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Abstract. Verifiable encryption (VE) is a protocol where one can provide assurance
that an encrypted plaintext satisfies certain properties, or relations. It is an important
building block in cryptography with many useful applications, such as key escrow,
group signatures, optimistic fair exchange, and others. However, the majority of
previous VE schemes are restricted to instantiation with specific public-key encryption
schemes or relations.
In this work, we propose a novel framework that realizes VE protocols using zero-
knowledge proof systems based on the MPC-in-the-head paradigm (Ishai et al. STOC
2007). Our generic compiler can turn a large class of zero-knowledge proofs into secure
VE protocols for any secure public-key encryption scheme with the undeniability
property, a notion that essentially guarantees binding of encryption when used as a
commitment scheme.
Our framework is versatile: because the circuit proven by the MPC-in-the-head
prover is decoupled from a complex encryption function, the work of the prover is
focused on proving the encrypted data satisfies the relation, not the proof of plaintext
knowledge. Hence, our approach allows for instantiation with various combinations
of properties about the encrypted data and encryption functions. We then consider
concrete applications, to demonstrate the efficiency of our framework, by first giving
a new approach and implementation to verifiably encrypt discrete logarithms in any
prime order group more efficiently than was previously known. Then we give the
first practical verifiable encryption scheme for AES keys with post-quantum security,
along with an implementation and benchmarks.
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1 Introduction
A verifiable encryption (VE) scheme is a public-key encryption scheme where one party
(called a prover, P) can encrypt data w with a public key pk (of which the corresponding
decryption key sk is held by the receiver, R), and convince a third party (called the verifier,
V) that the data satisfies a relation R, i.e., R(x, w) = 1 with respect to a public statement
x. At a very high-level, an (interactive) VE scheme should satisfy the following security
properties [CD00]:

• Completeness: If P, V and R are honest then V accepts after interacting with P,
and R uses sk to obtain a plaintext w satisfying R(x, w) = 1.

• Zero knowledge: As V does not have the decryption key sk, she learns nothing
about the plaintext from interacting with P.

• Validity: If V accepts after interacting with a prover P∗, R is guaranteed to obtain
a plaintext w such that R(x, w) = 1, even if P∗ is malicious.

Our Motivating Example for verifiable encryption is the verifiable backup problem,
where a cryptographic device (such as a hardware security module (HSM)) or cloud service
(such as [AWS22a,AWS22b,AKV22,GK22]) that is entrusted to store key material must
securely export it for backup in case of hardware failure. These backups must be encrypted
(or “wrapped”) with the public key of another device, so that the plaintext keys are never
exposed outside of the secure hardware [YC22,PK15]. The administrator of the device,
responsible for creating backups, does not get assurance that the backup is well-formed,
and will import successfully on the new device. She could try the import operation, but
this may be expensive (e.g., if the backup device is in a separate facility), or risky (as it
spreads the key around more than necessary). This latter risk is well illustrated in the
case of cloud-based HSMs, where testing a backup by importing a key into a secondary
cloud provider greatly expands the trust boundary.

Even if the import operation succeeds, the admin should still test that the imported
private key corresponds to the expected public key, which typically requires using it to
create a test signature or decryption. This is undesirable for two reasons: it adds extra
use(s) of the key which must be logged for auditing, and it may also involve using the key
for a different purpose than it was created for. Ideally, the exporting device could prove
to the administrator that the ciphertext is a well-formed encryption under the receiving
device’s public key, and further, that the plaintext is a private key corresponding to a
particular public key, e.g., the device claims “I encrypted the ECDSA signing key x for a
public verification key y” and the administrator should be convinced that y = gx without
access to the plaintext x. If the exported key is a symmetric key, then the device should
prove that the plaintext is a key consistent with a commitment to the key, or a ciphertext
or MAC created with the key. Verifiable encryption is a natural solution to this problem.
Verifiable Encryption Despite being introduced decades ago by Stadler [Sta96] and
becoming a well-defined primitive with a relatively general solution in the work of Camenisch
and Damgård [CD00], constructions suitable for the verifiable backup problem are limited.
There are multiple challenges. We need generality, to allow multiple types of relation to
be supported, not only a single one (as in [CS03,NRSW20,LN17]). Our use case requires
verifiable encryption of many types of keys (potentially all the types here [PK22]), and at
least ECC, RSA, and AES (the common types supported by cloud providers [AWS22a,
AKV22,GK22]). We also want to minimize the additional assumptions required, ideally
not requiring any new assumptions; for example if an AES key is to be exported, encrypted
under an RSA key, we should not need to make assumptions in elliptic curve groups
(perhaps with a pairing), as might be the case if certain SNARK proof systems were used for
verifiability [Gro16,MBKM19,BBB+18,LCKO19]. We also want flexibility in the receiver’s
public-key encryption (PKE) scheme, again to minimize new assumptions, but also to
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support security goals like threshold decryption or post-quantum security, rather than have
a VE scheme that dictates the PKE the receiver must use (as in [CS03,NRSW20,LN17]).

While any PKE can be made verifiable using a sufficiently general NIZK proof system
(e.g., [BFM88,Mic00,GOS06]), the cost will be high. First, feasibility of VE for an arbitrary
relation R is trivial once general-purpose NIZK for NP is given: attach a NIZK proof for
modified relation R′ =

{
(ct, x), (pt, r)) : R(x, pt) = 1 ∧ ct = Enc(pt; r)

}
. In general, the

main technical challenge in constructing VE is to minimize the cost of proof-of-plaintext-
knowledge (PoPK) “ct = Enc(pt; r)” while supporting a large class of relation R; the
naive approach would either require (1) re-designing a special encryption scheme for which
an efficient PoPK Σ-protocol exists, or otherwise (2) proving correct evaluation of the
circuit Enc, which would be costly depending on the encryption scheme (e.g., Kyber-KEM
standardized by NIST [SAB+20] involves both algebraic operations over a cyclotomic
ring and hashing). In summary, we desire a construction that is as general as possible,
introduces no new assumptions, is versatile enough to support as many encryption schemes
as possible, and is performant enough to be practical.

There are multiple applications of verifiable encryption in the literature. Some early
examples include publicly verifiable secret sharing [Sta96], group/ring signatures [CD00,
BSZ05,BKM09] and verifiable encryption of signatures for optimistic fair exchange [ASW98,
Ate99], and more recent applications include blockchains [DHMW23, CDK+22]. Key
escrow [YY98,PS00], where parties encrypt their private key to a trusted escrow authority,
can be achieved with verifiable encryption, since it becomes possible for other parties
on the network to ensure that the correct key has been escrowed. A common theme is
identity escrow (or revokable anonymity) in privacy systems and group signatures, where
an anonymous party encrypts their identity for an authority, who can de-anonymize them
under certain circumstances. In cryptographic voting systems, voters often encrypt their
votes and prove that their selection is in a set of valid choices (e.g., in {0, 1} to encode a
“yes” or ”no” vote). The earliest paper with this idea predates the literature on verifiable
encryption [CF85] and VE is still used in cryptographic voting systems today, see for
example [EG21,CCFG16].

ZK from MPC The MPC-in-the-head (MPCitH) paradigm [IKOS07] is a way to create a
zero-knowledge (ZK) proof for a relation R, given a secure multiparty computation protocol
(MPC) to compute R. Some of the advantages of this approach make it well suited to
our verifiable encryption problem. First, MPC protocols are very flexible, so that we can
instantiate ZK proofs for many choices of R, typically expressed as binary or arithmetic
circuits. The paradigm extends beyond circuits as well: we give an MPCitH protocol to
prove knowledge of a discrete logarithm, and use our results to verifiably encrypt discrete
logs.

Second, if the MPC protocol is information theoretically secure, converting it to a
ZK proof only requires a secure commitment scheme, which can be instantiated with a
cryptographic hash function, so that the proof system requires minimal assumptions, and
is post-quantum secure. Finally, the performance of MPCitH proof systems in terms of
prover and verification costs and proof sizes are practical, and have been steadily improving
as has been demonstrated in the area of post-quantum signatures. To use the AES-128
circuit as an example, proof sizes went from 209 KB [GCZ16] to 32 KB [DDOS19] to
13 KB [BDK+21] to 9.9 KB [KZ22] in the past six years, and the running time of the
prover and verifier is below 20ms (see the implementation benchmarks in [KZ22]). Taken
together, these properties will allow us to construct verifiable encryption schemes that are
very general, make minimal assumptions, achieve post-quantum (PQ) security and are
efficient enough for practical use.
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1.1 Our Contributions and Techniques
We outline our four main contributions and then discuss some of the techniques used in
the paper.
Generic compiler for MPC-in-the-head-based VE Our results apply to a broad class
of MPCitH proofs: those that can be viewed as an interactive oracle proof (IOP). The
original class from [IKOS07] is captured by the IOP framework as well as many more recent
MPCitH proofs aimed at concrete efficiency, such as [GMO16,KKW18,BN20,BDK+21,
BD20,Beu20,DOT21]. In Section 3 we give a compiler that takes a proof protocol from the
MPCitH-IOP class and converts it into a verifiable encryption scheme, denoted MPCitH-VE.
Analogous to a series of work on black-box commit-and-prove [GLOV12,KOS18,Kiy20], our
compiler treats PKE in a black-box manner, avoids dedicated proof-of-plaintext-knowledge,
and is thus compatible with the majority of existing schemes. Unlike these feasibility
results, our result focuses on concretely efficient instantiations and compatibility with
typical relations and (possibly imperfectly correct) encryption schemes relevant to the
verifiable key backup problem. Compared to the naïve approach that generates proof-of-
plaintext-knowledge by representing the encryption function as an arithmetic circuit, our
approach generally offers lower prover complexity while increasing the ciphertext sizes due
to the number of MPC parties and parallel repetitions. With our approach the prover
complexity is dominated by the cost of generating MPCitH-based ZK proof for relation R
satisfied by the VE plaintext. With recent progress in the MPCitH literature, a VE prover
can perform this task with low complexity for many types of relations such as the AES
circuit.
Methods for compressing ciphertext In our compiler, the ciphertext size is independent
of the relation R, but does depend on the witness and the number of parallel repetitions
required for soundness. To narrow this gap, in Section 4 we give two methods that V can
use to compress the VE ciphertexts. The first, called the random subset method, is very
simple, incurs no computational overhead, and can reduce ciphertext size by a factor of
three when the number of parallel repetitions τ is large. If τ is already small, it is also
possible to reduce ciphertext size by increasing τ , which might be desirable depending on
the application.
The second approach, called the equality proof method, is optimal as it achieves constant
size ciphertexts, O(|w|) (provided PKE has constant ciphertext expansion). However,
the other costs of the resulting VE scheme (such as basic encryption and decryption
operations) increase significantly, and this approach limits the class of compatible PKE to
the homomorphic ones for which an efficient equality proof exists. See Appendix G for
further details. We highlight improving compression as an interesting direction for future
work.
Concrete Instantiation and Implementation In Section 5 we apply our transform to
encrypt different types of keys, and quantify performance. We first give a new proof of
knowledge and a VE scheme for discrete logarithms (DL) based on a new non-interactive
ZK proof called distributed key generation in the head (DKG-in-the-head). The prover
emulates a protocol where parties run a DKG protocol to compute y = gx. Since the DKG
protocol only needs to have passive security and a broadcast channel is available for free in
the MPC-in-the-head setting, our proposed protocol is extremely simple, requiring only a
single round of interaction between parties. We also give a variant of this scheme based on
a robust DKG protocol, that has faster verification and does not require parallel repetition
for soundness, and show that our DKG-based protocols may also be used to verifiably
encrypt RSA keys and plaintexts.

As discussed earlier, one of our goals is to design versatile VE suitable for wrapping a
variety of keys with arbitrary PKE schemes, while benefiting from modern MPCitH ZK
proofs which have more complex structures than Σ-protocols. To verifiably encrypt AES
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keys, we apply our transform to the Banquet [BDK+21] and Helium [KZ22] ZK proofs,
where P proves knowledge of an AES key used to generate a public plaintext/ciphertext
pair, i.e., it is specialized for the relation R =

{
((ct, pt), K) : ct = AESK(pt)

}
. Prior to

this work, there has been no practical VE scheme for AES keys, which may find interesting
applications in the post-quantum setting when instantiated with quantum-resilient PKE.

We implement all three of these schemes, along with the scheme from [CD00] for
comparison, and give benchmark results.1 Overall we demonstrate that our new schemes
are efficient and practical. In the DL setting, we find that the DKG-based schemes each
offer a different tradeoff, e.g., allowing one to choose a scheme with short ciphertexts (1
KB), or fast verification (2ms on a 3.6GHz CPU) at the expense of lower performance
in one of the other metrics. We conclude that none of the schemes in our comparison is
strictly better than the others across all performance metrics. However, we believe the
range of tradeoffs our parameters can offer may be useful depending on the application
scenario. For our AES implementation we pair Helium with the post-quantum encryption
algorithm Kyber [SAB+20], and we show that an AES key can be verifiably encrypted
under a Kyber public key with 22 KB proofs, 13 KB ciphertexts, prover and verifier times
of 68 ms and decryption times of 2ms. For perspective, proofs of plaintext knowledge for
lattices generally require proofs that are tens to hundreds of KB in size [GHL+22, Table 1].
Revisiting the Camenisch-Damgård VE Construction We show that the existing
verifiable encryption transform of Camenisch and Damgård [CD00] fails to retain the validity
property when instantiated with IND-CPA PKE schemes that are only statistically correct,
as opposed to perfectly correct. We describe concrete attacks in which a malicious prover
can convince the verifier to accept a ciphertext that decrypts to random data unrelated
to R. Finally, we show that by additionally assuming the undeniability property their
construction can also be securely instantiated with statistically correct PKE schemes.
Our Techniques The output of our compiler is MPCitH-VE, a public-coin three-round
interactive protocol, which can be made non-interactive using the standard Fiat-Shamir
transform [FS87]. The first input to our compiler is a protocol MPCitH-IOP, this ab-
straction captures several three-round protocols, including [IKOS07], ZKBoo [GMO16],
ZKB++ [CDG+17], and our new DKG-in-the-head protocol. We also discuss using the
same ideas to compile IOP versions of KKW [KKW18], Banquet [BDK+21], Limbo [DOT21],
Ligero [AHIV17], and Shamir secret sharing-based MPCitH [FR23].

The other input to the compiler is a public key encryption (PKE) scheme, such as
Elgamal, RSA-OAEP or PQ-secure options like Kyber [SAB+20] or FrodoKEM [NAB+19].
We define and prove the requirements the PKE must have to ensure MPCitH-VE is secure.
In short, ciphertexts created by the PKE must be a secure commitment (both hiding
and binding) to the plaintext. Hiding is provided by CPA security (security against
chosen-plaintext attacks), and for binding, we define a new property called undeniability,
which is trivial for PKE schemes with perfect correctness, but may be absent otherwise.
Notably, lattice-based PQ schemes are usually not perfectly correct. In Appendix B we
prove that the Fujisaki-Okamoto transform [FO99,FO13,HHK17] (and simpler variants of
it) can be used to upgrade any statistically correct PKE scheme to obtain undeniability,
making our construction compatible with many existing schemes. An implication is that
encryption schemes using the FO transform are secure commitment schemes, which might
be of independent interest.

Our approach can easily instantiate VE with various combinations of R and PKE,
since the circuit for R is decoupled from the encryption function of PKE. The prover’s
work is focused on proving the statement R about the encrypted data, not on the proof of
plaintext knowledge. Proof of plaintext knowledge is achieved with existing mechanisms
in the MPCitH proof. To illustrate the core idea of our transform, we sketch an example
VE scheme based on the ZKBoo proof system [GMO16]. The original ZKBoo protocol

1Our implementations are available at https://github.com/akiratk0355/verenc-mpcith

https://github.com/akiratk0355/verenc-mpcith
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for relation R(x, w) := (f(w) =? x) (where f is typically a one-way function) proceeds as
follows: the prover P first distributes to three parties additive shares (w1, w2, w3) of the
secret witness w. Then P runs an MPC protocol computing R “in the head”, to produce
the view of each party, i.e., a string consisting of the input share, output, communication,
and random tape. P sends commitments to the views as its first message, and the verifier
V returns a challenge ī ∈ {1, 2, 3}, indicating party ī’s view is supposed to remain secret.
P then responds with the views of party i ̸= ī and commitment randomness. V accepts if
the commitments are correctly opened and the views agree with a correct run of the MPC.

Notice that one can immediately recover the witness once the commitment to party ī is
revealed. Our main observation is that a technique similar to straight-line extractable ZK
proofs gives rise to a secure VE scheme: by replacing commitments in the original proof
system with public-key encryptions, the prover P now sends three ciphertexts containing
witness shares: Ci ← Enc(pk, wi) for i = 1, 2, 3 (and the remaining viewi can be committed
with a cheaper hash-based commitment). The verifier still learns nothing about the
encrypted data w since one of its additive shares is kept encrypted. By contrast, the
receiver R with knowledge of the decryption key sk can decrypt the unopened ciphertext
Cī (or commitment) to obtain the remaining share wī, from which the plaintext w can
be recovered using the shares (wi)i ̸=ī revealed in the public transcript. As usual, by
applying the Fiat–Shamir transform [FS87], the above interactive protocol can be turned
into a non-interactive VE scheme in the random oracle model, as we formally discuss in
Appendix C.

While the idea of the construction is relatively simple (given the machinery of MPCitH),
and its analysis may be straightforward for limited types of MPCitH proofs, the challenge
is in defining and analyzing the compiler so that it is practically useful. Recent highly
optimized, concretely efficient MPCitH proofs deviate significantly from the simpler
IKOS/ZKBoo [GMO16, IKOS07] example given above for performance (e.g., they have
more than three rounds, use broadcast channels, preprocessing, open more than two parties,
etc.). With our comprehensive approach, most of the literature describing MPCitH proof
systems can now be used for VE in an efficient way – arguably efficient enough for practice,
as we demonstrate with AES and DL.

1.2 Related Work

Camenisch–Damgård transform Although our generic transform is similar in spirit to
that of [CD00], there are some differences. Our starting point is any MPC-in-the-head
IOP with the straight-line extractable property, while [CD00] is focused on 2-special
sound Σ-protocols with 1-bit challenge space (though it seems possible to generalize their
transform to k-special sound protocols for any k as well). Although one can naïvely
apply [CD00] to some MPC-in-the-head protocols with k-special soundness, such as ZKBoo
and IKOS, our method directly modifies the committing function and thus leads to better
communication complexity. Moreover, [CD00] does not apply to more efficient MPC-in-
the-head constructions, including KKW and Banquet: because the challenge spaces of these
protocols are not limited to party indices the notion of special soundness is not well-defined.
In contrast, our transform relies on straight-line extractability, and therefore applies to
KKW and Banquet as well.
Camenisch–Shoup scheme Camenisch and Shoup [CS03] propose protocols for efficient
verifiable encryption and decryption of discrete logarithms. However, it only works for
discrete logarithms in a group where Paillier’s decision composite residuosity (DCR)
assumption holds, and the PKE is fixed to (a variant of) Paillier’s scheme as well. The
scheme is therefore not suitable for encrypting ECC, RSA or AES keys, one of our
motivating examples. In theory it is possible to prove that the plaintext of a Camenisch-
Shoup ciphertext corresponds to a discrete log from a prime order group. However, this
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would require range proofs across the two groups, and security still relies on DCR (and
possibly more, depending on how the range proofs are done). Finally, in Section 5.1 we
estimate that the prover and verifier costs, as well as the ciphertext size of the [CS03]
scheme are higher than encrypting discrete logarithms in prime order groups directly using
our new DKGitH protocol.
SNARK-based constructions Lee et al. [LCKO19] gives a construction of a verifiable
encryption scheme that is tailored to use in voting schemes as it is additively homomorphic
and supports rerandomization. The construction is pairing-based, Elgamal-like and thus
integrates well with SNARK proof systems. Just like our framework, theirs also decouples
the encryption function from the circuit describing the relation, using the commit-and-prove
SNARK of [CFQ19]. It requires a trusted setup assumption due to the use of CRS-based
SNARK, while ours is naturally transparent thanks to the underlying MPC-in-the-head
paradigm.

Nick et al. [NRSW20] gives a construction which can encrypt a discrete logarithm in
an elliptic curve group, using a special PRF called Purify. The scheme does allow, e.g.,
encryption of an ECDSA private key without any trusted setup assumption thanks to the
use of Bulletproofs [BBB+18], but requires that encryption be done with an Elgamal-like
PKE. As we compare in Table 1, their ciphertext and proof are more compact than those
of our DKG-in-the-head VE scheme, while ours requires less prover time. A complication
related to implementation of the Purify PRF is that one must choose an additional pair
of elliptic curves, related to the group order of the curve where the discrete logarithm
is defined, such that the DDH assumption holds. In contrast, our framework does not
introduce any additional assumption other than IND-CPA and undeniability of PKE
(already satisfied by perfectly correct schemes and many statistical ones as we analyze).
Lattice-based constructions Lyubashevsky and Neven [LN17] give a verifiable
encryption scheme for lattices, based on the hardness of the ring learning with errors
(RLWE) problem. They give a proof of plaintext knowledge, secure in the ROM that does
not use parallel repetition to boost soundness. Their scheme can be further extended to
support CCA security. The analysis of our VE construction does not consider CCA security
and it is not “one-shot” as MPC-in-the-head proofs usually rely on parallel repetition or
cut-and-choose unlike [LN17]. The construction comes with multiple caveats.

• A malicious prover may create a ciphertext that takes variable time to decrypt. In
particular decryption requires O(q) time to decrypt, where q is the number of hash
queries made by the prover. This makes decryption potentially very expensive.

• Decryption is not guaranteed to recover the original plaintext, but vectors with small
coefficients. It’s argued that this is sufficient for some of the applications considered
in [LN17], but may not be sufficient in general.

• The size of the proof and ciphertext are relatively large, for example proof sizes are
38–54 KB and ciphertext sizes are 48–71 KB. Proofs and ciphertexts may be as short
9 KB however, this is for verifiable encryption when there is no plaintext.

Isogeny-based construction Beullens et al. [BDK+22] proposed a VE scheme based
on isogenies (or more generally, any cryptographically-hard group action). Their main
motivation is to construct a building block of a ring signature: their VE prover essentially
proves that (1) it encrypted a verification key vk, (2) vk belongs to a ring, and (3) it knows
the secret sk corresponding to vk. Although fairly efficient, their approach inherently relies
on Elgamal-like PKEs and it is highly specialized for the above limited class of relation.
On the other hand, our focus is to build a general framework to support a large class of
PKEs and relations as required for concrete solutions to the verifiable key export problem
described earlier.
MPCitH and IOP proof systems We briefly survey some of the many existing MPCitH-
based proof systems, optimized for different relations, as these immediately give verifiable
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encryption schemes by applying our transform. [Beu20] gives an MPCitH-based proof of
a solution of an SIS (short integer solution) instance. We can apply our transform to
construct a verifiable encryption of SIS witnesses (here the witness is exact, not relaxed as
in [LN17]). The proof protocols in [Beu20] for other relations, such as the PKP and MQ
problems, are also compatible with our transform. [BN20] also gives multiple MPCitH-
based proofs for lattice problems (SIS), which are also amenable to our transform, but
are outperformed by the proofs of [Beu20]. The Limbo proof system [DOT21] is efficient
for general R described as circuits, making it a good choice for hash functions, or as an
alternative to Banquet. Gjøsteen et al. [GHM+22] present verifiable decryption protocols
from MPCitH proofs, by designing suitable distributed decryption protocols for Elgamal
and BGV lattice-based encryption schemes.

Aurora [BCR+19] and Ligero [AHIV17] are non-interactive proof systems for R1CS that
are constructed by defining an IOP, then making it non-interactive using the transform
in [BCS16]. Both have short proofs for relations involving lattices, and Aurora has the
shortest proofs for SIS, about 10x shorter than [Beu20,BN20]. As we mention in Section 7,
for this reason a more general transform for building VE schemes from IOPs in the [BCS16]
framework is interesting future work.
Commit-and-prove zero knowledge Verifiable encryption somewhat resembles commit-
and-prove zero knowledge (CPZK) proofs (e.g., [GLOV12,KOS18,Kiy20,BHH+19] based on
MPC-in-the-Head and [LCKO19,CFF+21] based on SNARKs), where the prover is tasked
with proving some statement about (a part of) secret witness that has been committed
to in advance. In fact, one could also see many existing VE schemes as CPZK with a
committing function instantiated with Enc(pk, ·). However, the crucial difference is that in
the VE setting commitments must always be non-interactive and straight-line extractable,
whereas in context of CPZK either commitments require no extractability or otherwise they
are interactive and have extraction via rewinding (as in [GLOV12,KOS18,Kiy20]). We are
also motivated to support PKEs with imperfect correctness for practical instantiation of
post-quantum VE, which introduces additional technical challenges. Moreover, previous
works do not explore newer, practical MPC-in-the-head proofs that deviate from the basic
framework of IKOS, such as KKW and Banquet.
Connection between straight-line extraction and verifiable encryption Straight-
line extractability (SLE) (or sometimes called online extractability) is a special type of
extractability, specialized to proof systems in the ROM or in the CRS model. The
prover commits to witness-dependent strings via extractable commitments instantiated
with the RO or PKE, and the extractor is given the statement, the transcript, and
the prover’s query history (in the ROM) or a secret trapdoor (in the CRS model) to
extract a witness. In particular the straight-line extractor does not get any access to
the prover, or ability to rewind them. SLE is especially crucial for security in the
QROM, since rewinding techniques are generally prohibitively expensive in that setting.
Numerous works achieve SLE of commit-and-open-type proof systems (including MPC-
in-the-head) [Pas03,KKW18,DFMS22,HLR21], lattice-based ZK proof systems [Kat21],
and straight-line extractable alternatives to the Fiat-Shamir transform [Fis05, Unr15].
A receiver R of our MPCitH-VE essentially behaves like a straight-line extractor for the
MPC-in-the-head proof systems whose commitments are replaced with PKE. In this work,
we formally draw a connection between the validity property of VE and SLE of IOP, a
setting where commitments are idealized and thus SLE holds very naturally.
Encryption as a Commitment Most natural public key encryption schemes are com-
mitting, and constructing a non-committing one (a deniable scheme) is challenging.

[GH03] defines committing public-key encryption, but defines the verification algorithm
in a more generic way than what is used in our verifiable encryption scheme and the one
of [CD00]. Rather than having the verifier recompute the ciphertext as we do, given the
purported (message, randomness) pair, the verify algorithm can be any function that takes
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as input the message, and a hint produced by the opening function.
[GLR17,DGRW18] looks at committing encryption for symmetric-key AEAD schemes,

to support an analysis of a primitive called message franking, where participants in a
messaging platform can report abusive messages to the service provider. The name
encryptment is also used, a portmanteau of the terms encryption and commitment. The
schemes support many additional features beyond what is required for verifiable encryption
in our setting, and the definitions are consequently more complicated than those of [GH03].

[BDD22] proved that Pointcheval’s IND-CCA PKE [Poi00] can be used as a secure
commitment scheme as is, and it is thus plausible that their analysis can be adapted to
show undeniability of the scheme as well. Our analysis of the Fujisaki-Okamoto transform
also suggests that CCA conversions of this type are useful for obtaining undeniability (and
thus binding). It is an interesting follow-up question whether CCA security in general is
sufficient for PKE to be committing and/or undeniable.

The opposite of what we need is called deniable encryption [CDNO97]. Here the scheme
is carefully constructed so that the encryption is not a binding commitment to the message
and randomness, allowing a sender of a ciphertext to later claim they sent a different
message (hence denying the original message). After sending a ciphertext c = Enc(m; r)
then sender can later claim they sent (m′, r′), and anyone can check that c = Enc(m′; r′)
as well. This is why we use the name undeniable encryption to describe a scheme where
this is not possible. While a “sender-deniable encryption scheme” in the terminology
of [CDNO97] is sufficient as a counterexample to the analysis of [CD00], the example
encryption schemes we describe for this purpose in Section 6 only require a weaker type of
deniability.

Non-committing encryption [CFGN96, DN00] is related to deniable encryption, but
constructions are interactive and the goal is to improve certain types MPC protocols.
Briefly, in the security analysis, the simulator can use the fact that the encryption is not a
commitment to be able to create simulated ciphertexts, then later open them to plaintexts
that are consistent with later information.

Finally we mention witness encryption [GGSW13], which superficially sounds related,
since in VE we are encrypting a witness w that is associated to a statement x by a relation
R. However, a witness encryption scheme for R is a PKE-like primitive that allows us to
use x as a public key and w is the secret key. No witnesses are ever encrypted! Witness
encryption can be viewed as an encryption analog to signatures of knowledge [CL06], where
w is a signing key and x is a public key verification key.

2 Preliminaries
First we introduce some notation and conventions used throughout the paper. The security
parameter is denoted λ, and for an integer x, [x] is short for the set {1, . . . , x}. Whenever
we have a two-part adversary, written as a pair, e.g, (A∗, P∗), we assume that A∗ and P∗

share state, and do not explicitly write it as an output of A∗ and an input to P∗. For a
set S, we denote by x←$ S sampling an element x from S uniformly at random.

In Appendix A, we recall the standard notions of public-key encryption (PKE) and
interactive oracle proofs (IOP). We also introduce (straightline) extractable commitments
(ECOM) required by our transformation.

2.1 Verifiable Encryption
We define a secure verifiable encryption scheme by adapting the definition from [CD00].
Non-interactive VE is formally defined in Appendix C. The main difference with [CD00] is
that we additionally consider a compression algorithm C that postprocesses a transcript
exchanged between a prover and a verifier, and outputs a corresponding ciphertext. In
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practice, C would be run by the verifier right after interacting with the prover and obtaining
a valid transcript. We explicitly introduce this because our proposed construction will
benefit from different optimization strategies that post process accepting transcripts to
produce a highly compressed ciphertext. The usefulness of the compression algorithm is
motivated by the verifiable key backup scenario we sketched in the introduction. While
the communication from prover to verifier is unchanged, compression reduces both the
communication costs between the verifier and the receiver, and cost of storing ciphertexts.
In the key backup scenario, the administrator is a verifier, and thus after the backup from
the source HSM (prover) is verified, the administrator only needs to store a compressed
ciphertext to be sent to the destination HSM (receiver). Moreover, unlike [CD00] we only
consider ZK against honest verifiers, since this is sufficient to prove ZK of non-interactive
VE in the random oracle model using the Fiat-Shamir transform.

Definition 1 (Verifiable Encryption Scheme). Let R be a relation with language LR :={
x : ∃w : (x, w) ∈ R

}
. A secure verifiable encryption scheme VER for R consists of a

tuple (G,P,V, C,R):
• G(1κ): A key generation algorithm that outputs a key pair (pk, sk).
• (P,V): A two-party protocol, where both P and V take (x, pk) and P additionally

takes a plaintext w as inputs. We let (b, tr)← ⟨P(w),V⟩(pk, x) denote the output
pair of V on common input (pk, x) when interacting with P(w), where b ∈ {0, 1}
indicates whether V accepts or rejects, and tr denotes a transcript exchanged between
P and V.

• C(x, tr): A compression algorithm that outputs a compressed ciphertext C.
• R(sk, C): A receiver (or recovery) algorithm that outputs a plaintext w.

VE is secure if it satisfies the following three properties.
Completeness VER is ϵcomp-complete if for all (x, w) ∈ R.

Pr

b ̸= 1 ∨ (x, w′) /∈ R :
(pk, sk)← G(1κ);

(b, tr)← ⟨P(w),V⟩(pk, x);
C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵcomp(κ)

Validity VER is ϵval-valid if for all pairs of PPT adversaries (A∗,P∗),

Pr

b = 1 ∧ (x, w′) /∈ R :
(pk, sk)← G(1κ); x← A∗(pk, sk);

(b, tr)← ⟨P∗(sk),V⟩(pk, x);
C ← C(x, tr); w′ ←R(sk, C)

 ≤ ϵval(κ)

Computational Honest Verifier Zero-knowledge VER is ϵzk-HVZK if there exists a
PPT simulator S such that for all pairs of PPT adversaries (A,D) such that A always
outputs a valid statement-witness pair,∣∣∣∣∣∣∣∣∣∣∣∣

Pr

i = i′ :

(pk, sk)← G(1κ);
(x, w)← A(pk);

(b, tr0)← ⟨P(w),V⟩(pk, x);
tr1 ← S(pk, x);

i←$ {0, 1}; i′ ← D(pk, x, tri);

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵzk(κ)

Note that computational HVZK (as opposed to perfect, or statistical) is the best
possible in the context of verifiable encryption, as an unbounded adversary can always try
w′ = R(sk, C) with all possible sk, checking whether (x, w′) ∈ R.
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Protocol 1: MPCitH-IOPR

Parameters: The number of parties N ; the number of parallel repetitions τ ; the number of
opened parties t; the challenge set Ch =

{
e ⊂ [N ] : |e| = t

}
.

Inputs: prover P receives (x, w); verifier V receives x.
Committing phase The first-round message of V is empty. P proceeds as follows.

1. Choose random w1, . . . , wN such that w =
∑N

i=1 wi.
2. Emulate “in her head” the execution of Πf on input (x, w1, . . . , wN ).
3. Prepare, based on the execution, the share of the witness, and the randomness, the

views V1, . . . , VN of the N parties; P outputs the proof string π = (V1, . . . , VN ).
Query phase

1. V chooses a random e ∈ Ch and queries the oracle for π with e.
2. The oracle returns (Vi)i∈e.

Decision phase: V accepts if and only if CheckView(x, (Vi)i∈e) = 1. See Section 2.2 for the
definition of CheckView

P and V execute τ instances of the above procedures in parallel. If V accepts in all τ
executions, it outputs b = 1; otherwise it outputs b = 0.

2.2 MPC-in-the-Head Proofs as IOPs
In Protocol 1 we describe the blueprint of a simple MPC-in-the-head protocol characterized
as a single-round IOP. In Appendix E.1 we provide further details of the original IKOS
framework. We mainly focus our description on MPC-in-the-head ZK proofs derived from
semi-honest MPC, because in the parameter regime of the simple NP-relations considered
in this paper, they typically perform better than the ones from robust MPC. Since newer
protocols such as, [FR23], Ligero, KKW and Banquet deviate from MPCitH-IOP significantly
(e.g., they have more than 3 rounds, perform cut-and-choose, use Sharmir secret sharing,
etc.), we separately describe them as IOPs in Appendix E.2 and formulate our definitions
and analysis accordingly.

The framework of IOPs allows for a modular design of ZK proof systems and is becoming
increasingly common for constructing efficient SNARKs and MPC-in-the-head ZK proofs
(e.g., [CHM+20, CFF+21, DOT21]). As in prior work, we first design an information-
theoretically secure protocol in the form of an IOP, where commitments are idealized in
that both hiding and binding hold unconditionally. This is why the security properties for
IOPs are defined w.r.t. unbounded adversaries, and the computational assumptions will
only come into play when we later compile the IOP into a verifiable encryption scheme via
a cryptographic commitment scheme with straight-line extractability.

In MPCitH-IOPR, P proves knowledge of a witness w such that R(x, w) = 1, where Πf

is an MPC protocol computing f that uses additive secret sharing over some finite field F,
and R(x, w) := (f(w) =? x). This protocol is similar to the one from [IKOS07] relying on
the “idealized commitment functionality”, but modified to cover MPC protocols with a
broadcast functionality, so the prover may open 2 < t < N parties’ views instead of two.
We also employ the IOP framework following more recent MPC-in-the-head protocols such
as Ligero [BFH+20] and Limbo [DOT21]. As we shall see below, as an IOP protocol it
is straightforward to prove straight-line extractability of MPCitH-IOPR. This will allow
a smooth transition to SLE of the MPCitH proof systems we compile (with suitable
commitment schemes), then to the validity of the resulting verifiable encryption schemes.

Our description also has parallel repetition: a simpler protocol is repeated τ times in
parallel to increase soundness. These changes make presentation consistent with many
practical MPCitH proof protocols (e.g., ZKB++, KKW and Banquet all use (N−1)-private
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MPC protocols with broadcast channels).
The helper function CheckView in MPCitH-IOPR takes the statement and a set of views

as input and returns 1 if:
1. The outputs of the opened parties (determined by their views) are 1, and
2. The opened views are consistent with each other, with respect to x and Πf ,

and returns 0 otherwise. We further define a utility function GetW, which takes a party’s
view and extracts their share of the witness from it.

We further recall the canonical way of extracting a witness from any MPC-in-the-head
proofs, which is often implicit in the literature.

Definition 2 (Canonical extractor). An extractor E for one repetition of MPCitH-IOPR is
called canonical if on input x and π = (V1, . . . , VN ), it works as follows: E obtains witness
shares via wi = GetW(Vi) for i ∈ [N ] and then outputs a candidate witness w :=

∑
i∈[N ] wi.

For τ repetitions, the canonical extractor Eτ runs E on each repetition j ∈ [τ ] and outputs
w(j) if (x, w(j)) ∈ R for some j, otherwise it outputs ⊥.

It is rather straightforward to check that the protocol MPCitH-IOPR is (1) straight-line
extractable (Definition 7) with respect to the canonical knowledge extractor Eτ with
ϵsle-iop ≤ ((k − 1)/|Ch|)τ assuming the notion called k-consistency (Definition 10), and (2)
HVZK (Definition 8) if the underlying MPC protocol is t-private (Definition 11). For
completeness, Appendix E formally introduces these notions and proves SLE and HVZK.

3 Our Transform
In this section we present our transform, which generically constructs a verifiable encryption
scheme MPCitH-VE from an MPCitH-IOP protocol in the class described in Protocol 1. We
start with a simple construction of extractable commitments from public-key encryption,
then come to our compiler in Section 3.2.

3.1 Extractable Commitments from Undeniable PKE
In the following we show that most commonly used public-key encryption schemes give rise
to extractable commitments. A similar construction appears in [GH03], and its analysis in
the perfectly correct case is somewhat folklore, below we describe the exact construction
we will use, and analyze its security. Let PKE = (Gen, Enc, Dec) be a public key encryption
scheme. We construct an extractable commitment scheme ECOM = (CGen, Commit, CExt)
(see Section A.2 for definition and syntax). For simplicity we assume throughout that
the message space Sm and random space Sr of the commitment schemes are identical to
those of the encryption schemes. We remark that our formulation of ECOM is specifically
tailored to non-interactive and straight-line extractable schemes, as opposed to what’s
referred to as an “extractable commitment” in some previous works (e.g., [GLOV12])
where the committing phase is interactive and the extractor has to rewind the prover.
Interactivity is not suitable for VE, since the receiver does not directly interact with the
prover.

• CGen(1λ) runs PKE.Gen(1λ) and outputs pk as the commitment key.
• Commit(pk, m; r) outputs c = PKE.Enc(pk, m; r).
• The opening of the commitment c is (m, r), and the verifier checks (m, r) against

c by computing c′ = Enc(pk, m, r); the opening is accepted iff c′ = c, m ∈ Sm and
r ∈ Sr.

• CExt(sk, c) outputs m = PKE.Dec(sk, c).
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It is rather straightforward to show the above construction is perfectly extractable,
perfectly binding and computationally hiding, assuming PKE is perfectly correct and
IND-CPA secure. This is because perfect correctness implies, for every valid ciphertext c,
there exists a unique message-randomness pair (m, r) such that c = Enc(pk, m; r). The two
most commonly used choices of PKE, RSA and Elgamal, both meet these requirements,
and can be used as commitment schemes.

However, IND-CPA security of PKE is not sufficient for guaranteeing validity of the
resulting verifiable encryption, if the correctness is imperfect. For encryption schemes that
are not perfectly correct, there can exist (m∗, r∗) such that Dec(sk, (Enc(pk, m∗; r∗))) ̸= m∗.
Then a malicious prover may be able to craft a ciphertext c∗ that can be correctly opened
to plaintext m∗ such that it passes validity checks performed by a verifier, while c∗ decrypts
to junk during the recovery phase.

We will show two examples of such schemes, one based on decisional composite
residuosity (Section 6.2), and one based on the learning with errors (LWE) problem
(Section 6.4). In general, the base encryption scheme of post-quantum lattice-based
candidates like FrodoKEM [NAB+19] and Kyber [SAB+20] are CPA secure, but not perfectly
correct, and even the complete CCA-secure schemes may still be incorrect with bounded
probability.

To prevent this attack, we require an additional property called undeniability. Intuitively,
undeniability forces an adversary A to open any ciphertext to the plaintext identical to
the result of decryption even if A may bias the randomness r. In Section 1.2 we discuss
some similar (but different) notions from the literature.

Definition 3 (Undeniability). We say that a public-key encryption scheme PKE =
(Gen, Enc, Dec) is ϵund-undeniable if for any PPT adversary A:

Pr

m ̸= m′ ∧ c = Enc(pk, m; r) :
(sk, pk)← Gen(1κ);

(c, m, r)← A(pk, sk);
m′ := Dec(sk, c)

 ≤ ϵund(λ)

The following utility lemma guarantees that an undeniable IND-CPA encryption scheme
can be used as a secure extractable commitment with the simple construction given above.

Lemma 1. If PKE is ϵund-undeniable and ϵcpa-IND-CPA secure, then the commitment
scheme ECOM constructed from PKE is ϵcext-extractable with ϵcext ≤ ϵund, ϵbind-binding with
ϵbind ≤ ϵund and ϵhide-hiding with ϵhide ≤ ϵcpa.

Proof. We prove the three properties separately.
Extractability follows from undeniability. That is, if the adversary can output a tuple
(c, m, r) breaking the extractability of ECOM, it also holds that c = Enc(pk, m; r) and
m ̸= Dec(sk, c). Therefore, (c, m, r) is also an instance breaking undeniability.
Binding follows from undeniability. Suppose there exists an adversary that outputs
a tuple (m, r, m′, r′, c) such that it breaks binding with non-negligible probability, i.e.,
c = Enc(pk, m; r) = Enc(pk, m′; r′) and m ̸= m′. Given such an efficient adversary
A against the binding game, we construct another adversary B that uses A to break
undeniability as follows.

1. On receiving (pk, sk) as input, B forwards it to A.
2. When A outputs (c, m, r, m′, r′) such that c = Enc(pk, m; r) = Enc(pk, m′; r′) and

m ̸= m′, the B first decrypts c: m̃ = Dec(sk, c) and proceeds as follows: (a) If
m̃ ≠ m, then B outputs (c, m, r) in the undeniability game, and (b) If m̃ ≠ m′, then
B outputs (c, m′, r′) in the undeniability game.
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Note that at least one of 2(a) or 2(b) must occur since m ̸= m′. In either case, B successfully
wins the undeniability game as long as A breaks binding. Clearly B succeeds with the same
probability as A, and B’s runtime is the same as A’s plus the cost of one Dec operation.
Hiding follows from the IND-CPA security of PKE. Concretely, if there exists a PPT
distinguisher for commitment c = Commit(pk, mb; r) = Enc(pk, mb; r) one can clearly
construct a distinguisher for the IND-CPA game. That is, to break the IND-CPA game,
the reduction first receives two messages (m0, m1) from the hiding adversary. Then
by forwarding (m0, m1) to the IND-CPA challenger the reduction obtains the challenge
ciphertext c∗, which can be also seen as a challenge commitment in the hiding game. If the
hiding adversary can distinguish whether c∗ is a commitment to m0 or m1 with advantage
ϵhide, then the reduction can also distinguish whether c∗ encrypts m0 or m1 with advantage
ϵhide, which is at most ϵcpa by definition.

How to construct undeniable PKE Validity of our generic compiler described in the
next section heavily relies on extractable commitments. The straightforward construction
of ECOM requires undeniability, which is not necessarily satisfied by public-key encryption
schemes with statistical correctness. As we shall see in Section 6.2, this is not just a
limitation in a security proof; a lack of undeniability actually allows cheating provers
to break validity entirely. A natural question is whether one can generically add the
undeniable property to any IND-CPA-secure encryption scheme with statistical correctness.
We answer this question in the affirmative by proving that several variants of the Fujisaki–
Okamoto transform [FO99,FO13,HHK17] can make a given PKE scheme undeniable in
the random oracle model.

For example, suppose we are given an encryption function Enc that takes a public
key, message, and random value as input, and a random oracle G that hashes into the
randomness space of Enc. The simplest FO transform [FO99] defines Enc′ such that

Enc′(pk, m; r) := Enc(pk, m||r; G(m||r)). (1)

A crucial observation is that cheating provers are now forced to derive encryption
randomness uniformly by querying the random oracle G. This makes it difficult to craft a
malicious ciphertext c from biased randomness, which decrypts to a plaintext inconsistent
with what she originally encrypted. Using the same observation we can also prove that
well-known FO-based CCA conversion methods employed by Kyber and FrodoKEM achieve
undeniability. Details are deferred to Appendix B.

3.2 Compiling MPCitH-IOP Into Verifiable Encryption
Our construction MPCitH-VE is given in Protocol 2. The description already incorporates
the random subset optimization that will be analyzed in the next section. Here, we focus
on the case of n = τ for simplicity. As for the intuition for our construction, we observed
in Section 2.2 that for any MPCitH IOP following the [IKOS07] paradigm, there exists a
(canonical) straight-line extractor that recovers the witness from the committed values of
all parties. Recall that:

• The MPC protocol evaluates R with inputs x and w.
• The input x is public and w is shared amongst the parties.
• The view of each party must include their share of the witness and random tapes in

order to allow verification to check consistency, since some of the outgoing messages
of the parties must depend on both of these values.

Therefore, given the opening of the commitments of all parties (all N views), the
extractor can recover the witness based on the shares of all parties. For constructing
ZK proofs or signatures allowing for straight-line witness extraction, one can compile
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MPCitH-IOP by letting a prover commit to every per-party view with random oracle
commitments as in [Pas03,KKW18,ZCD+20,DFMS22]: the extractor can reconstruct a
witness by observing the RO query history. However, this does not suffice for instantiating
verifiable encryption because the receiver (i.e., decryptor) in the real-world clearly has no
access to the query history.

Our compiler takes an alternative approach similar to [Kat21,HLR21], which simulta-
neously realizes a straight-line extractable ZK proof system and valid verifiable encryption
scheme. By replacing the commitment function with an extractable commitment ECOM
(as defined in previous section) where the recipient has the decryption key sk, the recipient
can decrypt the commitments to the unopened view(s) and recover all openings, then use
the extractor algorithm to recover a witness. We remark that our transform naturally
generalizes to other types of MPCitH protocols as well, since all such protocols (we are
aware of) allow extraction of a witness given the openings of the per-party commitments
(and indeed use this in their security reductions).

Because our presentation assumes the witness is shared with an additive secret sharing
scheme, we make use of this to compress the ciphertext, by summing the t revealed shares
into the single value w̃. If the secret sharing scheme of Πf does not allow such partial
reconstruction, then the ciphertext may simply include all shares. When generalizing to
other types of secret sharing schemes the decryption operation must also be generalized to
reconstruct w from the shares of all parties.

Theorem 1. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 1 that is perfectly HVZK and SLE with knowledge error ϵsle-iop. Let ECOM be
an extractable commitment scheme that has ϵcext-extractability and is ϵhide-hiding. Then
the compiled protocol, MPCitH-VER described in Protocol 2 with n = τ , is ϵval-valid with
validity error ϵval = ϵsle-iop + ϵcext, and ϵzk-HVZK with ϵzk = τ(N − t)ϵhide.

HVZK directly follows from hiding of ECOM (and thus from IND-CPA of the underlying
PKE). Proof of validity essentially proceeds as follows: if an MPCitH-VE cheating prover
P∗ can convince the verifier V while the receiver fails to decrypt a correct witness, then
it must be that either (1) P∗ broke extractability of ECOM, or (2) one can construct a
pair of adversaries (A∗, P∗) that break SLE of MPCitH-IOPR. Adversaries (A∗, P∗) first
extract views from the commitments sent by P∗ and then forward them as a complete set
of N views in the SLE-IOP game. Formal proof is deferred to Appendix H.1.
Optimizations While the prover in our generic compiler MPCitH-VE commits to a
complete per-party view Vi using ECOM, several standard optimization techniques in the
literature also are applicable in our setting for better computational and communication
complexities. Notice that R would only need witness shares (wi)i∈[N ] to be able to recover
the plaintext. Hence, it would be sufficient to have the prover P commit to wi using
ECOM, and to the rest of the strings in Vi using the random oracle commitments as the
ZKBoo/ZKB++ prover does [GMO16,CDG+17]. Since ECOM is instantiated with PKE
in practice while the RO is instantiated with cryptographic hash functions, this would
significantly reduce the size of transcripts and could save both prover and verifier time for
creating/opening commitments.

Moreover, following [KKW18, §2.3] and subsequent works [ZCD+20,BDK+21,DOT21,
KZ22], in case the MPC protocol Πf relies on a broadcast channel and thus N − 1 out of
N views are revealed, we can decouple broadcast messages (msgsi)i∈[N ] from per-party
views to reduce the communication complexity, where each msgsi consists of messages
broadcast by party i. That is, the prover P first generates a root seed sd∗ to derive
per-party seeds (sdi)i∈[N ] with a binary tree construction. P now only commits to each
seed sdi used for deriving a witness share and a random tape of party i using ECOM, and
sends h = H((msgsi)i∈[N ]). On receiving challenge ī ∈ [N ] from V, indicating the index of
unopened party, P reveals msgsī and ⌈log2(N)⌉ nodes in the tree, which are sufficient to
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compute (sdi)i∈[N ]\{ī}. From such information, V can reconstruct the remaining broadcast
messages, check h against broadcast messages sent by all N parties, and check that N − 1
parties on input (sdi)i∈[N ]\{ī} lead to a correct output with respect to x and msgsī. Our
DKG-in-the-head protocol in Section 5.1 benefits from these optimizations.

Protocol 2: MPCitH-VER

Converts the MPCitH-IOP prover P and verifier V to an MPCitH-VE prover P and
verifier V using the the extractable commitment scheme ECOM = (CGen, Commit, CExt)
as constructed in Section 3.1.
Parameters: The number of parties N ; the number of parallel repetitions τ ; the number

of opened parties t; the challenge set Ch =
{

e ∈ [N ] : |e| = t
}

; the subset size for
compression n.

Key Generation G(1κ): It invokes (pk, sk)← CGen(1κ) and outputs (pk, sk).
Two-party protocol ⟨P(w),V⟩(pk, x):

1. P runs P on input (x, w) to obtain the proof string π = (V1, . . . , VN ).
2. P separately commits to each of these N views to generate per-party com-

mitments (C1, . . . , CN ) where Ci = Commit(pk, Vi; ri) and ri is commitment
randomness uniformly sampled from Sr.

3. V invokes V on input x to obtain challenge e ∈ Ch, and sends it to P.
4. P opens the commitments of the t parties, by revealing (Vi, ri)i∈e.
5. V sends the views (Vi)i∈e to V as a response to the oracle query. It accepts if

and only if:
(a) Ci = Commit(pk, Vi; ri) and r ∈ Sr for all i ∈ e, i.e., P opened the views

corresponding to (Ci)i∈e successfully, and
(b) V outputs 1.

P and V execute τ instances of the above protocol in parallel. If V accepts in all τ
executions, it outputs b = 1 and a transcript

tr = ((C(j)
i )i∈[N ], e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] .

Otherwise, V outputs b = 0 and tr = ⊥.
Compression C(x, tr):

1. It samples a subset S ⊆ [τ ] of size n ≤ τ uniformly at random.

2. For j ∈ S, extract the t witness shares w
(j)
i = GetW(V (j)

i ) for i ∈ e(j) and
partially reconstruct the witness w̃(j) =

∑
i∈e(j) w

(j)
i .

3. Output the compressed ciphertext C = (w̃(j), (C(j)
i )i/∈e(j))j∈S .

Receiver R(sk, C): To decrypt the ciphertext C, the receiver proceeds as follows.

1. For j ∈ S and i /∈ e(j), extract the unopened parties’ views V̂
(j)

i = CExt(sk, C(j)
i )

and computes the corresponding witness shares ŵ
(j)
i = GetW(V̂ (j)

i ). Let
w(j) = w̃(j) +

∑
i/∈e(j) ŵ

(j)
i be the jth candidate witness.

2. If there exists some j ∈ S such that (x, w(j)) ∈ R, output w(j). Otherwise,
output ⊥.
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3.3 Compiling Other MPC-in-the-Head Proofs
Although the IOPs corresponding to KKW and Banquet (given in Appendix E) are
not exactly in the class described by MPCitH-IOP, we can compile them into verifiable
encryption schemes using essentially the same idea.

To compile Banquet-IOP, it is sufficient to have the VE prover P commit to the per-
party seeds (sdi)i∈[N ] with an extractable commitment scheme during the first round. The
second and third round operations are identical to the original Banquet-IOP protocol, and
the VE verifier V proceeds by following the decision phase of Banquet-IOP and accepts iff
V accepts and the N − 1 per-party commitments are opened correctly. The compression
and receiver algorithms C and R are defined analogously to those of MPCitH-VE, except
that the witness offset ∆w is added by C when creating a partially reconstructed witness
w̃. Since the receiver tries to decrypt by using the SLE extractor algorithm defined
in Lemma 8, the compiled protocol has ϵval-validity with ϵval = ϵcext + ϵsle, assuming
ϵcext-extractability of ECOM and ϵsle-SLE of Banquet-IOP. Appendix F provides detailed
analysis of Banquet-based VE.

Likewise, we can compile KKW-IOP by having the VE prover P commit to the offline
per-party states (st(j)

i )i∈[N ] with ECOM. On the other hand, the other commitments in
KKW-IOP can be instantiated with the usual random oracle commitments as in the original
KKW protocol. As we only need τ revealed online executions to recover a witness, the
compression algorithm C outputs as a ciphertext w̃(j) =

∑
i ̸=īj

λw
i ⊕ ŵ(j) and C(j)

īj
for

j ∈ T ⊂ [M ], where each witness mask share λw
i is obtained from the revealed value st(j)

i .
Then the receiver R extracts the unopened share of the witness mask from C(j)

īj
and XORs

it with ŵ(j) to recover a candidate witness.
Compiling Limbo is straightforward since the protocol of [DOT21, Fig.5] is already

presented using the language of IOPs. The VE prover uses ECOM to commit to each
witness share as part of the first oracle, and the rest of the proof string is committed with
the existing commitment scheme.

Compiling protocols utilizing robustness and/or (t, N)-threshold LSSS-based protocols
such as [AHIV17,BFH+20,FR23] (§E.2.1-E.2.2) is also possible and eliminates the need for
parallel repetitions. E.g., if instantiated with Shamir secret sharing, the prover encrypts
wi = fw(i) for i = 1, . . . , N where fw ∈ F[X] is a degree t polynomial encoding w in its
constant term and containing uniformly random coefficients otherwise. The verifier asks the
prover to open views of parties in I ⊂ [N ] with |I| = t. To recover the witness, the receiver
then descrypts remaining shares and invokes the reconstruction algorithm of Shamir or
a suitable decoding algorithm if the scheme relies on Reed-Solomon code. The validity
analysis is rather straightforward given the knowledge soundness of these schemes, because
undeniable PKE can be seen as a straight-line extractable commitment that replaces
RO-based commitment, and the receiver of VE essentially acts as a knowledge extractor.
However, our concrete instantiations mainly focus on simple non-robust MPC-in-the-Head
since they typically perform better in the context of the simple NP-relations considered in
our intended applications (e.g. AES circuits).

3.4 Applying Fiat–Shamir
Following the standard Fiat–Shamir transform [FS87], we can make our verifiable encryption
protocol MPCitH-VE non-interactive in the random oracle model, by hashing the first prover
messages together with x and pk to obtain the challenge e ∈ Ch. Since the base interactive
protocol has three rounds, the FS transform introduces a multiplicative factor of q security
loss in validity, where q is the number of random oracle queries made by a non-interactive
cheating prover. Note that this loss is well-known in (knowledge) soundness analysis
for FS-NIZK proofs and EUF-KOA security of signatures constructed from canonical
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identification schemes [KMP16]. Formal analysis is deferred to Appendix C. Banquet-
based verifiable encryption however requires a separate concrete analysis dedicated to
the non-interactive version, since it has 7 rounds of interaction. Because the EUF-KOA
security analysis of Banquet as a signature scheme [BDK+21, Theorem 2] already evaluates
the probability that the witness (i.e., secret signing key) extraction fails, their analysis can
be reused in large part to derive the concrete validity error of non-interactive Banquet-VE.
Construction of Banquet-NIVE and validity analysis are deferred to Appendix F.

3.5 Achieving Strong Validity
To the best of our knowledge, prior definitions of validity for verifiable encryption in the
literature assume that the key generation phase is always performed honestly. One can
strengthen the validity property so that a cheating prover takes control of key generation.
Formally, we say a VE scheme has ϵsval-strong validity if for all pairs of PPT adversaries
(A∗,P∗),

Pr

 b = 1 ∧
(x, w′) /∈ R ∧

(pk, sk) ∈ G(1κ)
:

(x, pk, sk)← A∗(1κ);
(b, tr)← ⟨P∗(sk),V⟩(pk, x);

C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵsval(κ).

We remark that allowing A∗ to choose (pk, sk) is very strong, and that in practice it’s
not possible to check whether (pk, sk) ∈ G(1λ). However, without this condition, note that
A∗ can trivially break strong validity by generating a keypair then setting sk to 0. In the
context of our verifiable key backup scenario, the device could be encrypting the key to
a future instance of itself, or to another device in the same security domain. Here the
user must trust that the device importing the key has generated its keypair honestly. This
seems to be the best possible validity assurance when the device is responsible to store sk.

If ECOM is instantiated with a perfectly correct PKE, we can achieve strong validity of
MPCitH-VE. Observe that if PKE has perfect correctness, then for every key pair and for
every ciphertext, the corresponding plaintext is uniquely determined. Therefore, as long
as the key pair is in the right domain (which the receiver can easily check) undeniability
can never be broken regardless of the distribution of keys.

4 Compressing Ciphertexts
Because MPCitH protocols use τ parallel repetitions to boost soundness, the ciphertexts
output by our transform can be large. For example, for 128-bit security, τ could range
from 20 to 219. Each repetition outputs one PKE ciphertext and a share of the witness, so
the total size is τ(|PKE.Enc| + |w|). Also, in the post-quantum PKE case, lattice-based
constructions can have relatively large ciphertexts. An interesting question is whether
these can be compressed, since these ciphertexts will usually be very redundant: note that
for an honestly created proof all τ repetitions encrypt the same witness (in different ways),
and the receiver will only need to decrypt one.

In this section we give two methods to compress the verifiable encryption ciphertexts
output by schemes created with our transform. The first, called the random subset method,
is very simple, incurs no computational overhead, and can reduce ciphertext size by a
factor of three when τ is large.

The second approach, called the equality proof method, is optimal as it achieves constant
size ciphertexts, O(|w|) (provided PKE has constant ciphertext expansion). However, it
requires special properties of PKE, increases proof size, prover and verifier computational
costs significantly, so it is more of a possibility result rather than a practical construction.
We defer detailed description of the equality proof method to Appendix G, and give only
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Figure 1: Approximate minimum cost of breaking validity of ZKBoo-based VE (left) and
DKGitH-based VE (right) with a random subset of size n. The parameter τ denotes the
number of parallel repetitions. The number of parties N is fixed to 3 for ZKBoo and 64
for DKGitH, respectively. Note that τ = 219 corresponds to the picnic-L1 parameters
from the Picnic spec [ZCD+20].

the high-level idea here. In an honestly generated proof, all component ciphertexts are
valid, and decryption will always succeed on the first attempt. If after the VE protocol,
the prover were able to additionally prove that R would output the same witness from
all of the component ciphertexts, then the verifier could keep only one of the component
ciphertexts, making the VE ciphertext constant size. This is because either: all values are
equal and correct, or all values are equal and incorrect, but the latter case is equivalent to
creating an invalid proof, which is possible with only negligible probability by soundness
of the proof protocol.

Note that the equality proof proves that R outputs the same value for all component
ciphertexts – and is not requiring that we prove the relation. The crux of R for MPCitH
protocols is recombining additive shares of the witness, a comparatively simple operation.
However one of the shares is encrypted, meaning we are back to proving something about
encrypted data. We describe one instantiation of the idea to show that this is possible
without resorting to general methods, by using PKE in a non-black-box way.

4.1 The Random Subset Method
This compression method is rather simple, but the impact on ciphertext size can be
significant, and the cost to the prover is nothing, and almost nothing to the verifier. That
is, we set n < τ in Protocol 2 to optimize the compression and receiver algorithms. Upon
receiving a verifiable encryption proof with our transform, the verifier has a set of τ
ciphertext components, corresponding to the τ parallel repetitions used to produce the
proof. The verifier chooses a subset of the ciphertexts to keep at random, and discards the
others. The size of the subset is denoted n, and is a parameter of the method.

We stress that soundness of the proof is unchanged, since the entire is proof is com-
municated to the verifier and checked. Only the analysis of the validity error must be
updated, since the receiver now has only n ciphertexts. Naïvely, one may be able to
bound the validity error by ϵsle-iop(n) which corresponds to the adversary’s advantage in
convincing the verifier while using n bad repetitions (out of τ) leading to an invalid witness
if decrypted. However, this loose bound does not help us reduce the ciphertext size. In
fact, thanks to the fact that VE verifier picks a random subset after the verification checks
are completed, the actual validity error is significantly lower than ϵsle-iop(n), since the
adversary must make sure that all the bad repetitions fall in the uniformly selected subset
of size n for the receiver to fail.

More formally, let s be the number of ciphertexts in the initial set of size τ that are
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bad, meaning they do not decrypt to the witness. For the proof systems we consider,
having s > 0 is quite easy, as it only requires guessing a small part of the challenge. Note
that s must be at least n, otherwise the attack against compression never succeeds, since
V ’s output always contains one or more valid ciphertexts.

Below we will choose parameters for the random subset method applied to different
proof systems, in the interactive case. The adversary P∗, is a cheating prover who knows
the witness, and tries to create a verifiable ciphertext where decryption fails. Then the
general form of P∗’s success probability is

Pr
[
C selects n of s bad ctexts ∧ V accepts a proof with s bad ctexts

]
= #subsets with n bad ctexts

# of subsets · Pr
[
V accepts a proof with s bad ctexts

]
=
(

s
n

)(
τ
n

) · (ϵsle-iop(s) + ϵcext)

where ϵsle-iop(s) is the probability that an IOP prover wins the SLE-IOP game with s
parallel repetitions, and “ctexts” is short for ciphertexts. A more formal analysis is given
in Appendix H.2, where we prove the following theorem.

Theorem 2. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 1 with SLE knowledge error ϵsle-iop. Let ECOM be an extractable commitment
scheme with ϵcext-extractability. Then MPCitH-VER is ϵval-valid with validity error

ϵval(τ, n) = max
n≤s≤τ

(
s
n

)(
τ
n

) · (ϵsle-iop(s) + ϵcext) .

Generally, the amount of compression possible is larger when τ is larger, as demonstrated
by the ZKB++ example (where τ = 219 for 128-bit security). The DKGitH example
requires much smaller τ (in the range 16–32), and compression is limited, or none at all.
However, we can increase τ to larger values than strictly necessary, in order to compress
the ciphertext further, see Fig. 1 for a range of options with fixed N and the first row of
Table 1 for a concrete example. This reduces ciphertext size at the expense of proof size,
which can be beneficial in applications that check the proof then discard it, but store the
ciphertext.

Application to IKOS/ZKBoo/ZKB++ We consider interactive IKOS-style protocols,
such as ZKBoo and ZKB++. For each repetition of the protocol, they have

(
N
2
)
-consistency,

where N is the number of parties. As ZKBoo and ZKB++ have N = 3 and Ch = {1, 2, 3}
they have 3-consistency and thus are SLE with knowledge error ϵsle-iop(s) ≤ 2/3 from
Lemma 4. In Fig. 1 we show the costs of breaking validity − log2(ϵval(τ, n)) for different
combinations of τ and n assuming ϵcext is negligible. We see that n = 70 provides 128-bit
security with τ = 219 repetitions, meaning we can compress ciphertexts by a factor 3 at no
cost. If we increase τ slightly to 250 (meaning proof size and prover/verifier time increase
by roughly 1.14x) then we can set n = 50 and compress ciphertexts by a factor 4.4.

Application to DKGitH This is similar to IKOS, except that the default soundness error
is different. Because the corresponding MPC protocol uses a broadcast functionality, the
prover reveals N−1 parties’ views and thereby the knowledge error is at most 1/N , instead
of 1− 1/

(
N
2
)
. In Fig. 1 we show the costs of breaking validity for different combinations of

τ and n assuming ϵcext is negligible. As τ is smaller, the amount of compression we get for
free is limited to only 2 ciphertexts (i.e., we can set n = 20 when τ = 22). The option
of increasing τ is again possible, but provides less compression and at a higher cost. In
addition to the choices of (n, τ) given in Fig. 1, Table 1 gives some concrete examples
showing proof and ciphertext size along with estimates of the prover and verifier times.
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5 Concrete Instantiations
In this section we give some instantiations of our transform. We implement verifiable
encryption of AES keys, and three schemes for discrete logarithms (suitable for encrypting,
e.g., ECDSA, ECDH and Ed25519 private keys) and provide performance benchmarks.
We also describe how our scheme for discrete logs can be adapted to verifiably encrypt
RSA private keys and plaintexts.
Interactivity All of the benchmarks are given for the non-interactive versions of proofs.
However, we note that it is also possible in many applications (such as in verifiable key
backup) where the verifier will only accept a small number of failed attempts by a prover,
to use an interactive proof with 40–64 bits of interactive security (analogous to the case
of interactive identification schemes [FS87, Section 2.3]). For the MPCitH protocols we
consider that use parallel repetition, this reduces number repetitions significantly, in turn
reducing the prover and verifier time, proof size and ciphertext size by a factor 2–3.

5.1 Verifiable Encryption of Discrete Logs in Prime Order Groups
Perhaps the most fundamental relation in cryptography is the discrete logarithm in a
prime order group G, i.e., (y, x) such that y = gx where ⟨g⟩ = G. As an application our
transform, we give a new protocol to verifiably encrypt a discrete logarithm. We construct
an MPC protocol to compute y from shares of x, which naturally gives an MPCitH protocol
to prove knowledge of x. When compared to the most efficient proof of knowledge for
discrete logarithms, the Schnorr proof, our new protocol is much less efficient, but it is
amenable to our transform, and can therefore be used to verifiably encrypt discrete logs.
We can then verifiably encrypt DH, ECDH, DSA and ECDSA keys directly as key pairs
for these algorithms are discrete log instances, and in Section 5.1.3 we explain how this
scheme can also be used to encrypt RSA keys.

As an aside, we remark that our new proof protocol has a tight reduction to the discrete
logarithm problem in the random oracle model. This feature is of theoretical interest as it
implies a signature scheme based on the discrete logarithm problem with a tight security
reduction.
Baselines for Comparison We compare to two protocols from the literature. The first is
the Camenisch-Damgård protocol [CD00] for a generic Σ protocol, combined with Schnorr’s
Σ-protocol [Sch91] for discrete logs with binary challenges. This is the only verifiable
encryption scheme we are aware of that works for discrete logarithms in any cyclic group,
and allows a flexible choice of PKE (as our protocol does). It also requires the random
oracle assumption to make the proof non-interactive.

The second, more efficient, protocol in [CD00] has k parallel repetitions, and the verifier
selects a subset to form the output, and audits the encryption step of the k − u other
repetitions (and the verifier checks all repetitions have a valid transcript for the Σ protocol
with one challenge). No parameters are given for concrete, non-interactive security – we
found that for λ-bit security, (k, u) must be chosen so that

(
k
u

)
≥ 2λ. Then there are

multiple possible choices for (k, u), which trade ciphertext size for computation: we can
have a small decrease in ciphertext size, for a large increase in computation and proof size.
Our comparison in Table 1 gives some of the options.

Another VE scheme we compare to is from [NRSW20], which can encrypt a discrete
logarithm in an elliptic curve group, using a special PRF called Purify. The scheme does
allow, e.g., encryption of an ECDSA private key, but requires that encryption be done
with an Elgamal-like PKE. A complication related to implementation of the Purify PRF is
that one must choose an additional pair of elliptic curves, related to the group order of the
curve where the discrete logarithm is defined, such that the DDH assumption holds. In
addition to making these additional parameter choices, we must also make an assumption
beyond the DLP + PKE assumptions in G (as in [CD00] and our scheme).
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We omit a detailed comparison to [CS03] since it only works for discrete logarithms in
a group suitable for Paillier’s encryption scheme, and the PKE is fixed to Paillier’s scheme.
The scheme is not suitable for encrypting an ECDSA private key, one of our motivating
examples. That said, due to the high cost of arithmetic mod Zn2 where n is 3072–4096
bits, we estimate that our DKGitH proof always outperforms [CS03] in terms of prover
time, verifier time and ciphertext size. To support these conclusions, our software package
provides some detailed estimates for [CS03], along with the software used to benchmark
Zn2 arithmetic.

We chose [NRSW20] and [CS03] as baselines for comparison for encrypting discrete
logarithms rather than a zkSNARK since SNARKs generally require significantly stronger
assupmptions when compared to our protocol. An exception in this regard is Spartan [Set20],
instantiated in the group where the discrete log is defined. In this case the assumptions are
comparable to our scheme and [CS03], however VE with Elgamal would require proving two
scalar multiplications “non-natively”, i.e., as an arithmetic circuit modulo the group order,
which would require at least two million R1CS constraints. An R1CS instance of this size
would require tens of seconds to prove and have proofs over 100 KB in size [Set20, Figures
7-10].

5.1.1 Encrypting Discrete Logs with DKG-in-the-head

We first describe the base non-interactive ZK proof system DKGitH for relation R ={
(y, x) : y = gx

}
.2 The core idea of the protocol is based on the additive homomorphism

of private keys, under multiplication of public keys, and may be folklore (an early reference
describing it is [Ped92]). To compute f(x) = gx =? y in a distributed manner, the prover
P provides shares of x to the N parties such that x =

∑N
i=1 xi (mod p). Then P emulates

a simple distributed key generation (DKG) protocol Πf that proceeds as follows.

1. Each party i computes yi = gxi , and broadcasts yi.
2. Output the public key y =

∏N
i=1 yi

P commits to the shares of the parties, and the yi values (together these two values
makeup party Pi’s view), then the verifier P selects one party to remain unopened, having
index ī. In the response, the prover sends the views of the other N−1 parties, along with y ī,
and a commitment to x ī. Based on the revealed values, V checks that y = y ī

∏
i∈[N ],i̸=ī gxi

and that each yi is computed correctly.
To realize VE, P encrypts xi’s in the committing phase, which allows a receiver R

to reconstruct the DLog of y by decrypting an unopened share xī. Along with the core
idea, the full protocol in Protocol 4 uses two ideas (originating in [KKW18]) that are now
standard in protocols of this type. First, the shares of the parties are computed by reading
random values from their tapes, and the first share is corrected with an auxiliary value
that depends on the secret. Second, the tapes are derived from a seed with a binary tree
construction, so that the N − 1 revealed seeds can be communicated more efficiently by
revealing ⌈log2(N)⌉ seeds.

In Appendix D.1, we provide the full protocol, prove security, describe how to chose
parameters for 128-bit concrete security, describe the hashed Elgamal PKE we use, and
describe the optimizations we apply once these choices are fixed. We then explain how we
obtained the size and speed benchmarks used in this section.

2We present the final VE scheme to illustrate our implementation details. The IOP implicit in DKGitH
is sketched in the validity analysis in Appendix D.1.
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5.1.2 Encrypting Discrete Logs with Robust DKG-in-the-head

One can consider a variant of the above protocol by having a prover P run Feldman’s VSS
protocol in-the-head [Fel87]:3

1. Party 0 (dealer), upon receiving the witness (DLOG) x as input, samples uniformly
random ai ∈ F for i = 1, . . . , t and lets a0 = x. Define a degree-t polynomial
a(X) = a0 + a1X + . . . + atX

t.
2. For i = 1, . . . , N , send to party i a Shamir secret share xi = a(i) of x. Moreover,

broadcast a commitment to the polynomial A0 = gx, A1 = ga1 , . . . , At = gat .
3. Each party i checks the validity of its share: gxi =?

∏t
j=0 Aij

j .
The corresponding VE protocol instantiated with the hashed Elgamal PKE is detailed

in Appendix D.2. At a high-level, P encrypts the N shares separately, and upon receiving
a challenge I ⊂ [N ] with |I| = t from V , she opens xi for i ∈ I. Then V checks the validity
of revealed shares. At this point, the receiver R could take the t opened shares and the
remaining ciphertexts as input, and run Lagrange interpolation to recover the witness.
But by exploiting the additive homomorphism (over Zp) of hashed Elgamal, we observe
that one can delegate this task to the compression algorithm. Our optimized instantiation
entirely avoids interpolation within the recovery algorithm.

5.1.3 Verifiable Encryption of RSA Keys

There are two natural ways to generalize the DKG-in-the-head idea to the RSA setting.
First, we can verifiably encrypt an RSA private exponent d, by using the above proof of a
discrete logarithm to prove knowledge of d such that (me)d = m (mod n), where (e, n) is
an RSA public key and m is an arbitrary value. Thus we can efficiently verifiably encrypt
RSA encryption and signing keys.

Second, we can prove knowledge of a preimage of a one-way group homomorphism. For
example, if the homomorphism is ϕ : m 7→ me mod n with n = p ·q, one can design a simple
MPCitH protocol for knowledge of an RSA preimage: the parties share m multiplicatively,
m = m1 · · ·mN (mod n) then broadcast ϕ(mi) = me

i , and then check that c =
∏

me
i

(mod n). This can be used to prove knowledge of an RSA plaintext corresponding to a
given ciphertext (a more direct type of verifiable encryption), or knowledge of a message
corresponding to a given signature. The MPC protocol can be extended to prove additional
properties of m as well.

5.2 Verifiable Encryption of AES Keys
With our transform applied to Banquet-IOP, one can verifiably encrypt an AES private
key used for generating a given public ciphertext. Concretely, since Banquet-IOP is
specialized for the relation R =

{
((ct, pt), K) : ct = AESK(pt)

}
, one can verifiably encrypt

K satisfying the relation R with any PKE. The compiled VE scheme Banquet-NIVE and
validity proof are detailed in Appendix F. To the best of our knowledge, no prior work
proposed a verifiable encryption scheme for AES private keys. As AES keys are commonly
stored in hardware, this is also relevant for our verifiable backup scenario. Since AES
is considered PQ-secure, and encrypted data may have a long lifetime, in some systems
it is important that AES keys be exported with a matching level of security. If PKE is
instantiated with a quantum-resilient scheme, such as a lattice-based one, our verifiable
encryption has PQ security, in the sense that both the encryption scheme and relation to
be proven about the plaintext may withstand quantum attacks.

3We thank Yashvanth Kondi for letting us know the existence of a similar protocol in his unpublished
manuscript.
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Verifiably encrypting an AES key with the hashed Elgamal scheme described in
Appendix D.1 has proof sizes that are only slightly larger than Banquet proofs for AES,
since the ciphertexts are only 16 bytes larger than hash-based commitments. For example,
proofs are 20.4 KB (N = 16, τ = 41), an overhead of less than 1KB, and ciphertexts are
2 KB. Prover and verifier times are dominated by the cost of computing encryptions, but
we estimate the total time to be below 100ms (based on the time estimates used above
and those from [BDK+21]).

As we analyze in Appendix B, variants of the FO transform can be used for achieving un-
deniability and thus many efficient post-quantum PKE schemes, including Kyber [SAB+20]
and FrodoKEM [NAB+19], are compatible with our framework.

Our implementation, AES-VE, uses Kyber as a PKE and is based on the Helium-AES
proof system [KZ22], an IOP with the same structure as Banquet but further optimized for
the AES relation. Table 1 gives benchmarks for our implementation, for three choices of
parameters, showing that one can trade larger proof and ciphertext sizes for speed of the
prover and verifier. In the parameters yielding the shortest proofs and ciphertexts (approx.
22 KB and 13 KB, respectively) the prover and verifier run in about 67 ms, compression is
about 2 ms and decryption (not shown) is below 1 ms.

5.3 Benchmarks and Comparison
In Table 1 we present benchmarks from the four verifiable encryption schemes we imple-
mented, and one that we provide estimates from the literature.4 We implement both the
robust and normal variants of the DKG-in-the-head protocol for proving knowledge of
discrete logarithms in prime order groups. Our Rust implementation uses the secp256r1
elliptic curve group, via generic APIs of the arkworks library [ac22] allowing our code
to change to one of the many other curves arkworks supports. Then for comparison, we
implement the CD (Camenisch-Damgard [CD00]) scheme, as described above. We provide
sizes for the NRSW scheme from [NRSW20] scheme, and estimate the runtimes of their
proof generation and verification by scaling their reported runtimes to the frequency of
our processor. Note however that their implementation is optimized to use properties of
the secp256k1 elliptic curve and may not perform as well on other curves. Finally, our
AES-VE implementation is based on the C++ implementation of Helium-AES [Kal22] for
AES-128 and uses the AVX2 optimized Kyber implementation from PQClean [KSSW22].
All of the parameters were chosen to meet the 128-bit security level; for Kyber we use the
L1 parameter set which is expected to match the security of AES-128. Our benchmark
machine has an Intel Xeon W-2133 CPU @ 3.60GHz. The table gives the parameters we
use for each scheme, the size in bytes of the transcript tr, the VE ciphertext |C|, (also
with random subset (RS) compression, column |C|RS), as well as the computational costs
of the prover P, verifier V and the compression algorithm C. The final decryption cost by
the receiver R was always well below 1ms, so we omit it from the table.

All of the schemes in Table 1 (except [NRSW20]) allow one to trade-off size of proof and
ciphertext for speed. We provide benchmarks for different combinations of parameters to
showcase the range of options available to applications. For instance, in a group signature
or identity escrow scheme the ciphertext size may be the most important metric to optimize.
When exporting an encrypted key from a constrained device (such as a YubiKey) prover
time may be most important. The best parameter set depends on the importance assigned
to each of the metrics.

Despite the caveats mentioned above, it seems reasonable to conclude that the NRSW
scheme has the shortest ciphertext sizes and the slowest prover of the schemes compared.
For all schemes but NRSW, by selecting different parameters (at the same security level)
we can achieve various tradeoffs, and overall we find that no scheme is strictly better than

4Our implementations are available at https://github.com/akiratk0355/verenc-mpcith.

https://github.com/akiratk0355/verenc-mpcith


26 Verifiable Encryption from MPC-in-the-Head

Table 1: Parameters and benchmarks for verifiable encryption of discrete logarithm and AES
keys. Our new schemes are DKGitH (§5.1), RDKGitH (§5.1.2) and AES-VE (§5.2). CD is our imple-
mentation of the generic scheme from [CD00], followed by (estimates for) the NRSW [NRSW20]
construction. Sizes are given in bytes and run times in milliseconds.

Scheme Parameters |tr| |C| |C|RS P (ms) V (ms) C (ms)
DKGitH (64, 48, 15) 9 360 3 120 975 182.45 181.31 2.57
(N, τ, n) (85, 20, 20) 4 276 1 300 1 300 101.36 100.93 4.76

(16, 32, 30) 5 248 2 080 1 950 30.55 29.15 1.19
(4, 64, 48) 8 352 4 160 3 120 15.33 12.28 0.38

RDKGitH (132, 64, 67) 11 781 6 596 6 499 6.65 4.36 45.76
(N, t, n) (192, 36, 145) 15 265 15 132 14 065 8.46 2.81 42.90

(160, 80, 55) 14 337 7 760 5 335 9.03 5.34 54.99
(256, 226, 30) 26 017 2 910 2 910 16.93 16.60 242.92

CD [CD00] (712, 20) 52 968 1 300 42.29 37.88
(k, u) (250, 30) 20 524 1 950 15.22 12.61

(132, 64) 14 816 4 160 8.30 5.13
NRSW [NRSW20] 1100 64 759.64† 40.28†

AES-VE (16, 31) 40 396 24 894 12.41 12.13 0.31
(N, τ) (57, 22) 29 400 17 676 23.63 22.81 0.77

(256, 16) 21 920 12 864 67.24 66.43 2.16

all others, across all metrics. The DKGitH scheme has the 2nd shortest proofs following
NRSW and modest timings. The RDKGitH scheme can achieve the fastest verification of all
schemes, since it scales only with the t parameter. However, this comes at the cost of larger
proofs and ciphertexts, and significant cost for compression (or decryption, depending on
where one does the interpolation step). Still, this tradeoff of shifting work from P and V
to decryption may be appealing in scenarios where decryption is done infrequently, and
higher latency is tolerable. The CD scheme provides good run times when compared to
DKGitH, but with significantly larger proof sizes.

Finally, we note that our AES-VE scheme proves knowledge of an AES key with respect
to a single block, and since this relation is not a binding commitment to the key, in practice
we would prove knowledge of a key relating the encryption of two plaintext blocks to two
ciphertext blocks. Since many parts of the proof are re-used in this larger circuit (e.g., the
seed tree and witness shares of each party), the resulting proof is easily seen to be at most
2x larger/slower than the benchmarks in Table 1 and we estimate 1.5x is possible with a
direct implementation. Ciphertext sizes, compression and decryption time would remain
as reported.

6 Camenisch–Damgård Verifiable Encryption with Imper-
fect Correctness

6.1 The Camenisch–Damgård framework [CD00]

Σ-protocol A Σ-protocol for relation R is an interactive proof system consisting of three
rounds. In a Σ-protocol, the prover sends a message a, the verifier replies with a random
bit string e, and the prover responds with z. The verifier decides to accept or reject based
on the transcript (a, e, z). A Σ-protocol can be efficiently compiled into a non-interactive
zero-knowledge proof of knowledge (in the random oracle model) through the Fiat-Shamir
transform [FS87]. The usual requirements for a Σ-protocol are special soundness and
honest verifier zero knowledge. In particular, special soundness implies existence of an
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P(w, x, pk) V(x, pk)

Run Σ-protocol prover on w, x to get a.
Run Σ-protocol prover on input
challenges 0 and 1, respectively.
Obtain responses z0, z1.

ce := Enc(pk, ze; re) for e = 0, 1. a, c0, c1

e ∈ {0, 1}

ze, re

Run Σ-protocol verifier to check (a, e, ze)
Check ce =? Enc(pk, ze; re)
If check passes output C := (cē, a, e, ze)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(cē, a, e, ze, sk)
Get zē := Dec(sk, cē)
Recover w by invoking E(a, e, ē, ze, zē)

Figure 2: Camenisch–Damgård verifiable encryption.

efficient extractor E that outputs a valid witness, given two accepting transcripts (a, e, z)
and (a, e′, z′) such that e ̸= e′.
The transform See Fig. 2. We assume that there exists a Σ-protocol with one-bit
challenge for the relation R. At a high-level, the receiver R can obtain a witness by first
decrypting the unopened response and then by invoking the extractor E of the underlying
Σ-protocol.

6.2 Undeniable Encryption is Required for [CD00]
In the analysis of the VE scheme in Fig. 2, Camenisch and Damgård assume only that
Enc is semantically secure, which means that ciphertexts are indistinguishable against
chosen plaintext attacks (also called IND-CPA security, or CPA security for short). We
first note that CPA security does not imply that an encryption scheme is committing if
its correctness is not perfect, so the analysis of [CD00] suggests that this property is not
required for the security of their VE scheme.

We provide two counterexamples to the security analysis of [CD00]. An example with
LWE-based encryption is deferred to Section 6.4. We describe encryption schemes that
are semantically secure, and non-committing, in a way that allows a malicious prover,
who knows the witness, to compute a proof and ciphertext guaranteed to decrypt to junk,
rather than the witness, breaking the validity property of Definition 1.

Here we present the scheme that is essentially an instance of the basic construction
of [CDNO97], and is much simpler than a fully deniable encryption scheme, as we only
need the prover to be able to open ciphertexts by flipping bits in one direction. In our
attack the unopened/junk encryptions are encryptions of the all-ones string, and when
we open one to a specific value, we must flip some of the ones to zero, but we never need
to change a zero to a one bit. In a more general deniable encryption scheme we would
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need both one-to-zero and zero-to-one, in order to open one arbitrary message to another
arbitrary message.

6.2.1 A Secure Encryption Scheme that is Not Undeniable

We describe the encryption scheme now. Let λ be a security parameter and for an RSA
modulus n, let QRn be the set of quadratic residues in Z∗

n.
Key generation: Generate an RSA modulus n = pq, along with a generator g of a cyclic
subgroup of QRn, of size ρ. Output the secret key sk = (p, q) and public key pk = (n, g)

We leave the details to [Gro05], where this is called an RSA subgroup pair. We note
only that when generating (n, g) there is flexibility for ρ, in particular we can have ρ be
cryptographically large (e.g., ρ ≈ 22λ), but still only be a negligible part of QRn.
Encryption: To encrypt the n-bit string (m1, . . . , mn), under the public key (n, g),
encryption outputs the vector (c1, . . . , cn) ∈ QRn, where

ci =
{

gri if mi = 1, or
ri if mi = 0

and ri is a uniformly chosen random integer in QRn.
Decryption: To decrypt the ciphertext (c1, . . . , cn) using secret key (p, q), output
(m1, . . . , mn) where

mi =
{

1 if ci ∈ ⟨g⟩
0 if ci ̸∈ ⟨g⟩.

Using the secret key, we can efficiently test if ci ∈ ⟨g⟩, by checking the order of ci.
Fake opening: We first explain faking for a single-bit ciphertext. The scheme allows
an encryption of one to be opened as if it were an encryption of zero. Let the ciphertext
be c = gr, the encryptor outputs m = 0 and r = c (claiming they they generated c at
random, as specified by the 0 case of encryption). Note that re-encryption with m = 0,
r = c outputs c, as required. For longer ciphertexts, the same step can be repeated for
each bit, and we can open an encryption of the all-ones string to any string.
Corrrectness: When encrypting a one bit, the ciphertext is always in ⟨g⟩ and will be
decrypted correctly. When the plaintext is a zero, decryption can fail if by chance ri is in
⟨g⟩. Since key generation ensures that ρ/|QRn| is negligible, this happens with negligible
probability for polynomially bounded message length.
IND-CPA security Security relies on the hardness of the decisional RSA subgroup
assumption, described by Groth in [Gro05], which states that distinguishing elements
in ⟨g⟩ from elements in QRn is hard. This is closely related to the prime residuosity
assumption introduced by Benaloh and Fisher [CF85] and later used in other constructions,
e.g. [BCP03,NS98]. More generally, our scheme can be constructed with any subgroup
indistinguishability assumption, as defined by Brakerski and Goldwasser [BG10], provided
the size of the subgroup is much smaller than the group (as required for correctness). Other
options for instantiating the subgroup indistinguishability assumption are given in [BG10],
in particular the instantiation based on the Damgård-Jurik [DJ01], generalization of the
decisional composite residuosity assumption [Pai99] would be suitable for our construction
(because it allows the subgroup to be smaller; see [BG10, Footnote 8]).

Under the decisional RSA subgroup assumption, IND-CPA security of the the single-bit
case follows directly, by noting that the set of ciphertexts corresponding to an encryption
of one is ⟨g⟩ and the set of ciphertexts corresponding to an encryption of zero is QRn.
Distinguishing ⟨g⟩ from QRn immediately breaks CPA security, and we can trivially
construct an attacker B for the the decisional RSA subgroup problem given a CPA attacker
(with the same success probability). With n-bit messages, B’s advantage degrades by a
factor 1/n.
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6.2.2 An Attack on [CD00] Verifiable Encryption

We now give a simple attack on the Camenisch–Damgård verifiable encryption scheme,
given in Fig. 2, when the recipient’s public key encryption algorithm is our semantically
secure encryption scheme given above.

In the first message, the two encryptions ce are computed as Enc(pk, 1ℓ; re), i.e., the
malicious prover P∗ replaces the plaintext ze with an encryption of the all-ones string
having the same length.5

After seeing the challenge e, P∗ must open the ciphertext ce, and provide the plaintext
and randomness so that V can check it. P∗ uses the faking algorithm of Enc in order to
claim that ce was in fact an encryption of ze, as required. This ensures that V’s check
ce = Enc(pk, ze; re) succeeds. Since ze is computed honestly (using the witness), V ’s check
of the transcript (a, e, ze) will also pass.

However, the VE ciphertext output consists of an encryption of 1ℓ, and so the decryption
will not produce a witness with probability 1, breaking the validity property, which was
claimed to hold with probability 1/2 by [CD00, Theorem 2]6.

6.3 Fixing the [CD00] Security Analysis
By additionally assuming undeniability of PKE (Definition 3) we can prove validity of the
scheme described in Fig. 2. Recall that a cheating prover P∗ wins the validity game if the
receiver R failed to decrypt a witness while the verifier V accepts. Similar to the validity
analysis of Theorem 1, we consider two cases: (1) ze ̸= Dec(sk, Ce) while ce = Enc(pk, ze; re)
and (2) ze = Dec(sk, Ce) while (a, e, ze) is an accepting transcript, where the challenge
bit e is chosen uniformly. In the former case, one can break undeniability of PKE using
a cheating prover P∗. In the latter case, due to special soundness, if the extractor E
(internally invoked by R) fails to obtain a valid witness, it must be that the unopened
response zē = Dec(sk, cē) is non-accepting w.r.t. (a, ē). Since ze and zē are determined
before a cheating prover P∗ gets to see the challenge e, the probability that P∗ can correctly
guess e is at most 1/2. Overall, the validity error is ϵval = ϵcext + 1/2.

6.4 Attacking [CD00] Instantiated with LWE-based Encryption Schemes
In this section we discuss why a plain IND-CPA-secure LWE-based encryption doesn’t
satisfy undeniability and how it affects concrete security of [CD00].

6.4.1 LWE encryption scheme

Below we first recall a construction presented in [Lyu20, §2], a simplified version of the
Regev encryption [Reg05]. The scheme is proven IND-CPA secure under the (decisional)
LWE assumption, but we show that it fails to satisfy the undeniability property.
Key generation. Let q be a prime. Following [Lyu20] let us denote [β] := {−β,−β + 1, . . . , β}
with β ≪ q. The key generation algorithms samples A ∈ Zm×m

q , s ∈ [β]m, and e1 ∈ [β]m
uniformly at random. It outputs public key (A, t) and secret decryption key s, where

t = As + e1 mod q.

Encryption. An encryptor is given (A, t) and message µ ∈ {0, 1} as inputs. It first
samples r ∈ [β]m, e2 ∈ [β]m and e3 ∈ [β]m uniformly at random and outputs ciphertext

5For simplicity we assume here that all ze values are encoded to have the same length.
6Theorem 2 in the full version of [CD00] the paper, the BRICS technical report https://brics.dk/RS/

98/32/BRICS-RS-98-32.pdf

https://brics.dk/RS/98/32/BRICS-RS-98-32.pdf
https://brics.dk/RS/98/32/BRICS-RS-98-32.pdf
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(u, v), where

uT = rT A + eT
2 mod q

v = rT t + e3 + q

2 · µ mod q

Decryption. A decryptor is given s and (u, v). It computes v − uT s and outputs 1 if the
result is closer to q/2 than to 0, and outputs 0 otherwise.
Statistical correctness. The above encryption scheme is statistically correct. Note that

v − uT s = rT (As + e1) + e3 + q

2 · µ− rT As− eT
2 s

= rT e1 + e3 − eT
2 s + q

2 · µ

For decryption to be correct the noise term rT e1 + e3 − eT
2 s must have a norm smaller

than q/4. Hence, the parameters (q, m, β) should be chosen such that the following
probability is negligible.

δ := Pr
[
|rT e1 + e3 − eT

2 s| ≥ q

4 : s, e1, e2, r←$ [β]m; e3 ←$ [β];
]

.

As |rte1| ≤ mβ2 and |et
2s| ≤ mβ2, by setting 2mβ2 + β < q/4 one can actually achieve

perfect correctness. For the sake of efficiency, however, such a parameter choice is unusual.
For example, if (q, m, β) = (3329, 4096, 1) one can achieve the decryption error probability
δ ≈ 2−142. In practice, the lower bits of ciphertext are often truncated, which trades
ciphertext size for decryption error, but we ignore this optimization for simplicity.

6.4.2 Attacks breaking undeniability

We present three scenarios, depending on the adversarial power.
• Case 1. Adversary generates a key pair (i.e. breaking strong undeniability)

If the adversary has control over key generation then the attack is straightforward: by
setting s = (−β, . . . ,−β) and e1 = (β, . . . , β), they encrypt µ = 1 with randomness
r = e2 = (β, . . . , β) and e3 = β. Clearly, the resulting ciphertext (u, v) decrypts
to 0, since the noise term rT e1 + e3 − eT

2 s exceeds q/4 for the example parameter
(q, m, β) = (3329, 4096, 1).

• Case 2. Key pair is generated honestly, but the adversary knows the
decryption key (i.e. breaking undeniability as defined in Definition 3) Even
if a key pair is generated honestly, one may observe that the attack succeeds if the
adversary sees the secret decryption key (s, e1) as in Definition 3. To maximize the
norm of noise term, the adversary looks at each element of e1 and adaptively choose
the corresponding position of rT . That is, ri = β if e1,i is positive, and ri = −β
otherwise. The e2 is chosen in the same fashion and e3 doesn’t matter as it has little
impact on the resulting norm. For the example parameter (q, m, β) = (3329, 4096, 1)
this strategy succeeds with overwhelming probability (where the probability is taken
over random coins used in key generation).

• Case 3. Key pair is generated honestly, and the adversary only receives
the public key (i.e. breaking a variant of undeniability weaker than
Definition 3) Even if the adversary does not get to see the decryption key, which
may be the case in some practical scenarios, one can still significantly increase the
chance of decryption failure. If the adversary deterministically uses the largest
possible randomness rT = eT

2 = (β, . . . , β) and e3 = β, it amounts to evaluating the
following probability.
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δ′ := Pr
[
|rT e1 + e3 − eT

2 s| ≥ q

4 :
s, e1 ←$ [β]m;

rT = eT
2 = (β, . . . , β); e3 = β

]
.

For the example parameter (q, m, β) = (3329, 4096, 1), the decryption error is now
δ′ ≈ 2−96, which is significantly larger than the correctness error in the honest
encryption case.

6.4.3 Attacking validity of [CD00]

The VE scheme described in Fig. 2 can be instantiated with the above LWE-based
encryption by having a prover encrypt the responses bit-by-bit, or with its improvements
such as [GPV08,PVW08,LPR10,LPR13] allowing for packing many bits in the plaintext
per one encrypting operation. A cheating prover with knowledge of a valid witness follows
the protocol honestly, except that the encryption randomness is always chosen to be large
as above. In this case, the verifier always gets convinced while the receiver fails to decrypt
the unopened response correctly with some probability, depending on the scenarios. The
original analysis of [CD00] only claims to achieve a weaker variant of validity in which
a prover does not receive sk as inputs (corresponding to Case 3 above) and therefore
the probability that decryption fails is still small with the above simple attack strategy.
Although this scenario may not lead to a practical attack against validity of VE, the
example illustrates how it fails to achieve 128-bit security in the validity game, even though
the underlying encryption scheme has 128-bit security in terms of decryption correctness.
Remark 1. We remark that, unlike the counterexample presented in Section 6.2, the
randomness submitted by the adversary when opening the plaintext looks somewhat
suspicious: because the norm of revealed randomness is often large, the verifier may be
able to detect that encryption did not sample fromthe correct (uniform) distribution over
the randomness space. However, it still serves as another counterexample to the security
analysis of [CD00], because it does not specify how the verifier should check randomness
when the plaintext is revealed. Applying the FO transform is one way to circumvent
the issue, as we observe in Appendix B. An interesting follow-up question is whether the
verifier could impose the norm bound on revealed randomness to ensure that the scheme
retains both correctness and binding when used as a commitment.

7 Conclusion and Future Work
As our construction gives a practical way to verifiably encrypt ECC, DSA, DH, RSA and
AES keys, we have a complete and flexible solution to the verifiable backup problem for
the most common key types stored in hardware and cloud services. A notable exception
are keys for the HMAC algorithm. They can be handled with our transform and ZKB++
or KKW, but with larger proof sizes due to the larger circuit size of the SHA2 or SHA3
hash function. Using Limbo [DOT21] with our transform (see Section 3.3) would be the
best option as Limbo can create proofs for SHA-256 that are 100-200 KB in size.

For even larger circuits, an ideal approach would be a generalization of our compiler
to construct VE schemes from more general IOPs, in order to make use of proof systems
where communication is sub-linear in the circuit size (such as Aurora [BCR+19]), which
currently outperform MPCitH proofs for large circuits. However, a direct modification
of our compiler is not obvious. With, e.g., polynomial IOPs, there are no concise secret
shares of the witness to be encrypted as in MPCitH. Then the prover would likely need to
perform proof of plaintext knowledge to guarantee consistency between encrypted data
and the statement to be proven. Another minor gap in our solution to the the verifiable
backup problem is that strong validity (Section 3.5) is only guaranteed for perfectly correct
PKE, which means we require a stronger assumption when PKE is lattice-based.
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Related to encryption, can the ciphertexts produced by our construction be made
CCA-secure? Currently they are if the entire proof transcript is sent to the receiver,
however, once compression outputs a ciphertext, note that the ciphertext can be modified
by dropping one of the individual PKE ciphertexts from one parallel repetition (even if
PKE is CCA secure). Having PKE support labels (as discussed in [CS03]) might allow the
set of PKE ciphertexts to be bound together. Also on the subject of CCA security, does
CCA security imply undeniability?

The DKG-in-the-head design strategy proved useful here, and may be worth exploring
further, since there is a large literature on distributed (or threshold) key generation
upon which to draw inspiration. It is also an interesting open question whether our
approach to VE leads to interesting instantiations of group and ring signatures, especially
those targeting post-quantum security as was done in [BDK+22], or those based only on
symmetric-key primitives such as [KKW18,DRS18].

Changelog

• October 16th 2023 Major updates including implementation results and the
analysis of non-interactive verifiable encryption schemes and RDKGitH. We also
fixed the sizes of DKGitH ciphertexts in Table 1 which were not estimated correctly
in the initial version.

• April 20th 2024 Updated benchmark results for DKGiH in Table 1 and accommo-
dated the reviewer feedback of IACR CiC. The current implementation is consistent
with Protocol 4 and uses a randomized first component of Elgamal. Although the
de-randomization optimization still retains a weak variant of HVZK where the state-
ment is sampled uniformly (as in the verifiable key backup scenario), we dropped it
to minimize the required assumption since the proof of security seems to require the
generic group model (see Appendix D.1 for details).
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such jurisdiction or to such person would be unlawful.
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A Additional Preliminaries
In this section, we provide additional preliminaries on public-key encryption, extractable
commitment schemes and interactive oracle proofs.

A.1 Public Key Encryption
A public key encryption scheme PKE is a tuple of three algorithms (Gen, Enc, Dec). Let
Sm be a message space and Sr be a set from which randomness is sampled.

• Gen(1κ) outputs a key pair (sk, pk).
• Enc(pk, m; r) outputs a ciphertext c on public key pk, message m ∈ Sm and random-

ness r ∈ Sr as inputs.
• Dec(sk, c) outputs a plaintext m or ⊥ on decryption key sk and ciphertext c as inputs.

Definition 4. PKE is ϵcpa-IND-CPA secure if for any PPT adversary (A1,A2)∣∣∣∣∣∣∣∣∣Pr

b = b′ :

(pk, sk)← Gen(1κ);
(m0, m1)← A1(pk);
b←$ {0, 1}; r ←$ Sr;

c := Enc(pk, mb; r); b′ ← A2(c);

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ ϵcpa(κ)

Throughout we assume PKE satisfies IND-CPA security.
Following [HHK17], we define statistical correctness relative to a random oracle G :

{0, 1}∗ → Sr.
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Definition 5. [HHK17] Let qG be the number of queries to G made by an adversary. We
say that PKE is δ(qG)-correct if for all (possibly unbounded) adversaries A

Pr
[

m ̸= m′ :
(pk, sk)← Gen(1κ); m← AG(·)(pk, sk);

r ←$ Sr; c := Enc(pk, m; r); m′ := Dec(sk, c);

]
≤ δ(qG)

Note that statistical correctness in the standard model can be defined as a special case
of the above definition, where qG = 0 and therefore δ doesn’t rely on qG.

A.2 Extractable Commitment Schemes
An extractable commitment scheme ECOM is a tuple of algorithms (CGen, Commit, CExt).

• CGen(1κ) outputs a commitment key pk and an extraction key sk.
• Commit(pk, m; r) outputs a commitment c on commitment key pk, message m ∈ Sm

and randomness r ∈ Sr as inputs.
• CExt(sk, c) outputs a message m on an extraction key sk and a commitment c as

inputs.
We require ECOM to satisfy hiding, binding and extractability.

Hiding ECOM is statistically (resp. computationally) ϵhide-hiding, if for any adversary
(resp. any PPT adversary) (A1,A2)∣∣∣∣∣∣∣∣∣Pr

b = b′ :

(pk, sk)← CGen(1κ);
(m0, m1)← A1(pk);
b←$ {0, 1}; r ←$ Sr;

c := Commit(pk, mb; r); b′ ← A2(c);

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ ϵhide(κ)

Binding ECOM is statistically (resp. computationally) ϵbind-binding if for any adversary
(resp. any PPT adversary) A

Pr

 m ̸= m′

∧ c = Commit(pk, m; r)
∧ c = Commit(pk, m′; r′)

:
(pk, sk)← CGen(1κ)

(c, m, r, m′, r′)← A(pk, sk)

 ≤ ϵbind(κ)

In particular, statistically binding implies that the following probability is also negligible in
κ, since otherwise a computationally unbounded adversary could simply check all possible
values of (c, m, r, m′, r′) to find a tuple that breaks binding.

Pr

∃(c, m, r, m′, r′) : m ̸= m′

∧ c = Commit(pk, m; r)
∧ c = Commit(pk, m′; r′)

: (pk, sk)← CGen(1κ)


Extractability ECOM is statistically (resp. computationally) ϵcext-extractable if for any
adversary (resp. any PPT adversary) A

Pr

 m ̸= m′

∧ c = Commit(pk, m; r)
:

(pk, sk)← CGen(1κ)
(c, m, r)← A(pk, sk)

m′ := CExt(sk, c)

 ≤ ϵcext(κ)

Note that without CExt and the extractable property, it is a usual commitment scheme
COM.
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A.3 Interactive Oracle Proofs
We recall interactive oracle proofs (IOP) originally introduced by [BCS16]. As the MPC-
in-the-head proofs relevant to our work have public-coin verifiers that make non-adaptive
queries (i.e., queries made by the verifier are solely determined by the verifier’s randomness
and inputs), we consider a slightly restricted class of IOPs satisfying those properties.
This allows us to divide the protocol into three phases similar to those of the AHP
framework [CHM+20] (although we do not require a preprocessing phase).

Definition 6 (IOP). Let R be a relation and LR :=
{

x : ∃w : (x, w) ∈ R
}

. A (public-
coin) r-round interactive oracle proof for a relation R consists of a tuple (P, V). The
protocol proceeds as follows.

• Committing phase For i ∈ [1, r], the verifier V sends a random message ρi and
the prover P outputs a proof string πi, to which the verifier has oracle access.

• Query phase For i ∈ [1, r], V can query oracle i to access πi with a query string qi.
The oracle returns the corresponding response string si.

• Decision phase Based on the responses from oracles, V accepts or rejects.

While not present in the general definition, in order to ensure that an IOP is ZK,
concrete protocols define limits on the queries the verifier can make, to ensure that
information about w is not leaked. For many IOPs (as suggested by the next definition),
given all proof strings it becomes possible to recover w.

Definition 7 (Straight-line extractability (SLE)). An IOP (P, V) is straight-line extractable
with knowledge error ϵsle-iop if there exists an efficient extractor E such that for all pairs of
unbounded adversaries (A∗, P∗)

Pr

b = 1 ∧ (x, w′) /∈ R :
x← A∗(1κ);

b← ⟨P∗, V⟩(x);
w′ ← E(x, π1, . . . , πr);

 ≤ ϵsle-iop(κ)

Definition 8 (Honest-verifier zero knowledge (HVZK)). An IOP (P, V) is ϵzk-iop-statistical
honest-verifier zero knowledge if there exists a PPT simulator S such that for every
(x, w) ∈ R, the statistical distance between S(x) and V’s view of the honest interaction
with P on input x and w is at most ϵzk-iop.

Remark 2 (Security proofs for IOPs). In our security proofs, we assume that an IOP
prover P gets to see the query strings qi. This naturally models all concrete protocols
we consider where the verifier queries are fixed or sent to the prover, and does not affect
security because the query phase happens after the prover has sent all proof strings.

Also, since most protocols realize the oracles by committing to the proofs strings πi,
all πi are available to the extractor by using extractable commitments (Appendix A.2) or
reading the query history in the ROM. For examples of IOPs that follow this paradigm
see Marlin [CHM+20] and Lunar [CFF+21].
Remark 3 (Uniqueness of extracted witness). While we are guaranteed that the witness
w′ output by extractor algorithm E of Definition 7 satisfies (x, w′) ∈ R, w′ might not be
the same witness used by P when creating the proof, if there are multiple valid witness
per statement. For example, when proving knowledge of a symmetric key that relates a
given plaintext-ciphertext pair (as Banquet does for AES) it may be easy to find keys k1,
k2 such that Ek1(p) = Ek2(p) where p is a fixed plaintext block. In the context of our
verifiable encryption construction, where decryption invokes the IOP extractor, it will be
important that R is such that x is a binding commitment to w.
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A.4 Bitwise Commitment and Encryption
Our equality proof method (Appendix G) to compress ciphertexts requires an extractable
commitment scheme where the messages are bitstrings, and the commitments must be
(somewhat) homomorphic with respect to the XOR operation. For a committed value
c = Commit(a) and a public value b, where a and b are both bitstrings, we must be able to
compute c′ = Commit(a⊕ b). In Appendix G our construction uses Paillier encryption, but
what we describe here also applies to Elgamal encryption and can be adapted to Pedersen
commitments. The setup is a group G with generator g and public key h. Encryption is
defined as follows.
Ench(a1, . . . , aλ; r1, . . . rλ) The inputs a1, . . . , aλ are bits, and the inputs r1, . . . , rn are
random values modulo the order of G. The output is c = ((e1, d1), . . . , (eλ, dλ)) ∈ G2n

where (ei, di) = (gri , gaihri).
XOR of committed and public values Given c = Ench(a1, . . . , aλ; r1, . . . , rλ), and
b = (b1, . . . , bλ), to compute c′ = Ench(a ⊕ b; r′

1, . . . , r′
λ), first note that, when ai and

bi are bits, ai ⊕ bi = ai + bi − 2aibi, and the latter computation can be done correctly
modulo the group order of G since ai and bi are bits. Therefore, we compute (e′

i, d′
i) as

((ei · gbi)/(e2bi
i ), (di · gbi)/d2bi

i ), and the prover can compute r′
i = ri + bi − 2ribi (over Z

when the group is of unknown order).
Converting from single-bit to bitstring encryptions Once all homomorphic oper-
ations have been performed, we can convert a bitwise encryption to a = (a1, . . . , aλ)2
whenever λ < ⌊log2(|G|)⌋, by simply computing an encryption of the integer a =

∑λ
i=1 ai2i,

as (
∏

e2i

i ,
∏

d2i

i ), with opening r′ =
∑λ

i=1 ri2i.
Proving equality of committed values It is straightforward to prove two bitwise
encrypted values are the same by proving the individual bits are the same. Once the
ciphertext has been converted an integer, proving equality is standard in the literature.
Using a generalization of Schnorr’s proof (called the “general linear protocol” in [BS20,
§19.5.3]), we can prove knowledge of (a, r1, r2) such that e1 = gahr1 ∧ e2 = gahr2 (and this
generalizes to multiple commitments in a straightforward way).

B Undeniability and Binding of the Fujisaki–Okamoto Trans-
form

As we observed in the previous section it turns out that an IND-CPA-secure PKE does
not necessarily satisfy the undeniability property. The issue is especially critical in the
post-quantum scenario, because typical lattice-based public key encryption schemes allow
a small probability of decryption failure, which can be exploited by a malicious adversary
to break undeniability.

Motivated by this we consider simple generic constructions of undeniable encryption
from any CPA-secure scheme with statistical correctness. We analyze two variants of
the Fujisaki–Okamoto transform [FO99, FO13, HHK17] and prove that both provide
computational undeniability in the random oracle model. Note that from Lemma 1,
binding of PKE when used as a commitment scheme is implied by undeniability. Hence, the
result in this section also implies these variants of the FO transform can be used to construct
a secure commitment scheme, which might be of independent interest. Throughout this
section, we denote the number of queries to a random oracle G by qG.

B.1 PKE1 [HHK17]
We first present a simple transform that forms the basis of both conversions. Let PKE =
(Gen, Enc, Dec) be an IND-CPA secure scheme with statistical correctness, message space
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Sm = {0, 1}k, and randomness space Sr = {0, 1}l. Let G : {0, 1}∗ → Sr be a random
oracle. Then we define a deterministic encryption scheme PKE1 = (Gen1, Enc1, Dec1) as
follows.

• Gen1 is identical to Gen
• Enc1(pk, M) takes M ∈ Sm and outputs c := Enc(pk, M, G(M)).
• Dec1(sk, c) first obtains M := Dec(sk, c), and

– if M ′ = ⊥ or c ̸= Enc(pk, M ′; G(M ′)), outputs ⊥;
– otherwise outputs M ′.

From [HHK17, Theorem 3.1], if PKE is δ-correct, then PKE1 is δ1-correct in the random
oracle model with δ1(qG) = qG · δ. Note that this also implies that PKE1 is undeniable as
well albeit not CPA secure, since it is a deterministic encryption scheme.

B.2 PKE2 [FO99]
As a randomized variant of the previous conversion, we define PKE2 = (Gen2, Enc2, Dec2)
parameterized by bitlength k0 of randomness as follows.

• Gen2 is identical to Gen
• Enc2(pk, m; ρ) takes m ∈ {0, 1}k−k0 and ρ ∈ {0, 1}k0 such that m||ρ ∈ Sm and

outputs c := Enc1(pk, m||ρ) = Enc(pk, m||ρ, G(m||ρ)).
• Dec2(sk, c) first obtains M ′ := Dec1(sk, c), and

– if M ′ = ⊥, outputs ⊥;
– otherwise parses M ′ as m′||ρ′ and outputs m′.

In [FO99], Fujisaki and Okamoto proved that the above conversion preserves IND-
CPA security. Hence, a commitment scheme constructed from PKE2 is computationally
hiding. Moreover, by additionally assuming γ-uniformity of PKE, they showed that PKE2
is IND-CCA secure, but we omit details in this paper as we only require IND-CPA security.

Below we prove our new result about PKE2.

Lemma 2. If PKE is δ-correct, then in the random oracle model, PKE2 is ϵund-undeniable
with ϵund(qG) = qG · δ.

Proof. Suppose there exists an adversary A that breaks undeniability. We construct a
reduction B that breaks δ1-correctness of PKE1 and thus δ-correctness of PKE.

1. On receiving (pk, sk) in the correctness game, B forwards (pk, sk) to A.
2. Whenever A makes a query to G, the B forwards the same query to G in the

correctness game.
3. When A outputs (c, m, ρ) such that c = Enc2(pk, m; ρ) and m ̸= Dec2(sk, c), the B

outputs M := m||ρ in the correctness game w.r.t. PKE1.
Note that the output M of B satisfies c = Enc1(pk, M), because of how Enc2 works
internally.

We argue that, as long as m ̸= Dec2(sk, c), we have M ̸= Dec1(sk, c) in the correctness
game w.r.t. PKE1. There are two cases where A wins the undeniability game w.r.t. PKE2:
(1) ⊥ = Dec1(sk, c), and (2) m′ ̸= m, where m′||ρ′ = Dec1(sk, c). In case (1), B clearly
breaks correctness of PKE1; in case (2), Dec1(sk, c) outputs M ′ := m′||ρ′ ≠ M . Hence,
whenever A successfully breaks undeniability, B successfully breaks correctness of PKE1.
Overall, we have ϵund = δ1 = qG · δ.
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B.3 PKE3 [HHK17]

We now define PKE3 = (Gen3, Enc3, Dec3), a hybrid encryption scheme obtained by
applying a variant of the FO transform to a deterministic public-key encryption scheme
PKE1 = (Gen1, Enc1, Dec1) as defined in Appendix B.1 and a symmetric-key encryption
scheme SKE = (SEnc, SDec) with message space Msym and key space K, respectively.

The transform we analyze here corresponds to FO�⊥ (“FO with implicit rejection”)
of [HHK17] and it is used in the Kyber [SAB+20]7 and FrodoKEM [NAB+19] lattice-based
encryption schemes. With slight modification our undeniability analysis below also applies
to other similar variants such as FO�⊥

m of [HHK17] or the original FO transform proposed
in [FO13]. We let Sm be the message space of PKE1. The scheme below relies on two
random oracles G : {0, 1}∗ → Sr and H : {0, 1}∗ → K.

• Gen3 first obtains (pk, sk) ← Gen1(1κ) and then samples a secret random seed
s←$ Sm. It outputs (pk′, sk′) := (pk, (sk, s)).

• Enc3(pk, m; ρ) takes m ∈ Msym and ρ ∈ Sm. It computes c1 := Enc1(pk, ρ), K :=
H(ρ, c1), and c2 := SEnc(K, m). It outputs (c1, c2).

• Dec3((sk, s), (c1, c2)) first obtains ρ′ := Dec1(sk, c1), and
– if ρ′ = ⊥, let K ′ := H(s, c1);
– otherwise let K ′ := H(ρ′, c1).

It finally outputs m′ := SDec(K ′, c2).

Hofheinz, Hövelmanns, and Kiltz proved IND-CCA security of the underlying KEM
implicit in the above construction. From [HHK17, Theorem 3.4], if PKE1 is δ1-correct and
SKE is perfectly correct, then PKE3 is δ1-correct in the random oracle model.

Below we prove our new result about PKE3.

Lemma 3. If PKE1 is δ1-correct and SKE is perfectly correct, then in the random oracle
model, PKE3 is ϵund-undeniable with ϵund = δ1.

Proof. Suppose there exists an adversary A that breaks undeniability. We construct a
reduction B that breaks δ1-correctness of PKE1.

1. On receiving (pk, sk) in the correctness game, B samples a random seed s ←$ Sm

and forwards (pk, (sk, s)) to A.
2. WhenA outputs ((c1, c2), m, ρ) such that (c1, c2) = Enc3(pk, m; ρ) and m ̸= Dec3((sk, s), (c1, c2)),

the B outputs ρ in the correctness game w.r.t. PKE1.

Note that if B outputs ρ, we have that c1 = Enc1(pk, ρ), c2 = SEnc(K, m), and m ≠
SDec(K ′, c2), where K = H(ρ, c1) and K ′ is as defined in Dec3. Hence it must be that
K ′ ̸= K, since SKE is perfectly correct. We consider two cases depending on how K ′ is
derived in Dec3: (1) ⊥ = Dec1(sk, c1), leading to K ′ = H(s, c1), (2) ρ′ = Dec1(sk, c1) and
ρ′ ̸= ⊥, leading to K ′ = H(ρ′, c1). In case (1), B clearly breaks correctness of PKE1; in case
(2), it must be that ρ′ ̸= ρ for K ′ ̸= K to happen, and thus correctness of PKE1 is broken.
Hence, whenever A successfully breaks undeniability, B successfully breaks δ1-correctness
of PKE1.

7We remark that the specification of Kyber slightly deviates from this transformation. Although Grubbs,
Maram and Patterson recently pointed out that this subtle difference makes CCA proof in the QROM
challenging [GMP21], it is not an issue in our setting because we only need CPA security.
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C Constructing Non-interactive Verifiable Encryption in
the Random Oracle Model

C.1 Non-interactive verifiable encryption

Below we define a variant of Definition 1 tailored to the non-interactive setting. We assume
that if the scheme is instantiated in the (programmable) random oracle model, all parties
have access to the RO and a ZK simulator has ability to program the RO.

Definition 9 (Non-interactive Verifiable Encryption Scheme). Let R be a relation and
LR :=

{
x : ∃w : (x, w) ∈ R

}
. A secure non-interactive verifiable encryption scheme

NIVER for a relation R consists of a tuple (G,P,V, C,R):
• G(1κ): A key generation algorithm that outputs a key pair (pk, sk).
• P(pk, x, w): A prover algorithm that outputs a transcript tr.
• V(pk, x, tr): A verifier algorithm that that outputs a bit b ∈ {0, 1} indicating whether
V accepts or rejects.

• C(x, tr): A compression algorithm that outputs a compressed ciphertext C.
• R(sk, C): A receiver (or recovery) algorithm that outputs a plaintext w.

We require NIVE to satisfy completeness, validity and zero knowledge.

Completeness NIVER is ϵcomp-complete if for all (x, w) ∈ R.

Pr

b ̸= 1 ∨ (x, w′) /∈ R :

(pk, sk)← G(1κ);
tr← P(pk, x, w);
b← V(pk, x, tr);

C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵcomp(κ)

Validity NIVER is ϵval-valid if for all pairs of PPT adversary (A∗,P∗),

Pr

b = 1 ∧ (x, w′) /∈ R :

(pk, sk)← G(1κ); x← A∗(pk, sk);
tr← P∗(pk, sk, x);

b← V(pk, x, tr);
C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵval(κ)

Computational zero-knowledge NIVER is ϵzk-ZK if there exists a PPT simulator S
such that for all PPT distinguishers D, all (x, w) ∈ R,∣∣∣∣∣∣∣∣∣Pr

i = i′ :

(pk, sk)← G(1κ);
tr0 ← P(pk, x, w);

tr1 ← S(pk, x);
i←$ {0, 1}; i′ ← D(pk, x, tri);

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ ϵzk(κ)

C.2 Applying Fiat–Shamir to MPCitH-VE

See Protocol 3 for a non-interactive VE scheme constructed from MPCitH-VER.
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Protocol 3: MPCitH-NIVER

Converts the MPCitH-VE prover P and verifier V to an MPCitH-NIVE prover P ′ and
verifier V ′ using the random oracle H : {0, 1}∗ → Chτ . G, C, and R are identical to
those of MPCitH-VE.a
Prover P ′(pk, x, w):

1. P ′ runs the P on input (pk, x, w) to obtain the first-round message σ :=
(C(j)

i )i∈[N ],j∈[τ ] as well as P’s internal state.
2. P ′ derives challenge h := (e(1), . . . , e(τ)) = H(σ, x, pk)
3. P ′ invokes P on challenge (e(1), . . . , e(τ)) as well as its internal state to

obtain ((V (j)
i , r

(j)
i )i∈e(j))j∈[τ ].

4. P ′ outputs tr′ = ((C(j)
i )i/∈e(j) , e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ]

Verifier V ′(pk, x, tr′):

1. V ′ parses tr′ as ((C(j)
i )i/∈e(j) , e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] and let h :=

(e(1), . . . , e(τ))

2. V ′ computes C(j)
i := Commit(pk, V

(j)
i ; r

(j)
i ) for i ∈ e(j) and for j ∈ [τ ]. Let

tr = ((C(j)
i )i∈[N ], e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] and σ := (C(j)

i )i∈[N ],j∈[τ ]

3. V ′ accepts iff V on input (pk, x, tr) accepts and h =? H(σ, x, pk).
aAlthough a transcript tr′ in the non-interactive scheme lacks commitments to the opened views,

omitting those as inputs to C and R doesn’t affect correctness/security since these algorithms do
not use them.

C.3 Security
Theorem 3. Let MPCitH-VER be an MPC-in-the-head-based VE scheme in the class
described in Protocol 2 that is ϵval-valid and ϵzk-HVZK. Suppose the Commit function of
ECOM used for instantiating MPCitH-VER has α-bit min-entropy. Then the corresponding
non-interactive VE scheme, MPCitH-NIVER described in Protocol 3 is ϵ′

val-valid with validity
error ϵ′

val ≤ (Q + 1) · ϵval and ϵ′
zk-ZK with ϵ′

zk ≤ ϵzk + Q/2τNα against adversaries making
at most q queries to the random oracle H.

Proof. We prove both properties separately.
ZK follows from HVZK of the base protocol MPCitH-VER. Let us denote a simulator for
MPCitH-VER by S. The corresponding ZK simulator S ′ proceeds as follows: (1) invoke S
on input (pk, x) to obtain

tr = ((C(j)
i )i∈[N ], e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] ,

(2) program the random oracle such that then H((C(j)
i )i∈[N ],j∈[τ ], x, pk) := (e(j))j∈[τ ]

if the corresponding entry is not defined (otherwise S ′ aborts), and (3) output tr′ =
((C(j)

i )i/∈e(j) , e(j), (V (j)
i , r

(j)
i )i∈e(j))j∈[τ ]. Since each commitment C(j)

i has α bits of min-
entropy, the min-entropy of in total τ ·N commitments is lower-bounded by τNα. Hence
the probability that programming the RO fails is at most Q/2τNα. Unless programming
the RO fails, a ZK distinguisher against MPCitH-NIVER can be used to break HVZK of
MPCitH-VER. Hence, we obtain the bound ϵzk + Q/2τNα. We remark that will always
have α ≥ λ, since even if the commitments are not randomized, the random share of
the witness has |w| bits of min-entropy, and |w| must be λ bits long otherwise w may be
recovered from x in less than O(2λ) work.
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Validity follows from validity of the base protocol MPCitH-VER. Given a pair of validity
adversaries (A′,P ′) against MPCitH-NIVER, we construct a reduction (A,P) breaking
MPCitH-VER as follows.

1. On receiving a key pair (pk, sk) from Gen, A forwards it to A′

2. On receiving a statement x from A′, A outputs x. A also forwards (pk, sk, x) to P ′.
3. P ′ initially chooses k ∈ [1, Q+1] uniformly at random. On receiving the kth query to

the RO of the form (σ, x, pk) from P ′, P forwards σ to V to obtain the corresponding
challenge h. It then programs the RO such that H(σ, x, pk) := h. For all the other
queries, it lazily samples challenge from Chτ and returns it as a response.

4. On receiving a transcript tr′ = ((C(j)
i )i/∈e(j) , e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] from P ′, P

reconstructs the opened commitments and makes a query to the RO with input
((C(j)

i )i∈[N ],j∈[τ ], x, pk). If V ′ accepts tr′ and (C(j)
i )i∈[N ],j∈[τ ] = σ, i.e., the commit-

ments match the kth query input, it forwards ((V (j)
i , r

(j)
i )i∈e(j))j∈[τ ] to V . Otherwise,

it aborts.
Because the kth RO query σ is forwarded to the validity game for MPCitH-VER, the

corresponding RO output matches the challenge sent by the interactive verifier V . In that
case, since C and R of the non-interactive scheme are identical to those of the interactive
scheme, P wins the validity game for MPCitH-VER

8. The probability that a random guess
of the query index k succeeds is 1/(Q + 1). Hence, we have that ϵ′

val/(Q + 1) ≤ ϵval.

D Details of Our DKG-in-the-Head Protocols
In Protocols 4 and 5 we give a detailed description of our DKG-in-the-head protocols to
prove knowledge of a discrete logarithm. The protocols are discussed in Section 5.1. In
this section we also describe how we instantiate the protocols (choices of the PKE and
parameters) and what optimizations we make. Then we evaluate the costs in terms of
proof size and prover and verifier time.

D.1 Verifiable Encryption from DKGitH
Following Protocol 2, we can directly convert Protocol 4 to a verifiable encryption scheme
for discrete logarithms, using any PKE meeting the requirements of Section 3. In this
section we make a specific choice of PKE that allows some optimizations and comparison
to previous work. We use an instance of the hashed Elgamal scheme in the same group
G as our discrete logarithm relation, where plaintexts are elements of Zp. The scheme
uses a hash function Hp : {0, 1}∗ → Zp modeled as a random oracle. Key pairs are of
the form (sk, pk) = (z, gz) and Enc(pk, m) outputs (c1, c2) where c1 = gr for r ←$ Zp and
c2 = Hp(pkr) + m (mod p).

Creating a VE ciphertext from a transcript is similar to Protocol 2, but we can compress
ciphertexts even further by using the homomorphic property of Elgamal to combine the
partially reconstructed witness with the encrypted share. The compression function C(tr)
proceeds as follows:

1. For each execution j ∈ [τ ]

(a) Recompute x
(j)
i as in Verify, then compute x̃(j) =

∑
i ̸=īj

x
(j)
i .

8We remark that C may be randomized and it is thus only guaranteed that the probability that P ′ wins
is identical to that of P conditioned on the event that guessing k succeeded.
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(b) Parse Cīj
as the Elgamal ciphertext (c1, c2). Set C(j) = (c1, c2 + x̃(j))

2. Output C = (C(j))j∈[τ ] as the ciphertext.
Decryption is somewhat simpler than in Protocol 2 as C(j) in C now encrypt the

witness directly, rather than encrypting shares. The function R(sk, C) proceeds as follows:
1. For each repetition j ∈ [τ ],

(a) Decrypt C(j) using sk to get x′ ∈ Zp

(b) If y = gx′ output x′.
As the soundness error of the proof protocol is assumed to be negligible, decryption will
succeed in Item 1b for one of the repetitions with overwhelming probability.

We now point out another optimization that reduces the proof size. For each ciphertext
the prover computes, we use y

(j)
i = gx

(j)
i as the c1 component of the Elgamal ciphertext.

This reduces the ciphertext size in the proof to a single element of Zp and saves one
exponentiation, reducing the prover’s total number of exponentiations by τN . The size
of the output ciphertext C stays the same though, since the value gx

(j)
ī must be present

for decryption. However, this optimization makes the encryption scheme deterministic
and therefore HVZK of the VE scheme cannot rely on the IND-CPA security anymore.
Although one could provide a dedicated analysis in the GGM and the ROM under a
relaxed version of HVZK (where an instance y is uniformly sampled),9 our main goal is to
avoid extra assumptions so we opt to omit this optimization in our implementations.
HVZK We prove perfect (N − 1)-privacy of the underlying MPC protocol Πf , to conclude
HVZK via Theorem 1.

Suppose we are given the index of a party ī, we show that we can simulate the
views of the other N − 1 parties, such that simulated and real transcripts are perfectly
indistinguishable. First the simulator chooses xi at random, for i ̸= ī and computes
yi = gxi , as in the real protocol. Then for party ī, the simulator sets y ī = y/(

∏
i ̸=ī yi).

Note that
y ī = g

x−
∑

i̸=ī
xi , and x ī = x−

∑
i ̸=ī

xi

are distributed exactly as in the real protocol.
Validity Although Protocol 4 already incorporates the optimizations described in Sec-
tion 3.2, the underlying MPCitH-IOP protocol instantiated with Πf does satisfy the require-
ments from Section 2.2 so that our general compiler theorem applies: the challenge space
is Ch =

{
e ⊂ [N ] : |e| = N − 1

}
; party i’s view Vi consists of (xi, (yi′)i′ ̸=i); the function

GetW(Vi) outputs xi; the function CheckView(y, (Vi)i∈e) parses Vi as (xi, (yi′,i)i′ ̸=i) and
checks y =? gxi

∏
i′ ̸=i yi′,i for all i ∈ e and yi′,i =? gxi′ for i ∈ e and i′ ∈ [N ] \ {i, ī}, where

ī /∈ e is the index of the unopened party. We can prove the protocol has (i) 2-consistency
(Definition 10) and thus is (ii) SLE with ϵsle-iop = 1/N (Lemma 4). Showing the condition 1.
from 2. in Definition 10 is trivial. To show the converse, let e, e′ be two distinct challenges.
If CheckView outputs 1 w.r.t. both challenges, then for some i such that i ∈ e∩ e′, it must
be that y = gxi

∏
i′ ̸=i gxi′ = gx1+...+xN . Hence, (V1, . . . , VN ) form an honest execution of

Πf on y and witness shares (xi)i∈[N ] as inputs.
Parameter choices As an interactive protocol, it’s easy to see that the soundness error
is 1/N . When executing τ repetitions in parallel, we therefore need to set τ so that

9On a high-level, the proof of relaxed HVZK amounts to showing an unopened ciphertext

(g
x

(j)
ī , Hp(g

sk·x(j)
ī ) + x

(j)
ī

) is indistinguishable with (g
x

(j)
ī , ρ) for uniformly random ρ ∈ Zp. If g

x
(j)
ī

and gsk are uniformly random, an adversary in the GGM never queries the random oracle Hp() with input

g
sk·x(j)

ī except with negligible probability. Thus, we can regard the second component as a uniformly
random and independent Zp-element.
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(1/N)τ < 2−λ, or equivalently τ log2(N) ≥ λ. This offers a range of choices for (N, τ) for
each choice of λ, with a different balance of proof size and running time.
Efficiency Starting with the proof, without our transform, when Commit is implemented
with a hash function with 2λ-bit digests, the size is

4λ + τ(λ⌈log2 N⌉+ 2λ + ℓp) .

bits where ℓp is the bitlength of an integer modulo the group order. When our transform
is applied, the term 2λ for C(j)

ī
is replaced with ℓC , the size of a PKE ciphertext. With

our transform, the size of a VE ciphertext is τ(ℓp + ℓC) for any PKE, and τℓp for our
choice of hashed Elgamal. With Elgamal, the computational costs of the protocol can be
roughly estimated by counting the exponentiations in G. With the encryption scheme and
optimizations described above, the prover must compute 2τN exponentiations and the
verifier must compute 2τ(N − 1) exponentiations.

D.2 Verifiable Encryption from RDKGitH
Analogously, we can convert Protocol 5 into a verifiable encryption scheme by replacing a
committing function with the hashed Elgamal encryption.

To precompute the Lagrange interpolation operations, the compression function C(tr)
proceeds as follows:

1. For each unopened party ī ∈ [N ] \ I

(a) Let Sī = I ∪ {̄i}. Define the Lagrange coefficients determined by Sī as follows:
δSī,i :=

∏
j ̸=i

j
j−i for i ∈ Sī.

(b) Parse Cī as the hashed Elgamal ciphertext (c1, c2). Set C′
ī

= (c1, δSī ,̄i · c2 +∑
i∈I δSī,i · xi).

(c) Set auxī = δSī ,̄i

2. Output C = (C′
ī
, auxī)ī /∈I as the ciphertext.

The receiver function R(sk, C) proceeds as follows:
1. For each ī ∈ [N ] \ I:

(a) Parse C′
ī

as (c1, c′
2).

(b) Compute x′ = c2 − auxī ·Hp(csk
1 )

(c) If y = gx′ output x′.
As the soundness error of the proof protocol is assumed to be negligible, decryption will
succeed in Item 1c for one of the indices with overwhelming probability.
Validity We show that no cheating prover can cause extraction failure unless she guesses
the exact I. This implies that the validity error is at most 1/

(
N
t

)
.

• When a malicious prover P∗ commits to ((Ai)t
i=1, (Ci)N

i=1), the ciphertexts uniquely
determine the corresponding shares xi for i ∈ [N ]. Moreover, note that (A0, . . . , At)
serves as a perfectly binding commitment to a degree-t polynomial a.

• If there exists some subset I ′ ⊂ [N ] of size at least t + 1 such that for i ∈ I ′, it holds
that gxi =

∑
j Aij

j , then it must be that the polynomial a′ interpolated from (xi)i∈I′

coincides with a(x) = a0 + . . . + atX
t implicit in (A0, . . . , At). Therefore, in this

case the receiver always succeeds in extracting the correct DLog a0 from a.
• Suppose at most t of all xi’s satisfy the verification equation. In this case, it is not

guaranteed that the receiver succeeds in extracting the right DLog since it fails to
recover the committed polynomial a. However, the prover P∗ gets caught unless
she guesses the exact I so that only (xi)i∈I satisfy the verification equation. The
probability that she can do so is at most 1/

(
N
t

)
.
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HVZK For ease of exposition, we use the additive notation for proof. The HVZK simulator,
upon receiving a statement y = A0 as input, first picks I ⊂ [N ] with |I| = t uniformly at
random. Then it simulates a transcript as follows.

1. For i ∈ I = {i1, . . . , it}, pick uniform xi ∈ Z∗
p and let Bi = xi ·G−A0.

2. Consider the Vandermonde matrix

V =

i1, i2
1, . . . it

1
...

it, i2
t , . . . it

t


Then one can find A1, . . . , At such that

[Bi1 , . . . , Bit ]τ = V · [A1, . . . , At]τ

since V is invertible.
3. Finally, the simulator encrypts xi for i ∈ I as an actual prover would, and produces

Ci for i /∈ I by encrypting 0 string.

Random Subset Optimization We can apply the random subset method to compress
the ciphertext. Once the verifier verifies the proof, there are N − t unopened ciphertexts
in the transcript. The compression algorithm selects n of them uniformly at random. The
validity error analysis is analogous to Section 4.1. Let n ≤ s ≤ N − t be the number
of “bad” ciphertexts, i.e., Dec(Ci) does not satisfy the verification condition. Then the
probability that a malicious prover breaks validity is:

Pr[C selects n of s bad ctexts ∧ V accepts a proof with s bad ctexts]

=
(

s
n

)(
N−t

n

) ·((N−s
t

)(
N
t

) + ϵcext

)

We can then take the maximum over s to find the updated validity error.

E IOP Versions of MPC-in-the-Head Proofs
E.1 Further Details of MPCitH-IOP
We first introduce the notion of k-consistency, which essentially guarantees N views form an
honest run of Πf , as long as for any k distinct subsets of party indices, the corresponding
parties’ views are consistent with each other. This generalizes the notion of pairwise
consistency introduced previously in [IKOS07, Def. 2.2].

Definition 10 (k-consistency). A single repetition of the protocol MPCitH-IOPR has
k-consistency if for any x, for any set of views (V1, . . . , VN ) and for any subset of the the
challenge space S ⊆ Ch such that |S| ≥ k, the following two conditions are equivalent:

1. for every e ∈ S, CheckView(x, (Vi)i∈e) = 1;
2. (V1, . . . , VN ) form an honest execution of Πf on a public input x and the corresponding

per-party private inputs, wi = GetW(Vi), are such that x = f(
∑

i∈[N ] wi).

Remark 4. The above notion captures several different instantiations of MPC-in-the-head
protocols. For example, the original protocol from [IKOS07, §3] opens 2-out-of-N parties
(i.e., t = 2 in MPCitH-IOPR) and satisfies

(
N
2
)
-consistency because their Lemma 2.3 only

guarantees the validity of N views as long as every possible pair of the views is consistent.
ZKBoo and ZKB++ are essentially a special case of that protocol with N = 3 and therefore
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they have 3-consistency. Looking ahead, our DKGitH protocol in Section 5.1 works with
N parties and the challenge set Ch is all subsets of [N ] of size t = N − 1.10 We will show
it satisfies 2-consistency thanks to the use of a broadcast functionality.

Now we prove knowledge error bounds for generic IOPs with k-consistency.

Lemma 4. If a single repetition of MPCitH-IOPR has k-consistency, then it is SLE with
respect to the canonical extractor E with knowledge error ϵsle-iop ≤ k−1

|Ch| .

Proof. Let Vi be the views output by a cheating prover P∗ in the committing phase and
e ∈ Ch is the challenge sampled uniformly by the verifier V in the query phase. Further,
let w′ =

∑
i∈[N ] GetW(Vi). Our goal is to bound the probability

Pr
[
CheckView(x, (Vi)i∈e) = 1 ∧ (x, w′) /∈ R

]
. (2)

Define GoodCh :=
{

e ∈ Ch : CheckView(x, (Vi)i∈e) = 1
}

, i.e., a set of challenges that
are accepting with respect to views (Vi)i∈[N ] committed to by P∗. If |GoodCh| ≥ k, then it
must be that (x, w′) ∈ R due to k-consistency, so the canonical extractor always succeeds.
If |GoodCh| < k, then since e is sampled from Ch independently of Vi and thus of GoodCh
as well, the probability that e falls in GoodCh is at most k−1

|Ch| .

One can easily generalize the above argument to deal with parallel repetitions.

Lemma 5. If one repetition of MPCitH-IOPR has k-consistency, then τ parallel repetitions
are SLE with respect to the canonical knowledge extractor Eτ with knowledge error ϵsle-iop ≤(

k−1
|Ch|

)τ

.

Proof. This is a straightforward generalization of Lemma 4. For a set of views output by
P∗ in each parallel repetition j ∈ [τ ], one can define

GoodCh(j) :=
{

e ∈ Ch : CheckView(x, (V (j)
i )i∈e) = 1

}
.

If there exists j ∈ [τ ] such that |GoodCh(j)| ≥ k, then the extractor Eτ succeeds in
extracting a valid witness w(j) due to k-consistency. If for all j ∈ [τ ] |GoodCh(j)| < k,
then the probability that the τ independently sampled challenges simultaneously fall into
GoodCh(j) for j ∈ [τ ] is at most

(
k−1
|Ch|

)τ

.

Remark 5. We note that the above knowledge error is equivalent to the soundness error.
For example, for ZKBoo and ZKB++ we have that k = 3 and Ch = {{1, 2}, {2, 3}, {3, 1}}
and therefore both the SLE knowledge error and soundness error are (2/3)τ .

Finally, we recall the notion of t-privacy for an MPC protocol from [IKOS07]. We show
t-privacy implies HVZK of the MPC-in-the-head IOP. Although we only consider the case
of perfect t-privacy and HVZK, one can obtain a similar claim for statistical security of
the lemma following the result of [IKOS07].

Definition 11 (t-privacy). The protocol Πf is said to be t-private if there exists a
PPT simulator Sim such that for every e ∈ [N ] of size at most t and for every input
(x, w1, . . . , wN ), the joint view of parties in e is distributed identically to Sim(e, x, (wi)i∈e, b)
where b = 1 if (x,

∑
i∈[N ] wi) ∈ R and b = 0 otherwise.

Lemma 6. If the MPC protocol Πf is t-private, then MPCitH-IOPR is perfectly HVZK.
10In practice, it suffices to send a single party index ī whose view is not to be revealed.
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Proof. An IOP simulator S takes x as input and proceeds as follows: (1) sample e ⊂ [N ]
of size t uniformly at random, (2) choose uniformly random witness shares wi for i ∈ e, (3)
invoke Sim(e, x, (wi)i∈e, 1) to obtain joint views Vi for i ∈ e, and (4) output (e, (Vi)i∈e).
This perfectly simulates the view of V(x) in the honest interaction with P, since an honest
V always queries the oracle with a set of party indices of size t and thus the t-privacy
property guarantees perfect simulation of revealed views in the MPC execution.

E.2 Protocols without k-consistency
While the notion of k-consistency has some generality and gives a convenient way to
prove SLE of some three-round protocols, many MPC-in-the-head proof systems such as
KKW and Banquet have challenge spaces not limited to party indices and therefore do
not have k-consistency. However, we show that they are easily checked to be straight-line
extractable since P outputs per-party views that include the shares of the witness in the
first round of the committing phase. The existing soundness analysis thus implies SLE of
the corresponding IOP protocols.

E.2.1 Protocols with Robustness

It is well-known that an MPC protocol with the robustness property allows the correspond-
ing MPCitH proof system to avoid parallel repetitions for negligible (knowledge) soundness
error [IKOS07]. To the best of our knowledge, Ligero [AHIV17] and Ligero++ [BFH+20]
are the only concrete instantiation utilizing robustness within the MPCitH framework. In
the full version of Ligero [AHIV22], the authors provide their version of MPCitH-based IOP,
denoted by ΠZKIPCP.11 By their soundness analysis [AHIV22, Theorem 3.5], ΠZKIPCP
immediately satisfies SLE with knowledge error

ϵsle-iop(N, tp, tr) ≤
(

N−tr

tp

)(
N
tp

) + δ

where tp is a parameter for privacy, tr is a parameter for robustness, δ is the robustness
error of the underlying MPC protocol, and the knowledge extractor E simply takes N
views and reconstruct a witness from N witness shares supplied to computing servers.

E.2.2 Protocols using Threshold Linear Secret Sharing

The very recent work due to Feneuil and Rivain [FR23] showed that even a semi-honest
secure MPC protocol allows for comparably low soundness error if combined with threshold
linear secret sharing scheme (LSSS). A (t, N)-LSSS scheme over F consists of a tuple
(Share, Recon), where Share takes a secret s ∈ F as input and returns (s1, . . . , sN ) as output,
and Recon takes t + 1 shares (si1 , . . . , sit+1) as input and returns a reconstructed secret s
as output, respectively. Their LSSS-based MPCitH protocol [FR23, Protocol 6] can be
“de-compiled” into an IOP by having a prover send i-th party’s view as an oracle instead of
committing to it. Then by their soundness analysis [FR23, Theorem 2], the corresponding
IOP satisfies SLE with knowledge error

ϵsle-iop(N, t, p) ≤ 1(
N
t

) + p · t(N − t)
t + 1

where p is the false-positive rate of the underlying MPC protocol, and the knowledge
extractor E simply takes N views and reconstruct a witness from t opened witness shares
and one of the unopened shares.

11IPCP is a special case of IOP



56 Verifiable Encryption from MPC-in-the-Head

E.2.3 KKW as an IOP

KKW [KKW18] is an MPC-in-the-head proof system that produces much more compact
proofs than [IKOS07] thanks to the preprocessing phase. In this paradigm, the prover first
runs an offline protocol (also “in the head”) to compute correlated randomness. Then it
proceeds by executing the corresponding online phase taking the secret witness as input.
For completeness, we present in Protocol 6 the underlying interactive protocol of KKW
characterized as a single-round IOP.

Notice that in the first message P includes per-party states (sti)i∈[N ] and the masked
witness ŵ for each MPC execution. If the function GetW is defined such that it outputs
the ith share of witness mask λw

i on input sti, a witness is recovered by computing
w =

∑
i∈[N ] λw

i ⊕ ŵ. Hence, an extractor E for a single repetition similar to the canonical
extractor can be defined assuming it takes per-party states and a masked witness as input.
The following claim is implicit in [KKW18].

Lemma 7. KKW-IOP is SLE with knowledge error

ϵsle-iop(N, M, τ) ≤ max
M−τ≤k≤M

(
k

M−τ

)(
M

M−τ

) · ( 1
N

)k−(M−τ)

where the parameters (N, M, τ) are as defined in Protocol 6 and an extractor EM proceeds
as follows: on receiving x and π = (sd(j), (st(j)

i , msgs(j)
i )i∈[N ], ŵ(j))j∈[M ], it outputs w(j) =

E(x, (st(j)
i )i∈[N ], ŵ(j)) if (x, w(j)) ∈ R for some j ∈ [M ]. Otherwise, it outputs ⊥.

This is a direct consequence of “Beating parallel repetition” of [KKW18]. Suppose
a witness w extracted from the proof string form “bad inputs” for MPC, i.e., w =∑

i∈[N ] λw
i ⊕ ŵ while f(w) ̸= x. In that case, since the input does not lead to the correct

output of the circuit, to pass verification checks it must be that for every MPC execution
either (1) the offline computation is not carried out correctly, or (2) input and/or circuit
has been modified during the online phase. Such cheating behaviors are caught with the
above knowledge error as already analyzed in Theorem 2.2 of [KKW18].

E.2.4 Banquet as an IOP

Banquet [BDK+21] is a recent MPC-in-the-head proof system that allows a prover to
prove knowledge of an AES key with a relatively short proof. The base MPC protocol
for computing the AES circuit uses secret-sharings over the field F28 . For completeness,
we present in Protocol 7 the underlying interactive protocol of Banquet characterized
as a 3-round IOP. The protocol is highly optimized for the relation R = {((ct, pt), K) :
ct = AESK(pt)}, where (ct, pt) is a public ciphertext-plaintext pair and K = w is a
witness. Notice that in the first message P includes commitments to per-party random
seeds (sdi)i∈[N ] and the offset ∆w. If the function GetW is defined such that it outputs
the ith witness share wi on input sdi, a witness can be easily recovered by computing
w =

∑
i∈[N ] wi + ∆w. Hence, an extractor E for a single repetition similar to the canonical

extractor can be defined assuming it takes per-party seeds and the offset as input. The
following claim is implicit in [BDK+21].

Lemma 8. Banquet-IOP is SLE with knowledge error

ϵsle-iop(λ, m2, N, τ) ≤ (p1 + (1− p1)p2 + (1− p1)(1− p2)p3)τ

where p1 = 2−8λ, p2 = 2m2/(28λ −m2), and p3 = 1/N and an extractor Eτ proceeds as
follows: on receiving x and π

(e)
1 = ((sd(e)

i , ct(e)
i )i∈[N ], ∆w(e), (∆t

(e)
ℓ )ℓ∈[m])e∈[τ ], it outputs

w(e) = E(x, (sd(e)
i )i∈[N ], ∆w(e)) if (x, w(e)) ∈ R for some e ∈ [τ ]. Otherwise it outputs ⊥.
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Likewise, the above probability corresponds to the soundness error of interactive
Banquet.12 In case of “bad inputs”, it must be that the cheating prover guessed at least
one of three challenges for each parallel repetition to pass the verification checks. The p1,
p2 and p3 above correspond to the probabilities that P∗ correctly guesses first, second,
and third challenge, respectively.

Protocol 7: Banquet-IOP for relation R =
{

((ct, pt), K) : ct = AESK(pt)
}

Parameters: The number of parties N ; the parameter for field extension λ; the
number of S-boxes m; the number of checking polynomials m1 and the degree
m2 such that m = m1 ·m2 and m2 < 8λ.

Inputs: P receives (x, w); V receives x, where x = (ct, pt) and w = K.

Committing phase 1: The first-round message of V is empty. The prover proceeds
as follows.

1.The prover picks at random seeds sd1, . . . , sdN .
2.For each party i ∈ [N ]:

(a)Expand sdi into tapei

(b)Sample witness share wi from tapei

3.It computes witness offset ∆w = w −
∑

i wi and adjust first share w1 :=
wi + ∆w.

4.For each S-box ℓ:
(a)For each party i ∈ [N ], compute the local linear operations to obtain

the share si,ℓ of the S-box of input sℓ.
(b)Compute the S-box output tℓ = (

∑
i si,ℓ)−1.

(c)For each party i ∈ [N ], sample the share of the output ti,ℓ from tapei

(d)Compute output offset ∆tℓ = tℓ −
∑

i ti,ℓ.
(e)Adjust first share t1,ℓ = t1,ℓ + ∆tℓ

5.Broadcast each party’s share cti of the output.
6.Send an oracle π1 = ((sdi, cti)i∈[N ], ∆w, (∆tℓ)ℓ∈[m])

Committing phase 2: The second-round message of V is (rj)j∈[m1] where
rj ∈ F28λ . The prover proceeds as follows.

1.For each party i ∈ [N ] and S-box ℓ ∈ [m], lift si,ℓ and ti,ℓ to F28λ .
2.For i ∈ [N ] and j ∈ [m1]:

(a)For k ∈ [0, m2 − 1], set s′
i,j,k = rj · si,j+km1 and t′

i,j,k = ti,j+km1

(b)Sample masking points s̄i,j and t̄i,j from tapei.
(c)Interpolate degree m2 polynomials S, T ∈ F28λ [X] such that

Si,j(k) = s′
i,j,k for k ∈ [0, m2 − 1], Si,j(m2) = s̄i,j

Ti,j(k) = t′
i,j,k for k ∈ [0, m2 − 1], Ti,j(m2) = t̄i,j

12Technically, soundness error is the probability that the cheating prover convinces the verifier given an
invalid statement x /∈ L, while for knowledge error it might be that x ∈ L. However, the analysis given in
§3.2 of [BDK+21] already covers the latter case because it derives the probability that a cheating behavior
can go undetected assuming the input does not satisfy the circuit.
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3.Compute product polynomial

P :=
∑

j∈[m1]

(∑
i

Si,j

)
·

(∑
i

Ti,j

)

4.For k ∈ [m2, 2m2], compute offset ∆P (k) = P (k)−
∑

i Sample(tapei)
5.For i ∈ [N ] interpolate ith share of degree 2m2 polynomial Pi ∈ F28λ [X]

such that

For k ∈ [0, m2 − 1] : P1(k) =
∑

j

rj ,

Pi(k) = 0 for i ̸= 1
For k ∈ [m2, 2m2] : P1(k) = Sample(tape1) + ∆P (k),

Pi(k) = Sample(tapei) for i ̸= 1

Send an oracle π2 = (∆P (k))k∈[m2,2m2]

Committing phase 3: The third-round message of V is R ∈ F28λ \ [0, m2 − 1].
The prover proceeds as follows.

1.For each party i ∈ [N ], compute ai,j = Si,j(R) and bi,j = Ti,j(R) for
j ∈ [m1], and ci = Pi(R).

2.Send an oracle π3 = ((ai,j , bi,j)j∈[m1], ci)i∈[N ]

Query phase
1.The verifier picks at random ī ∈ [N ] and queries π1 with ī.
2.The oracle π returns ((sdi)i ̸=ī, ct̄i, ∆w, (∆tℓ)ℓ∈[m]).
3.The verifier queries π2 and π3 with empty strings
4.The oracle π2 and π3 return (∆P (k))k∈[m2,2m2] and

((ai,j , bi,j)j∈[m1], ci)i∈[N ], respectively.

Decision phase
1.For i ̸= ī:

(a)Expand sdi into tapei

(b)Sample witness share wi from tapei

(c)If i = 1, adjust w1 = w1 + ∆w

(d)For each S-box ℓ:
i.Compute local linear operations to obtain the share si,ℓ

ii.Sample output share ti,ℓ from tapei

iii. If i = 1 adjust, t1,ℓ = t1,ℓ + ∆tℓ

(e)Recompute output broadcast c̃ti and missing c̃t̄i = ct−
∑

i ̸=ī c̃ti

(f)For j ∈ [m1], interpolate polynomials Si,j and Ti,j as the prover would.
(g)Interpolate product polynomial Pi using (∆P (k))k∈[m2,2m2] as the

prover would.
(h)For j ∈ [m1], compute ãi,j = Si,j(R) and b̃i,j = Ti,j(R). Compute

c̃i = Pi(R).
2.Accept iff
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•For i ̸= ī, ci = c̃i

•For i ̸= ī and j ∈ [m1], ai,j = ãi,j and bi,j = b̃i,j

•ct̄i = c̃t̄i

•
∑

i ci =
∑

j(
∑

i ai,j) · (
∑

i bi,j)

The prover and verifier execute τ instances of the above procedures in parallel. If the
verifier accepts all τ executions, it outputs b = 1; otherwise it outputs b = 0.

F Compiling Banquet
In Protocol 8, we present our Banquet-based non-interactive VE scheme for AES, more
precisely, the relation R = {((ct, pt), K) : ct = AESK(pt)}. Proof of validity requires extra
care, because the underlying interactive protocol has more than three rounds and thereby
we cannot directly apply the analysis for MPCitH-NIVE presented in Appendix C.

F.1 Security against State-restoration Adversaries
When considering concrete (knowledge) soundness of 2r+1-round interactive proof systems
made non-interactive with the Fiat-Shamir transform, it is often useful to prove a stronger
notion called state-restoration soundness, which is known to be tightly related to the
soundness of the non-interactive protocol in the random oracle model [BCS16, COS20]
[GT21]. In this setting, a cheating prover is allowed to rewind the verifier Q times to
obtain a fresh challenge at any point. This naturally models the ability of a malicious
prover to change the inputs to the hash function used to derive the challenge in the FS
transform. They win the game if there exists an accepting transcript in the execution tree
while the extractor fails to get a witness from that accepting transcript. In the context
of IOPs, knowledge extractors are typically given access to the entire proof strings and
one should thus extend the notion of straight-line extractability (Definition 7) to protect
against state-restoration attacks, as we recall below.

To formally capture state-restoration attacks, we denote by (b, πsr)← ⟨P∗, V⟩sr(x) the
following procedures: it lets the adversary P∗ interact with the verifier V while allowing
them to reset V’s state to any previous round i ∈ [1, r] by re-sending a proof string πi.
This implies that from the ith round onwards, V’s messages are freshly sampled (including
query strings). After Q such interactions, a sequence of proof strings, verifier messages, and
oracle responses form an execution tree of depth r, where each node is labeled by a verifier
message/query string and each edge is labeled by a proof/response string, respectively.13

Finally, P∗ specifies an execution path in the tree. If V accepts in that path, the procedure
outputs b = 1 and πsr consisting of proof strings in the path; otherwise it outputs (0,⊥).

Definition 12 (State-restoration straight-line extractability (SR-SLE)). An IOP (P, V)
is state-restoration straight-line extractable with knowledge error ϵsr-sle if there exists an
efficient extractor E such that for all pairs of unbounded state-restoration adversaries
(A∗, P∗)

Pr

b = 1 ∧ (x, w′) /∈ R :
x← A∗(1κ);

(b, πsr)← ⟨P∗, V⟩sr(x);
w′ ← E(x, πsr);

 ≤ ϵsr-sle(κ).

13Here, we are implicitly considering a limited class of IOPs where the verifier only makes a single query
to the first proof string π1 in the query phase, and all the subsequent proof strings are given to the verifier
in the clear. This is indeed sufficient to capture Banquet-IOP.
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F.2 State-restoration SLE of Banquet-IOP
We first mention SR-SLE of Banquet-IOP, which is implicit in the EUF-KOA security
analysis of the Banquet signature scheme.

Lemma 9. Banquet-IOP is SR-SLE with knowledge error

ϵsr-sle(λ, m2, N, τ) ≤ Pr
[
X + Y + Z = τ

]
(3)

where
• the extractor is the same as Eτ of Lemma 8;
• the random variables X, Y, Z are:

X := max
ϖ1∈Q1

Xϖ1 Xϖ1 ∼ B(τ, p1)

Y := max
ϖ2∈Q2

Yϖ2 Yϖ2 ∼ B(τ −X, p2)

Z := max
ϖ3∈Q3

Zϖ3 Zϖ3 ∼ B(τ −X − Y, p3)

where for i = 1, 2, 3, Qi consists of vectors of τ proof strings ϖi = (π(e)
i )e∈[τ ] sent by

P∗, where p1 = 2−8λ, p2 = 2m2/(28λ −m2), and p3 = 1/N , where B(n, p) denotes
the binomial distribution with parameters n ∈ N and p ∈ [0, 1], i.e., if X ∼ B(n, p)
we have Pr[X = i] =

(
n
i

)
pi(1− p)n−i;

• other parameters are as defined in E.2.4.

As the analysis is essentially a simplified version of proof for Lemma 2 of [BDK+21],
we only sketch how it should be adapted in our setting. For any ϖ1 = (π(e)

1 )e∈[τ ] ∈ Q1,
since each proof string contains all per-party seeds, as soon as ϖ1 is committed by P∗,
it is already determined whether the extractor Eτ will succeed in extracting a correct
witness from the execution path started with ϖ1. Fix the path started with ϖ1 that
gets accepted, and let us denote V’s messages/queries in the path by h

(e)
1 := (r(e)

j )j∈[m1],
h

(e)
2 := R(e), h

(e)
3 := ī(e) for e ∈ [τ ], respectively. From the analysis of [BDK+21, Lemma

2], if ϖ1 contains no set of seeds leading to a valid witness, it must be that the adversary
has correctly guessed one of h

(e)
1 , h

(e)
2 , h

(e)
3 for all parallel repetitions e ∈ [τ ]. Indeed, this

probability is given as the upper bound for “Pr
[
A wins

∣∣ ⊥]” in their proof, which is as
stated in our lemma.

F.3 Validity of Banquet-NIVE
Theorem 4. Suppose ECOM is ϵcext-extractable. Then Banquet-NIVE is ϵval-valid with
validity error

ϵval ≤ Pr[X + Y + Z = τ ] + ϵcext + 2(Q1 + Q2 + Q3)2

22κ
. (4)

where Qi is the number of queries to Hi made by the adversary P∗.

Proof. Following proof for Theorem 1, given a cheating Banquet-NIVE prover P∗ having
access to the random oracles, we construct an adversary that either breaks extractability
of ECOM, or breaks SR-SLE of Banquet-IOP. Concretely, we consider the following game
hops.

• G0 is identical to the non-interactive validity game.
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• G1 is identical to G0, except that it aborts under the following condition: if an RO
output freshly sampled inside H1, H2, H3 collides with any of previously generated
outputs or any of previously queried h1, h2 (indicated by the Bad set in [BDK+21,
Lemma 2]). Similarity to Eq.(3) of their proof, we get

Pr[G1 aborts] = (# times an random oracle output is sampled) · Pr[G1 aborts at that sample]

≤ (Q1 + Q2 + Q3) · max |Bad|
22κ

≤ (Q1 + Q2 + Q3) · Q1 + 2Q2 + 2Q3
22κ

≤ 2(Q1 + Q2 + Q3)2

22κ

where the maximum size of Bad is as above because for each query to H1, its output
h1 is added to Bad; for each query to H2, both input h1 and output h2 are added to
Bad; for each query to H3, both input h2 and output h3 are added to Bad.

• G2 is identical to G1, except that it aborts under the following condition: when the
adversary P∗ outputs an accepting tr, G2 recomputes C(e)

i for i ̸= ī(e) as V would,
and aborts if there exists some e ∈ [τ ], i ̸= ī(e) such that CExt(sk, C(e)

i ) ̸= sd(e)
i . Since

this means that extractability of ECOM is broken, we have

Pr[G2 aborts] ≤ ϵcext

• Given a cheating prover (A∗,P∗) that wins G2, we construct a state-restoration
adversary pair (A∗, P∗) against SR-SLE of Banquet-IOP:

1. A∗(1κ) invokes (pk, sk)← G(1κ) and forwards (pk, sk) to A∗.
2. On receiving x from A∗, A∗ forwards x to the SR-SLE game.
3. P∗(x) runs P∗ on input x, and simulates the RO responses as follows.

– On receiving a query to H1 with input (x, pk, σ1) from P∗, P∗ parses
σ1 := (salt, ((C(e)

i , ct(e)
i )i∈[N ], ∆w(e), (∆t

(e)
ℓ )ℓ∈[m])e∈[τ ]) and decrypts per-

party seeds by invoking ŝd
(e)
i = CExt(sk, C(e)

i ) for i ∈ [N ], e ∈ [τ ]. Then
P∗ constructs a vector of proof strings ϖ1 := (π(e)

1 )e∈[τ ] where π
(e)
1 =

((ŝd(e)
i , ct(e)

i )i∈[N ], ∆w(e), (∆t
(e)
ℓ )ℓ∈[m]). It then outputs ϖ1 in the SR-SLE

game, receives verifier messages h1 := (r(e)
j )j∈[m1],e∈[τ ], programs the RO

such that H1(x, pk, σ) := h1, and returns h1 to P∗.
– On receiving a query to H2 with input (x, pk, h1, σ2), P∗ sends a vector of

proof strings ϖ2 := σ2 in the SR-SLE game, in order to resume the execution
path containing a node labeled by h1 (if there is no such a node then P∗ just
lazily samples h2 and returns it to P∗). It then receives verifier messages
h2 := (R(e))e∈[τ ], programs the RO such that H2(x, pk, h1, σ2) := h2, and
returns h2 to P∗.

– Likewise, on receiving a query to H3 with input (x, pk, h1, h2, σ3), P∗ sends
a vector of proof strings ϖ3 := σ3 in the SR-SLE game, in order to resume
the execution path containing a node labeled by h2. It then receives verifier
queries h3 := (̄i(e))e∈[τ ], programs the RO such that H3(x, pk, h1, h2, σ3) :=
h3, and returns h3 to P∗.

4. When P∗ outputs an accepting tr, P∗ specifies the corresponding execution
path constructed in the SR-SLE game.
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Note that, P∗ can uniquely determine which path to choose, because a winning
adversary G2 is guaranteed to query an random oracle Hi with input hi−1 after
hi−1 was derived through Hi−1 and there should be no collision between RO outputs
(obtained from verifier messages/queries). Moreover, similar to validity proof for
Theorem 1, since per-party seeds decrypted during the RO simulation are always
consistent with ones opened in the accepting tr, it must be that the receiver R fails
to recover a witness from tr iff the SR-SLE extractor Eτ fails in extraction from the
corresponding execution path. Therefore, we have

Pr[(A∗,P∗) wins G2] ≤ ϵsr-sle(λ, m2, N, τ) ≤ Pr[X + Y + Z = τ ]

where the last inequality is due to Lemma 9.
Putting the bounds together, we obtain the theorem statement.

G Compressing Ciphertexts: The Equality Proof Method
Recall that in a VE scheme created with our compiler, decryption iterates over the
component ciphertexts (from each parallel repetition) until the reconstruction function
recovers a witness. It is guaranteed that at least one of the component ciphertexts will
cause decryption to succeed.

In an honestly generated proof, all component ciphertexts are valid, and decryption
will always succeed on the first attempt. If after the VE protocol, the prover were able
to additionally prove that R would output the same witness from all of the component
ciphertexts, then the verifier could keep only one of the component ciphertexts, making
the VE ciphertext constant size. This is because either: all values are equal and correct,
or all values are equal and incorrect, but the latter case is equivalent to creating an invalid
proof, which is possible with only negligible probability by soundness of the proof protocol.

Note that the equality proof proves that R outputs the same value for all component
ciphertexts – and is not requiring that we prove the relation. The crux of R for MPCitH
protocols is recombining additive shares of the witness, a comparatively simple operation.
However one of the shares is encrypted, meaning we are back to proving something about
encrypted data. We describe one instantiation of the idea to show that this is possible
without resorting to general methods, by using PKE in a non-black-box way.

Theorem 5. Let Π be an MPCitH-based IOP in the class given by Protocol 1 with t = N−1,
for a relation R where |w| = λ. Then there exists a VE scheme Π′ with a compression
algorithm that produces O(λ) ciphertexts for Π′, assuming Paillier’s encryption scheme is
IND-CPA secure.

Sketch. We describe the construction of the verifiable encryption scheme Π′. First we
compile Π to a VE scheme using a slight variant of Protocol 2. Namely, we split the
per-party commitments into two so that the share of the witness and other information
in the view are committed separately. Thus we have an additional commitment public
key pk′ for a second extractable commitment scheme Commit′ (which may be the same as
Commit, or a more efficient hash-based scheme, extractable in the ROM, since extraction
won’t be required for decryption). Then Ci = Commit(pk, Vi; ri) is instead computed as
Ci = (Commit(pk, wi; ri), Commit′(pk′, vi; si)), where (wlog) each view is assumed to be
Vi = wi||vi. Additionally, we assume that w is shared with XOR, so the shares are λ-bit
strings.

Next, Π′ is instantiated with extractable commitments constructed from the Paillier
encryption scheme. Paillier is IND-CPA secure under the decisional composite residuosity
assumption [Pai99], and encryption is perfectly correct, so it is a secure commitment
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scheme by Lemma 1. Further, each bit of the witness share is encrypted separately which
will allow bitwise operations using the homomorphic properties of Paillier encryption.

The new compression algorithm C′ requires input from P (the equality proof) and V
runs it to check the proof and keep the final ciphertext. The steps for P are:

1. Run the compression algorithm C from Protocol 2, to get the set C = (w̃(j), Ĉ(j))j∈[τ ],
where Ĉ(j) is the unopened commitment for the jth parallel execution. Since t = N−1
there is only one commitment per parallel repetition.

2. Recall that Ĉ(j) = Enc(pk, ŵ(j)) and w = ŵ(j)⊕w̃(j). Using the additive homomomor-
phic property of encryption, compute C ′ = (Enc(ŵ(1) ⊕ w̃(1)), . . . , Enc(ŵ(τ) ⊕ w̃(τ)))
as described in Appendix A.4. This is possible because w̃(j) are public constants,
and there is only one unopened party, so we only need to compute the XOR of one
public and one encrypted value.

3. Convert the set C ′ of bitwise encryptions of w, to the set C ′′ of integer encryptions
of w as described in Appendix A.4. This is again possible using the homomorphic
property, by computing w =

∑λ
i=0 2iwi (converting from binary to integer), and

choosing paramters such that λ-bit strings fit in the plaintext space of Enc.
4. Prove all ciphertexts in C ′′ have the same plaintext. This step can be realized, e.g.,

with a standard generalization of Schnorr’s proof of knowledge of a discrete logarithm
(details in Appendix A.4). A non-interactive equality proof π is output by P and
sent to V.

The verifier V repeats Steps 1-3 to compute C ′′, then checks that π is valid. If so, V
outputs the first ciphertext in C ′′ as the encryption of w.

Since the output compression is one ciphertext, the resulting VE ciphertext clearly has
size O(λ).

In terms of security, the protocol until Step 2 of C′ is secure by Theorem 1, since the
modifications to the commitment scheme maintain the required extractability and hiding
properties. For the next part of C′, we argue that the plaintext transforms in Steps 2 and
3 to compute C ′′ are 1:1 and thus maintain validity. Because Theorem 1 guarantees that
the scheme is valid, decryption of C succeeds with overwhelming probability, which means
that at least one component ciphertext is an encryption of w that is valid, in particular
the plaintexts are guaranteed to be single bits. When a ciphertext in C is an encryption
of individual bits, then steps 2 and 3 are reversible, implying that if ciphertext j in C is
valid, then ciphertext j in C ′′ is also valid. Finally, as argued above since C ′′ contains
at least one valid encryption of w, all ciphertexts must encrypt w assuming the equality
proof in Step 4 is sound with overwhelming probability. The assumptions required for the
proof in Step 4 can vary, but with an interactive version of Schnorr’s proof we need only
assume that discrete logarithms are hard in the Paillier group, which is implied by the
DCR assumption required for security of Paillier encryption.

The construction has drawbacks that keep it from being practical, and it would be
interesting to address them. Because we require some (relatively weak) homomorphic
properties, we lose the flexibility in the choice of PKE, and a suitable PQ-secure instantiation
requires investigation. The cost of creating and communicating of the proof soars because
we require bitwise encryptions of witness shares, meaning the prover must compute O(τNλ)
individual Paillier encryptions. In practice this cost could be significantly reduced by using
bitwise exponential Elgamal, however then the final ciphertext would have to remain in
the bitwise representation (to allow efficient decryption) meaning the ciphertext would
have size O(λ2), rather than O(λ).
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H Deferred Proofs
H.1 Proof of Theorem 1
Proof. We prove both properties separately.
HVZK follows from hiding of the commitment scheme and perfect HVZK of the base
protocol MPCitH-IOPR. The MPCitH-VER simulator S on input (pk, x) proceeds as follows,
for each parallel repetition: (1) invoke the MPCitH-IOPR simulator S on input x to obtain
(e, (Vi)i∈e), (2) for each i ∈ e, define Ci = Commit(pk, Vi; ri) and for each i /∈ e, define
Ci = Commit(pk, 0|V |; ri), where 0|V | is the zero-string with the length of a view and the
commitment randomness ri’s are sampled uniformly, (3) output ((Ci)i∈[N ], e, (Vi)i∈e).

The computational indistinguishability of the simulation follows from a standard hybrid
argument. Since MPCitH-IOP is perfect HVZK, the τ · t views output by S are distributed
identically to views revealed in the real executions. As the MPCitH-VE simulator S has to
generate τ(N − t) unopened commitments in total, we require τ(N − t) hybrids to replace
these commitments to the real views with simulated ones. For each hop, the distinguisher
is able to distinguish two consecutive hybrids with probability at most ϵhide. We thus
obtain the bound τ(N − t)ϵhide.
Validity At a high-level, the proof proceeds as follows: if an MPCitH-VE cheating prover
P∗ can convince the verifier V while the receiver fails to decrypt a correct witness, then
it must be that either (1) P∗ broke extractability of ECOM, or (2) one can construct a
pair of adversaries (A∗, P∗) that break SLE of MPCitH-IOPR. Adversaries (A∗, P∗) first
extract views from the commitments sent by P∗ and then forward them as a complete set
of N views in the SLE-IOP game.

Now let us turn to the formal proof. We give proof for the single repetition case, but
the argument below naturally extends to τ parallel repetitions.14 We bound the probability
that the receiver fails to decrypt:

fail := Pr

b = 1 ∧ (x, w′) /∈ R :
(pk, sk)← G(1κ); x← A∗(pk, sk);

(b, tr)← ⟨P∗(sk),V⟩(pk, x);
C ← C(x, tr); w′ ← R(sk, C)


For brevity we omit the variable definitions after the colon in the following. From the
description of MPCitH-VER, the probability fail can be re-stated as follows.

fail = Pr


CheckView(x, (Vi)i∈e) = 1

∧∀i ∈ e : Commit(pk, Vi; ri) = Ci

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

 (5)

= Pr


CheckView(x, (Vi)i∈e) = 1

∧∀i ∈ e : Commit(pk, Vi; ri) = Ci

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

∧∃i ∈ e : Vi ̸= V̂i

 (6)

+ Pr


CheckView(x, (Vi)i∈e) = 1

∧∀i ∈ e : Commit(pk, Vi; ri) = Ci

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

∧∀i ∈ e : Vi = V̂i

 (7)

14In fact, it is also implied by Theorem 2 in the next section by setting n = τ .
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where for i ∈ [N ], V̂i = CExt(sk, Ci) are the views obtained by decrypting Ci; for i ∈ e,
wi = GetW(Vi); for i /∈ e, ŵi = GetW(V̂i), according to the operations of C and R.

If event (6) happens, then the extractability of ECOM is broken. That is, one can
construct an adversary A that receives (pk, sk) in the extractability game, runs the validity
adversary on that key pair, and if P∗ outputs some Ci, Vi, ri such that Commit(pk, Vi; ri) =
Ci ∧ V̂i ̸= Vi, then A wins with output (Ci, Vi, ri). Hence (6) is bounded by ϵcext.

We now give an upper bound for (7). First, it can be bounded as follows

(7) = Pr



CheckView(x, (V̂i)i∈e) = 1
∧∀i ∈ e : Commit(pk, V̂i; ri) = Ci

∧(x,
∑
i∈e

ŵi +
∑
i/∈e

ŵi) /∈ R

∧∀i ∈ e : Vi = V̂i

 (8)

≤ Pr
[
CheckView(x, (V̂i)i∈e) = 1 ∧ (x,

∑
i∈[N ]

ŵi) /∈ R
]

(9)

because we are guaranteed that V̂i = Vi and thus ŵi = wi for i ∈ e. Given a cheating
prover (A∗,P∗) that causes event (9) to occur, we construct an adversary pair (A∗, P∗)
against SLE of MPCitH-IOPR.

1. A∗(1κ) invokes (pk, sk)← G(1κ) and forwards (pk, sk) to A∗.
2. On receiving x from A∗, A∗ forwards x to the IOP-SLE game.
3. P∗(x) runs P∗ on input x and plays an MPCitH-VE verifier V.
4. On receiving (Ci)i∈[N ] from P∗, P∗ extracts the views by invoking V̂i = CExt(sk, Ci)

for i ∈ [N ]. Then P∗ constructs the proof string π = (V̂i)i∈[N ] and outputs in the
SLE-IOP game.

5. On receiving an oracle query e from V in the SLE-IOP game, P∗ forwards e to P∗.

Since the canonical extractor E for MPCitH-IOPR (see Definition 2) also constructs a
witness candidate via w =

∑
i∈[N ] GetW(V̂i) =

∑
i∈[N ] ŵi, it must be that E fails to extract

a valid witness if and only if the receiver R fails to decrypt correctly, i.e.,

(9) = Pr
[
CheckView(x, (V̂i)i∈e) = 1 ∧ (x, E(x, (V̂i)i∈[N ])) /∈ R

]
≤ ϵsle-iop (10)

Overall, we have that fail ≤ ϵcext + ϵsle-iop.

H.2 Proof of Theorem 2

Proof. We extend the proof for Theorem 1. On a high-level the analysis amounts to
evaluating the probability that the SLE-IOP extractor succeeds in extracting a valid
witness from random subset of in total τ transcripts, while all τ repetitions are accepting.
From the description of MPCitH-VER, the probability fail can be parsed as follows.
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fail (11)

= Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧∀j ∈ S : (x,
∑

i∈e(j)

w
(j)
i +

∑
i/∈e(j)

ŵ
(j)
i ) /∈ R



= Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧S ⊂ BadRun



=
τ∑

s=n

Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s ∧ S ⊂ BadRun



=
τ∑

s=n

(
s
n

)(
τ
n

) · Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s

 (12)

where BadRun :=
{

j ∈ [τ ] : (x,
∑

i∈e(j) w
(j)
i +

∑
i/∈e(j) ŵ

(j)
i ) /∈ R

}
, i.e., a set of “bad” par-

allel repetitions from which one fails to decrypt a valid witness. Note that the last equality
holds since a random subset S is sampled independently of BadRun and thus the probability
that a subset S is chosen from BadRun of size s is (s

n)
(τ

n) .

Now we split (12) into the two cases, depending on whether extractability of ECOM is
broken or not.

(12)

=
τ∑

s=n

(
s
n

)(
τ
n

) ·(Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s

∧∃j ∈ BadRun,∃i ∈ e(j) : V
(j)

i ̸= V̂
(j)

i



+ Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s

∧∀j ∈ BadRun,∀i ∈ e(j) : V
(j)

i = V̂
(j)

i


)

where for j ∈ BadRun and i ∈ [N ], V̂
(j)

i = CExt(sk, C(j)
i ) are the views obtained by

decrypting C(j)
i .
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Following the proof for Theorem 1, the former case can be bounded as follows.

Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s

∧∃j ∈ BadRun,∃i ∈ e(j) : V
(j)

i ̸= V̂
(j)

i


≤Pr

[
∃j ∈ BadRun,∃i ∈ e(j) : V

(j)
i ̸= V̂

(j)
i

∣∣∣ |BadRun| = s
]

(13)

· Pr
[
|BadRun| = s

]
≤ϵcext · Pr

[
|BadRun| = s

]
(14)

Likewise, the latter case can be bounded as follows.

Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V
(j)

i ; r
(j)
i ) = C(j)

i

∧|BadRun| = s

∧∀j ∈ BadRun,∀i ∈ e(j) : V
(j)

i = V̂
(j)

i


≤Pr

∀j ∈ BadRun : CheckView(x, (V̂ (j)
i )i∈e) = 1

∧(x,
∑

i∈[N ]

ŵ
(j)
i ) /∈ R

∣∣∣∣∣∣∣ |BadRun| = s

 (15)

· Pr
[
|BadRun| = s

]
≤ϵsle-iop(s) · Pr

[
|BadRun| = s

]
(16)

because given a cheating prover P∗ committing to views V̂
(j)

i that do not decode to a
valid witness, one can construct an adversary pair (A∗, P∗) against SLE of MPCitH-IOPR

as in the proof for Theorem 1. However, notice that P∗ here only forwards as an oracle
(V̂ (j)

i )i∈[N ] for j ∈ BadRun to the SLE-IOP game, instead of the extracted views for all τ
executions. Therefore, the probability upper bound is parameterized by the advantage of
SLE-IOP prover that only runs s parallel repetitions.

Putting (12), (14) and (16) together, we obtain the desired bound.
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Protocol 4: DKGitH for relation R =
{

(y, x) : y = gx
}

Parameters Let G be a group of prime order p generated by g, written multiplicatively.
Let τ be a parameter for the number of parallel repetitions. N denotes the number of
parties. Let ECOM = (CGen, Commit, CExt) be an extractable commitment scheme.

Key Generation G(1κ) outputs a key pair (pk, sk)← CGen(1κ)
Prover P(pk, x, y):

Commit
1: Sample a random salt salt←$ {0, 1}2λ.
2: for each parallel repetition j do
3: Sample a root seed: sd(j) ←$ {0, 1}λ.
4: Compute parties’ seeds sd(j)

1 , . . . , sd(j)
N as leaves of a binary tree with root

sd(j).
5: for each party i do
6: Expand seed to witness share tape: x

(j)
i ← Expand(salt, j, i, sd(j)

i )
7: Commit to share: C(j)

i ← Commit(pk, salt, j, i, x
(j)
i ).

8: end for
9: Compute witness offset: ∆x(j) ← x−

∑
i x

(j)
i .

10: Correct first share: x
(j)
1 ← x

(j)
1 + ∆x(j).

11: for each party i do
12: Compute and broadcast y

(j)
i = gx

(j)
i

13: end for
14: end for
15: Set π1 ← (salt, ((C(j)

i , y
(j)
i )i∈[N ], ∆x(j))j∈[τ ]).

Challenge
1: Let h = (̄i1, . . . , īτ ) = H(π1, y, pk), where īj ∈ [N ]

Response and output
1: for each parallel repetition j do
2: sds(j) ← {log2(N) nodes needed to compute sd(j)

i for i ∈ [N ] \ {̄ij}}.
3: end for
4: Output tr← (salt, h, (sds(j), C(j)

īj
, ∆x(j))j∈[τ ]).

Verifier V(pk, y, tr):
1: Parse tr as (salt, h, (sds(j), C(j)

īj
, ∆x(j))j∈[τ ]) and h as (̄i1, . . . , īτ )

2: for each parallel repetition j do
3: Use sds(j) to compute sd(j)

i for i ∈ [N ] \ {̄ij}.
4: for each party i ∈ [N ] \ {̄ij} do
5: Recompute x

(j)
i ← Expand(salt, j, i, sd(j)

i ), C(j)
i ← Commit(pk, salt, j, i, x

(j)
i )

and y
(j)
i = gx

(j)
i .

6: if i
?= 1 then

7: Correct first share: x
(j)
i ← x

(j)
i + ∆x(j).

8: end if
9: end for

10: Compute y
(j)
īj

= y/(
∏

i̸=īj
y

(j)
i )

11: end for
12: Set π1 ← (salt, ((C(j)

i , y
(j)
i )i∈[N ], ∆x(j))j∈[τ ]).

13: Accept if h
?= H(π1, y, pk), otherwise reject.
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Protocol 5: RDKGitH for relation R =
{

(y, x) : y = gx
}

Parameters Let t be the degree of polynomial. G, p, g, N, ECOM are the same as
ones in DKGitH.

Key Generation G(1κ) outputs a key pair (pk, sk)← CGen(1κ)
Prover P(pk, x, y):

Commit
1: for each j = 1, . . . , t do
2: aj ←$ Z∗

p; Aj ← gaj

3: end for
4: a0 ← x; A0 ← y
5: a(X)←

∑t
j=0 ajXj

6: for each party i ∈ [N ] do
7: Compute a witness share: xi ← a(i)
8: Commit to share: Ci ← Commit(pk, xi; ri).
9: end for

10: Set π1 ← ((Ci)i∈[N ], A1, . . . , At).
Challenge

1: Let I = (i1, . . . , it) = H(π1, y, pk), where ij ∈ [N ]
Response and output

1: Output tr← (I, (xi, ri)i∈I , (Ci)i/∈I , A1, . . . , At).
Verifier V(pk, y, tr):

1: Parse tr as (I, (xi, ri)i∈I , (Ci)i/∈I , A1, . . . , At) and I as (i1, . . . , iτ )
2: A0 ← y
3: for each party i ∈ I do
4: Recompute Ci = Commit(pk, xi; ri).
5: Check gxi =?

∏t
j=0 Aij

j , otherwise reject
6: end for
7: Set π1 ← ((Ci)i∈[N ], A1, . . . , At).
8: Accept if I

?= H(π1, y, pk), otherwise reject.
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Protocol 6: KKW-IOPR

Parameters: The number of parties N ; the number of MPC executions M ; the number
of revealed online phases τ .

Inputs: prover P receives (x, w); verifier V receives x.
Committing phase The first-round message of V is empty. For each j ∈ [M ], P

proceeds as follows.
1. Choose uniform sd(j) and use it to generate per-party seeds (sd(j)

i )i∈[N ]. P
computes aux(j) by running the offline phase of MPC on input (sd(j)

i )i∈[N ]. For
each i ∈ [1, N − 1], let st(j)

i = sd(j)
i and let st(j)

N = sd(j)
N ||aux(j).

2. Compute the masked witness ŵ = λw
1 ⊕ . . . ⊕ λw

N ⊕ w, where λw
i is party i’s

random share to mask the witness in jth MPC execution, and is read out from
st(j)

i .
3. Emulate “in her head” the online phase of the N -party protocol for f(w) =? x

by running the online phase of MPC on input x, ŵ(j) and (st(j)
i )i∈[N ]. As a

result the prover obtains per-party broadcast messages (msgs(j)
i )i∈[N ].

Finally, P outputs the proof string π = (sd(j), (st(j)
i , msgs(j)

i )i∈[N ], ŵ(j))j∈[M ].
Query phase

1. V chooses a uniformly random subset T ⊂ [M ] of size τ and party indices
(̄ij)j∈T where each īj ∈ [N ] is uniform. It queries the oracle for π with T and
(̄ij)j∈T .

2. The oracle returns sd(j) and (st(j)
i )i∈[N ] for j /∈ T and (st(j)

i )i ̸=īj
, (msgs(j)

i )i∈[N ]

and ŵ(j) for j ∈ T .
Decision phase:

1. For each j /∈ T , V emulates the offline phase using sd(j) to compute (s̃t(j)
i )i∈[N ]

as an honest prover would.
2. For each j ∈ T , V emulates the online phase using (st(j)

i )i ̸=īj
, masked witness

ŵ(j) and msgs(j)
īj

to compute ( ˜msgs(j)
i )i ̸=īj

and output bit b(j).

3. Accept iff
• For j /∈ T , the offline phases are computed correctly, i.e., (s̃t(j)

i )i∈[N ] =
(st(j)

i )i∈[N ].

• For j ∈ T , the online phases are computed correctly, i.e., ( ˜msgs(j)
i )i ̸=īj

=
(msgs(j)

i )i̸=īj
and b(j) = 1.
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Protocol 8: Banquet-NIVE

Converts the Banquet-IOP prover P and verifier V to non-interactive VE prover P and
verifier V using the the extractable commitment scheme ECOM = (CGen, Commit, CExt)
as constructed in Section 3.1, and the random oracles H1, H2, H3. The protocol below
closely follows the Banquet signature; differences are highlighted in orange.

Key Generation G(1κ): It invokes (pk, sk)← CGen(1κ) and outputs (pk, sk).
Prover P(pk, x, w) where x = (ct, pt) and w = K

1: salt←$ {0, 1}κ

2: For e ∈ [τ ]: run P to get π
(e)
1 = ((sd(e)

i , ct(e)
i )i∈[N ], ∆w(e), (∆t

(e)
ℓ )ℓ∈[m])

3: For e ∈ [τ ], i ∈ [N ]: ρ
(e)
i ←$ Sr; C(e)

i := Commit(pk, sd(e)
i ; ρ

(e)
i )

4: σ1 := (salt, ((C(e)
i , ct(e)

i )i∈[N ], ∆w(e), (∆t
(e)
ℓ )ℓ∈[m])e∈[τ ])

5: (r(e)
j )j∈[m1],e∈[τ ] := h1 = H1(pk, x, σ1)

6: For e ∈ [τ ]: run P to get π
(e)
2 = (∆P (e)(k))k∈[m2,2m2]; σ2 := (π(e)

2 )e∈[τ ].
7: (R(e))e∈[τ ] := h2 = H2(pk, x, h1, σ2)
8: For e ∈ [τ ]: run P to get π

(e)
3 = ((a(e)

i,j , b
(e)
i,j )j∈[m1], c

(e)
i )i∈[N ]; σ3 := (π(e)

3 )e∈[τ ]

9: For e ∈ [τ ], j ∈ [m1]: a
(e)
j :=

∑
i a

(e)
i,j ; b

(e)
j :=

∑
i b

(e)
i,j

10: For e ∈ [τ ]: c(e) :=
∑

i c
(e)
i

11: (̄i(e))e∈[τ ] := h3 = H3(pk, x, h1, h2, σ3)
12: For e ∈ [τ ]: sds(e) := {log2(N) nodes needed to compute sd(e)

i for i ∈ [N ] \ {̄i(e)}}
13: tr := (salt, h1, h3, (sds(e), (ρ(e)

i )i ̸=ī(e) , C(e)
ī(e) , ∆x(e), (∆t

(e)
ℓ )ℓ∈[m], ∆P (e)(k)k∈[m2,2m2],

(a(e)
j , b

(e)
j )j∈[m1], c(e))e∈[τ ]).

Verifier V(pk, x, tr)
1: For e ∈ [τ ]; i ̸= ī(e): C(e)

i := Commit(pk, sd(e)
i ; ρ

(e)
i )

2: For e ∈ [τ ], i ̸= ī(e): recompute ((a(e)
i,j , b

(e)
i,j )j∈[m1], c

(e)
i , ct(e)

i )i̸=ī(e) and ct(e)
ī

as V
would.

3: For e ∈ [τ ] and j ∈ [m1]: a
(e)
ī(e),j

:= a
(e)
j −

∑
i̸=ī(e) a

(e)
i,j ; b

(e)
ī(e),j

:= b
(e)
j −

∑
i ̸=ī(e) b

(e)
i,j

4: For e ∈ [τ ]: c
(e)
ī(e) := c(e) −

∑
i ̸=ī(e) c

(e)
i

5: Define σ1 and σ3 as P would
6: h′

1 := H1(pk, x, σ1); h′
3 := H3(pk, x, h′

1, h2, σ3)
7: return 1 iff h′

1 =? h1, h′
3 =? h3, and for all e ∈ [τ ] V accepts.

Compression C(x, tr):
1: For e ∈ [τ ], i ̸= ī(e): w

(e)
i := GetW(sd(e)

i ) and w̃(e) :=
∑

i ̸=ī(e) w
(e)
i + ∆w(e).

2: return C := (w̃(e), (C(e)
ī(e)))e∈[τ ].

Receiver R(sk, C):
1: For e ∈ [τ ]: w

(e)
ī(e) := GetW(CExt(sk, C(e)

ī(e)))) and w(e) := w̃(e) + w
(e)
ī(e) .

2: return w(e) if ∃e : R(x, w(e)) =? 1
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