
extraction).

2) Proving the memoized program equivalent to a non-
memoized program (this is in Comp1/Mem.v).

3) Proving that if the non-memoized program terminates,
then theorem F.22 follows (this is the content of
Comp1/NoMemNew.v).

Running the extracted program terminates9 and outputs the
same result as reported in [20]. The axiom which we add is
comp1_theorem in Comp1/Mem.v.

The other proofs in this section were more straightforward
as they mostly combine previously established theorems (about
matrices and about the Rj sequence from AppendixE.v).

We developed a small “big operator” library [43] to reason
about the big multiplications (

∏
) and big additions (

∑
), as

required in theorem F.21. Like our theory of matrices, it is built
on top of Hierarchy.v. The same reason for developing our
own matrix library applies here, we wanted to have a greater
degree of control over the implementation.

D. Relating the gcd algorithm and divstep

We finally prove Theorem 1 in Section11.v by proving
and utilizing the connection between the gcd algorithm and
iterating divstep in AppendixG.v. We have also included an

9In 332 minutes using OCaml 4.11.1 on a Intel Coffee Lake Core i7-9750H.



implementation of the inversion algorithm, Algorithm 2, in
BYInv.v with an accompanying correctness proof. Note that
we prove a slightly specialized version of Theorem 1: We
require that the maximum bitwidth of f and g to be at least
21. This suffices for all cryptographically interesting primes
and, in particular, the primes which we have benchmarked in
Section IV-I.

A formal proof of correctness for inputs of bounded size
exists [21]. Their approach is different from ours, in that they
generate bounds and proofs of correctness from bounds on
the inputs (which the caller provides). They achieve this by
using a new proof strategy using convex hulls of all possible
branches in a sequence of divsteps. Their proofs, like ours, use
very heavy computation based on a program written in Coq.
Unlike ours, the time it takes for their algorithm to finish is
(barely) feasible within Coq.

E. Assumptions and trusted computing base (TCB)

Fiat-Crypto is axiom free but the printer from the intermedi-
ate language to C is not verified, and thus it has to be trusted.
The formalization of the proof of BY-INVERSION depends on
a few axioms; these are printed at end of building the devel-
opment. The first four are standard axioms from the classical
reals in the standard library, which are needed because Coq’s
logic is constructive: sig_not_dec (axiom of limited omni-
science), sig_forall_dec, functional_extensionality_dep
(functional extensionality) and classic (law of excluded
middle). The last axiom comp1_theorem is the assertion that
the computation of the term depth_first_verify terminates
and yields Some number (as described in Section V-C). We
verify this last axiom using extraction to OCaml, adding
the extraction mechanism of Coq to the TCB. This is a
small, but standard, extension of the TCB, similar to Coq’s
native_compute [39], which also uses the ocaml compiler
after a translation of a Coq term to an OCaml program. The
precise term is

comp1_theorem : depth_first_verify = Some 3787975117

VI. CONNECTING THE FORMALIZATION OF
BY-INVERSION AND FIAT-CRYPTO

Having proven both Listing 2 and Listing 10 we can
combine them and prove that Fiat-Crypto does in fact compute
the inverse (wrt. the modular operations in Fiat-Crypto).

However, since the theorems are proven under different
developments, we have to copy the correctness theorem List-
ing 10 to the Fiat-Crypto development, and include it as an
assumption in our assertions. We hesitate to merge the two
libraries, as it would quite a large dependency to the already
substantial Fiat-Crypto library – however the propositions are
identical as can be inspected (compare Ref.v in the Fiat-
Crypto repository to BYInv.v in the by-inversion repository).

Converting representations. There is a technical caveat
when comparing the input of by_inv to its output: The function
by_inv assumes that its input g is represented as a multi-limb
number in two’s complement, and it ensures that its output

is in either Montgomery or unsaturated Solinas representation
(depending on the implementation). Usually, you will want
both input and output to be in the appropriate representation
for modular arithmetic (Montgomery/Solinas). Thus, to use the
function, we have to convert between representations first. We
will write to_tc for this conversion (to two’s complement).

Word by word Montgomery. For multi-limb numbers in
Montgomery form this function is simply zero-extending by a
single limb if necessary, i.e.

Definition to_tc := extend_to_length mont_limbs tc_limbs.

where extend_to_length is provided by Fiat-Crypto,
mont_limbs is the amount of limbs in Montgomery representa-
tion and tc_limbs is amount of limbs needed for representing
in two’s complement. Recall that we need 2 more bits to
represent m in two’s complement, so this will just be the
identity, unless m’s is within 2 bits of a multiple of the
machine word size. Using this, we can prove the theorem

Lemma by_inv_correct g
(g_length : length g = mont_limbs)
(g_nonzero : eval g <> 0)
(g_valid : valid g)
(spec : by_inv_spec m (eval g)) :

eval (mulmod (by_inv (to_tc g)) g) mod m
= 2 ˆ (machine_wordsize * mont_limbs) mod m.

by applying the general lemmas about mulmod and the cor-
rectness theorem of by_inv (Listing 2). The valid predicate
on g asserts that the evaluation of g is less than m and that
it is in the unique saturated representation. This is required
for all Montgomery operations and is the responsibility of
the caller. Note that g is not invertible if g is zero and that
2 ˆ (machine_wordsize * mont_limbs) mod m is indeed the
identity in the Montgomery domain.

We prove an identical theorem about by_inv_jump in
BYInvJump.v.

Unsaturated Solinas. For the unsaturated representation,
we have to be a bit more careful, since the representation is
not unique. If we just naively convert to two’s complement,
we might get an “overflow” error, where a positive integer
incorrectly becomes interpreted as negative. We therefore
utilize the freeze function provided by Fiat-Crypto to get
a canonical representation, which can safely be converted to
two’s complement. The definition becomes

Definition to_sat mw num den n tc_limbs m g :=
let g := freeze (weight num den) n (ones mw) m g in
convert_bases num den mw 1 n tc_limbs g.

Here num/den is the base of the unsaturated representation
and n is the amount of limbs, such that convert_bases con-
verts from the unsaturated representation to two’s complement,
which has base mw/1 and limbwidth tc_limbs, as expected.
We are then able to prove the theorem

Lemma by_inv_correct g
(g_length : length g = n)
(g_nonzero : eval g mod m <> 0)
(g_bounds : 0 < eval g < 2 * m)
(spec : by_inv_spec m (eval g mod m)) :

eval (carry_mulmod (by_inv (to_tc g)) g) mod m = 1.



again by combining previous results. The bound requirements
on g are needed for the correctness of freeze. They are the
responsibility of the caller, but can always be met by calling
the unsaturated Solinas function carrymod, which ensures that
its output is within these bounds.

Additional constraints on m. Note that we need
some assumptions about the prime m in addition to the
ones already required by Fiat-Crypto. As mentioned in
Section IV, we need that m < 2 ˆ (machine_wordsize *
tc_limbs - 2) to ensure that we can interpret m cor-
rectly in two’s complement. Secondly, we need that 21 <
log2m, which is true for all cryptographic use cases. Fi-
nally we need to prove that the amount of times we it-
erate in the implementations of BY-INVERSION do not re-
sult in overflows. The concrete bounds are in BYInv.v and
BYInvJump.v, named iterations_bounds. These constraints
are all checked before code generation (see check_args

in UnsaturatedSolinas.v and WordByWordMontgomery.v, in
src/PushButtonSynthesis).

VII. RELATED WORK

The verified synthesis approach adopted by Fiat-Crypto
is not the only possibility for verifying implementations of
cryptographic algorithms. An alternate approach consists of
writing optimized code by hand in a low-level language
embedded in a proof assistant.

EverCrypt [36] is one example of this approach that pro-
vides a formally verified cryptographic provider, i.e., a collec-
tion of verified cryptographic implementation together with an
API. It builds on two other projects HACL* [22], which is a
collection of cryptographic protocols implemented, specified
and verified in a subset of the F* language (Low*) and
compiled to C, and ValeCrypt which is a collection of crypto-
graphic primitives implemented in an assembly language and
verified using the Vale tool [44]. EverCrypt does not generate
code for new primitives, but it supports a large amount of
cryptographic primitives including AES, SHA-3, MD5 and
implementations of elliptic curves as well as signature and
key exchange protocols on top of these. Notably, EverCrypt
does not support curves for pairing-based cryptography. Yet
another approach is followed by Jasmin [45], which provides
a higher level assembly language and a verified compiler
to Intel assembly. Jasmin has been used to verify a high-
performance SHA3 implementation [46], among many other
primitives [47].

There are differences in the guarantees of the tools men-
tioned. Coq is foundational in that it reduces all proofs to
the axioms of mathematics. Neither Easycrypt nor F* are
foundational, even though they were carefully designed, they
depend on an unverified reduction to unverified SMT-solvers.
Moreover, Easycrypt does not include evaluation of functions.
We are not aware that F* would be able to complete the
computation that Coq cannot.

VIII. FUTURE WORK

We can extend our work in several directions. In one angle,
we can target embedded platforms running over ARM or
RISC-V and study the performance trade-offs in those systems.
In another angle, we can extend the scope to other arithmetic
layers employed in many other cryptographic protocols based
on pairings. Fiat-Crypto can be extended with the general
construction of field extension, by implementing polynomial
arithmetic. Since these polynomials would have coefficients in
the finite fields currently generated by Fiat-Crypto, one would
have to be able to generate representations of these, e.g. as
arrays of integers. It is unclear whether or not Fiat-Crypto is
geared for this, but if it is, then the implementation should be
no more difficult than what is presented in Section IV.

Going even further, one could extend Fiat-Crypto to gen-
erate elliptic curve arithmetic directly. However, Fiat-Crypto’s
low-level language does not include function calls and these
are necessary to implement elliptic curve operations. A so-
lution could be to the use bedrock2, a low-level language
embedded in Coq with links to the Fiat-Crypto library. This
has been pursued in [25].

After generating elliptic curve arithmetic, we can go yet
another step up the abstraction layer and implement bilinear
pairings over these curves. Bilinear pairings are maps from a
product of curve groups of prime order to the multiplicative
subgroup of an extension field. At this point we would have
all necessary primitives to implement pairing-based protocols.
This has the added complexity of requiring a formalization
of bilinear pairings in Coq. Formalizations of elliptic curves
in Coq already exist, e.g. in [48] and in the Fiat-Crypto
library, but no formalized implementation of a pairing has been
publicly developed.
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[33] A. Faz-Hernández, J. C. López-Hernández, and R. Dahab, “High-
performance implementation of elliptic curve cryptography using vector
instructions,” ACM Trans. Math. Softw., vol. 45, no. 3, pp. 25:1–25:35,
2019.

[34] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-
speed high-security signatures,” J. Cryptogr. Eng., vol. 2, no. 2, pp.
77–89, 2012.

[35] T. Pornin, “Optimized binary gcd for modular inversion,” Cryptology
ePrint 2020/972, 2020.

[36] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet,
N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. M. Winter-
steiger, and S. Z. Béguelin, “Evercrypt: A fast, verified, cross-platform
cryptographic provider,” in S& P. IEEE, 2020, pp. 983–1002.

[37] G. Gonthier, “Formal proof–the four-color theorem,” Notices of the AMS,
vol. 55, no. 11, pp. 1382–1393, 2008.

[38] T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, H. Le Truong,
C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen et al., “A formal
proof of the kepler conjecture,” in Forum of Mathematics, Pi, vol. 5.
CUP, 2017.

[39] M. Boespflug, M. Dénès, and B. Grégoire, “Full reduction at full
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