
Low-Complexity Deep Convolutional Neural Networks on Fully
Homomorphic Encryption Using Multiplexed Parallel Convolutions

Eunsang Lee 1 Joon-Woo Lee 1 Junghyun Lee 1 Young-Sik Kim 2 Yongjune Kim 3 Jong-Seon No 1

Woosuk Choi 4

Abstract

Recently, the standard ResNet-20 network was
successfully implemented on residue number sys-
tem variant Cheon-Kim-Kim-Song (RNS-CKKS)
scheme using bootstrapping, but the implemen-
tation lacks practicality due to high latency and
low security level. To improve the performance,
we first minimize total bootstrapping runtime us-
ing multiplexed parallel convolution that collects
sparse output data for multiple channels com-
pactly. We also propose the imaginary-removing
bootstrapping to prevent the deep neural networks
from catastrophic divergence during approximate
ReLU operations. In addition, we optimize level
consumptions and use lighter and tighter parame-
ters. Simulation results show that we have 4.67×
lower inference latency and 134× less amortized
runtime (runtime per image) for ResNet-20 com-
pared to the state-of-the-art previous work, and
we achieve standard 128-bit security. Furthermore,
we successfully implement ResNet-110 with high
accuracy on the RNS-CKKS scheme for the first
time.

1. Introduction
The clients would be reluctant to send their sensitive private
data to the server, such as medical information. To pro-
tect clients’ privacy, privacy-preserving machine learnings
(PPMLs) have been studied to perform inferences directly
on encrypted data. Most previous PPMLs adopt the nonstan-
dard convolutional neural networks (CNNs) that reduce the
number of layers or replace activation functions with low-
degree polynomials (Gilad-Bachrach et al., 2016; Dathathri

1Dept. of Electrical and Computer Engineering, INMC, Seoul
National University 2Dept. of Information and Communication
Engineering, Chosun University 3Dept. of Electrical Engineer-
ing and Computer Science, DGIST 4Samsung Advanced Insti-
tute of Technology. Correspondence to: Joon-Woo Lee <joon-
woo42@snu.ac.kr>.

et al., 2019; Boemer et al., 2019; Chou et al., 2018; Lou
& Jiang, 2021; Juvekar et al., 2018; Mishra et al., 2020;
Park et al., 2022). This approach requires the training stage
for the newly designed CNNs. However, since training is a
costly process and even access to training datasets is often
restricted due to data privacy issues, the request for training
is a burden on the server in many real-world applications.
Furthermore, it is not easy to design nonstandard CNNs for
large datasets such as ImageNet. Thus, PPML based on the
standard CNNs (SCNNs) using already given pre-trained
parameters is also practically important.

Although relatively simple datasets can be classified us-
ing shallow SCNNs, very deep SCNNs (VDSCNNs) are
required for the more difficult datasets (Simonyan & Zisser-
man, 2015; Szegedy et al., 2015). Thus, it is an important
and appealing goal to implement practical PPML for VDSC-
NNs, which is the main focus of our paper. In particular, the
ResNet model (He et al., 2016) is a popular SCNN because
it handles the gradient vanishing problem effectively. Thus,
it will be very meaningful to implement practical PPML for
very deep ResNet models (e.g., ResNet-110).

Interactive PPML is an approach that uses both homomor-
phic encryption (HE) and secure multi-party computation
(MPC) (Juvekar et al., 2018; Mishra et al., 2020; Park et al.,
2022). The interactive PPML’s inference for the SCNNs
requires a huge amount of data communication between
the server and the client. For example, one ReLU function
requires data communication of 19KB according to (Mishra
et al., 2020), hence, data communication of several giga-
bytes is required to classify only one encrypted CIFAR-10
image using the standard ResNet-20 or ResNet-32.

Thus, we focus on non-interactive PPML for VDSCNNs,
which performs VDSCNNs on the encrypted data using
only fully homomorphic encryption (FHE) without MPC.
Since available level consumption (i.e. depth of arithmetic
circuit) is limited in leveled HE, previous PPMLs that adopt
leveled HE only supported a small number of layers. To
achieve non-interactive PPML for VDSCNNs, it is essential
to use bootstrapping operations that can arbitrarily increase
available level consumption. Recently, an SCNN for the
encrypted CIFAR-10 images was implemented with high

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

accuracy using bootstrapping for the first time in (Lee et al.,
2021c). Specifically, the standard ResNet-20 was realized
on residue number system variant Cheon-Kim-Kim-Song
(RNS-CKKS) scheme (Cheon et al., 2018a) using bootstrap-
ping after replacing all ReLU functions with approximate
polynomials for ReLU functions (APRs). By adopting pre-
cise polynomial approximation, the pre-trained parameters
over the plaintext data for the SCNNs can be used without
retraining. This paper also focuses on this approach, which
is useful in one of the following cases:

• Inference (classification) using pre-trained parameters
(training/retraining is limited);

• Difficult classification tasks (e.g., ImageNet dataset)
that cannot be handled by HE-friendly nonstandard
CNNs.

Although this approach requires bootstrapping that con-
sumes a relatively long runtime, this approach can be used
practically because the runtime of bootstrapping has been
significantly reduced thanks to recent advances in bootstrap-
ping algorithms (Lee et al., 2021a;d; Bossuat et al., 2021;
2022) and acceleration of bootstrapping using GPU or hard-
ware accelerators (Jung et al., 2021; Kim et al., 2021b).

Even though the implementation of (Lee et al., 2021c) is
an important step toward VDSCNNs, deeper CNNs than
ResNet-20 have not yet been implemented. In addition, the
implementation has high latency of 10,602s even with 64
CPU threads. One major reason for this high latency comes
from its inefficient data packing. In (Lee et al., 2021c), data
for only one channel is packed into the ciphertext, which
requires bootstrappings as many as the number of channels.
Furthermore, the number of bootstrappings is even doubled
due to non-optimized parameters and level consumption.
The usefulness of this implementation is further reduced
due to the security level lower than 128 bits.

Our Contributions We implement practical PPML for
VDSCNNs for the first time by resolving the problems of
(Lee et al., 2021c). Our contributions are summarized as
follows:

• We effectively reduce the bootstrapping runtime by
using a multiplexed packing method (i.e., packing data
of multiple channels into one ciphertext in a compact
manner);

• We propose a multiplexed convolution algorithm that
performs convolutions for multiplexed input tensors,
which also supports strided convolutions. We also pro-
pose a faster multiplexed parallel convolution algo-
rithm, which reduces the number of required rotations
in the multiplexed convolution algorithm by 62% by
utilizing full slots of ciphertext;

• We find that a catastrophic divergence phenomenon oc-
curs when implementing VDSCNNs using APRs. We

propose imaginary-removing bootstrapping that pre-
vents this phenomenon so as to maintain the accuracy
of PPML for VDSCNNs;

• We optimize level consumption and use lighter and
tighter parameters to achieve faster inference and the
standard 128-bit security level;

• We implement ResNet-20 on the RNS-CKKS scheme
using the SEAL library (SEAL) with a latency of
3,972s with only one CPU thread, which is 4.67×
lower than that of (Lee et al., 2021c) using 64 threads.
Also, our amortized runtime (runtime per image) is
134× smaller due to a significant reduction of the num-
ber of operations;

• We also implement ResNet-32/44/56/110 on the RNS-
CKKS scheme with high accuracies close to those of
backbone CNNs.

2. Preliminaries
2.1. RNS-CKKS Fully Homomorphic Encryption

RNS-CKKS is an FHE scheme that supports fixed-point
arithmetic operations on encrypted data. The ciphertext in
the RNS-CKKS scheme is in the form of (b, a) ∈ R2

Q

for some product of prime numbers Q, where RQ =
ZQ[X]/⟨XN + 1⟩. N/2 real (or complex) numbers are
encrypted in N/2 slots of a single ciphertext and we denote
N/2 as nt. Homomorphic operations perform the same op-
eration on each slot simultaneously. If we simply denote the
ciphertext of a vector u ∈ Rnt as [u], homomorphic addi-
tion, scalar multiplication, and rotation in the RNS-CKKS
scheme can be described as follows:

• [u]⊕ [v] = [u+ v]
• [u]⊙ v = u⊙ [v] = [u · v]
• Rot([u]; r) = [⟨u⟩r],

where u·v denotes component-wise multiplication and ⟨u⟩r
denotes the cyclically shifted vector of u by r to the left.

Each ciphertext has a non-negative integer ℓ, called level,
which means the capacity for homomorphic multiplication
operations. After each homomorphic multiplication, the
level is decreased by one through the rescaling procedure.
If the level ℓ becomes zero after several multiplications, it
is required to perform bootstrapping that makes this zero-
level ciphertext to a higher-level ciphertext to enable further
homomorphic multiplications.

If a message is a vector v with size n that is less than nt,
we can encrypt this message in a sparsely packed cipher-
text (Cheon et al., 2018b). We refer to this packing method
as repetitive slot (RS) packing. Specifically, after obtaining
concatenated vector (v|v| · · · |v) ∈ Rnt from v, we encrypt
this concatenated vector in ciphertext full slots. The boot-
strapping of a ciphertext in which the message is packed

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

(a) SISO Convolution for plaintext data

##

##

##

##

####

(b) SISO Convolution on HE for
##

##

##

##

####

(c) SISO Convolution on HE for

0 0 0 0

0

0

0

0 0 0 0

0 0 0 0

0

0

0

0

0

0 0

0 0 0 0

0 0 0 0

0

0

0

00

0 0 0 0

0 0 0 0

0 0 0 00

0

0 0

0

Figure 1: SISO Convolution on HE (Juvekar et al., 2018;
Lee et al., 2021c).

using the RS packing, called RS bootstrapping, has less
runtime than otherwise (Cheon et al., 2018b).

Key-switching operation (KSO) is an operation that
switches the secret key for a ciphertext to a new secret
key without any change of the message. Since KSO is the
most time-consuming operation in the RNS-CKKS scheme,
the number of KSOs roughly determines the total amount of
operations in homomorphic arithmetic circuits. To reduce
the number of KSOs in ResNet inference, it is desirable to
reduce the number of rotations as much as possible since
rotation requires a KSO and is used a lot in bootstrappings
and convolutions.

2.2. Convolution on Homomorphic Encryption

The input of convolution is a three-dimensional tensor
A ∈ Rhi×wi×ci , where hi and wi are the height and width
of the input tensor, respectively, and ci is the number of
input channels. The output is the tensor A′ ∈ Rho×wo×co ,
where ho and wo are the height and width of the output
tensor, respectively, and co is the number of output channels.
fh and fw are the kernel sizes of the filter. In this paper,
the horizontal and vertical strides of the convolution are
assumed to be the same for simplicity, and we denote the
stride of the convolution by s. We only consider convolution
using zero paddings.

Gazelle (Juvekar et al., 2018) proposed a method to perform
single-input single-output (SISO) convolution (ci = co = 1)
on HE. In this method, each rotated input ciphertext is mul-
tiplied by some appropriate plaintext vector, and then the
output is obtained by adding fhfw multiplication results.
We denote the result of SISO convolution for the j-th input
channel and the i-th output channel by (i, j). The convolu-
tion result for the i-th output channel can be computed by
using the equation (i, 1)+ (i, 2)+ · · ·+(i, ci), and Gazelle
obtained all output data using diagonal grouping technique.
Figure 1(b) shows how to perform SISO convolution on HE,
where the data of hi×wi matrix is contained in a ciphertext

or plaintext vector in a raster scan fashion. Although Gazelle
also proposed a method to perform strided convolution on
HE, this method that requires rearranging the data using
re-encryption cannot be used in non-interactive PPML (i.e.,
PPML using only HE without MPC).

The ResNet-20 with strided convolutions was implemented
using the method in Figure 1(c) (Lee et al., 2021c). The
inference of CNNs with strided convolutions on FHE causes
a gap between valid data in ciphertext slots. We denote the
gaps of input and output ciphertext as ki and ko, respectively,
where we have ko = ski. In the entire ResNet, the value
of ki is one for the first layer and increases by a factor of s
after each strided convolution. In Figure 1(c), the ho × wo

plaintext output data is sparsely packed in a koho × kowo

matrix for the output gap ko, and the other slots are filled
with zero. We refer to this data packing method as gap
packing. If we perform convolution for an input ciphertext
whose data is packed by the gap packing, the amount to be
shifted in Figure 1(b) should be increased by a factor of the
input gap ki.

In this paper, we often simply represent kihi × kiwi matrix
as a ki × ki matrix. The components of this simplified
ki × ki matrix can be channel information, zero number, or
##, where ## implies arbitrary dummy data.

2.3. Threat Model

The threat model of this paper is similar to the previous
PPMLs (Gilad-Bachrach et al., 2016; Lou & Jiang, 2021).
The client sends the private data to the untrusted server after
encryption using FHE. The server performs an inference
directly on the encrypted data without decryption and sends
back the ciphertext of the inference result. Only the client
that holds the secret key can decrypt the inference result,
guaranteeing data privacy from the server.

3. Comparison of Bootstrapping Runtime for
Several Data Packing Methods

Since the most time-consuming component in the imple-
mentation of standard ResNet on the RNS-CKKS scheme
is bootstrapping, it is desirable to reduce the bootstrapping
runtime. The required number of KSOs and the runtime
for bootstrapping according to the number of slots are pre-
sented in Table 1, where the runtime is obtained using the
same parameters and simulation environments of Section 8.
To reduce the total bootstrapping runtime, we should pack
intermediate data into ciphertexts as compact as possible
during the inference stage. In addition, the gap between
valid data is increased by a factor of s after each strided
convolution, leading to a reduction of packing density by a
factor of s2, but this low packing density should be resolved
to effectively reduce the bootstrapping runtime.

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

boot log2(#slots) 10 11 12 13 14 15
#KSOs 63 70 77 84 91 94
runtime 72s 80s 86s 96s 112s 140s

Table 1: The number of KSOs and bootstrapping runtime
according to various number of slots for bootstrapping

In this section, we attempt to remove this gap by packing
these sparsely packed data in a compact manner. We first
compare several data packing methods. We assume that the
data of size less than nt is packed in a ciphertext using RS
packing so that RS bootstrapping can be used.

Gap packing Since gap packing in (Lee et al., 2021c)
packs only one channel data into one ciphertext, the required
number of bootstrapping operations will be the same as the
number of channels. Thus, an unnecessarily large number
of KSOs are required.

Gap packing with multiple channels We can improve
gap packing by packing data of multiple channels into one
ciphertext as much as possible. Although this packing can
reduce the number of bootstrappings a lot, there are still
many dummy slots as shown in Figure 1(c). For CNNs with
many strided convolutions, the total bootstrapping runtime
will increase exponentially with the number of strided con-
volutions.

Multiplexed packing Recently, HEAR (Kim et al., 2021a)
used a new data packing method, referred to multiplexed
packing herein. In this packing method, plaintext tensors of
hi × wi size for k2i channels are first mapped to one larger
multiplexed tensor of size kihi × kiwi. Then, several mul-
tiplexed tensors are encrypted in one ciphertext. Although
multiplexed packing was proposed to deal with the pooling
of HE-friendly CNNs and speed up convolution in (Kim
et al., 2021a), we repurpose it to reduce the bootstrapping
runtime of CNNs with strided convolutions. Figure 2 de-
scribes multiplexed packing with hi = wi = 4 and ki = 2.
The formal description of multiplexed packing can be seen
in Appendix E.

Figure 3 illustrates several packing methods for ki = 2,
where cn = nt

k2
ihiwi

. Table 2 shows the required number of
bootstrappings for implementation of ResNet-20 when each
data packing method is used. The number of KSOs for total
bootstrappings in ResNet-20 inference is also presented, and
it is substantially reduced by multiplexed packing.

Thus, we require that the corresponding plaintext data be
packed in the ciphertext using multiplexed packing during
ResNet inference. Then, we should design a homomorphic
convolution that takes an input ciphertext of multiplexed
input tensor and outputs a ciphertext of multiplexed output

1

(a) Multiplexed packing

(b) Simplified representation of multiplexed packing

2 3 4 1 2

3 4

Figure 2: Multiplexed packing MultPack when hi = wi =
4 and ki = 2.

before before after total ResNet-20
log2(#slots) Str conv1 Str conv2 Str conv2

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)
10 16 0 0 32 0 0 64 0 0 672 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 0 6
13 0 0 0 0 0 1 0 0 0 0 0 6
14 0 1 1 0 0 0 0 0 0 0 6 6
15 0 0 0 0 1 0 0 2 0 0 18 0

total #KSOs 42,336 2,238 1,512

Table 2: The number of bootstrappings for implementa-
tion of ResNet-20 according to various data packing meth-
ods. (a), (b), and (c) imply gap packing, gap packing with
multiple channels, and multiplexed packing, respectively.
Str conv1 and Str conv2 denote the first and the second
strided convolutions (s = 2) in ResNet-20, respectively.

tensor.

1 ##
##

2 ##
##

##
##

1 ##
##

2 ##
##

##
##

##
##

##
##

##
##

1 2
3 4

5 6
7 8

(a) Gap packing

(b) Gap packing with multiple channels

(c) Multiplexed packing

Figure 3: Comparison of several data packing methods.

4. Multiplexed Parallel Convolution on Fully
Homomorphic Encryption

In this section, we propose homomorphic convolution al-
gorithms that take a ciphertext having multiplexed input
tensor and output a ciphertext having multiplexed output
tensor. HEAR (Kim et al., 2021a) proposed such a convolu-
tion algorithm that supports stride one (i.e., s = 1). HEAR
performs homomorphic convolution on multiple input chan-
nels simultaneously, adds SISO convolution results for all
input channels, and collects only valid values by multiplying

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

dummy slots by zero. We generalize this convolution algo-
rithm to support the strided convolutions (i.e., s ≥ 2). We
propose to select and collect the valid values for the output
gap ko = ski instead of the input gap ki. Then, the output
ciphertext has the plaintext output of strided convolution
in the form of multiplexed tensor for ko = ski. We denote
this convolution algorithm as MULTCONV and Figure 4
describes the procedure of MULTCONV when s = 2.

Unlike previous works for HE-friendly networks not rely-
ing on bootstrapping, we require a large number of full
slots, which is usually larger than the data size, to sup-
port bootstrapping and precise APRs. First, we consider
packing data into ciphertext using RS packing so that RS
bootstrapping can be used. Then, we note that one input
channel is repeatedly used for SISO convolutions for mul-
tiple output channels. We propose a multiplexed parallel
convolution algorithm, denoted as MULTPARCONV, that
simultaneously performs SISO convolutions for multiple
output channels, which consider the input packed by RS
packing as just several independent inputs. This algorithm
reduces the convolution runtime of MULTCONV while still
compatible with RS bootstrapping. Figure 5 shows the pro-
cedure of MULTPARCONV using simplified representation
of multiplexed packing.

The detailed algorithms of MULTCONV and
MULTPARCONV are presented in Appendix F. Each
execution of MULTCONV and MULTPARCONV re-
quires fhfw − 1 + co(2⌈log2 ki⌉ + ⌈log2 ti⌉ + 1) and
fhfw − 1 + q(2⌈log2 ki⌉ + ⌈log2 ti⌉) + co + log2 po
rotations, respectively, where ti = ⌈ ci

k2
i
⌉, to = ⌈ co

k2
o

⌉,

pi = 2
⌊log2(

nt
k2
i
hiwiti

)⌋
, po = 2

⌊log2(
nt

k2
ohowoto

)⌋, and q = ⌈ co

pi
⌉.

Then, the total required rotations for MULTCONV and
MULTPARCONV in ResNet-20 inference are 4,360 and
1,657, respectively, which implies that MULTPARCONV
requires 62% fewer rotations (i.e., number of KSOs) than
MULTCONV.

5. Imaginary-Removing Bootstrapping
In this section, we propose an imaginary-removing boot-
strapping, which makes it possible to implement VDSCNNs.
The most sensitive component in ResNet implementation
with many layers on the RNS-CKKS scheme is the APR.
Since the RNS-CKKS scheme actually deals with complex
numbers, precision noise during each homomorphic oper-
ation occurs not only in the real part of each data but also
in the imaginary part. We find that the results of the APR
in the real part can completely diverge if the accumulated
noise in the imaginary part is not small enough.

We adopt the APR consisting of the composition of mini-
max approximate polynomials for piecewise sign functions
(Lee et al., 2021a). Assume that p1 and p2 are sequential

component minimax approximate polynomials in this or-
der. If the range within the approximation domain of p1 is
[−1 − b,−1 + b] ∪ [1 − b, 1 + b], the approximation do-
main of p2 is designed to be this range. Since the minimax
approximate polynomial usually diverges when the input
value is outside the approximation domain, the result value
of p2 will diverge greatly and lead to a failure of APR if the
result value of p1 is outside of [−1− b, 1 + b].

Consider the neighborhood of the local maximum point x0

such that p1(x0) = 1+b. p1(x) can be approximated by the
second Taylor polynomial Tp1,2(x) = p1(x0)− a(x− x0)

2

for positive real number a near x0, which is also valid in
the complex domain. When the value of x − x0 is a pure
imaginary number, the value of Tp1,2(x) is always greater
than p1(x0) = 1 + b. Thus, there exist some values of x
such that Re(p1(x)) is outside of [−1 − b, 1 + b] when
allowing imaginary noise, which leads to a failure in the
whole ResNet inference.

Hence, to stably perform ResNet with many layers, it is
important to remove the imaginary part of the input of each
APR. We propose to apply the imaginary-removing boot-
strapping operation before the APR. We homomorphically
compute the formula Re(x) = x/2 + x/2 by halving all
coefficient values in SLOTTOCOEFF operation in the boot-
strapping and homomorphically computing v + v̄. This ad-
ditional operation costs only one KSO for homomorphic
conjugation, and no additional level is consumed.

Figure 6 shows the mean of absolute values of imaginary
parts after each layer using normal and imaginary-removing
bootstrappings for one instance of ResNet-110 inference.
We observe that the diverging phenomenon occurs after the
69th layer due to the accumulated noise in the imaginary
part. This catastrophic divergence occurs for 12 images out
of 50 tested images (i.e., 24% of tested images). The pro-
posed imaginary-removing bootstrapping makes the noise of
imaginary parts remain much smaller during deeper ResNet
inference, and we confirm that imaginary-removing boot-
strapping never causes this diverging phenomenon when
conducting simulations for a various number of layers and
test images as in Section 8. It is worth mentioning that we
address this divergence problem of VDSCNNs on FHE and
propose a solution for the first time.

6. Optimization of Level Consumption
In our implementation, convolution, batch normalization,
bootstrapping, and APR are repeatedly performed in this
order. Since the bootstrapping and APR work only for input
values in [−1, 1], it is required to do scaling by 1/B before
bootstrapping and by B after the APR. We set sufficiently
large B to maintain all the computed values within [−B,B].
We set B = 40 and B = 65 for the CIFAR-10 and CIFAR-

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Figure 4: Multiplexed convolution algorithm for multiplexed input tensor for s = 2, ki = 2, and hi = wi = 4.

1 2
3 4

(1,1) (1,2)
(1,3) (1,4)

rotation and sum

SISO convolution

zero out & rotation

(1,5) (1,6)
(1,7) (1,8)

(2,1) (2,2)
(2,3) (2,4)

(2,5) (2,6)
(2,7) (2,8)

5 6
7 8

1 2
3 4

5 6
7 8

1 ##
##

##
##

2 ##
##

##
##

1 0
0 0

0 0
0 0

0 2
0 0

0 0
0 0

1 2
3 4

5 6
7 8

1 2
3 4

5 6
7 8

(9,1) (9,2)
(9,3) (9,4)

(9,5) (9,6)
(9,7) (9,8)

(10,1)(10,2)
(10,3)(10,4)

(10,5)(10,6)
(10,7)(10,8)

9 ##
##

##
##

10 ##
##

##
##

0 0
0 0

0 0
0 0

9 0
0 0

1 2
3 4

29 30
31 32

0 0
0 0

rotation & sum
1 2
3 4

29 30
31 32

Figure 5: Multiplexed parallel convolution algorithm when
ki = 2 and co = cn = 32.

-11

-9

-7

-5

-3

-1

0 10 20 30 40 50 60 70 80 90 100 110 120

normal bootstrapping

imaginary-removing bootstrapping

layer

m
e
a
n
 o

f a
b
so

lu
te

 v
a
lu

e
s

o
f
im

a
g
in

a
ry

 p
a
rt
s

approximate ReLU failure

Figure 6: Mean of absolute values of imaginary parts after
each layer when performing ResNet-110 inference using the
normal bootstrapping and the proposed imaginary-removing
bootstrapping.

100 datasets, respectively, and each value of B is obtained
by adding some margin to the maximum value of all used
values.

We propose a method of reducing level consumption by
integrating computations, as shown in Figure 7. We multi-
ply the constant of batch normalization (i.e., a) during the
selecting procedure in convolution instead of batch normal-
ization, and then add a modified constant vector by taking
into account the value of B during batch normalization.
By these judicious integrations, we can save three levels.
Figure 7 describes this level optimization technique, and
the proposed convolution/batch normalization integration
algorithm, denoted as MULTPARCONVBN, is presented in
Appendix H.

selecting

level optimization selecting

Figure 7: Level optimization by integrating computations.

7. The Proposed Architecture for ResNet on
the RNS-CKKS Scheme

7.1. Parameter Setting

We set the polynomial degree N = 216 and the number
of full slots nt = 215. We optimize some parameters used
in (Lee et al., 2021c) to achieve a higher security level.
First, we set the Hamming weight of the secret key to 192,

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

which is larger than 64 used in (Lee et al., 2021c) because
larger Hamming weight of secret key increases available
modulus bits. In addition, we set base modulus, special
modulus, and bootstrapping modulus to 51-bit prime instead
of 60-bit prime, and we set default modulus to 46-bit prime
instead of 50-bit prime. Even if the length of the modulus
bits is reduced, high accuracy of bootstrapping or APR
can be achieved. Based on the hybrid dual attack for the
learning with errors (LWE) problem with the sparse secret
key (Cheon et al., 2019), the total modulus bit length for
128-bit security is 1,553 bits.

We use the RS bootstrapping with n = 214, 213, and 212

since data in each input ciphertext for the bootstrapping is
less than nt = 215. COEFFTOSLOT and SLOTTOCOEFF
procedures are performed with level collapsing technique
with three levels. The degrees of the approximate polyno-
mials for the cosine function and the inverse sine function
are 59 and 1, respectively, and the number of the double-
angle formula is two. The total level consumption is 14 in
the bootstrapping, and the total modulus consumption is
644. We refer to the imaginary-removing bootstrappings
for n = 214, 213, and 212 as BOOT14, BOOT13, BOOT12,
respectively.

We use the approximate homomorphic ReLU algorithm that
uses APRs using a composition of minimax approximate
polynomial as in (Lee et al., 2021a;b). We use the precision
parameter α = 13 and set of degrees {15, 15, 27}. We refer
to the homomorphic ReLU algorithm for these parameters
as APPRELU(ctx). The ℓ1-norm approximation error of
APPRELU is less than 2−13, and this marginal error enables
us to use the pre-trained parameters of standard ResNet
models. That is, we do not need to train/retrain contrary to a
nonstandard HE-friendly network.

7.2. The Proposed Structure of ResNet on the
RNS-CKKS Scheme

We classify 32 × 32 CIFAR-10 and CIFAR-100 images
for our evaluation. We devise downsampling and average
pooling algorithms that support multiplexed tensors. We
refer to these algorithms as DOWNSAMP and AVGPOOL,
presented in Appendix G. We implement fully connected
layer using the diagonal method in (Halevi & Shoup, 2014).
We implement ResNet-20/32/44/56/110 on the RNS-CKKS
scheme using MULTPARCONVBN, APPRELU, BOOT,
AVGPOOL, DOWNSAMP, and fully connected layer. Fig-
ure 8 shows the proposed ResNet structure on the RNS-
CKKS scheme, where MULTPARCONVBN is simply re-
ferred to as CONVBN. The parameters used in CONVBN
and DOWNSAMP are presented in Appendix I.

While two sequential bootstrappings are required to perform
APR, convolution, and batch normalization in one layer in
(Lee et al., 2021c), only single use of bootstrapping is neces-

sary for our implementation because we reduce the required
level consumption for convolution, batch normalization, and
bootstrapping a lot compared to (Lee et al., 2021c). In addi-
tion, the proposed architecture for ResNet uses a 1,501-bit
modulus, and thus, it achieves the standard 128-bit security
level.

Figure 8: Structure of the proposed ResNet-20/32/44/56/110
on the RNS-CKKS scheme. The input image is packed in
ctA in a raster scan fasion and using RS packing.

8. Simulation Results
In this section, numerical results of the proposed architec-
ture for ResNet are presented. The numerical analyses are
conducted on the representative RNS-CKKS scheme library
SEAL (SEAL) on AMD Ryzen Threadripper PRO 3995WX
at 2.096 GHz (64 cores) with 512 GB RAM, running the
Ubuntu 20.04 operating system. We employ the CIFAR-
10 and CIFAR-100 datasets for evaluation, which are both
composed of 50,000 images for training and 10,000 images
for testing (Krizhevsky et al., 2009). We use pre-trained
parameters for standard ResNet-20/32/44/56/110.

8.1. Latency

First, we perform ResNet-20/32/44/56/110 using the pro-
posed architecture on the RNS-CKKS scheme. We require
3,306 KSOs for ResNet-20, which is 116× smaller than
384,160 in (Lee et al., 2021c). Table 3 shows the classifi-
cation runtime for one CIFAR-10/CIFAR-100 image using
ResNet models on the RNS-CKKS scheme. Due to the
large reduction of the number of KSOs, while the previous
implementation in (Lee et al., 2021c) takes 10,602s with
64 CPU threads to perform ResNet-20 on the RNS-CKKS
scheme, the proposed implementation takes 2,271s to per-
form ResNet-20 even with one CPU thread, which is 4.67×
reduction in latency. Considering that our implementation
only uses one CPU thread, we can expect more than 100×
and 1000× lower latency on GPU and hardware accelera-

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

component

CIFAR-10 CIFAR-100
(Lee et al., 2021c) proposed proposed

(64 threads) (single thread) (single thread)
ResNet-20 ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-110 ResNet-32

runtime percent runtime percent runtime percent runtime percent runtime percent runtime percent runtime percent
CONVBN - - 346s 15.2% 547s 14.7% 751s 14.3% 960s 14% 1,855s 14% 542s 13.7%
APPRELU - - 257s 11.3% 406s 10.9% 583s 11.2% 762s 11.1% 1,475s 11.1% 510s 12.9%
BOOT - - 1,651s 72.6% 2,760s 74.0% 3,874s 74.1% 5,113s 74.6% 9,936s 74.8% 2,864s 72.7%
DOWNSAMP - - 5s 0.2% 5s 0.1% 5s 0.09% 5s 0.07% 5s 0.04% - -
AVGPOOL - - 2s 0.1% 2s 0.06% 2s 0.05% 2s 0.04% 2s 0.02% 2s 0.05%
FC layer - - 10s 0.4% 10s 0.3% 10s 0.2% 10s 0.1% 10s 0.08% 24s 0.6%
total 10,602s 100% 2,271s 100% 3,730s 100% 5,224s 100% 6,852s 100% 13,282s 100% 3,942s 100%

Table 3: Classification runtime for one CIFAR-10/CIFAR-100 image using ResNet on the RNS-CKKS scheme

model runtime amortized
runtime

CIFAR-10

(Lee et al., 2021c)
ResNet-20 10,602s 10,602s(one image,

64 threads)
ResNet-20 3,973s 79s

proposed ResNet-32 6,130s 122s
(50 images, ResNet-44 8,983s 179s
50 threads) ResNet-56 11,303s 226s

ResNet-110 22,778s 455s

CIFAR-100
proposed

ResNet-32 6,351s 127s(50 images,
50 threads)

Table 4: Classification (amortized) runtime for multiple
CIFAR-10/CIFAR-100 images using ResNet models on the
RNS-CKKS scheme

tors, respectively (Jung et al., 2021; Kim et al., 2021b).

We also succeed in implementing the standard ResNet-
32/44/56/110 on the RNS-CKKS scheme for the first time.
Table 3 shows that the runtime increases linearly with the
number of layers, which is quite difficult to be expected in
leveled HEs.

8.2. Amortized Runtime

Since servers should classify multiple images of clients in
many cases, not only the latency but also the amortized
runtime for multiple images, i.e., runtime per image, is im-
portant. Since the proposed implementation requires only
one thread unlike in (Lee et al., 2021c), multiple threads
allow us to classify multiple images simultaneously. Table 4
shows the runtime and amortized runtime of classification
for multiple CIFAR-10/CIFAR-100 images using ResNet
models on the RNS-CKKS scheme. The proposed imple-
mentation of ResNet-20 takes 3,973s to classify 50 images
using 50 threads, which corresponds to amortized runtime
79s. This is 134× faster than the amortized runtime 10,602s
in (Lee et al., 2021c).

dataset model #test #success backbone obtained
images accuracy accuracy

ResNet-20 10,000 9,132 91.52% 91.31%
CIFAR ResNet-32 10,000 9,240 92.49% 92.4%

-10 ResNet-44 2,000 1,852 92.76% 92.6%*
ResNet-56 2,000 1,856 93.27% 92.8%*
ResNet-110 2,000 1,858 93.5% 92.9%*

CIFAR ResNet-32 10,000 6,943 69.5% 69.43%-100

Table 5: Classification accuracies for CIFAR-10/CIFAR-100
images using ResNet models on the RNS-CKKS scheme.
An asterisk (*) implies that not all 10,000 test images have
been tested.

8.3. Accuracy

Table 5 presents the classification accuracies for CIFAR-
10/CIFAR-100 images using ResNet models on the RNS-
CKKS scheme. Thanks to resolving the catastrophic diver-
gence phenomenon by the proposed imaginary-removing
bootstrapping, all the obtained accuracies for ResNet-
20/32/44/56/110 are very close to those of backbone CNNs.
This implies that the proposed implementation of VDSC-
NNs on the RNS-CKKS scheme can benefit from high ac-
curacies of various pre-trained VDSCNNs that have widely
been developed already.

9. Conclusions
We constructed an efficient privacy-preserving VDSCNN
model on the RNS-CKKS scheme. First, we minimized
the bootstrapping runtime via multiplexed packing and pro-
posed multiplexed parallel convolution algorithm that works
for multiplexed input tensor, which also supports strided
convolutions. Further, we addressed the catastrophic diver-
gence problem of VDSCNNs on the RNS-CKKS scheme
and resolved it by the proposed imaginary-removing boot-
strapping. By carefully integrating computations, we effec-
tively reduced the level consumption. Our simulation results
reported 4.67× lower latency and 134× lower amortized
runtime for ResNet-20 inference compared to (Lee et al.,

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

2021c) while achieving the 128-bit security. We also success-
fully implemented ResNet-32/44/56/110 on the RNS-CKKS
scheme for the first time.

References
Boemer, F., Lao, Y., Cammarota, R., and Wierzynski, C.

nGraph-HE: A graph compiler for deep learning on ho-
momorphically encrypted data. In Proceedings of the
16th ACM International Conference on Computing Fron-
tiers, pp. 3–13, 2019.

Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J., and
Hubaux, J.-P. Efficient bootstrapping for approximate
homomorphic encryption with non-sparse keys. In Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, 2021.

Bossuat, J.-P., Troncoso-Pastoriza, J. R., and Hubaux, J.-P.
Bootstrapping for approximate homomorphic encryption
with negligible failure-probability by using sparse-secret
encapsulation. Cryptol. ePrint Arch., Tech. Rep. 2022/024,
2022. https://ia.cr/2022/024.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. A full
RNS variant of approximate homomorphic encryption.
In Proceedings of International Conference on Selected
Areas in Cryptography, pp. 347–368, 2018a.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
Bootstrapping for approximate homomorphic encryption.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 360–384.
Springer, 2018b.

Cheon, J. H., Hhan, M., Hong, S., and Son, Y. A hybrid of
dual and meet-in-the-middle attack on sparse and ternary
secret LWE. IEEE Access, 7:89497–89506, 2019.

Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., and
Fei-Fei, L. Faster CryptoNets: Leveraging sparsity
for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018.

Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K.,
Maleki, S., Musuvathi, M., and Mytkowicz, T. CHET:
An optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–156, 2019.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy. In Proceedings of International Conference
on Machine Learning, pp. 201–210. PMLR, 2016.

Halevi, S. and Shoup, V. Algorithms in HElib. In Annual
Cryptology Conference, pp. 554–571. Springer, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Jung, W., Kim, S., Ahn, J. H., Cheon, J. H., and Lee, Y.
Over 100x faster bootstrapping in fully homomorphic
encryption through memory-centric optimization with
GPUs. Cryptol. ePrint Arch., Tech. Rep. 2021/508, 2021.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
GAZELLE: A low latency framework for secure neural
network inference. In Proceedings of the 27th USENIX
Security Symposium, pp. 1651–1669, 2018.

Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., and Shams,
S. HEAR: Human action recognition via neural networks
on homomorphically encrypted data. arXiv preprint
arXiv:2104.09164, 2021a.

Kim, S., Kim, J., Kim, M. J., Jung, W., Rhu, M., Kim,
J., and Ahn, J. H. BTS: An accelerator for bootstrap-
pable fully homomorphic encryption. arXiv preprint
arXiv:2112.15479, 2021b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. CiteSeerX Technical Report,
University of Toronto, 2009.

Lee, E., Lee, J.-W., No, J.-S., and Kim, Y.-S. Minimax
approximation of sign function by composite polynomial
for homomorphic comparison. IEEE Transactions on
Dependable and Secure Computing, accepted for publi-
cation, 2021a.

Lee, J., Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and No, J.-S.
Precise approximation of convolutional neural networks
for homomorphically encrypted data. arXiv preprint
arXiv:2105.10879, 2021b.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., et al. Privacy-
preserving machine learning with fully homomorphic
encryption for deep neural network. arXiv preprint
arXiv:2106.07229, 2021c.

Lee, Y., Lee, J.-W., Kim, Y.-S., Kang, H., and No, J.-S.
High-precision approximate homomorphic encryption by
error variance minimization. Cryptol. ePrint Arch., Tech.
Rep. 2020/834, 2021d.

https://ia.cr/2022/024

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Lou, Q. and Jiang, L. HEMET: A homomorphic-encryption-
friendly privacy-preserving mobile neural network archi-
tecture. In Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139, pp. 7102–7110.
PMLR, 2021.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and
Popa, R. A. DELPHI: A cryptographic inference service
for neural networks. In Proceedings of the 29th USENIX
Security Symposium, pp. 2505–2522, 2020.

Park, J., Kim, M. J., Jung, W., and Ahn, J. H. AESPA: Ac-
curacy preserving low-degree polynomial activation for
fast private inference. arXiv preprint arXiv:2201.06699,
2022.

SEAL. Microsoft SEAL (release 3.6). https://github.
com/Microsoft/SEAL, November 2020. Microsoft
Research, Redmond, WA.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

A. Notations and Description of Parameters
In this section, specific notations and description of parameters are provided. We use x to denote a vector in Rn for
some integer n. For x = (x0, x1, · · · , xn−1), ⟨x⟩r denotes the cyclically shifted vector of x by r to the left, that is,
(xr, xr+1, · · · , xn−1, x0, · · · , xr−1). x · y denotes the component-wise multiplication (x0y0, · · · , xn−1yn−1). For an
integer a ∈ Z, the remainder of a divided by q is denoted by a mod q. For a real number x ∈ R, ⌈x⌉ denotes the least integer
greater than or equal to x, and ⌊x⌋ denotes the greatest integer less than or equal to x.

In this paper, various parameters such as hi, ho, wi, wo, ci, co, fh, fw, s, ki, ko, ti, to, pi, po, and q are used, and the values
of these parameters are determined differently for each component such as convolution, batch normalization (or convolu-
tion/batch normalization integration in Section 6), downsampling, and average pooling. The specific values of parameters
that are used in our simulation can be seen in Table 6 in Section 7.

B. RNS-CKKS Scheme
In this section, the RNS-CKKS scheme is described in more detail. RNS-CKKS is an FHE scheme that supports fixed-point
arithmetic operations on encrypted data. The ciphertext in the RNS-CKKS scheme is the form of (b, a) ∈ R2

Qℓ
, where

Qℓ =
∏ℓ

i=0 qi is a product of prime numbers and RQℓ
= ZQℓ

[X]/⟨XN +1⟩. N/2 real (or complex) numbers are encrypted
in N/2 slots of a single ciphertext, and we denote N/2 as nt. We denote the encryption and decryption in RNS-CKKS
scheme as Enc(·) and Dec(·), respectively. The supported homomorphic operations in RNS-CKKS scheme are described as
follows without specific algorithms, where ct, ct1, ct2, ct3, and ct′ are ciphertexts, and u,v,v1, and v2 are vectors in Rnt .

• Homomorphic addition and substitution (⊕,⊖)

– ct⊕ u (resp. ct⊖ u)→ ct′ : If Dec(ct) = v, then Dec(ct′) = v + u (resp. v − u).
– ct1⊕ct2 (resp. ct1⊖ct2)→ ct3: If Dec(ct1) = v1 and Dec(ct2) = v2, then Dec(ct3) = v1+v2 (resp. v1−v2).

• Homomorphic multiplication (⊙,⊗)

– ct⊙ u→ ct′: If Dec(ct) = v, then Dec(ct′) = v · u.
– ct1 ⊗ ct2 → ct3: If Dec(ct1) = v1 and Dec(ct2) = v2, then Dec(ct3) = v1 · v2.

• Homomorphic rotation (Rot)

– Rot(ct; r)→ ct′: If Dec(ct) = v, then Dec(ct′) = ⟨v⟩r.

C. Mapping of Three-Dimensional Tensor to One-Dimensional Vector

It is often necessary to map three-dimensional tensor A ∈ Rhi×wi×ci to one-dimensional vector in Rnt to perform
convolutions on the HE scheme, and A can be the original tensor or (parallelly) multiplexed tensor defined in Section F. The
following is the definition of Vec function that is used to map tensor A to a vector in Rnt ,

Vec(A) = y = (y0, · · · , ynt−1) ∈ Rnt such that

yi =

{
A⌊(i mod hiwi)/wi⌋,i mod wi,⌊i/hiwi⌋, 0 ≤ i < hiwici,

0, otherwise.

Figure 9 describes this Vec function.

Figure 9: Vec function that maps a given tensor in Rhi×wi×ci to a vector in Rnt .

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

In this paper, we use nt = 215, and this allows that all tensors to be encrypted can be packed into one ciphertext, that is,
hiwici ≤ nt for each tensor A ∈ Rhi×wi×ci . In several figures in this paper, a three-dimensional tensor A is often identified
as Vec(A) or the corresponding ciphertext Enc(Vec(A)). In addition, for a three-dimensional tensor A, we refer to rotation
of ciphertext of Vec(A), that is, Rot(Enc(Vec(A)); r) for some nonnegative integer r as rotation of tensor A. When a
tensor is rotated, each element moves to the left, but it goes up when it reaches the leftmost point, and it moves to the front
page when it reaches the top leftmost point. Furthermore, for two tensors A and B, homomorphic addition, subtraction, and
multiplication of Enc(Vec(A)) and Enc(Vec(B)) are referred to as those of A and B, respectively.

D. Batch Normalization on Homomorphic Encryption
Batch normalization (Ioffe & Szegedy, 2015) should be performed for the output tensor of convolution. As in convolution,
hi, wi, and ci are parameters representing the size of the input tensor, and ho, wo, and co are parameters representing the
size of the output tensor in batch normalization. That is, batch normalization outputs a tensor A′ ∈ Rho×wo×co for some
input tensor A ∈ Rhi×wi×ci . We have hi = ho, wi = wo, and ci = co for batch normalization.

We denote the weight, running variance, running mean, and bias of batch normalization by T, V,M, I ∈ Rci . We consider
a constant vector C = (C0, C1, · · · , Cci−1) ∈ Rci such that Cj = Tj√

Vj+ϵ
for 0 ≤ j < ci, where ϵ is an added value

for numerical stability. Then, batch normalization can be seen as evaluating the equation Cj · (Ai1,i2,j −Mj) + Ij for
0 ≤ i1 < hi, 0 ≤ i2 < wi, and 0 ≤ j < ci.

For the description of batch normalization on HE, it is required to define C, M , and I ∈ Rhi×wi×ci first. We define
C, M , and I as Ci1,i2,j = Cj , M i1,i2,j = Mj , and Ii1,i2,j = Bj for 0 ≤ i1 < hi, 0 ≤ i2 < wi, and 0 ≤ j < ci,
respectively. Then, batch normalization can be performed using the equation Vec(C) · (Vec(A)− Vec(M)) + Vec(I) =
Vec(C) ·Vec(A)+(Vec(I)−Vec(C) ·Vec(M)). This can be implemented on HE by using one homomorphic addition and
scalar multiplication. That is, for the input tensor ciphertext cta, we just perform Vec(C)⊙cta⊕(Vec(I)−Vec(C)·Vec(M)).

E. Multiplexed Packing
For ti = ⌈ ci

k2
i
⌉, MultPack is the function that maps a tensor A = (Ai1,i2,i3)0≤i1<hi,0≤i2<wi,0≤i3<ci

∈ Rhi×wi×ci to a
ciphertext Enc(Vec(A′)) ∈ Rnt , where A′ = (A′

i3,i4,i5
)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈ Rkihi×kiwi×ti is a multiplexed

tensor such that

A′
i3,i4,i5 =

{
A⌊i3/ki⌋,⌊i4/ki⌋,k2

i i5+ki(i3 mod ki)+i4 mod ki
, if k2i i5 + ki(i3 mod ki) + i4 mod ki < ci,

0, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti.

This multiplexed packing method is a generalized version of raster scan packing method, and it is the same as raster scan
packing method using Vec when ki = 1. We require each corresponding plaintext tensor to be packed into the ciphertext
slots using the multiplexed packing method throughout the entire CNN, where the value of gap ki can be changed.

F. Convolution Algorithms for Multiplexed Tensor
F.1. Multiplexed Convolution

For description of MULTCONV algorithm, we require some definitions and a subroutine algorithm.

The filter (weight tensor) of the convolution is U ∈ Rfh×fw×ci×co . First, we define MultWgt(U ; i1, i2, i) function that maps
a weight tensor U ∈ Rfh×fw×ci×co to an element of Rnt . Before the definition of MultWgt, we define three-dimensional
multiplexed shifted weight tensor U

′(i1,i2,i)
= (U

′(i1,i2,i)
i3,i4,i5)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈ Rkihi×kiwi×ti for given i1, i2, and

i, where 0 ≤ i1 < fh, 0 ≤ i2 < fw, and 0 ≤ i < co as follows:

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Algorithm 1 SUMSLOTS(cta;m, p)

1: Input: Tensor ciphertext cta, number of added slots m, and gap p
2: Output: Tensor ciphertext ctc
3: ct

(0)
b ← cta

4: for j ← 1 to ⌊log2 m⌋ do
5: ct

(j)
b ← ct

(j−1)
b ⊕ Rot(ct(j−1)

b ; 2j−1 · p)
6: end for
7: ctc ← ct

(⌊log2 m⌋)
b

8: for j ← 0 to ⌊log2 m⌋ − 1 do
9: if ⌊m/2j⌋ mod 2 = 1 then

10: ctc ← ctc ⊕ Rot(ct(j)b ; ⌊m/2j+1⌋ · 2j+1p)
11: end if
12: end for
13: Return ctc

U
′(i1,i2,i)
i3,i4,i5 =

0, if k2i i5 + ki(i3 mod ki) + i4 mod ki ≥ ci

or ⌊i3/ki⌋ − (fh − 1)/2 + i1 /∈ [0, hi − 1]

or ⌊i4/ki⌋ − (fw − 1)/2 + i2 /∈ [0, wi − 1],

Ui1,i2,k2
i i5+ki(i3 mod ki)+i4 mod ki,i

, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti. Then, MultWgt function is defined as MultWgt(U ; i1, i2, i) =

Vec(U
′(i1,i2,i)

).

In addition to the weight tensor, it is also required to define multiplexed selecting tensor S′(i) =

(S
′(i)
i3,i4,i5

)0≤i3<koho,0≤i4<kowo,0≤i5<to ∈ Rkoho×kowo×to , which is used to select valid values in MULTCONV algorithm,
where to = ⌊ co

k2
o

⌋. Multiplexed selecting tensor S′(i) is defined as follows:

S
′(i)
i3,i4,i5

=

{
1, if k2oi5 + ko(i3 mod ko) + i4 mod ko = i

0, otherwise,

for 0 ≤ i3 < koho, 0 ≤ i4 < kowo, and 0 ≤ i5 < to.

SUMSLOTS is a useful subroutine algorithm that adds m slot values spaced apart by p. Algorithm 1 shows the SUMSLOTS
algorithm. Then, Algorithm 2 describes the proposed multiplexed convolution algorithm, MULTCONV using MultWgt
function, multiplexed selecting tensor S′(i), and SUMSLOTS algorithm. Here, ctzero is a ciphertext of all-zero vector 0 ∈ Rnt .

F.2. Multiplexed Parallel Convolution

We propose a multiplexed parallel packing method MultParPack that packs pi identical multiplexed tensors into one
ciphertext for pi = 2

⌊log2(
nt

k2
i
hiwiti

)⌋
. Figure 10 describes how to perform multiplexed parallel packing of 3× 3× ci input

tensor for given gap ki = 2 and number of copies pi. For the input tensor A ∈ Rhi×wi×ci , this function first obtains a
multiplexed tensor A′ ∈ Rkihi×kiwi×ti such that MultPack(A) = Enc(Vec(A′)) and simply places pi copies of A′ in
sequence. This extended tensor is mapped to a vector in Rnt using Vec function and then encrypted into a ciphertext. If
k2i hiwiti ∤ nt, we fill some zeros between pi copies of A′. The definition of MultParPack function is given as:

MultParPack(A) =

pi−1⊕
j=0

Rot(MultPack(A); j(nt/pi)).

We require each corresponding plaintext tensor to be packed into the ciphertext slots using the multiplexed parallel packing
method during the entire CNN. We propose a multiplexed parallel convolution algorithm, MULTPARCONV, which is an
improved algorithm of MULTCONV. MULTPARCONV takes a parallelly multiplexed tensor for gap ki as an input and

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Algorithm 2 MULTCONV(ct′a, U)

1: Input: Multiplexed tensor ciphertext ct′a and weight tensor U
2: Output: Multiplexed tensor ciphertext ct′d
3: ct′d ← ctzero
4: for i1 ← 0 to fh − 1 do
5: for i2 ← 0 to fw − 1 do
6: ct′(i1,i2) ← Rot(ct′a; k2iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))
7: end for
8: end for
9: for i← 0 to co − 1 do

10: ct′b ← ctzero
11: for i1 ← 0 to fh − 1 do
12: for i2 ← 0 to fw − 1 do
13: ct′b ← ct′b ⊕ ct′(i1,i2) ⊙MultWgt(U ; i1, i2, i)
14: end for
15: end for
16: ct′c ← SUMSLOTS(ct′b; ki, 1)
17: ct′c ← SUMSLOTS(ct′c; ki, kwi)
18: ct′c ← SUMSLOTS(ct′c; ti, k

2hiwi)
19: ct′d ← ct′d ⊕ Rot(ct′c;−⌊i/k2o⌋k2ohowo − ⌊(i mod k2o)/ko⌋kowo − (i mod ko))⊙ Vec(S′(i))
20: end for
21: Return ct′d

gap

copies

Figure 10: Multiplexed parallel packing method MultParPack when k2i hiwiti | nt.

outputs a parallelly multiplexed tensor for output gap ko. Let q = ⌈ co

pi
⌉. Then, while the previous multiplexed convolution

algorithm MULTCONV performs multiplication by weight and summing up co times, multiplexed parallel convolution
algorithm MULTPARCONV performs only q times, reducing the required number of rotations to about 1/pi.

Before description of MULTPARCONV in detail, it is required to define ParMultWgt(U ; i1, i2, i3) that maps weight tensor

U ∈ Rhi×wi×ci×co to an element of Rnt . To define ParMultWgt, parallelly multiplexed shifted weight tensor U
′′(i1,i2,i3)

=

(U
′′(i1,i2,i3)
i5,i6,i7)0≤i5<kihi,0≤i6<kiwi,0≤i7<tipi

∈ Rkihi×kiwi×tipi should be defined first for 0 ≤ i1 < fh, 0 ≤ i2 < fw, and
0 ≤ i3 < q as follows:

U
′′(i1,i2,i3)
i5,i6,i7 =

0, if k2i (i7 mod ti) + ki(i5 mod ki) + i6 mod ki ≥ ci

or ⌊i7/ti⌋+ pii3 ≥ co

or ⌊i5/ki⌋ − (fh − 1)/2 + i1 /∈ [0, hi − 1]

or ⌊i6/ki⌋ − (fw − 1)/2 + i2 /∈ [0, wi − 1],

Ui1,i2,k2
i (i7 mod ti)+ki(i5 mod ki)+i6 mod ki,⌊i7/ti⌋+pii3

, otherwise,

for 0 ≤ i5 < kihi, 0 ≤ i6 < kiwi, and 0 ≤ i7 < tipi. Then, ParMultWgt is defined as ParMultWgt(U ; i1, i2, i3) =

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Algorithm 3 MULTPARCONV(ct′′a , U)

1: Input: Parallelly multiplexed tensor ciphertext ct′a and weight tensor U
2: Output: Parallelly multiplexed tensor ciphertext
3: ct′′d ← ctzero
4: for i1 ← 0 to fh − 1 do
5: for i2 ← 0 to fw − 1 do
6: ct′′(i1,i2) ← Rot(ct′′a ; k2iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))
7: end for
8: end for
9: for i3 ← 0 to q − 1 do

10: ct′′b ← ctzero
11: for i1 ← 0 to fh − 1 do
12: for i2 ← 0 to fw − 1 do
13: ct′′b ← ct′′b ⊕ ct′′(i1,i2) ⊙ ParMultWgt(U ; i1, i2, i3)
14: end for
15: end for
16: ct′′c ← SUMSLOTS(ct′′b ; ki, 1)
17: ct′′c ← SUMSLOTS(ct′′c ; ki, kiwi)
18: ct′′c ← SUMSLOTS(ct′′c ; ti, k

2
i hiwi)

19: for i4 ← 0 to min(pi − 1, co − 1− pii3) do
20: i← pii3 + i4
21: ct′′d ← ct′′d ⊕ Rot(ct′′c ;−⌊i/k2o⌋k2ohowo + ⌊nt/pi⌋(i mod pi)− ⌊(i mod k2o)/ko⌋kowo − i mod ko)⊙ Vec(S′(i))
22: end for
23: end for
24: for j ← 0 to log2 po − 1 do
25: ct′′d ← ct′′d ⊕ Rot(ct′′d ;−2j(nt/po))
26: end for
27: Return ct′′d

Vec(U
′′(i1,i2,i3)

). The multiplexed selecting tensor S′(i) defined in Section 3 is also used in MULTPARCONV.

Then, Algorithm 3 shows the proposed multiplexed parallel convolution algorithm MULTPARCONV, where to = ⌊ co

k2
o

⌋ and

po = 2
⌊log2(

nt
k2
ohowoto

)⌋.

G. Multiplexed Parallel Batch Normalization, Downsampling, and Average Pooling
In Section 4, we proposed multiplexed parallel convolution algorithm, MULTPARCONV that works for an input parallelly
multiplexed tensor. Besides convolution, the ResNet model has also batch normalization and average pooling. For the
CIFAR-10 dataset, the ResNet model also has downsampling. Batch normalization, average pooling, and downsampling
should be implemented to be also compatible with the multiplexed parallel packing method. Thus, new batch normalization,
downsampling, and average pooling algorithms that work for an input ciphertext having plaintext tensor using MultParPack
are described in this section.

G.1. Multiplexed Parallel Batch Normalization

We propose an algorithm PARMULTBN that performs batch normalization for a given input parallelly multiplexed tensor. To
this end, it is required to define new function ParBNConst that maps batch normalization constant vectors C,M, I ∈ Rci

(explained in Section D) to a vector in Rnt properly. For a given input constant vector H ∈ Rci , ParBNConst outputs a
vector h′′ = (h′′

0 , h
′′
1 , · · · , h′′

nt−1) ∈ Rnt satisfying

h′′
j =

{
0, if j mod (nt/pi) ≥ k2i hiwiti or k2i i3 + ki(i1 mod ki) + i2 mod ki ≥ ci

Hk2
i i3+ki(i1 mod ki)+i2 mod ki

, otherwise,

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

for 0 ≤ j < nt, where i1 = ⌊((j mod (nt/pi)) mod k2i hiwi)/kiwi⌋, i2 = (j mod (nt/pi)) mod kiwi, and i3 =
⌊(j mod (nt/pi))/k

2
i hiwi⌋. We propose PARMULTBN that performs batch normalization using this ParBNConst function,

and Algorithm 4 describes the proposed PARMULTBN.

Algorithm 4 PARMULTBN(ct′′a , C,M, I)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a and batch normalization constant vectors C,M, I ∈ Rc
i

2: Output: Parallelly multiplexed tensor ciphertext ct′′b
3: c′′ ← ParBNConst(C), m′′ ← ParBNConst(M), i′′ ← ParBNConst(I)
4: ct′′b ← c′′ ⊙ ct′′a ⊕ (i′′ − c′′ ·m′′)
5: Return ct′′b

G.2. Multiplexed Parallel Downsampling

ResNet models for the CIFAR-10 dataset require two downsampling processes. We propose DOWNSAMP algorithm that
performs downsampling for a given input parallelly multiplexed tensor. This prevents the density of valid values from
decreasing after downsampling. To specifically describe the proposed downsampling algorithm, it is required to define
downsampling selecting tensor S′′(i1,i2) = (S

′′(i1,i2)
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈ Rkihi×kiwi×ti , which is used to select

4ki valid values. Downsampling selecting tensor S′′(i1,i2) = (S
′′(i1,i2)
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti for 0 ≤ i1 < ki and
0 ≤ i2 < ti is defined as follows:

S
′′(i1,i2)
i3,i4,i5

=

1, if (⌊i3/ki⌋) mod 2 = 0

and (⌊i4/ki⌋) mod 2 = 0

and i3 mod ki = i1

and i5 = i2

0, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti. Algorithm 5 describes the proposed downsampling algorithm
DOWNSAMP.

Algorithm 5 DOWNSAMP(ct′′a)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a
2: Output: Parallelly multiplexed tensor ciphertext ct′′c
3: ct′′c ← ctzero
4: for i1 ← 0 to ki − 1 do
5: for i2 ← 0 to ti − 1 do
6: i3 ← ⌊((kii2 + i1) mod 2ko)/2⌋
7: i4 ← (kii2 + i1) mod 2
8: i5 ← ⌊(kii2 + i1)/2ko⌋
9: ct′′b ← ct′′a ⊙ Vec(S′′(i1,i2))

10: ct′′c ← ct′′b ⊕ Rot(ct′′b ; k
2
i hiwi(i2 − i5) + kiwi(i1 − i3)− kii4)

11: end for
12: end for
13: ct′′c ← Rot(ct′′c ;−k2ohowoti/8)
14: for j ← 0 to log2 po − 1 do
15: ct′′c ← ct′′c ⊕ Rot(ct′′c ;−2jk2ohowoto)
16: end for
17: Return ct′′c

G.3. Average Pooling

When we reach the average pooling after performing all convolutions, batch normalizations, and APRs in the ResNet model,
we have a ciphertext that contains data packed using MultParPack. The data of ciphertext packed by this multiplexed

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Algorithm 6 AVGPOOL(ct′′a)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a
2: Output: One-dimensional array ciphertext ctb
3: ctb ← ctzero
4: for j ← 0 to log2 wi − 1 do
5: ct′′a ← Rot(ct′′a ; 2j · ki)
6: end for
7: for j ← 0 to log2 hi − 1 do
8: ct′′a ← Rot(ct′′a ; 2j · k2iwi)
9: end for

10: for i1 ← 0 to ki − 1 do
11: for i2 ← 0 to ti − 1 do
12: ctb ← ctb ⊕ Rot(ct′′a ; k2i hiwii2 + kiwii1 − ki(kii2 + i1))⊙ s̄′(kii2+i1)

13: end for
14: end for
15: Return ctb

packing method is arranged in a complex order in one dimension, which limits execution of fully connected layer. Thus, we
propose an average pooling algorithm AVGPOOL that not only performs average pooling but also rearranges indices.

Figure 11: Rearranging process that selects and places k2i ti valid values sequentially in AVGPOOL algorithm.

Average pooling is the process that obtains a vector of Rci by computing the average value for hiwi values for an input
tensor of Rhi×wi×ci . To this end, we can add hiwi values using rotations and additions of tensors. Dividing by hiwi can be
performed instead in the process of multiplying selecting vector. Then, in each page, only k2i values are valid out of the
k2i hiwi values, and the rest are the invalid garbage values. We place only k2i ti valid values sequentially in one-dimensional
vector. For this rearranging process, it is required to define selecting vector s̄′(i3) = (s̄

′(i3)
j)0≤j<nt

∈ Rn, which is defined
as follows:

s̄
′(i3)
j =

{
1

hiwi
, if j − kii3 ∈ [0, ki − 1]

0, otherwise,

for 0 ≤ j < nt and 0 ≤ i3 < kiti. Algorithm 6 shows the proposed average pooling algorithm that uses this selecting vector.
Figure 6 describes the rearranging process that selects and places k2i ti valid values sequentially in Algorithm 6.

H. Convolution/Batch Normalization Integration Algorithm
For a given input ciphertext ctx, we can perform scaling processes, convolution, and batch normalization by evaluating
ctx ⊙ (B · 1), MULTPARCONV(ctx, U), c′′ ⊙ ctx ⊕ (i′′ − c′′ ·m′′), and ctx ⊙ (1

B · 1) functions sequentially, where 1 is

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

Algorithm 7 MULTPARCONVBN(ct′′a , U, C,M, I)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a , weight tensor U , and batch normalization constant vectors C,M, I
2: Output: Parallelly multiplexed tensor ciphertext ct′′d
3: ct′′d ← ctzero
4: for i1 ← 0 to fh − 1 do
5: for i2 ← 0 to fw − 1 do
6: ct′′(i1,i2) ← Rot(ct′′a ; k2iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))
7: end for
8: end for
9: for i3 ← 0 to q − 1 do

10: ct′′b ← ctzero
11: for i1 ← 0 to fh − 1 do
12: for i2 ← 0 to fw − 1 do
13: ct′′b ← ct′′b ⊕ ct′′(i1,i2) ⊙ ParMultWgt(U ; i1, i2, i3)
14: end for
15: end for
16: ct′′c ← SUMSLOTS(ct′′b ; ki, 1)
17: ct′′c ← SUMSLOTS(ct′′c ; ki, kiwi)
18: ct′′c ← SUMSLOTS(ct′′c ; ti, k

2
i hiwi)

19: for i4 ← 0 to min(pi − 1, co − 1− pii3) do
20: i← pii3 + i4
21: ct′′d ← ct′′d ⊕ Rot(ct′′c ;−⌊i/k2o⌋k2ohowo + ⌊nt/pi⌋(i mod pi) − ⌊(i mod k2o)/ko⌋kowo − i mod ko) ⊙

(ParBNConst(C) · Vec(S′(i)))
22: end for
23: end for
24: for j ← 0 to log2 po − 1 do
25: ct′′d ← ct′′d ⊕ Rot(ct′′d ;−2j(nt/po))
26: end for
27: ct′′d ← ct′′d ⊖ 1

B (c′′ ·m′′ − i′′)
28: Return ct′′d

all-one vector in Rn. Considering MULTPARCONV is a linear function, these operations are equivalent to evaluating

(c′′ ⊙MULTPARCONV(ctx, BU)⊕ (i′′ − c′′ ·m′′))⊙ (
1

B
· 1)

= c′′ ⊙MULTPARCONV(ctx, U)⊕ 1

B
(i′′ − c′′ ·m′′).

Here, if we perform MULTPARCONV(ctx, U) while replacing the original selecting tensor Vec(S′(i)) by ParBNConst(C) ·
Vec(S′(i)), we can perform c′′ ⊙MULTPARCONV(ctx, U) without additional level consumption. In addition, computation
of 1

B (i′′ − c′′ ·m′′) requires no additional level consumption since it simply requires operations for plaintext vectors. Thus,
we can perform scaling processes, convolution, and batch normalization with only two level consumptions. Algorithm 7
describes the proposed convolution/batch normalization integration algorithm that uses level optimization technique.

Low-Complexity Convolutional Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convolutions

I. Parameters
Various parameters such as hi, ho, wi, wo, ci, co, fh, fw, s, ki, ko, ti, to, pi, po, and q are determined differently for each
component such as convolution/batch normalization integration algorithm and downsampling. Table 6 shows the values of
parameters that are used in each component of the proposed ResNet structure in Figure 8.

component fh fw s hi ho wi wo ci co ki ko ti to pi po q

CONVBN1 3 3 1 32 32 32 32 3 16 1 1 3 16 8 2 2
CONVBN2 XA 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8
CONVBN2 XB 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8

CONVBN3 XA
X = 1 3 3 2 32 16 32 16 16 32 1 2 16 8 2 4 16

otherwise 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8
CONVBN3 XB 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8

CONVBN4 XA
X = 1 3 3 2 16 8 16 8 32 64 2 4 8 4 4 8 16

otherwise 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8
CONVBN4 XB 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8
CONVBN S1 1 1 2 32 16 32 16 16 32 1 2 16 8 2 4 16
CONVBN S2 1 1 2 16 8 16 8 32 64 2 4 8 4 4 8 16
DOWNSAMP1 - - - 32 16 32 16 16 32 1 2 16 8 2 4 -
DOWNSAMP2 - - - 16 8 16 8 32 64 2 4 8 4 4 8 -

Table 6: Parameters that are used in each CONVBN or DOWNSAMP process

